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In this contribution, we provide the details of two main sub-use cases within the use case of CSI feedback enhancement with AI/ML, namely CSI feedback compression with two-sided models and CSI prediction. 
[bookmark: _Hlk510705081]Discussion
CSI Compression  
Applicable conditions
In RAN WG#1 #112, the following was discussed in the FL summary for applicable conditions. 
	[FL4] Proposal 5-8i:
At least for UE-side models and UE-part of two-sided models, RAN1 to study
· How to define and study a (set of) applicable conditions for functionalities/[models].
· Note: Applicable conditions may be used to enable development of scenario/configuration/[site]-specific models [and, if needed, report the models’ applicability to the Network].
· Whether and how to define performance targets (possibly as a part of applicable conditions) for functionality/[models]
· Whether and how UE reports a (set of) applicable conditions for supported functionalities (and if needed, for supported models) and/or supported set of functionalities.




As the FL proposal mentions, for UE-sided models, RAN1 shall first identify the applicable conditions for supported functionality/functionalities of a given sub-use case (ML-enabled feature). In functionality identification and functionality-based LCM, knowing the UE conditions (including parameters/configurations) is required at the network as the first step before any other, as this shall reveal the background conditions when using ML models for supporting a given ML-enabled feature. 
Proposal 1: For the two-sided CSI feedback compression sub-use case, RAN1 shall define applicable conditions for functionalities to enable functionality-based LCM. 
We expect the CSI feedback compression sub-use case to consider the following set of applicable conditions:
1. CSI-RS measurement conditions
- Defines the maximum number of CSI-RS ports/resources that can be simultaneously active per band or per band combination. “Simultaneous” for CSI-RS means, in any slot, the number of active CSI-RS resources/ports
a) Maximum number of simultaneously active CSI-RS ports/resources
e.g.:
· maxNumberSimultaneousNZP-CSI-RS-PerCC / totalNumberPortsSimultaneousNZP-CSI-RS-PerCC per band [MIMO-ParametersPerBand]
· maxNumberSimultaneousNZP-CSI-RS-ActBWP-AllCC / totalNumberPortsSimultaneousNZP-CSI-RS-ActBWP-AllCC] per band combination [CA-ParametersNR]

b) Maximum number of simultaneously active CSI-RS ports/resources for each AI/ML-based CSI type
- Defines a list of triplets (max # ports per resource, max # resources, total # ports) indicating the number of ports/resources that can be simultaneously active for a specific type of CSI report
e.g.:
· supportedCSI-RS-ResourceList per band [codebookParametersPerBand]
· supportedCSI-RS-ResourceList per band combination [codebookParametersPerBC]
· supportedCSI-RS-ResourceList for concurrent CSI reports of different codebook types per band [codebookComboParametersPerBand]
· supportedCSI-RS-ResourceList for concurrent CSI reports of different codebook types per band combination [codebookComboParametersPerBC]

 
2. CSI-RS and CSI reports configuration conditions
- Defines the maximum number of CSI-RS/IM ports/resources and CSI Report Settings that can be configured per BWP (regardless of whether they are active)
a) Maximum number of configured CSI-RS/IM ports/resources (e.g., in CSI-RS-IM-ReceptionForFeedback)
b) Maximum number of configured CSI Report Settings (e.g., in csi-ReportFramework)

3. CSI calculation conditions (i.e., number of occupied CPUs)
- Defines the maximum number of CPUs that can be simultaneously occupied by all CSI or beam reports in any given symbol
e.g.:
· simultaneousCSI-ReportsPerCC per band [MIMO-ParametersPerBand]
· simultaneousCSI-ReportsAllCC per band combination [CA-ParametersNR]

4. Output CSI conditions
- Defines the supported definitions/conditions on the output CSI

5. Compression ratio conditions (e.g., CR4, CR8, …)
- Defines the supported compression ratios of the compressed CSI codebook supported by the UE.

6. Quantizer conditions (e.g., SQ1, VQ1, …)
- Defines the supported quantization modes for compressed CSI codebook supported by the UE.

7. Pairing ID (e.g., model ID, Dataset ID(s))
- Indicates a pairing ID (interpretable by the NW) to match the UE side and NW side models. One pairing ID can be reported by a bit field defined in the spec (e.g., 3 or 4 bits) which allows NW to consider selecting a matching model on the NW side.

8. Conditions on supporting ML functionalities
a. Max number of supported functionalities (1, 2, 4, 8, …)
- Indicates the maximum number of functionalities (e.g., number of parameter combinations that enable ML-enabled feature) that can be configured toward the UE 
b. Delay in activating a functionality (2 ms, 4 ms, …)
- Indicates the delay required when activating or switching a functionality
c. Generalization condition of functionalities (yes, no)
- Indicates that the UE supports any functionality configured considering the parameter combinations of 1-4 and can be used towards the UE without any validation whether functionality is applicable or not.

Proposal 2: For the two-sided CSI feedback compression sub-use case, RAN1 to study the following applicable conditions for functionalities,  
•	CSI-RS measurement conditions 
•	CSI-RS and CSI reports configuration conditions
•	CSI calculation conditions (i.e., number of occupied CPUs)
•	Output CSI conditions
•	Compression ratio conditions (e.g., CR4, CR8, …)
•	Quantizer conditions (e.g., SQ1, VQ1, …)
•	Pairing ID (e.g., model ID, dataset ID)
•	Generic conditions on supporting ML functionalities

RAN WG#1 #112 agreed that UE capability reporting serves as a starting point for identifying functionalities, while the applicable conditions are more similar to UE feature group (FG) components in the legacy UE capability reporting framework. As a result, applicable condition reporting should be based on UE capability reporting as the baseline.
When considering the reporting of applicable conditions only via UE capability reporting, the listed components associated with the applicable conditions are reported by the UE capability signaling with the candidate values defined by the specification for FG components. Some components may be defined as basic components and others may define as optional components. 

There may be other variants for reporting applicable conditions. An alternative option could be to report basic applicable conditions through UE capability reporting and additional applicable conditions through a separate reporting method. However, it is not yet fully clear whether this approach is necessary.

Proposal 3: For the two-sided CSI feedback compression sub-use case, UE reports applicable conditions for functionalities by using UE capability reporting.

Similar to our contribution in AI 9.2.1, the following variants can be discussed on how to identify or create/configure the functionalities for two-sided CSI feedback sub-use case.
· Alt 1: NW-configured functionalities 
· Functionalities (one or more) are created as the network prefers (similar to many other CSI reporting configurations in NR) based combination of appliable conditions (at least the parameter combinations). Each functionality may refer to an RRC configuration (e.g., CSI reporting configuration) of gNB selected/configured applicable conditions. 
· Here, as in legacy CSI reporting configurations, the gNB shall respect the reported applicable conditions in UE capability reporting. 
· If there is more than one functionality, those are identified by an RRC ID (e.g., CSIReportConfigID) 

· Alt 2: UE-reported functionalities 
· The UE may directly report one or multiple functionalities that it supports where each functionality may correspond to a combination of appliable conditions (at least the parameter combinations). 
· This is more like UE-created functionality reporting. 
· To support this via UE-capability reporting, we need to consider applicable parameter combination set reporting (e.g., a combination may contain parameters for input/output/and many other conditions) but legacy UE capability reporting has to adjust to fit such framework. 

· Alt 3: NW-configured, UE confirmed functionalities
· This may be a combination of Alt 1 and Alt 2, where Alt 1 is considered first. Later the UE can indicate preferred functionalities (dynamic or semi-static) without using UE-capability reporting to allow functionality switching/activation/etc.

Proposal 4: For the two-sided CSI feedback compression sub-use case, the NW creates/configures functionalities to the UE with each functionality referring to a configuration message (e.g., RRC) that contains NW-selected applicable conditions (according to the UE capability).  

Quantizer/Dequantizer operation
	Agreement
For the evaluation of quantization aware/non-aware training, the following cases are considered and reported by companies:
· Case 1: Quantization non-aware training, where the float-format variables are directly passed from CSI generation part to CSI reconstruction part during the training
· Fixed/pre-configured quantization method/parameters is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2: Quantization aware training, where quantization/dequantization is involved in the training process
· Case 2-1: Fixed/pre-configured quantization method/parameters are applied during the training phase; the same quantization codebook is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2-2: The quantization method/parameters are updated in together with the AI/ML models during the training; when training is finished, the final quantization codebook is applied for the inference phase
· Companies to report how to update the quantization method/parameters during the training
· Note: the above cases apply for training Type 1/2/3
· Others are not precluded. 



