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[bookmark: _Ref129681832]In RAN1#112, companies have reached further agreements on the evaluation methodology, including the clarification of some KPI definitions for AI/ML for the Beam Management use case [1] [2] as captured below. Agreement 
· Further study the impact of quantization error of inputted L1-RSRP (for training and inference) for AI/ML model for beam management. 
· Existing quantization granularity of L1-RSRP (i.e., 1dB for the best beam, 2dB for the difference to the best beam) is the starting point for evaluation, at least for the network-sided model. 
· Further study on whether/how to evaluate the performance impact with L1-RSRP measurement accuracy.
· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam is defined as
· Option A (baseline): the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B(optional), the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are a subset of all Rx beams
· For DL Tx-Rx beam pair prediction, the definition of Top-1 genie-aided Tx-Rx beam pair is defined as
· Option A: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx and Rx beams
· Other options are not precluded and can be reported by companies. 
· Note: This is only for evaluation discussion
· For AI/ML models, which provide L1-RSRP as the model output, to evaluate the accuracy of predicted L1-RSRP, companies optionally report the average (absolute value)/CDF of the predicted L1-RSRP difference, where the predicted L1-RSRP difference is defined as:
· The difference between the predicted L1-RSRP of Top-1[/K] predicted beam and the ideal L1-RSRP of the same beam.
· For the evaluation of Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference), further study the following options as AI/ML model inputs 
· Alt 2: Implicit information of Tx beam ID and/or Rx beam ID
· E.g., measurements of Set B of beams together with default values (e.g., 0) for the beams not in Set B are used as AI inputs in a certain order/ matrix/ vector. 
· Detailed assumptions can be reported by companies.
· Alt 3: Tx beam ID and/or Rx beam ID is used as inputs of AI/ML explicitly 
· Note: Specification impact can be discussed separately.  
· Additionally, study the following option on the selection of Set B of beams (pairs) (for Option 2: Set B is variable) 
· Opt D: Set B is a subset of measured beams (pairs) Set C (including Set B = Set C), e.g. Top-K beams(pairs) of Set C
· Companies report the number of pre-configured patterns used in the evaluation for Option 2: Set B is variable if applicable (e.g. Opt A and Opt B)


As agreements have been reached among companies on the clarification of options for variable Set B and definitions of Top-1 genie-aided Tx beam for DL Tx beam prediction and DL Tx-Rx beam prediction,  which are important to align results across companies’ results when shared, in this contribution, we focus on discussing the results of study for spatial-domain DL Tx beam prediction based on the agreements and working assumptions agreed so far [2], focusing on the following:
· DL Tx beam prediction
· Option 1: Set B is fixed across training and inference
· Option 2: Set B is variable
· Opt B: Set B is randomly changed among pre-configured patterns
· DL Tx-Rx beam pair prediction (generalization between UMa and UMi deployment scenarios)
· Option 1: Set B is fixed across training and inference
· Option 2: Set B is variable
· Opt B: Set B is randomly changed among pre-configured patterns

Configurations and assumptions of dataset generation
For dataset construction, we use the agreed-upon assumptions and simulation parameters from RAN1#109e and RAN1#110 (in updated Table 2.1-1 [3]). To evaluate AI/ML-based beam management model performance, we use the following scenario and configurations for both DL Tx beam prediction and DL Tx-Rx beam pair prediction:
· Dense Urban deployment scenario with UMa / UMi channel model
Some major parameters used in generating datasets are indicated in Table 2-1.
Table 2-1: Simulation parameters for dataset generation
	Parameter
	Value

	Scenario
	Dense Urban 38.901,7 sites, 3 cells per site

	Carrier frequency
	30 GHz

	Subcarrier spacing
	120 kHz

	System BW
	80 MHz

	ISD
	200 m

	Channel model
	UMa/UMi with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 4 8 2], [dV, dH] = [0.5,0.5] λ

	Antenna configuration at UE
	[Mg Ng M N P] = [1 1 1 4 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	32 Tx beams
Horizontal angle = [-75 -54, -32, -11, 11, 32, 54, 75]
Vertical angle = [-45, -15, 15, 45]

