Page 1
3GPP TSG-RAN WG1 Meeting #112														R1-2301403
Athens, Greece, February 27th – March 3rd, 2023

Agenda item:	9.2.1
Source: 	Qualcomm Incorporated
Title: 	General Aspects of AI/ML Framework
Document for:	Discussion/Decision

Introduction
At RAN #94, a new study on artificial intelligence/machine learning for NR air interface has been approved [1], with the main goal of exploring the benefits of augmenting the air interface with features enabling improved support of AI/ML-based algorithms for enhanced performance and/or reduced complexity/overhead.

Through studying a few carefully selected use cases, the goal is to identify a common AI/ML framework, including functional requirements of AI/ML architecture, which could be used in subsequent projects. The study should also identify areas where AI/ML could improve the performance of air-interface functions.

The study will serve to identify what is required for an adequate AI/ML model characterization and description establishing pertinent notation for discussions and subsequent evaluations. Various levels of collaboration between the gNB and UE are identified and considered.

Specification impact will be assessed in order to improve the overall understanding of what would be required to enable AI/ML techniques for the air interface.

The SI consists of studying individual use cases as well as deriving a general framework for AI/ML. Below we summarize the goal of the study as shown in [1] relevant to the general framework:
AI/ML model, terminology, and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g.,
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting separate or joint ML operations.
· Characterize lifecycle management of AI/ML model: e.g., model training, model deployment, model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference
· Identify common notation and terminology for AI/ML related functions, procedures, and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

Some progress has been made in RAN1 #109-e, RAN1 #110, RAN1 #110-bis-e, and RAN1 #111 toward achieving the SI objectives. In this contribution, we further discuss general framework and various aspects of LCMs including functionality and model-ID based approaches.

General AI/ML framework

Model Storage
Model Inference
model transfer/delivery
Model Management (monitor, select, activate, deactivate, switch, fallback)
output
model inference control
inference data
Data Collection
training data
monitoring data
Model Training
model deployment/update
model training control

[bookmark: _Ref127433945]Figure 1: A general AI/ML framework

The general AI/ML framework given in Figure 1 has been obtained by modifying the RAN3 functional framework. Specifically, the actor block in RAN3 framework that captures the machinery of reinforcement learning has been removed, since there is no specific reinforcement learning requirement for the generic AI/ML framework within the scope of RAN1 and hence the actor block is not relevant. We add model management block that can spread into many entities due to including many functionalities and model storage block to address model transfer/delivery.

Proposal 1: Adopt the general AI/ML framework diagram shown in Figure 1.

Description of Stages
Data Collection
From RAN#1 110-bis-e, it was concluded that
	Conclusion

Data collection may be performed for different purposes in LCM, e.g., model training, model inference, model monitoring, model selection, model update, etc. each may be done with different requirements and potential specification impact.

FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)

Data collection in Figure 1 is a block that conceptually represents data sources and entities that hold data, for training, inference, and monitoring. Although it is shown as a single block in the framework diagram, it is important to note that data collection for training, inference, and monitoring have very different flavors and requirements. Moreover, timescale (e.g., real-time or offline) of training and monitoring generally needs separate considerations.

Data collection for training
For training, training data may be initially generated at the network and UE. The initial data may be subsequently collected (sent) to one or more data collection entities. A data collection entity may be a 3gpp network or a non-3gpp entity. A non-3gpp data collection entity may be owned by a UE vendor, a chipset vendor, a network vendor, a network operator, a private network owner, a positioning service provider, or any other 3rd party. In case the data collection entity is a 3gpp network, specification for data collection may be required. In case the data collection entity is a non-3gpp entity, data collection can be left as an implementation choice and business agreements among involved parties and can be left outside the scope of 3gpp specification. For example, an API could be exposed by a UE to outside entities to allow the outside entities to collect data from the UE.

Regarding the role of RAN1, 3GPP states RAN1’s role (https://www.3gpp.org/3gpp-groups/radio-access-networks-ran/ran-wg1)
	RAN1 is responsible for specification of the physical layer of the radio Interfaces for UE, Evolved UTRAN, NG-RAN, and beyond. The work in RAN1 includes especially:
· Specification of physical channels and modulation
· Specification of physical layer multiplexing, channel coding and error detection
· Specification of physical layer procedures (both control and data)
· Specification of definition of measurements and their provision by the physical layer to the upper layers
RAN1 also specifies handling of physical layer related UE capabilities and parameters used in device tests.

Observation 1: 3GPP relies on RAN1 to standardize the physical layer features as described above. Other groups standardize how the control plane signaling, user plane data and logging are performed and transported throughout the network (along with many other network features).

Proposal 2: For data collection for model training, RAN1 should focus on what data should be collected. Mechanism for training data collection needs architectural considerations and should be handled by other working groups.

Data collection for inference
For inference, inference data for the UE-side model (and the UE-part of the two-sided model) may directly come from the UE. Inference data for the NW-side model (and the NW-side of the two-sided model) may either directly come from the NW or be sent from the UE.