On Quantization operation options
Quantization can be categorized into two groups, i.e., scalar quantization and vector quantization. Scalar quantization takes each latent feature vector element and quantizes it one by one. Vector quantization takes either the whole latent vector or segmentized subset of it and to quantize it to map it to pre-defined codeword at a time. In case the length of the latent vector is large, it can be practically difficult to acquire codebook in case of using training-based algorithms like Lloyd VQ scheme. In this sense, segment of the whole vector with a manageable size LS, can be fed into vector quantizer [6]. This procedure is repeated to cover the whole latent vector, and the whole latent vector can be represented by  codewords of size LS, where Lz is the length of the latent feature vector ze.
Scalar quantization can provide a flexibility. It can be a viable option, when input to quantizer {ze} has a bounded value. In this case, each element can be represented with a few numbers of bits only. Either uniform or non-uniform (based on statistics of ze) scheme can be used.
Proposal 5: Regarding the quantization scheme for CSI feedback, a scalar quantization scheme with a limited bit size needs to be studied especially for bounded input to the AI encoder use case, e.g., channel eigenvector compression. 
Vector quantization scheme mandates a codebook which can be rule-based or derived from statistics of the training dataset. In the case of the latter case, the resulting codebook depends on statistics of input data {ze}, which is the output of the AI encoder. Hence it might be the case that we end up with multiple codebooks (one per UE-vendor) in case of Type 2 or Type 3 collaboration scenarios. This is applicable to statistics-based scalar quantization scheme, but vector quantization scheme requires a larger memory footprint for saving of the codebook(s).
It is desirable to have a synchronized operation between the segmentizer at UE-side and the combiner at NW-side for vector quantization scheme. In the case of Type 2 or Type 3 collaboration scenarios, this alignment between UE-vendor and NW-vendor should be done, preferably within the 3GPP framework.
Proposal 6: Regarding vector quantization scheme for CSI feedback for Type 2 or Type 3 two-sided model training collaboration scenarios, the degree of required alignment between quantizer/dequantizer at UE-side/NW-side respectively needs to be studied, e.g., the length of a codeword, the size of a codebook, and the distance metric (or quantization rule) in use.
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Figure 2‑1: Quantizer types

About potential specification impact on quantization method alignment
	Agreement
In CSI compression using two-sided model use case, further study at least use cases of the following potential specification impact on quantization method alignment between CSI generation part at UE and CSI reconstruction part at gNB: 
· Alignment of the quantization/dequantization method and the feedback message size between Network and UE



As we have shown already, several quantization methods can be considered including uniform scalar quantization, non-uniform scalar quantization, and vector quantization. Thus, alignment of the considered quantization/dequantization method and its hyperparameters are necessary. In the case of uniform scaler quantization, in addition to the quantization type, the number of quantization bits per scalar and the value of each quantization level are shared between the UE and gNB. The feedback size is determined based on the number of quantization bits per scaler and the encoder output size. The value of quantization levels can be determined by sharing all the values or following a standardized quantization method and sharing only the considered minimum and maximum range for quantization.
In the case of the non-uniform quantization approach, similar information needs to be shared between the entities. The main difference is the way of determining the value of quantization levels, which depends also on the considered non-linear function (mu-law, A-law, etc.). Thus, the alignment includes the non-linear function and its hyperparameter. In the last case, vector quantization can be used to apply quantization to the encoder output, by considering the correlation between the output’s entries. Thus, the quantization type, the number of considered bits for representing the centroid vectors, and the values of centroid vectors are necessary to be shared between the AE entities. If the centroid vectors are changed during the training, the updated values need to be communicated to the decoder entity.
Although the codebook in the VQ type needs to be shared once with the network node, it may cause difficulties because the number of FP values to be shared is growing by considering larger segments of encoder outputs and the number of bits for quantization. This property results in increasing codebook and codeword sizes. 
Observation 1: The size of VQ codebook can cause limitations/difficulties in using VQ and needs to be investigated.
The following has been proposed in the FL summary:

	Proposal 3-3-6: 
In CSI compression using two-sided model use case, further study at least the following potential specification impact on quantization alignment including: 
For vector quantization scheme, the format and size of the VQ codebook, the distance metric (or quantization rule), the segmentation approach, and configuration of VQ codebook.  
For scaler quantization scheme including uniform and non-uniform quantization



Generally, we agree with the proposal, but we propose to discuss also the following items:
a. For vector quantization: Is the type of information for quantization alignment the same for different types of training collaborations? For example, in type-3 separate training, it might be possible to not share the configuration of VQ codebook with the other entity, as the choice of quantization configuration can be obtained using the shared dataset of original CSI and corresponding indices to the VQ codebook. 
b. For Scalar quantization: the number of quantization bits/levels per scalar is also important to be aligned with the other entity. In addition, in the case of non-uniform quantization, the considered non-linear function and its parameters need to be shared.

Proposal 7: RAN1 may investigate sharing the relevant quantization architecture and parameters from one network entity to the other. For example, the type of quantization and quantization parameters can be shared with the other network node. The quantization parameters depend on the quantization type and may include:
· For scalar uniform quantization: number of quantization bits/levels, the minimum and maximum range of quantization
· For scalar non-uniform quantization: number of quantization bits/levels, the minimum and maximum range of quantization, type of non-linear function and its parameters
· For vector quantization: Codebook size and all the codewords

Performance monitoring
[bookmark: _Hlk118347304]The measured channel data in real-world radio environments can be different from those in the training datasets. To ensure proper behaviour of the deployed models, performance monitoring is important and provides useful inputs for gNB to make decisions such as model activation/deactivation/updating/switching. The following agreement was reached in [1].
	Agreement
In CSI compression using two-sided model use case, study potential specification impact for performance monitoring including: 
· NW-side performance monitoring:  NW monitors the performance and make decisions of model activation/ deactivation/updating/switching    
· UE-side performance monitoring: UE monitors the performance and reports to Network, NW makes decisions of model activation/ deactivation/updating/switching   

Agreement
In CSI compression using two-sided model use case, further study potential specification impact related to potential co-existence and fallback mechanisms between AI/ML-based CSI feedback mode and legacy non-AI/ML-based CSI feedback mode.



Both NW- and UE-side performance monitoring need to be studied to help gNB make proper decisions. 
	Agreement
In CSI compression using two-sided model use case, further study at least the following options for performance monitoring metrics/methods:
· Intermediate KPIs as monitoring metrics (e.g., SGCS)
· Eventual KPIs (e.g., Throughput, hypothetical BLER, BLER, NACK/ACK).
· Legacy CSI based monitoring: schemes using additional legacy CSI reporting
· Other monitoring solutions, at least including the following option:
· Input or Output data based monitoring: such as data drift between training dataset and observed dataset and out-of-distribution detection

Agreement
In CSI compression using two-sided model use case, further study potential specification impact related to assistance signaling and procedure for model performance monitoring. 




In RAN1 #112 meeting, the following was further agreed.
	Agreement
In CSI compression using two-sided model use case, further study the necessity, feasibility, and potential specification impact for intermediate KPIs based monitoring including at least:
· NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side. 
· UE-side monitoring based on the output of the CSI reconstruction model, subject to the aligned format, associated to the CSI report, indicated by the NW or obtained from the network side.
· Network may configure a threshold criterion to facilitate UE to perform model monitoring. 
· UE-side monitoring based on the output of the CSI reconstruction model at the UE-side
· Note: CSI reconstruction model at the UE-side can be the same or different comparing to the actual CSI reconstruction model used at the NW-side. 
· Network may configure a threshold criterion to facilitate UE to perform model monitoring. 
· FFS: Other solutions, e.g., UE-side uses a model that directly outputs intermediate KPI. Network-side monitoring based on target CSI measured via SRS from the UE.
Note: Monitoring approaches not based on intermediate KPI are not precluded
Note: the study of intermediate KPIs based monitoring should take into account the monitoring reliability (accuracy), overhead, complexity, and latency.