	UE RX beam pattern
	8 Rx beams
Horizontal angle = [-65, -46, -28, -9, 9, 28, 46, 65]
Vertical angle = [0]

	Indoor UE fraction
	80%

	Spatial consistency 
	False

	Rotation
	False




Spatial-domain Tx beam prediction evaluation
In this section, we discuss our evaluation results for DL Tx beam prediction focusing on spatial-domain sub use case of BM-Case1.
When evaluating the performance for DL Tx beam prediction, as discussed during RAN1#111 and RAN1#112, there are various assumptions/options for Rx beam:
· Option 1: Measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample
· Option 2: Measurements of specific Rx beam(s)
· Option 2a: Measurements of specific Rx beam(s) per model input sample 
· Option 2b: Measurements of specific Rx beam(s) for all model input sample
· FFS how to select the specific Rx beam(s)
· Option 3: Measurements of random Rx beam(s) per model input sample
In this section, we discuss the results of using Option 1.
AI/ML model training/testing parameters
For AI/ML model architecture, we use a CNN-based neural network. The results were generated using the final NN weights that performed the best in validation samples. The details of the training parameters are described in Table 3.1-1.
Table 3.1-1: AI/ML model training parameters for DL Tx beam prediction
	AI/ML model training detail
	Value

	Type
	CNN-based NN

	Set A beam size
	32

	Set B beam size
	Varied (3-8)

	Training dataset size
	450K

	Validation dataset size
	50K

	Testing dataset size
	500K

	Batch size
	512

	Epoch
	500

	FLOPs
	222,199,808 

	Number of AI/ML model parameters
	213,856



Evaluation results
In our study for DL Tx beam prediction, we consider dense urban with a UMa channel model and use the following settings: 
· (Train, Test) = (450K, 50K) samples where a subset of the training samples is used for validation
· Set B beam pattern: fixed and variable patterns are both studied. For variable Set B patterns, we evaluate the following sampling approach:
· Opt B: Set B is randomly changed among pre-configured patterns:
· We adopt an evenly spaced sampling method and use 5 Set B beam patterns in our study.
For performance evaluation, we use the agreed-upon Top-1 (%) prediction accuracy, Top-K/1 (%) prediction accuracy and average L1-RSRP difference. Regarding the definition of Top-1 genie-aided Tx beam, we adopt both Option A and Option B in our evaluation, as shown below, based on the agreement from RAN1#112.· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam is defined as
· Option A (baseline): the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B(optional), the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams


In this section, we summarize our study results at a high level. The detailed results of our study on DL Tx beam prediction are available in the accompanying Excel file (under Tab “BM-case1 (Tx beam)”). Please refer to the Excel for the assumptions and other configuration details. 
In the context of our study for the fixed Set B pattern, Set B represents a distinct subset of Set A, which comprises 32 beams. We manipulated the length of Set B within a range of 3 to 8 while adhering to an even-space sampling pattern. Figure 3.2-1 is a representation of the Set B sampling patterns, varying according to the length of Set B.
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Figure 3.2-1: Fixed Set B (Option 1) beam patterns used in AI/ML model training

For Rx beam assumption in DL Tx beam prediction, we assume the L1-RSRP measurements are based on the best Rx beam. This may be based on some prior knowledge/analysis from the wide beam selection phase combined with historical prior measurements.
Table 3.2-1 contains the performance evaluation results when using Option 1 for Set B selection, i.e., fixed Set B pattern in both training and inference phases, with various numbers of Set B length as input to the AI/ML model. Table 3.2-2 depicts the performance evaluation results when using Option 2 for Set B selection, and we chose approach Opt B, which means that Set B is randomly changed among pre-configured patterns as input. We use sparse beam sweeping result as the baseline, in which beam sweeping is performed on Set B beams, and the Tx beam with the highest L1-RSRP is considered as the result of best Tx beam result for comparison purposes. 
Table 3.2-1: Evaluation results of DL Tx beam prediction for Option 1 (Fixed Set B) 
	
	Option 1 (Fixed Set B) (total Tx beam= 32)