In CSI compression using two-sided model use case, the SGCS is calculated based on the target (ground-truth) CSI and the NW-reconstructed CSI. If the SGCS is monitored at the UE side, the UE needs to know the NW-reconstructed CSI information. With Type 1 Joint training, the UE can calculate the SGCS since it knows the specific model used on the gNB side. With Type 2 Joint training, there’s no way for UE to do so since the knowledge about the decoder is unknown at UE. With Type 3 Separate training, if the UE-first approach is adopted, even though the UE still does not have the exact knowledge about the decoder, it could try to use the hypothetical decoder used in training as the proxy to derive the NW-reconstructed CSI. If SGCS is monitored at the Network side, it requires UE to send back the ground-truth CSI for calculating SGCS. Since it would introduce large overheads, the frequency of such reports needs to be considered, possibly jointly designed with the data collection process.
Another possible way to do performance monitoring is the model-based calculation of the distance between representations, where representation refers to the encoder output in general. The representation could be quantized or unquantized, and proper definitions of the distance and the corresponding metric threshold can be studied. Unlike comparing the measured channels and the training data sets which are only doable on the UE side, the calculation of the distance between representations is doable at both UE and gNB ends.
Proposal 8: For CSI compression, RAN1 shall study the potential specification impact on performance monitoring by considering 
· Methods of performance monitoring (NW-sided, UE-sided, hybrid)
· Changes to the reporting framework (e.g., ground-truth reporting to enable performance monitoring at the gNB, KPI reporting when UE considers performance monitoring)
· Changes to the measurement framework (e.g., configuring monitoring KPIs and measurement resources)

Data collection aspects

In RAN1 #112 meeting, the following was further agreed.
	Agreement
· In CSI compression using two-sided model use case, further study the necessity, feasibility, and potential specification impact of UE side data collection enhancement including at least  
· Enhancement of CSI-RS configuration to enable higher accuracy measurement.
· Assistance information for UE data collection for categorizing the data in forms of ID for the purpose of differentiating characteristics of data due to specific configuration, scenarios, site etc.
· The provision of assistance information needs to consider feasibility of disclosing proprietary information to the other side.
· Signaling for triggering the data collection
· In CSI compression using two-sided model use case, further discuss the necessity, feasibility, and potential specification impact for NW side data collection including at least:   
· Enhancement of SRS and/or CSI-RS measurement and/or CSI reporting to enable higher accuracy measurement. 
· Contents of the ground-truth CSI including:  
· Data sample type, e.g., precoding matrix, channel matrix etc.
· Data sample format: scaler quantization and/or codebook-based quantization (e.g., e-type II like). 
· Assistance information (e.g., time stamps, and/or cell ID, Assistance information for Network data collection for categorizing the data in forms of ID for the purpose of differentiating characteristics of data due to specific configuration, scenarios, site etc., and data quality indicator)
· Latency requirement for data collection
· Signaling for triggering the data collection




In summary, data collection can serve several purposes, including:
· Performance monitoring.
· Model fine-tuning.
· Training models offline, which could be given lower priority as it can result in increased signaling and data transmission overhead.

By collecting data, the network can evaluate the performance of the model and identify areas for further improvement. Offline training can be conducted using the collected field data to develop new models or improve existing ones. Fine-tuning can also be performed to adjust the model's parameters and improve its accuracy, enabling it to adapt to different radio environments. 
The network bears the responsibility for ensuring optimal system performance. Therefore, the network should control the procedures for data collection and the use of the collected data. For instance, although it is possible to fine-tune the encoder on the UE side, to ensure that such a change is successful, the network needs to be informed of when a model change is necessary, authorize it, and take the required follow-up actions accordingly.
When reporting DL channels, the raw channel matrices may be too large for systems with big antenna arrays. In this case, it is necessary to pre-process the data to reduce its size. Pre-processing techniques such as channel matrix transformation, channel clipping, and channel sub-sampling can be used to condense the data without compromising its accuracy too much. By employing these techniques, the data can be made more manageable and easier to process, making data collection feasible for channel matrix reporting.
When it comes to accuracy in using collected data for performance monitoring, it is not always necessary to use high-precision data formats, especially in cases where a certain level of imprecision can be tolerated without a significant impact on the overall calculation of the monitored KPIs. One way to reduce the precision of data is to use low-precision floating-point formats, which can represent numbers with fewer bits than standard floating-point formats. Another approach to reducing precision is codebook-based quantization. While codebook-based quantization can result in some loss of fidelity, it can be an effective way to balance data accuracy with computational and storage efficiency, especially when the codebook-based feedback mechanism is already implemented on the UE side.
Assistance information such as time stamps and cell IDs can be beneficial because they help the network determine the most efficient way to utilize data. By analyzing this information, the network can make informed decisions on how to organize and use the collected data. For instance, time stamps can help the network determine the age of the data and prioritize its processing accordingly. 
Moreover, providing the network with knowledge about the characteristics of the data can also be helpful in training or updating the model. Understanding key factors such as channel delay spread and Doppler spread can aid in the selection of appropriate models and parameters to use. To reduce transmission overhead, it may be beneficial to preprocess the data on the UE side before transmitting it to the network. By doing so, the amount of data that needs to be transmitted can be minimized, improving the overall efficiency of the network. Additionally, including UE vendor-related information and data quality indicators in the data can be beneficial, allowing the network to effectively integrate the data into existing datasets. This can facilitate multi-vendor model training and improve the network's overall performance.
Proposal 9: In CSI compression using a two-sided model, consider the following for the data collection, 
· Data collection shall be mainly focused on performance monitoring or model fine-tuning, and considerations on the data collection for model training shall not be the main focus. 
· UE-sided data collection, 
· Existing CSI-RS configuration shall be used as the starting point for any form of data collection
· NW-sided data collection, 
· Enhancement of CSI reporting to enable higher accuracy reporting
· FFS: Assistance information reporting  

Generalization/Scalability Aspects
	Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different output dimensions of CSI generation part (e.g., different generated CSI feedback dimensions), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed output dimension Y1 (e.g., a fixed CSI feedback dimension), and then the AI/ML model performs inference/test on a dataset from the same output dimension Y1.
· Case 2: The AI/ML model is trained based on training dataset from a single output dimension Y1, and then the AI/ML model performs inference/test on a dataset from a different output dimension Y2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of Y1, Y2,..., Yn, and then the AI/ML model performs inference/test on a single dataset of Y1, or Y2,…, or Yn.
· Note: For Case 1/2/3, companies to report whether the output of the CSI generation part is before quantization or after quantization.
· Note: For Case 2/3, the solutions to achieve the scalability between Yi and Yj, are reported by companies, including, e.g., truncation, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases



Model scalability over feedback dimension

[bookmark: _Int_HAe3driT]The auto-encoder (AE) designs with a fixed compression rate (CR) imply that multiple AE models must be trained, stored, and managed by gNBs and UEs. Therefore, it is required to consider the case where a single ML model can support multiple CRs {CR1, CR2, …., CRN}, corresponding to the encoder output dimension {Y1, Y2,…, Yn}. A potential approach is to design the encoder and decoder architecture so that the desired encoder dimensions {Y1, Y2,…, Yn} are supported by different encoder and decoder layers. For example, the first layer of the encoder compresses the signal to result in an output with dimension Y1, the second layer of the encoder results in an output with dimension Y2, …, and the last layer of the encoder results in an output with dimension YN. The decoder layers are also designed to support different dimensionalities for the compressed CSI, i.e., {Y1, Y2,…, Yn}. Figure 2‑2 shows the design for an auto-encoder that can support several CRs. Also, a progressive training procedure is illustrated to show how the layer parameters can be trained to support different CRs. 

[image: ]
[bookmark: _Ref127532368][bookmark: _Ref131775616]Figure 2‑2 Progressive training of an auto-encoder to support several compression rates.

Proposal 10: RAN1 shall study the possible specification changes when supporting multiple compression ratios and how to enable progressive training. 


Model scalability over ports/bandwidth/feedback sizes
The CSI data can be variable configurations (e.g., bandwidths and ports) and compressed with diverse compression ratios. Instead of storing and training a large number of specific models for configuration specific CSI data with fixed compression ratios in real-world implementation, a universal CSI feedback model should be studied to accommodate CSI data of various configurations and diverse compression ratios. 
An example model structure for a universal CSI feedback to accommodate various CSI configurations (e.g., bandwidths, ports) and multiple payload sizes is shown in Figure 2‑3. In the example universal model, original CSI data of various configurations are first input into a pre-processing module, which split the CSI matrixes into CSI patches as the intermedia results. Then, the CSI patches are input into a common encoder for compression. Several sub-NNs are used for compression with various compression ratios to obtain codewords of different sizes. The related sub-NNs decompress the codeword of different sizes and the common decoder reconstructs the CSI data. Based on the example model structure, UE is able to evaluate the QoS with regards to the reconstructed CSI data. If the QoS performance has not been satisfied, the controller at the UE side will re-select the sub-NNs for compression and decompression to meet the QoS requirements.
  
[image: ]

[bookmark: _Ref131721043]Figure 2‑3 An example model structure for a universal CSI feedback to accommodate various CSI configurations (e.g. bandwidths, ports) and multiple payload sizes

Proposal 11: RAN1 shall study the possible specification changes when accommodating various CSI-RS configurations (e.g., bandwidths, ports) and multiple payload sizes.