	Set B Length
	Accuracy (%)
	Avg. L1-RSRP difference of Top-K predicted beam [dB]

	
	baseline
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1
	baseline
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1

	3
	0.0040
	0.3448
	0.5796
	0.8145
	0.9171
	0.9575
	15.5254
	6.66
	3.55
	1.29
	0.52
	0.23

	4
	0.1944
	0.5252
	0.7437
	0.9115
	0.9586
	0.9763
	7.7293
	4.37
	1.88
	0.53
	0.20
	0.10

	5
	0.0062
	0.6017
	0.8015
	0.9366
	0.9733
	0.9865
	14.2462
	3.08
	1.24
	0.32
	0.12
	0.06

	6
	0.2047
	0.6218
	0.8233
	0.9507
	0.9796
	0.9899
	7.1418
	2.50
	0.94
	0.22
	0.08
	0.04

	7
	0.2031
	0.6723
	0.8678
	0.9669
	0.9879
	0.9945
	6.6787
	1.84
	0.64
	0.14
	0.05
	0.02

	8
	0.1736
	0.7063
	0.8953
	0.9783
	0.9933
	0.9974
	7.5335
	1.48
	0.45
	0.08
	0.02
	0.01

	Average L1-RSRP difference of predicted Top-1 beam gain over baseline
	6.49 dB

	Average Top-1 prediction accuracy gain over baseline
	44.77% (absolute %)



Table 3.2-2: Evaluation results of DL Tx beam prediction for Option 2B (Set B is randomly changed among pre-configured patterns) 
	
	Option 2B (Set B is randomly changed among pre-configured patterns) (total Tx beam= 32)

	Set B Length
	Accuracy (%)
	Avg. L1-RSRP difference of Top-K predicted beam

	
	baseline
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1
	baseline
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1

	3
	0.0080
	0.3670
	0.5786
	0.7936
	0.8927
	0.9404
	14.7107
	6.61
	3.75
	1.55
	0.67
	0.33

	4
	0.2209
	0.4560
	0.6658
	0.8352
	0.9089
	0.9474
	8.1370
	5.62
	2.94
	1.22
	0.53
	0.23

	5
	0.0754
	0.5268
	0.7500
	0.9070
	0.9566
	0.9776
	10.7083
	3.74
	1.63
	0.50
	0.21
	0.10

	6
	0.2034
	0.6071
	0.8151
	0.9338
	0.9693
	0.9842
	7.0989
	2.54
	1.02
	0.32
	0.13
	0.06

	7
	0.2262
	0.6326
	0.8280
	0.9416
	0.9742
	0.9867
	6.7325
	2.48
	1.00
	0.27
	0.10
	0.05

	8
	0.2724
	0.6786
	0.8711
	0.9611
	0.9848
	0.9931
	5.8052
	1.70
	0.59
	0.15
	0.05
	0.02

	Average L1-RSRP difference of predicted Top-1 beam gain over baseline
	5.08 dB

	Average Top-1 prediction accuracy gain over baseline
	37.70% (absolute %)



From Table 3.2-1 and Table 3.2-2, we can observe that AI/ML-based spatial-domain DL Tx beam prediction performance improves when Set B length increases. However, the performance of the baseline approach, i.e., sparse beam sweeping of Set B beams, does not correlate well with the increased Set B length, and this is more noticeable when using Option 1 (Fixed Set B). This may be due to various reasons. One reason could be that the Set B patterns we used are very different across Set B lengths (i.e., besides beam IDs 0 and 31 which are used in all 5 patterns, and beam ID 15, which is used in 3 patterns, rests of beams in Set B are all different across Set B lengths) and some of Set B patterns used may not be good for a significant portion of the testing samples when using sparse beam sweeping to determine the best Tx beam. If a significant amount of testing samples has bad Set B in some Set B length settings, then the average L1-RSRP difference for the baseline approach may not correlate well with the Set B length.  
Based on the results shown in Table 3.2-1 and Table 3.2-2, we can clearly see that AI/ML-based approach significantly outperforms sparse beam sweeping (of Set B beams) when using either Set B selection Option 1 or Option 2B. When we compare the average gain across various Set B lengths (from 3 to 8) used in our study, the average L1-RSRP difference of predicted Top-1 beam gain over baseline is ~6.26 dB for Set B selection Option 1 and ~5.08 dB for Set B selection Option 2B, and the Top-1 prediction accuracy gain over baseline is ~42.71% (absolute percentage) for Set B selection Option 1 and ~37.7% (absolute percentage) for Set B selection Option 2B. It can also be noted that Set B selection Option 1 outperforms Set B selection Option 2B when the training dataset size is the same.
To better understand the performance distribution, the following set of figures show the CDF comparison plots for Top-K/1 prediction accuracy and average L1-RSRP difference for predicted Top-K/1 beam across various Set B lengths when using Set B selection Option 1 and Option 2B.Figure 3.2-2: Top-K/1 accuracy performance for Set B beam selection Option 1 and Option 2B used in AI/ML model training and testing