Other specification impacts
The CSI feedback configuration could include: the number of feedback bits; quantization information; type of the associated decoder output (output CSI); indicator for possible post-processing.
In the current standards, RI, PMI and CQI could be jointly reported to gNB according to the given configuration(s), where CQI may need more resources for feedback in the case of sub-band reporting. For codebook-based solutions, UE determines the CQI for reporting based on the precoding matrix indicated by the PMI and also its associated receiver. For neural network-based solutions, CSI compression feedback is accomplished by using two-sided models, where an encoder is deployed on the UE side and decoder on the gNB side. If UE has complete knowledge about the decoder, approaches similar to legacy codebook-based solutions can still be considered for RI determination, and CQI can be calculated based on the decoder output inferred on the UE side. If UE does not have complete knowledge about the decoder, CQI could be calculated based on input to the encoder on the UE side, which, for example, can be eigenvector(s) or W2. In this case, there would be a mismatch between the calculated CQI and the real CQI, and the CQI reports could be optimistic. This is another source of SINR estimation error. Practically, OLLA can alleviate the problem by adjusting the SINR offset.
Additionally, since the reconstruction capability of the decoder model heavily depends on the underlying subject of compression, it is necessary to have well-defined model outputs, which can include antenna port configurations, sub-band configurations, the type of model output, and possibly others. As indicated in previous sub-sections, the type of model output can be the raw channels, the eigenvectors, or W2-like information. Potential post-processing can include linearly combining DFT vectors if the model output type is W2-like.
Regarding the exact CSI feedback sent from the UE to the network, it is expected that the format of the compressed information (output of the encoder) will be specified to a certain degree. There are several open issues to address there such as integrating ML-enabled CSI compression reports and legacy non-ML CSI reports, combining reporting of ML-enabled/compressed parts of CSI report with legacy non-ML parts, and method of providing scalable and flexible ML-based CSI reporting. To fit into the legacy CSI reporting set-up, mapping of compressed CSI into fixed/configurable/known-payload part (similar to CSI Part 1) and variable/predictable size (similar to CSI Part 2) may also be required with compressed CSI.  With such considerations, the ML-based CSI report can be efficiently integrated into the existing CSI reporting framework. When discussing CSI parts 1 and 2 in the CSI compression framework, as these get different priorities in the NR framework, the decoding and decompressing of the compressed CSI part 1 is also needed, and necessary info and also some level of CSI (e.g., lower resolution) may be sent using such a CSI part 1. Compressed CSI part 2 may provide additional information for CSI (e.g., higher resolution) which can be used together with CSI part 1 to decompress the full CSI.  
Proposal 12: RAN1 shall study the possible use of CSI part 1 and CSI part 2 like approach for the compressed CSI reporting. 
In RAN1 #112 meeting, the following was concluded.
	Conclusion
In CSI compression using two-sided model use case, further discuss the pros/cons of different offline training collaboration types including at least the following aspects: 
· Whether model can be kept proprietary 
· Requirements on privacy-sensitive dataset sharing 
· Flexibility to support cell/site/scenario/configuration specific model
· gNB/device specific optimization – i.e., whether hardware-specific optimization of the model is possible, e.g. compilation for the specific hardware
· Model update flexibility after deployment
· feasibility of allowing UE side and NW side to develop/update models separately
· Model performance based on evaluation in 9.2.2.1
· Whether gNB can maintain/store a single/unified model
· Whether UE device can maintain/store a single/unified model
· Extendability: to train new UE-side model compatible with NW-side model in use; Or to train new NW-side model compatible with UE-side model in use 
· Whether training data distribution can be matched to the device that will use the model for inference
· Whether device capability can be considered for model development
· Other aspects are not precluded
· Note: training data collection and dataset/model delivery will be discussed separately 




Whether the model can be kept proprietary 
Type 1 joint training enables training an end-to-end model with different approaches possible. One approach is for a single institute to create and train the model and then share the trained model with other institutes. Alternatively, multiple institutes can agree on a single model and delegate the training to one institute, before sharing the trained model with others. In both cases, the participating institutes have visibility into the model, either at the source code level or through a saved trained model in an agreed-upon format.
Type 2 training enables models to remain proprietary. For example, a UE vendor can create an encoder model, and a gNB vendor can create a decoder model. During the training phase, gradients can be exchanged via inter-process communication (IPC), if the training programs are running as separate computer processes. In this case, neither vendor has access to the details of the other vendor's model, except for the agreed-upon interface.
With Type 3 separate training, both NW-first and UE-first training approaches can ensure that the models remain proprietary, even in a multi-vendor training scenario.

Codebook-aided privacy-sensitive dataset sharing for separate training
The following section outlines mechanisms for sharing privacy-sensitive data. The dataset for separate training includes both the original CSI and associated intermediate information to enable the alignment of the two-sided model. The intermediate information commonly used includes either latent vectors or quantized latent vectors (i.e. dequantized CSI feedback). There may be some concerns about sharing the (quantized) latent vector for separate training, as it poses a potential risk of exposing the capabilities of the first-trained model. For example, in NW-first separate training, the UE is able to train a comparable decoder by reconstructing the target CSI with the shared latent vector as input. Given that vector quantization relies on a pre-designed codebook to convert the latent vector into its associated codeword. If the codebook is not made public, the mapping between codeword and quantized latent representation can be kept vendor-proprietary. Therefore, it is unlikely that UE will be able to recreate a comparable decoder solely with access to the codeword. However, whether it is possible to achieve the alignment between UE-side encoder and NW-side decoder without disclosing the (quantized) latent representation is worth exploring. As a result, solutions where the codebook serves as a vendor proprietary and only codebook-dependent codewords are shared together with the ground-truth CSI should be studied and discussed for separate training as shown below.
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[bookmark: _Hlk131716246]Figure 2‑4 Codebook-aided privacy-sensitive dataset sharing for NW-first separate training

NW-first separate training without explicit latent vector sharing
1. Training stage:
· [NW-side model training]: NW-side entity trains a hypothetical AI encoder, a vector quantizer associated with a codebook and an AI decoder in quantization-aware or quantization-unaware manner.
· [dataset sharing]: On completion of the NW-side model training, the NW-side entity generates and shares with UE a training dataset, which consists of massive data pairs {ground-truth CSI, associated codeword} for UE-side model training. Note here that the CSI associated codeword is an index vector in the format of bit sequence, rather than the quantized latent representation outputted from VQ.
· [UE-side model training]: the UE receives the shared dataset (i.e. data pairs) from the NW and at least trains an encoder to produce the codeword that matches the shared one. Depending on whether the UE creates a hypothetical codebook and decoder, there are two options for UE-side training: (1) encoder-only training: the UE-proprietary encoder is trained to output codeword that closely matches the shared codeword by minimizing the difference between them in a supervised manner. (2) joint encoder-codebook-decoder training: the UE creates a hypothetical codebook and a hypothetical decoder to train the UE-side encoder with an end-to-end KPI (e.g. SGCS), while maintains the alignment between NW and UE. The hypothetical codebook and decoder can be entirely different from the NW-side decoder.
2. Joint operation/inference stage:
· [UE-side CSI compression]: For UEs without a hypothetical codebook, it takes in the field CSI data and directly outputs the associated codeword using the UE-proprietary encoder; For UEs with a hypothetical codebook, it first compresses the filed CSI data into a latent vector, and then identifies the closet codebook vector in the UE-side hypothetical codebook. The UE side model finally outputs the associated codeword.
· [UE-side CSI feedback]: UE feeds back the CSI-associated codeword over the air to the NW through uplink channels such as PUSCH or PUCCH.
· [NW-side CSI reconstruction]: NW produces the corresponding quantized latent vector by referring to its proprietary codebook according to the reported codeword and then reconstructs the CSI data.

Regarding the NW-first separate training, the UE may not need to know the details of the NW-side quantizer/dequantizer, such as the mapping between codewords and quantized latent vectors.
Proposal 13: RAN1 shall investigate the appropriate dataset sharing without disclosing the mapping from (quantized) latent representation to the codeword.

Hardware-specific optimization
Device-specific optimization is critical for deploying models on different hardware platforms, as they can have different architectures and performance characteristics that can affect the efficiency and performance of the model. There are several techniques that can help improve the efficiency and speed of inference in machine learning, including weight pruning [9] and quantization.
Pruning is a technique that involves removing unimportant weights or connections from the model, reducing the number of parameters and improving the model's sparsity, whose computations can be accelerated in hardware. Pruning can be performed during or after training, and it can be combined with other compression techniques, such as quantization, to further optimize the model.
Quantization involves reducing the precision of weights and biases from floating-point to fixed-point values. This reduces the number of bits needed to store each weight and bias value, leading to smaller model sizes and faster inference times. During inference, the inputs to the model are also quantized to the same fixed-point format. The calculations performed by the model are then performed using fixed-point arithmetic, which can be more efficient than floating-point arithmetic, especially on hardware with limited computational resources.
Hardware-specific optimization improves model performance and efficiency for specific use cases. For example, optimizing for a device can result in faster execution, critical for real-time applications like scheduling. It can also reduce power consumption, important for mobile devices with limited battery life.