Figure 3.2-3: Average L1-RSRP performance for Set B beam selection Option 1 and Option 2B used in AI/ML model training and testing


Figure 3.2-5: CDF of L1-RSRP difference for Set B beam selection Option 1 and Option 2B when set B length is 6 
Figure 3.2-6: CDF of L1-RSRP difference for Set B beam selection Option 1 and Option 2B when set B length is 8
Figure 3.2-4: CDF of L1-RSRP difference for Set B beam selection Option 1 and Option 2B when set B length is 3 






Figure 3.2-7: CDF of L1-RSRP difference for the predicted Top-1 beam using Set B beam selection Option 1 and Option 2B when set B varies from 3 to 8


From the above CDF plots, we observe that the performance trend is consistent for Set B selection Option 1 and Option 2B. Both Top-1/Top-K prediction accuracy and average L1-RSRP difference improve when Set B length increases. It is also noted that both outperform the baseline performance of sparse beam sweeping for Set B beams.
Observation 1: For BM-Case-1 in DL Tx beam prediction, when using Set B selection Option 1  (i.e., fixed Set B beam pattern) in both training and testing phases, AI/ML-based beam predictions outperform the sparse beam sweeping baselines (in which beam sweeping is performed for beams in Set B) in both Top-1 and Top-K/1 accuracy, and in average L1-RSRP difference of Top-1 predicted beam.   
Observation 2: For BM-Case-1 in DL Tx beam prediction, when using Set B selection Option 2B  (i.e., variable Set B and Set B is randomly changed among pre-configured patterns) in both training and testing phases, AI/ML-based beam predictions outperform the sparse beam sweeping baselines (in which beam sweeping is performed for beams in Set B) in both Top-1 and Top-K/1 accuracy, and in average L1-RSRP difference of Top-1 predicted beam.   
Observation 3: For BM-Case-1 in DL Tx beam prediction, considering Set B is a subset of Set A, when using Option 1 of Set B selection (Fixed Set B) with  Set B length in [3 – 8] and Set A length = 32 (RS overhead is between 3/ 32 – 8 / 32), AI/ML based approach has an average gain of 6.49 dB in Average L1-RSRP difference of the Top-1 predicted beam and an average gain of 44.77% (absolute %) in Top-1 prediction accuracy over the baseline (i.e., based on sparse beam sweeping of Set B). 
Observation 4: For BM-Case-1 in DL Tx beam prediction, considering Set B is a subset of Set A, when using Option 2 of Set B selection (Variable Set B) and Set B is randomly changed among 5 pre-configured patterns (Opt C), with  Set B length in [3 - 8] and Set A length = 32 (RS overhead is between 3/ 32 - 8 / 32), AI/ML based approach has an average gain of 5.08 dB in Average L1-RSRP difference of the Top-1 predicted beam and an average gain of 37.7% (absolute %) in Top-1 prediction accuracy over the baseline (i.e., based on sparse beam sweeping of Set B). 
Evaluation for model generalization of spatial-domain Tx-Rx beam pair prediction
In this section, we discuss our evaluation results for DL Tx-Rx beam pair prediction focusing on the spatial-domain sub use case of BM-Case1.
The simulation configurations/assumptions for dataset generation are based on those specified in Table 2-1. 
AI/ML model training/testing parameters
For DL Tx-Rx beam prediction, we adopt a Transformer-based neural network AI/ML model architecture. The results were generated using the final NN weights that performed the best in validation samples. The details of the training parameters are described in Table 4.1-1.
Table 4.1-1: AI/ML model training parameters for DL Tx-Rx beam prediction
	AI/ML model training detail
	Value