Flexibility to support cell/site/scenario/configuration specific model
To cope with different scenarios/environments in Type 3 (separate) training, both the encoder and decoder can be trained with a mixed data set. Although training on mixed datasets from scenario A and B and testing on either scenario A or B probably yields good results, it is doubtful how to generalize a decoder which receives codes from an encoder that could be trained in a mixture of scenarios, where neither of these scenarios has been used for training the decoder (even if said encoder has the same compression rate and quantization configuration). In addition, it is likely that the performance degradation is significant particularly when the test scenario has significant differences in the channel characteristics e.g., InH channel profile is completely different than UMi and CDL-C channel profile has different characteristics than UMi channel profile. In sum, it is still a question how to train a decoder able to cope with an encoder trained with scenario-mismatched data. A potential way of dealing with this is to consider several decoders where their outputs adaptively are aggregated based on the test (deployed) environment.
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Figure 2‑5 For a UE-first training separate training, several key encodings can be obtained based on the encodings from the trained encoder. Then, a paired decoder can be trained to prevent performance degradation due to mismatch in the test scenario and the training scenarios of the encoder and decoder. 

Proposal 14: RAN1 may study the performance of the ML-based CSI-compression where the training datasets by the UE and gNB vendors are not matched. Also, it is necessary to study the case where the test scenario is not matched with the training scenarios of the encoder and decoder.

Unified model and associated updates
Having a single unified model that can handle all radio scenarios and configurations would be ideal, but if that is not possible, it is important to minimize the number of required models. Furthermore, it would be beneficial if offline-trained models could adapt to the local radio environments using newly collected data, while keeping the necessary training for such adaptivity separate and proprietary. This is a challenging problem, and despite some promising results and proposals from 3GPP studies, a comprehensive and definitive answer is yet to be found.

CSI prediction 
	Agreement
Time domain CSI prediction using UE sided model is selected as a representative sub-use case for CSI enhancement.   
Note: Continue evaluation discussion in 9.2.2.1.
Note: RAN1 Defer potential specification impact discussion at 9.2.2.2 until the RAN1#112b-e, and RAN1 will revisit at RAN1#112b-e whether to defer further till the end of R18 AI/ML SI.
Note: LCM related potential specification impact follow the high level principle of other one-sided model sub-cases.  



Time domain CSI prediction using UE-sided models has been agreed upon as one sub-use case for the AI/ML study item in RAN1#112.
One useful option is it to predict as CSI the explicit radio channel evolution in the time and/or the frequency domain as this will enable any type of precoding, will support any type of MU MIMO user grouping and scheduling and therefore is the basis for more advanced future concepts like extensive massive MIMO, or cell-free massive MIMO. Alternatively, and due to lower complexity and standardization effort, the currently preferred option is a UE-sided CSI prediction close to the current Type II CSI reporting, which predicts the related parameters like PMI, RI, CQI, etc. 
UE-sided channel prediction enables any type of data pre-processing as well as neural network implementation. Therefore, the channel prediction at the UE side can be either for the explicit CSI, for the strongest eigenvectors, or, for W2 while W1 is fixed for a certain number of prediction steps. . Reporting predicted CSI relative to the spatial domain beams W1 is beneficial as the beam forming gain can improve the channel estimation quality, which is essential for a high channel prediction performance and the predicted CSI can be directly used for CSI reporting. 
Proposal 15: As basic channel prediction scheme report Type II CSI like W1, W2, and Wf for the future time instance tpredict. The AI/ML model of the UE predicts the CSI from N semi-persistent CSI RSs with a repetition rate of, e.g., 5 ms within the observation window of length tobserve. 
For optimum channel estimation and channel prediction, the CSI RSs should cover the full RF bandwidth as it is well known from theory that the observed frequency bandwidth affects the theoretical Cramer Rao Bound of the unbiased channel estimator. The Cramer Rao Bound itself is defined by the Fisher information contained in a certain signal used for the estimation of certain signal parameters like the delay, amplitude, or phase of a multipath component. This Fisher information is then increasing for an increasing number of CSI RSs and increasing RF bandwidth. This can be illustrated, for example, by assuming a single multipath component. The delay of such a multipath component is then related to a phase slope in the frequency domain and obviously the estimation of such a phase slope will be easier in case of a larger frequency bandwidth. Our simulation results in [R1-2300604] illustrate the benefits of a large CSI RS RF bandwidth. In addition, this provides full scheduling flexibility and allows the channel prediction for any PRB or subset of PRBs.
Note that when applying autoregressive filters as being used for Kalman filters we often observe even a degradation for increasing frequency bandwidth. This can be explained by the overall structure with parallel instances of the same state space model on parallel frequency bands. IN this case, the performance degrades if the size of the frequency band is larger than the coherence bandwidth. 
Often, neural network implementations based on long-short term memory (LSTM) lead to similar structures as the Kalman filter and might similarly ignore the frequency domain information, which leads to corresponding performance loss. Contrary, with optimized neural network structures the frequency domain channel information can be beneficially exploited to improve the channel prediction performance.    
In case the system setup does not allow for a large RF bandwidth then we propose to increase the time observation window to compensate for the otherwise reduced CSI prediction performance. To our observations so far, training with a limited RF bandwidth for one PRB and inference for another PRB seems to be feasible, i.e., we do not expect further degradations due to different frequency PRBs for training and inference. 
Proposal 16: Support wideband CSI RS configurations, where all active UEs predicting CSI can observe the radio channel with the widest possible RF bandwidth.    
Helpful for optimum precoding might be to predict the evolution over time of the radio channel instead of the radio channel just for a single prediction time, or sequence of time instances. This provides full scheduling flexibility and the highest precoding performance, which might be especially relevant for larger prediction horizons. The Doppler domain compression as discussed for non-AI/ML channel prediction in Rel 18 MIMO can be seen as one such variant for predicting the channel evolution. 
Otherwise, there are benefits for reporting one single Type II report for one single prediction time instance tpredict to avoid additional overhead due to multiple reports for multiple time instances and/or the reporting of the compressed Doppler delay domain matrix. This still leaves the gNB the flexibility to infer the CSI for intermediate time steps by interpolation between the last CSI report and the predicted CSI report. This assumes that W1 is fixed at least over two consecutive CSI reports. The performance, i.e., the SGCS of the interpolation of W2 and Wf for small to moderate prediction horizons has to be compared with the Doppler domain compression of the time domain channel evolution as discussed for non AI/ML channel prediction in Rel18 MIMO. 
The expected performance gain is for low to moderate UE speeds the reduced effect of channel aging, which can be evaluated by comparing the UE throughput or spectral efficiency with and without channel prediction. Without channel prediction then one has to use the outdated CSI from the time instance of the latest channel observation, which is typically denoted as zero order hold (ZOH).
A general challenge for high speed UEs like those moving with 60 kmph or even 120 kmph is to ensure an accurate channel estimation under the assumption that CSI RSs are transmitted in best case, e.g., every 5ms. Depending on the relative movement of UEs with respect to the gNB then the high speed UEs might violate the sampling theorem with corresponding performance degradations for the CSI prediction. Increasing the CSI RS repetition rate to fulfil the sampling theorem is challenging due to the related overhead. The highest possible Doppler frequency for a moving UE is related to its mobility. For the agreed evaluation criteria and a RF frequency of 2 GHz then an UE moves for 30 kmph by about 0.3 l, for 60 kmph by 0.6 l and for 120 kmph by 1.2 l, where l = 0.15 m is the wavelength of the 2 GHz RF frequency. In case the UE has a direct LOS path to the gNB and directly moves to the gNB or away from it then the sampling theorem is just fulfilled for the 30 kmph but violated for 60 kmph and strongly violated for the case of 120 kmph. This leads to fundamental limits for the channel estimation and correspondingly also for the channel prediction of high speed UEs, which will significantly impact the generalization capability of the ML models.  
Proposal 17: For high-speed UEs consider options to ensure sufficient oversampling for the CSI RS based channel observations as basis for proper channel prediction and generalization to higher UE mobility. 
Applicable conditions 
According to FL proposal discussed in Section 2.1.1, similar to two-sided CSI compression, RAN1 shall first identify the applicable conditions for supported functionality/functionalities of a given sub-use case (ML-enabled feature) for CSI prediction as well. In functionality identification and functionality-based LCM, knowing the UE conditions (including parameters/configurations) is required at the network as the first step before any other, as this shall reveal the background conditions when using ML models for supporting a given ML-enabled feature. 
Proposal 18: For UE-sided CSI prediction, RAN1 shall define applicable conditions for functionalities to enable functionality-based LCM. 
We expect CSI prediction to consider the following set of applicable conditions: 
· Support Type II CSI prediction 
· Predicted CSI (Type II, delay Doppler domain)
· Defines support for predicting and reporting predicted CSI as Type II feedback for the prediction time instance or, the time evolution in the delay Doppler domain 
· Measured CSI RS periodicity (e.g., 5ms, 10ms, 20ms) 
· Indicates the time periodicity for measuring NZP-CSI-RS resources that shall be measured.
· Prediction time steps (K = 1, 2, 4, [8]) 
· This defines the support of predicting the CSI K time steps ahead, where each time step has typically the same size as the CSI RS periodicity. 
· Measured allocation of CSI RS (AE, beam)
· Defines support of using CSI-RS-based channel measurements per antenna element or per beam like for port selection.    
· Measured CSI RS dimension (e.g., 4, 8, 16, 32) 
· Indicates the minimum number of NZP-CSI-RS resources (antenna ports) that shall be measured and used by the UE for predicting Type II CSI feedback
· Measured CSI RS pattern (e.g., periodic, semi-persistent, aperiodic) 
· Indicates the CSI RS configuration for measuring the NZP-CSI-RS 

· NW-side performance monitoring conditions 
· Support measurements of CSI RS 
· Indicates the number of predicting time steps K as well as CSI RS dimension for NZP-CSI-RS needed for monitoring the CSI RS time evolution. 
· Measurement periodicity (5 ms, 10 ms, 20 ms)
· Indicates the minimum periodicity when supporting NZP-CSI-RS resources that correspond to monitoring CSI prediction. 

· Conditions on supporting ML functionalities
· Max number of supported functionalities (1, 2, 4, 8, …)
· Indicates the maximum number of functionalities (e.g., number of parameter combinations that enable ML-enabled feature) that can be configured toward the UE 
· Delay in activating a functionality (2 ms, 4 ms, …)
· Indicates the delay required when activating or switching a functionality
· Generalization condition of functionalities (yes, no)
· Indicates that the UE supports any functionality configured considering different parameter combinations and can be used towards the UE without any validation of whether the functionality is applicable or not. 

Proposal 19: For UE-sided CSI prediction, RAN1 to support at least the following applicable conditions for functionalities, 
· Support Type II CSI prediction (Supported CSI prediction mode (e.g., TypeII, delay Doppler domain)
· Measured CSI RS periodicity (e.g., 5ms, 10ms, 20ms), Prediction time steps (K = 1, 2, 4, [8]), Measured allocation of CSI RS (AE, beam), Measured CSI RS dimension (e.g., 4, 8, 16, 32), Measured CSI RS pattern (e.g., periodic, semi-persistent, aperiodic) 
· NW-sided performance monitoring conditions (e.g., support measurements of Predicted DL RS set (full Set A, partial Set A), Measurement periodicity (100 ms, 200 ms))
· Conditions on supporting ML functionalities (e.g., Max number of supported functionalities (1, 2, 4, 8,.), Delay on activating a functionality (2 ms, 4 ms), Generalization condition of functionalities (yes, no))

There may be other related applicable conditions that are also useful to discuss in the upcoming meetings and some of these possibilities are still under discussion. For example, RAN1 made few agreements related to UE-sided performance monitoring for UE-sided models, features that enable data collection at the UE side, best prediction mode and reporting other metrics, assistance information required at the UE side, and others. We discuss some of those aspects in the next Section, for AI/ML model overfitting. 

Proposal 20: For UE-sided CSI prediction, RAN1 to study the following additional applicable conditions for functionalities,  
· Conditions for UE-sided performance monitoring 
· Conditions for data collection 
· Conditions for CSI prediction as predicted time instance versus in the delay Doppler domain
· Conditions for assistance info required at the UE like the expected prediction time horizon

Other aspects 
AI/ML Model Overfitting
For future implementations of channel prediction, the generalization capabilities of AI/ML models are of interest as it affects the number of required AI/ML models as well as LCM issues like model update, selection, activation, deactivation, etc. 
Model overfitting (or fine-tunning) to the current radio channel evolution as part of UE-sided channel prediction is promising with respect to the channel prediction performance as can be concluded from some first simulation results in R1-2212327. AI/ML model overfitting for channel prediction can be seen as a special case of model fine-tuning, where the generalized AI/ML model is specialized to the current UE-specific channel conditions. Such overfitting might benefit from collaboration level y, i.e., by control information harmonizing the UE-sided CSI inference with the gNB processing, while the AI/ML models as such are not exchanged between the UE and the gNB. This is because the overfitting requires active CSI RS transmissions, which are controlled by the gNB, i.e., the gNB should be aware of the overfitting needs of the active UEs.   
For UE-sided channel prediction, we can assume that the UE has a generalized AI/ML model available, either delivered from the gNB or as a vendor-specific pre-defined model, which is trained for a relatively wide range of scenarios/configurations. A wide range of scenarios/configurations ensures that ideally only a single, or, at least only few AI/ML models have to be implemented at the UE side. For example, in case of high speed UEs with 60 kmph or 120 kmph the oversampling theorem might be violated, which might then require a different ML model compared to the low mobility UEs. 
The basic procedure for overfitting (OF) with channel prediction at the UE side might be as follows:
1) The UE starts as usual, without overfitting, and observes the radio channel for several time instances over the duration observe and predicts the CSI into the future for the time predict.  
2) Due to the generalization to a wide range of scenarios/configuration, the AI/ML model inference performance might degrade for the case of so far unseen scenarios/configuration as well as for scenarios/configuration, which are not supported very well by the generalized AI/ML model. In these cases, when the prediction performance falls below a certain target level , it is proposed to overfit the generalized AI/ML model specifically to the current radio channel conditions. Note that the target level  might be set by a control message of the gNB or directly by the UE vendor. 
3) For the purpose of overfitting, the UE triggers a short re-training procedure of the generalized AI/ML model. In a first step the UE requests from the gNB a semi-periodic transmission of CSI RSs, which allows the UE to estimate the radio channel evolution over a certain time period . In this time period  the UE compares the radio channel evolution with the respective CSI predictions from the generalized AI/ML model to evaluate the current prediction performance. Instead of semi-persistent CSI RS a configuration of periodic plus aperiodic CSI RSs is possible as well.   
4) The CSI predictions as well as the known evolution of the radio channel during time  provides then a set of labeled data, which can be used for a short retraining of the AI/ML model by supervised learning. After the retraining the AI/ML model matches as far as possible to the current radio channel, i.e., is as far as possible overfitted to the current UE conditions. Note that, according to the literature, general overfitting of AI/ML models should be avoided. However, here it is helpful as long as the large-scale conditions of the radio channel remain constant.   

A certain challenge with this approach is that the “prediction performance” for one realization does not tell how close an AI/ML model is already to the potential optimum predictor performance, i.e., how close the generalized AI/ML model is to a fully overfitted AI/ML model. In addition, to generate sufficient labeled data for the overfitting the time period  might get large with corresponding large overhead, for example, for transmission of CSI RSs.
For that reason, it might be useful to combine a first neural network NN1 for the inference of the predicted radio channel with a second neural network NN2, which infers from the observed CSI during the time duration observe a closeness value . As illustrated in Figure 2‑6 the neural network NN2 might include besides the observed CSI also other time domain channel properties (TDCP) like UE mobility, delay spread, the time of the last overfitting, etc. to infer the closeness value  Top right we define the closeness value  as the potential gain due to overfitting. For any given cost function like NMSE or SGCS the closeness value  will be small in case the overfitting gain due to a retraining of the AI/ML model is high (see blue curve). Contrary, a low potential overfitting gain (see red curve) leads to a high closeness value  as the current generalized AI/ML model covers the current radio channel conditions already very well.
Note that the neural network NN2 has to be trained in advance together with NN1 and is useful as it provides a fast and reliable estimate of the closeness value . At the same time, the UE might directly use its last channel observations and predictions to directly estimate the closeness value  without the help of the neural network NN2. But, in case of few channel observations the estimation reliability might be limited and the processing overhead for the calculation of  might be high.
Dependent on the closeness value  the UE can trigger different durations for the semi-persistent CSI RS, which have then to be configured semi-periodic and transmitted correspondingly by the gNB. Table 1 illustrates a possible configuration table for a quantized closeness value  to be sent by the UE as UCI message and the related CSI RS durations. The gNB informs the UE then about the exact timing of the CSI RSs so that it can run a short retraining of its ML model NN1 for a few number of epochs and a limited time duration of less than one to few hundreds of ms.    

[bookmark: _Ref127521030]Table 1 – Quantized closeness measure and an exemplary relationship with the duration of the new CSI RS transmission for overfitting.
	Quantized closeness measure
	Meaning
	Required CSI-RS duration for overfitting

	0-0.25
	Long overfitting
	200 ms

	0.25-0.5
	Moderate overfitting
	150 ms

	0.5-0.75
	Short overfitting
	100 ms

	0.75-1
	No overfitting
	0 ms
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[bookmark: _Ref127483988]Figure 2‑6 - illustration of proposed scheme with the ML model NN1 as the conventional generalized channel predictor and the ML model NN2 for inference of the closeness value for the moving UE estimating the radio channel on x distinct UE locations. On the right we see the cost function evolution for a UE with low (blue) and high (red) closeness value.

The benefit of the proposed overfitting procedure is that we can use for channel prediction a highly generalized AI/ML model thereby simplifying life cycle management as there is ideally only one single – or very few - relevant AI/ML models. At the same time, the overfitting ensures high or even close to the best possible prediction performance. The closeness value  allows to minimize the overhead for overfitting to those cases, where overfitting leads to high performance improvements. In addition, the time for overfitting is minimized for high closeness values  or even set to zero in case the overfitting gain is very low. 
Proposal 21: Consider the possibility of overfitting/fine-tuning of UE models for improved CSI prediction.