	Type
	Transformer-based NN

	Set A beam size
	256

	Set B beam size
	32

	Training dataset size
	450K

	Validation dataset size
	50K

	Testing dataset size
	500K

	Batch size
	512

	Epoch
	500

	FLOPs
	3,097,714,688 

	Number of AI/ML model parameters
	2,836,416 



Evaluation results
In this section, we discuss our evaluation results for the following generalization cases:
· Model generalization
· Case 1: AI/ML model is trained using dataset generated from the source scenario first, then the trained model is used to perform inference on a dataset from the same scenario.
· In our study, we consider 2 source scenarios, one is UMa and the other one is UMi.
· Case 2: AI/ML model is trained using dataset generated from the source scenario and the trained AI/ML model performs inference/test on a dataset generated from the target scenario
· In our study, we consider the following 2 variations:
· Source scenario is UMa and the target scenario is UMi
· Source scenario is UMi and the target scenario is UMa
Note that for model generalization Case 1, in which the AI/ML model is trained using dataset generated directly from Scenario#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A.
In this section, we summarize our study results at high level. The detailed results of our study on DL Tx-Rx beam pair prediction are available in the accompanied Excel file (under Tab “BM-case1 (pair)”). Please refer to the Excel for the assumptions and other configuration details. 
For simplicity, we fixed the Set-B length to 32 for model generalization evaluation. 

Set B beam selection Option 1 (Fixed Set B)
Table 4.2-1 shows the spatial domain beam prediction performance using Option 1 for Set B selection for the Dense Urban UMi testing scenario:
· Generalization Case 1 (baseline): the AI/ML model is trained using dataset generated from UMi scenario first, then tested on dataset also from UMi scenario.
· Generalization Case 2 (naïve transfer): the AI/ML model is trained using dataset generated from UMa scenario first, then tested on dataset from UMi scenario.

Table 4.2-1: AI/ML model generation results for UMi test scenario/channel model using Option 1 for Set B selection
	
	Set B selection Option 1: Set-B length 32 (450K Training Samples)

	Generalization case
	Training scenario 
	Testing scenario 
	Accuracy
	Avg. L1-RSRP difference of Top-K predicted beam [dB]

	
	
	
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1

	Case 1
	UMi
	UMi
	0.5543
	0.7529
	0.8865
	0.9350
	0.9591
	1.07
	0.49
	0.18
	0.09
	0.06

	Case 2
	UMa
	UMi
	0.5479
	0.7452
	0.8833
	0.9349
	0.9592
	1.11
	0.50
	0.18
	0.09
	0.05



Based on Table 4.2-1, it can be noted that for generalization Case 1 in which AI/ML model is trained using dataset from UMi scenario, then the trained model performs inference on dataset also from UMi scenario, the AI/ML performance is decent with Average L1-RSRP difference of Top-1 predicted beam around 1.07 dB. Generalization Case 1 can be considered as the baseline for comparison purpose. For generalization Case 2 in which AI/ML model is trained using dataset from UMa scenario first then the trained model is directly used to perform inference on dataset from UMi scenario, we can observe that there is no significant performance difference (or any performance degradation) compared to generalization Case 1. This means that the AI/ML model trained using dataset from UMa can generalize well to UMi scenario.

Table 4.2-2 shows the spatial domain beam prediction performance also using Option 1 for Set B selection for the Urban UMa testing scenario:
· Generalization Case 1 (baseline): the AI/ML model is trained using dataset generated from UMa scenario first, then tested on dataset also from UMa scenario.
· Generalization Case 2 (naïve transfer): the AI/ML model is trained using dataset generated from UMi scenario first, then tested on dataset from UMa scenario.