Conclusion
In this contribution, we have discussed the details of two CSI sub-use cases. Our proposals and observations are:	

CSI compression sub-use case: 
Proposal 1: For the two-sided CSI feedback compression sub-use case, RAN1 shall define applicable conditions for functionalities to enable functionality-based LCM. 
Proposal 2: For the two-sided CSI feedback compression sub-use case, RAN1 to study the following applicable conditions for functionalities,  
•	CSI-RS measurement conditions 
•	CSI-RS and CSI reports configuration conditions
•	CSI calculation conditions (i.e., number of occupied CPUs)
•	Output CSI conditions
•	Compression ratio conditions (e.g., CR4, CR8, …)
•	Quantizer conditions (e.g., SQ1, VQ1, …)
•	Pairing ID (e.g., model ID, dataset ID)
•	Generic conditions on supporting ML functionalities
Proposal 3: For the two-sided CSI feedback compression sub-use case, UE reports applicable conditions for functionalities by using UE capability reporting.
Proposal 4: For the two-sided CSI feedback compression sub-use case, the NW creates/configures functionalities to the UE with each functionality referring to a configuration message (e.g., RRC) that contains NW-selected applicable conditions (according to the UE capability).  
Proposal 5: Regarding the quantization scheme for CSI feedback, a scalar quantization scheme with a limited bit size needs to be studied especially for bounded input to the AI encoder use case, e.g., channel eigenvector compression. 
Proposal 6: Regarding vector quantization scheme for CSI feedback for Type 2 or Type 3 two-sided model training collaboration scenarios, the degree of required alignment between quantizer/dequantizer at UE-side/NW-side respectively needs to be studied, e.g., the length of a codeword, the size of a codebook, and the distance metric (or quantization rule) in use.
Observation 1: The size of VQ codebook can cause limitations/difficulties in using VQ and needs to be investigated.
Proposal 7: RAN1 may investigate sharing the relevant quantization architecture and parameters from one network entity to the other. For example, the type of quantization and quantization parameters can be shared with the other network node. The quantization parameters depend on the quantization type and may include:
· For scalar uniform quantization: number of quantization bits/levels, the minimum and maximum range of quantization
· For scalar non-uniform quantization: number of quantization bits/levels, the minimum and maximum range of quantization, type of non-linear function and its parameters
· For vector quantization: Codebook size and all the codewords

Proposal 8: For CSI compression, RAN1 shall study the potential specification impact on performance monitoring by considering 
· Methods of performance monitoring (NW-sided, UE-sided, hybrid)
· Changes to the reporting framework (e.g., ground-truth reporting to enable performance monitoring at the gNB, KPI reporting when UE considers performance monitoring)
· Changes to the measurement framework (e.g., configuring monitoring KPIs and measurement resources)

Proposal 9: In CSI compression using a two-sided model, consider the following for the data collection, 
· Data collection shall be mainly focused on performance monitoring or model fine-tuning, and considerations on the data collection for model training shall not be the main focus. 
· UE-sided data collection, 
· Existing CSI-RS configuration shall be used as the starting point for any form of data collection
· NW-sided data collection, 
· Enhancement of CSI reporting to enable higher accuracy reporting
· FFS: Assistance information reporting  

Proposal 10: RAN1 shall study the possible specification changes when supporting multiple compression ratios and how to enable progressive training. 
Proposal 11: RAN1 shall study the possible specification changes when accommodating various CSI-RS configurations (e.g., bandwidths, ports) and multiple payload sizes.
Proposal 12: RAN1 shall study the possible use of CSI part 1 and CSI part 2 like approach for the compressed CSI reporting. 
Proposal 13: RAN1 shall investigate the appropriate dataset sharing without disclosing the mapping from (quantized) latent representation to the codeword.
Proposal 14: RAN1 may study the performance of the ML-based CSI-compression where the training datasets by the UE and gNB vendors are not matched. Also, it is necessary to study the case where the test scenario is not matched with the training scenarios of the encoder and decoder.
CSI prediction sub-use case: 
Proposal 15: As basic channel prediction scheme report Type II CSI like W1, W2, and Wf for the future time instance tpredict. The AI/ML model of the UE predicts the CSI from N semi-persistent CSI RSs with a repetition rate of, e.g., 5 ms within the observation window of length tobserve. 
Proposal 16: Support wideband CSI RS configurations, where all active UEs predicting CSI can observe the radio channel with the widest possible RF bandwidth.    
Proposal 17: For high speed UEs consider options to ensure sufficient oversampling for the CSI RS based channel observations as basis for proper channel prediction and generalization to higher UE mobility. 
Proposal 18: For UE-sided CSI prediction, RAN1 shall define applicable conditions for functionalities to enable functionality-based LCM. 
Proposal 19: For UE-sided CSI prediction, RAN1 to support at least the following applicable conditions for functionalities, 
· Support Type II CSI prediction (Supported CSI prediction mode (e.g., TypeII, delay Doppler domain)
· Measured CSI RS periodicity (e.g., 5ms, 10ms, 20ms), Prediction time steps (K = 1, 2, 4, [8]), Measured allocation of CSI RS (AE, beam), Measured CSI RS dimension (e.g., 4, 8, 16, 32), Measured CSI RS pattern (e.g., periodic, semi-persistent, aperiodic) 
· NW-sided performance monitoring conditions (e.g., support measurements of Predicted DL RS set (full Set A, partial Set A), Measurement periodicity (100 ms, 200 ms))
· Conditions on supporting ML functionalities (e.g., Max number of supported functionalities (1, 2, 4, 8,.), Delay on activating a functionality (2 ms, 4 ms), Generalization condition of functionalities (yes, no))

Proposal 20: For UE-sided CSI prediction, RAN1 to study the following additional applicable conditions for functionalities,  
· Conditions for UE-sided performance monitoring 
· Conditions for data collection 
· Conditions for CSI prediction as predicted time instance versus in the delay Doppler domain
· Conditions for assistance info required at the UE like the expected prediction time horizon
Proposal 21: Consider the possibility of overfitting/fine-tuning of UE models for improved CSI prediction.
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Annex I 
Encoder output distribution and quantization
The quantization loss depends on two factors: (a) distributions of encoder output (2) quantization type and parameters. For example, in scalar quantization, each encoder output (element) is quantized independently from other encoder outputs (elements). As can be seen from the results in the below figures, the best option for the quantization type (uniform or non-uniform) depends on the distribution of the encoder outputs.
[image: ]
[bookmark: _Ref126853658]Figure A‑1: 1-bit (2 levels) quantization for an encoder output element with Normal distribution (a) uniform quantization (b) non-uniform with mu-law nonlinearity (mu=10). 

[image: ]
Figure A‑2 : 1-bit (2 levels) quantization for an encoder output element with uniform distribution in [-1, 1] (a) uniform quantization (b) non-uniform with mu-law nonlinearity (mu=10).
However, vector quantization (VQ) considers the correlation between the encoder output elements, and adapt automatically to the distribution of the encoder outputs. Shows the frequency of samples for pair of encoder output elements. A VQ is obtained to follow the distribution of samples.
[image: ]
[bookmark: _Hlk131776753]Figure A‑3 : Heat map visualization of the frequency of pairs for encoder outputs, with a VQ calculated based on the case-1 scheme. The VQ quantizes the segments of size 2, and the VQ includes 16 codewords.
Note: The main advantage of case 1 quantization is that the quantization type and hyperparameters (e.g., number of bits/levels) can be changed without any need for AE model switching or model re-training (same encoder and decoder can be used).