Table 4.2-2: AI/ML model generation results for UMa test scenario using Option 1 for Set B selection
	
	Set B selection Option 1: Set-B length 32 (450K Training Samples)

	Generalization case
	Training scenario
	Testing scenario 
	Accuracy
	Avg. L1-RSRP difference of Top-K predicted beam [dB]

	
	
	
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1

	Case 1
	UMa
	UMa
	0.5498
	0.7393
	0.8694
	0.9201
	0.9457
	1.34
	0.65
	0.26
	0.14
	0.09

	Case 2
	UMi
	UMa
	0.5381
	0.7222
	0.8516
	0.9044
	0.9320
	1.50
	0.78
	0.34
	0.20
	0.13



Based on Table 4.2-2, it can be noted that for generalization Case 1 in which AI/ML model is trained using dataset from UMa scenario, then the trained model performs inference on the dataset also from UMa scenario the AI/ML performance is decent with Average L1-RSRP difference of Top-1 predicted beam around 1.34 dB (slightly worse than Case 1 of UMi but still decent). For generalization Case 2, in which the AI/ML model is trained using dataset from UMi scenario first then the trained model is directly used to perform inference on dataset from UMa scenario, we can observe that there is no significant performance difference compared to generalization Case 1 even though there is slightly degradation in L1-RSRP difference of the Top-1 predicted beam compared to the baseline case, but still decent. 

Observation 5: In AI/ML model generalization across different scenarios for BM-Case1 when using Option 1 in Set B selection, our experiments show the following based on the datasets we used:
· Generalization Case 1: 
· When the AI/ML model is trained using dataset generated for UMa scenario then performs inference on unseen data samples from the same UMa scenario, the performance is decent (when evaluated using Top-1, Top-K/1 prediction accuracy and average L1-RSRP difference of the predicted Top-1 and Top-K/1 beam(s)).
· When the AI/ML model is trained using dataset generated for UMi scenario then performs inference on unseen data samples from the same UMi scenario, the performance is also decent.
· Generalization Case 2:
· When the AI/ML model is trained using dataset generated for UMa scenario then the trained model is used to perform inference directly on dataset generated from a different scenario, i.e., UMi, performance is comparable to generalization Case 1.
· When the AI/ML model is trained using dataset generated for UMi scenario then the trained model is used to perform inference directly on dataset generated from a different scenario, i.e., UMa, the performance is still decent compared to generalization Case 1 even though there is small degradation in L1-RSRP difference of the Top-1 predicted beam.
Set B beam selection Option 2B (Set B is randomly changed among pre-configured patterns)
Table 4.2-3 shows the spatial domain beam prediction performance using Option 2B in Set B selection for the UMi testing scenario. For generalization cases, we adopt the same settings as Set B selection Option 1.
· Generalization Case 1 (baseline): the AI/ML model is trained using dataset generated from UMi scenario first, then tested on dataset also from UMi scenario.
· Generalization Case 2 (naïve transfer): the AI/ML model is trained using dataset generated from UMa scenario first, then tested on dataset from UMi scenario.

Table 4.2-3: AI/ML model generation results for UMi test scenario using Option 2B for Set B selection
	
	Set B selection Option 2B: Set-B length 32 (450K Training Samples)

	Generalization case
	Training scenario
	Testing scenario
	Accuracy
	Avg. L1-RSRP difference of Top-K predicted beam [dB]

	
	
	
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1

	Case 1
	UMi
	UMi
	0.4868
	0.6837
	0.8393
	0.8987
	0.9316
	1.52
	0.77
	0.32
	0.18
	0.11

	Case 2
	UMa
	UMi
	0.4753
	0.6711
	0.8274
	0.8905
	0.9248
	1.64
	0.84
	0.34
	0.19
	0.12