Training collaborations
UE-first separate training
The procedure of the UE-first separate training is illustrated in Figure A‑4 . The whole procedure can be categorized into two main phases, i.e., UE-side model training phase and NW-side model training phase.
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[bookmark: _Ref131777155]Figure A‑4 : UE-first separate training procedure

1. UE-side model training phase
· UE performs DL channel measurement/estimation based on 3GPP-defined reference signals. This channel information can be pre-processed if UE’s algorithm dictates, prior to AI encoder operation.
· UE performs training of the AI encoder for CSI compression. For model training, UE should have the hypothetical dequantizer/AI decoder/post-processing model at NW-side in mind, to come up with the final output CSI. As there can (or should) be a model mismatch between UE vendor’s hypothetical NW-side model and the actual NW-side model, the outcome of the hypothetical NW-side model is denoted as “ output-CSI-UE”to differentiate it from the corresponding outcome of the subsequent NW-side model training. For UE training, input to AI encoder, e.g., channel eigenvectors, and its corresponding hypothetical AI decoder output (output-CSI-UE) as labeled data can play the role as the training data set. 
· On completion of UE-side model training (with its own assumption of the hypothetical NW-side model), UE can provide NW-side with the resulting training dataset, e.g., {(input to AI encoder (), CSI feedback (zq))}, for the subsequent NW-side model training. This can be done offline by uploading the training dataset to the server. Note here that CSI feedback will be in the format of bit sequence, to be defined by 3GPP. The mapping from the AI encoder output (latent feature vector; ze) to the CSI feedback bit sequence may or may not be the subject of 3GPP specification. This aspect is discussed in a separate section later in this document.  
· The details of DL channel parameter estimation and its processing are up to UE’s implementation. The details of the UE side AI encoder model, including its input data and their format, do not need to be revealed to NW-side. However, it deems beneficial for AI encoder output to CSI feedback mapping to be shared between UE-vendor and NW-vendor for the sake of fast training convergence and overall performance.
2. NW-side model training phase
· NW-side can start the training of its AI decoder, together with dequantizer/post-processing operation, as needed, based on the UE-provided training dataset, e.g., {(input to AI encoder (), CSI feedback (zq))}. Note that training of dequantizer can be expedited and/or improved by UE providing NW with AI encoder output to CSI feedback mapping information, i.e., how to extract zq from bit sequence.
· It is envisioned that the format of CSI feedback should be well-defined in 3GPP. Hence there should not be ambiguity in interpreting them.
· For NW-side model training, an appropriate loss function needs to be defined. One option is to take output CSI (outcome of the actual NW-side model: ) and input to the AI encoder () as input arguments of the loss function. In case the channel eigenvector is to be compressed, the target CSI at AI decoder should be close to the input to AI encoder.
 
It should be noted here that there are two major sources of potential performance degradation, i.e., AI model mismatch between UE’s hypothetical AI decoder at NW-side and true AI decoder in use, and distortion coming from quantizer – CSI feedback – dequantizer operation. We believe that at least we should try to minimize possible distortion related to quantization, assuming AI model mismatch is something we should live with. 
When it comes to the generalization of this concept across multiple UE vendors, it can be burdensome for a NW vendor to manage multiple NW-side models per each UE vendor. In this sense, we need to seek for a scheme which can facilitate a common NW-side model which can handle multiple proprietary UE models. Mixed training dataset collected from multiple UE vendors can be one feasible option, but its performance and feasibility need to be studied further. For this purpose, the training dataset format needs to be unified across UE vendors, or better yet, to be standardized, if deemed necessary.
The encoders trained by different UE vendors generate completely different encodings, which are unique to each encoder latent space. Thus, considering mixed training datasets from different UE vendors may result in significant performance degradation in the reconstructed CSI. Therefore, a gNB vendor needs to transform the encodings in the latent spaces of the UE encoders to a common understandable latent space by the gNB decoder. This translation can be done using a translator block before decoder at the gNB.
[image: ]
Figure A‑5: Using translator blocks to enable a common decoder for reconstructing the CSI using encodings from different encoder (UE) vendors in the UE-first type 3 (separate) training
Here, each UE vendor trains its encoder and shares only the dataset of original CSI and the corresponding quantized encodings. The gNB also trains its common decoder with a nominal encoder. The objective of “Translator m” block is to translate the encoding in the m-th UE (encoder) latent space to the gNB (nominal encoder/common decoder) latent space. Thus, the translator block for each encoder can be trained using the shared dataset by the UE vendor. 
Another item for further investigation comes from the concern that even though the CSI feedback format itself can be standardized; NW vendors may not want 3GPP to dictate how to interpret this information across multiple NW vendors. One way to reduce potential ambiguity is to formulate latent variables (AI encoder output) to bit sequence (CSI feedback) mapping at UE side officially. This will alleviate the burden of CSI interpretation at NW-side for NW-side model training to some extent and reduce the risk of model mismatch between the hypothetical AI decoder model and the actual NW-side model(s) across the multiple NW vendors.
NW-first separate training
The procedure of the NW-first separate training is illustrated in Figure A‑6 . The whole procedure can be categorized into two main phases, i.e., the NW-side model training phase and the UE-side model training phase.
1. NW-side model training phase
· NW performs training on its NW-side AI decoder model. As depicted in Figure A‑6, NW-side should come up with a hypothetical UE-side model for the generation of UE-side projected outcome, i.e., projected CSI feedback.
· As a result of NW-side training, a training dataset of {hypothetical input to AI encoder (input-CSI-NW:)} can be used for its self-supervised learning. Note here that NW-side should have a UE-side hypothetical models of DL channel measurement & subsequent pre-processing, as well as AI encoder. 
· On completion of NW-side model training (with its own assumption of the hypothetical UE-side model), NW can provide UE-side with the resulting training dataset, e.g., {(hypothetical input to AI encoder (input-CSI-NW:), projected CSI feedback ())}, for the subsequent UE-side model training.
2. UE-side model training phase
· UE-side can start the training of its AI encoder based on the NW-provided training dataset, e.g., {(hypothetical input to AI encoder (input-CSI-NW:), projected CSI feedback ())}.
· Note that NW-provided hypothetical input to AI encoder (input-CSI-NW) is output of the preceding hypothetical UE-side operation, i.e., DL channel measurement and pre-processing, which can be different from the actual UE-side operation (that is UE proprietary) in use.
· For UE-side model training, the appropriate loss function needs to be defined. One option is to take CSI feedback (outcome of the actual UE-side model: ) and projected CSI feedback (outcome of the trained hypothetical UE-side model per NW vendor’s hypothesis at the time of NW-side model training: ).
· Note again that quantizer at UE-side and dequantizer at NW-side should be aligned to remove ambiguity in interpreting CSI feedback bit sequence, to facilitate proper retrieval of zq.

There can be a mismatch between NW-side's hypothetical UE-side model and the actual UE-model, not only in AI encoder model but also in its input (pre-processed DL measurement information). In this sense, there is a higher degree of model ambiguity of the hypothetical “other entity” model (and related arguments), compared with the UE-first separate training case.
Note here that as depicted in Figure A‑7, the quantized CSI feedback can be of low granularity, e.g., only 4 different levels per each latent vector element in case SQ is used with 2 bits/element allocation for example. When the loss function takes the quantized CSI feedback as its input argument, this can affect UE side model training procedure.


[bookmark: _Ref131777184]Figure A‑6: NW-first separate training procedure (with example CSI feedback distribution when per element uniform SQ is in place [2 bits/element])
To facilitate using a common encoder supporting multiple NW vendors, the encodings generated by the common encoder need to be transformed to the latent spaces that are understandable by the NW decoders. Translator blocks can be used to translate information from the common encoder latent space to different decoder latent spaces. 
[image: ]
[bookmark: _Ref131777219]Figure A‑7: Using translator blocks to enable a common encoder for compressing the CSI, where the encoding is understandable by different decoder (NW) vendors in the NW-first type 3 (separate) training.

 
NW-first separate training with vector quantization
In vector quantization-enabled CSI feedback enhancement, the codebook can serve to reduce the required amount of training data by allowing for sharing between the UE-side and NW-side entities. The whole procedure can be categorized into two main phases, i.e., the NW-side model training phase and the UE-side model training phase.
1. NW-side model training phase
· NW performs training on its NW-side AI decoder model. In addition to optimize the decoder, the NW-side entity needs to train a hypothetical AI encoder, a vector quantizer associated with a codebook  and an AI decoder either in a quantization-aware or quantization-unaware manner. 
· In quantization-unaware training, only the encoder and decoder are initially trained, and then the codebook-associated quantizer is optimized based on the statistics of latent features. In quantization-aware training, the encoder and decoder are updated with the vector quantization operation included in the training phase. The codebook can be derived in rule-based or training-based schemes. As for the saying of hypothetical encoder, it means the encoder is only used for training decoder and optimizing codebook in the training phase.
· As a result of NW-side training, the NW-side entity generates a training dataset along with the finalized codebook and shares them with UE. The training dataset consists of {ground-truth CSI , associated codeword } and is used for model training on the UE-side. Note that the shared CSI associated codeword is an index vector in the format of bit sequence, rather than the quantized latent representation  outputted from VQ.
2. UE-side model training phase
· For the UE-side model training, the UE-side entity retrieves the dequantized CSI feedback  by referring to the shared codebook  and its associated codeword . Depending on whether the UE creates a hypothetical decoder to enable an end-to-end optimization with reconstruction loss (e.g., SGCS, NMSE), there are two options for UE-side training. 
· The encoder-only training, where the UE-proprietary encoder is trained to approximate CSI data into a latent representation  by minimizing its difference with  in a supervised manner. A suitable approximation loss such as mean square error (MSE), or generalized cosine similarity (GCS) can be used.
· The joint encoder-decoder training, where a hypothetical decoder reflecting potential reconstruction performance is trained in addition to the encoder, with the loss for updating both being a combination of the reconstruction loss and the approximation loss.

[image: ]
Figure A‑8: NW-first separate training procedure with vector quantization
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