Based on Table 4.2-3, it can be noted that for generalization Case 1 in which AI/ML model is trained using dataset from UMi scenario, then the trained model performs inference on dataset also from UMi scenario, the AI/ML performance is decent with Average L1-RSRP difference of Top-1 predicted beam around 1.52 dB (slightly degraded compared to Set B selection Option 1). Generalization Case 1 can be considered as the baseline for comparison purpose. For generalization Case 2 in which AI/ML model is trained using dataset from UMa scenario first, then the trained model is directly used to perform inference on dataset from UMi scenario, we can observe that there is no significant performance difference compared to generalization Case 1 when using Set B selection Option 2B.
Table 4.2-4 shows the spatial domain beam prediction performance using Option 2B in Set B selection for the UMa testing scenario. For generalization cases, we adopt the same settings as Set B selection Option 1 as well.
· Generalization Case 1 (baseline): the AI/ML model is trained using dataset generated from UMa scenario first, then tested on dataset also from UMa scenario.
· Generalization Case 2 (naïve transfer): the AI/ML model is trained using dataset generated from UMi scenario first, then tested on dataset from UMa scenario.

Table 4.2-4: AI/ML model generation results for UMa test scenario using Option 2B for Set B selection
	
	
	Set B selection Option 2B: Set-B length 32 (450K Training Samples)

	Generalization case
	Training scenario
	Testing scenario
	Accuracy
	Avg. L1-RSRP difference of Top-K predicted beam [dB]

	
	
	
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1

	Case 1
	UMa
	UMa
	0.4748
	0.6620
	0.8102
	0.8744
	0.9099
	1.93
	1.03
	0.45
	0.26
	0.18

	Case 2
	UMi
	UMa
	0.4721
	0.6532
	0.8009
	0.8656
	0.9011
	2.02
	1.13
	0.52
	0.32
	0.22



Based on Table 4.2-4, it can be noted that for generalization Case 1 in which AI/ML model is trained using dataset from UMa scenario then the trained model performs inference on dataset also from UMa scenario, the AI/ML performance is decent with Average L1-RSRP difference of Top-1 predicted beam around 1.93 dB (slightly degraded compared to Set B selection Option 1). For generalization Case 2 in which AI/ML model is trained using dataset from UMi scenario first, then the trained model is directly used to perform inference on dataset from UMa scenario, we can observe that the performance is comparable to generalization Case 1 (with < 0.1 dB degradation in L1-RSRP difference) when using Set B selection Option 2B.
Observation 6: In AI/ML model generalization across different scenarios for BM-Case1 when using Option 2B in Set B selection, our experiments show the following based on the datasets we used:
· Generalization Case 1: 
· When the AI/ML model is trained using dataset generated for UMa scenario then performs inference on unseen data samples from the same UMa scenario, the performance is decent (when evaluated using Top-1, Top-K/1 prediction accuracy and average L1-RSRP difference of the predicted Top-1 and Top-K/1 beam(s)).
· When the AI/ML model is trained using dataset generated for UMi scenario then performs inference on unseen data samples from the same UMi scenario, the performance is also decent.
· Generalization Case 2:
· When the AI/ML model is trained using dataset generated for UMa scenario then the trained model is used to perform inference directly on dataset generated from a different scenario, i.e., UMi, there is no significant performance difference compared to generalization Case 1 even though there is small degradation in L1-RSRP difference of the Top-1 predicted beam.
· When the AI/ML model is trained using dataset generated for UMi scenario then the trained model is used to perform inference directly on dataset generated from a different scenario, i.e., UMa, the performance is comparable to generalization Case 1.
Observation 7: In AI/ML model generalization across different scenarios, i.e., between UMa and UMi in our study, for BM-Case1, when comparing Set B selection Option 1 and Set B selection Option 2B using Top-1, Top-K/1 prediction accuracy and Average L1-RSRP difference of the predicted Top-1 beam, Set B selection Option 1 achieved slightly better performance when using the same training dataset size.
Conclusions
In this contribution, we shared our results for spatial-domain DL Tx beam prediction and generalization Case 1 and Case 2 for DL Tx-Rx beam pair prediction; our observations are as follows.
Observation 1: For BM-Case-1 in DL Tx beam prediction, when using Set B selection Option 1  (i.e., fixed Set B beam pattern) in both training and testing phases, AI/ML-based beam predictions outperform the sparse beam sweeping baselines (in which beam sweeping is performed for beams in Set B) in both Top-1 and Top-K/1 accuracy, and in average L1-RSRP difference of Top-1 predicted beam.   
Observation 2: For BM-Case-1 in DL Tx beam prediction, when using Set B selection Option 2B  (i.e., variable Set B and Set B is randomly changed among pre-configured patterns) in both training and testing phases, AI/ML-based beam predictions outperform the sparse beam sweeping baselines (in which beam sweeping is performed for beams in Set B) in both Top-1 and Top-K/1 accuracy, and in average L1-RSRP difference of Top-1 predicted beam.   
Observation 3: For BM-Case-1 in DL Tx beam prediction, considering Set B is a subset of Set A, when using Option 1 of Set B selection (Fixed Set B) with  Set B length in [3 – 8] and Set A length = 32 (RS overhead is between 3/ 32 – 8 / 32), AI/ML based approach has an average gain of 6.49 dB in Average L1-RSRP difference of the Top-1 predicted beam and an average gain of 44.77% (absolute %) in Top-1 prediction accuracy over the baseline (i.e., based on sparse beam sweeping of Set B). 
Observation 4: For BM-Case-1 in DL Tx beam prediction, considering Set B is a subset of Set A, when using Option 2 of Set B selection (Variable Set B) and Set B is randomly changed among 5 pre-configured patterns (Opt C), with  Set B length in [3 - 8] and Set A length = 32 (RS overhead is between 3/ 32 - 8 / 32), AI/ML based approach has an average gain of 5.08 dB in Average L1-RSRP difference of the Top-1 predicted beam and an average gain of 37.7% (absolute %) in Top-1 prediction accuracy over the baseline (i.e., based on sparse beam sweeping of Set B). 
Observation 5: In AI/ML model generalization across different scenarios for BM-Case1 when using Option 1 in Set B selection, our experiments show the following based on the datasets we used:
· Generalization Case 1: 
· When the AI/ML model is trained using dataset generated for UMa scenario and then performs inference on unseen data samples from the same UMa scenario, the performance is decent (when evaluated using Top-1, Top-K/1 prediction accuracy and average L1-RSRP difference of the predicted Top-1 and Top-K/1 beam(s)).
· When the AI/ML model is trained using dataset generated for UMi scenario and then performs inference on unseen data samples from the same UMi scenario, the performance is also decent.
· Generalization Case 2:
· When the AI/ML model is trained using dataset generated for UMa scenario then the trained model is used to perform inference directly on dataset generated from a different scenario, i.e., UMi, performance is comparable to generalization Case 1.
· When the AI/ML model is trained using dataset generated for UMi scenario, then the trained model is used to perform inference directly on dataset generated from a different scenario, i.e., UMa, the performance is still decent compared to generalization Case 1 even though there is small degradation in L1-RSRP difference of the Top-1 predicted beam.
Observation 6: In AI/ML model generalization across different scenarios for BM-Case1 when using Option 2B in Set B selection, our experiments show the following based on the datasets we used:
· Generalization Case 1: 
· When the AI/ML model is trained using dataset generated for UMa scenario and then performs inference on unseen data samples from the same UMa scenario, the performance is decent (when evaluated using Top-1, Top-K/1 prediction accuracy and average L1-RSRP difference of the predicted Top-1 and Top-K/1 beam(s)).
· When the AI/ML model is trained using dataset generated for UMi scenario and then performs inference on unseen data samples from the same UMi scenario, the performance is also decent.
· Generalization Case 2:
· When the AI/ML model is trained using dataset generated for UMa scenario, then the trained model is used to perform inference directly on dataset generated from a different scenario, i.e., UMi, there is no significant performance difference compared to generalization Case 1 even though there is small degradation in L1-RSRP difference of the Top-1 predicted beam.
· When the AI/ML model is trained using dataset generated for UMi scenario, then the trained model is used to perform inference directly on dataset generated from a different scenario, i.e., UMa, the performance is comparable to generalization Case 1.
Observation 7: In AI/ML model generalization across different scenarios, i.e., between UMa and UMi in our study, for BM-Case1, when comparing Set B selection Option 1 and Set B selection Option 2B using Top-1, Top-K/1 prediction accuracy and Average L1-RSRP difference of the predicted Top-1 beam, Set B selection Option 1 achieved slightly better performance when using the same training dataset size.
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