Data collection for monitoring
Similarly, for monitoring, monitoring data for the UE-side monitoring may directly come from the UE. Monitoring data for the NW-side monitoring may either directly come from the NW or, if needed, be sent from the UE.
Data collection for real-time operations such as real-time model monitoring, switching, and selection may incur significant signaling overhead. On the other hand, infrequent data collection to reduce signaling overhead incurs latency for real-time model monitoring, switching, and selection. Therefore, methods without data collection, if feasible, should be favored.

Proposal 3: Data collection need for real-time model monitoring, switching, and selection should be evaluated and justified first by each use case, taking OTA overhead into account. Methods without data collection should be favored.

Model Development and Training
Model training block in Figure 1 includes both initial training and model update. In general, model training consists of two categories
· Model training that happens together with the model development
· Subsequent training on a developed model
Although both flavors of model training are shown as one “model training” box in Figure 1, the two have very different considerations. We elaborate this in Section 4.

Depending on the location of the dataset and where the (untrained) model resides, training may be done inside a 3gpp network or in a non-3gpp entity. A non-3gpp entity may be owned by a UE vendor, a chipset vendor, a network vendor, a network operator, a private network owner, a positioning service provider, or any other 3rd party. It is noted that AI/ML model development is typically an iterative process of data collection, model design, training, and performance validation. AI/ML model development also requires careful implementation consideration for power consumption, hardware area, latency, and concurrency with other PHY/MAC functionalities and require extensive testing. As such, they require elaborate offline design process for the ML model design, training, compilation to a target-device-specific run-time image, and testing. Therefore, the model development is best to be done by the vendor who will implement the device where the AI/ML model inference runs.

Observation 2: Model development is best to be done by the vendor who will implement the device where the AI/ML model inference runs.

Once large-scale field data is collected at a data collection entity, the data should be made available to the vendor(s) responsible for model development. Model development is an offline engineering process performed by engineering teams, that should be done with access to a large-scale collected dataset from the field. That is, decisions on the model structure, device-specific optimization, and the number of models to develop (generalizable vs. specific models) depend on the large-scale field data. If the vendor owning the data collection entity is different from the vendor(s) responsible for model development, the dataset should be made available to the vendor(s) responsible for model development. This can be done either via explicit dataset sharing or via providing access (e.g., via APIs) to the collected dataset. Such process may or may not have specification impact. The dataset sharing/access is especially relevant for two-sided models, where both the gNB vendor and the UE/chipset vendor will have to be involved in the model development and training process.

Proposal 4: Regardless of how and where training data has been collected, the training data should be made available to the vendor(s) responsible for model development, and where the model development is done is determined according to where the AI/ML model inference runs.

Model Deployment, Storage and Transfer/Delivery
After a model is developed and trained, the model should be stored in a model repository and delivered to the target device. The model should be compiled into an executable for inference. Different options are based on
· Where the model is trained: (1) at a 3gpp network, (2) at a non-3gpp entity
· Model storage/delivery format: (1) Open format, (2) Proprietary format
· Where the model is hosted before delivery: (1) at a 3gpp network, (2) at a non-3gpp entity
resulting in 8 distinct options (though not all of them are useful)

Model Inference

Model Management
Model management may include functionality/model monitoring, selection, activation, deactivation, switching and fallback. The underlying mechanisms for these steps are covered under the functionality and model ID-based LCM explained in Section 3.

It is important to note that, although “model management” is shown as a single block Figure 1, it does not imply that all the aspects of model management be implemented at a single location. Rather, it is expected that some aspects of model monitoring, activation/deactivation, selection, switching, fallback may be at the NW-side, and some other aspects at the UE-side, as has been already agreed in RAN#1 110-bis-e:
	Agreement
For model selection, activation, deactivation, switching, and fallback at least for UE sided models and two-sided models, study the following mechanisms:
· Decision by the network
· Network-initiated
· UE-initiated, requested to the network
· Decision by the UE
· Event-triggered as configured by the network, UE’s decision is reported to network
· UE-autonomous, UE’s decision is reported to the network
· UE-autonomous, UE’s decision is not reported to the network
FFS: for network sided models
FFS: other mechanisms

Agreement
Study at least the following metrics/methods for AI/ML model monitoring in lifecycle management per use case:
· Monitoring based on inference accuracy, including metrics related to intermediate KPIs
· Monitoring based on system performance, including metrics related to system performance KPIs
· Other monitoring solutions, at least following 2 options.
· Monitoring based on data distribution
· Input-based: e.g., Monitoring the validity of the AI/ML input, e.g., out-of-distribution detection, drift detection of input data, or something simple like checking SNR, delay spread, etc.
· Output-based: e.g., drift detection of output data
· Monitoring based on applicable condition
Note: Model monitoring metric calculation may be done at NW or UE

	

Functionality and model ID-based LCM
From RAN1 #110-bis-e, it has been agreed to study LCM procedure both in terms of model identification and functionality basis as presented below.

	Agreement
Study LCM procedure on the basis that an AI/ML model has a model ID with associated information and/or model functionality at least for some AI/ML operations.
• FFS: Detailed discussion of model ID with associated information and/or model functionality.
• FFS: usage of model ID with associated information and/or model functionality-based LCM procedure
• FFS: whether support of model ID
• FFS: the detailed applicable AI/ML operations

To further clarify the underlying meaning of model and functionality identification, in the RAN1 #111 meeting, the following working assumption is made.

	Working Assumption
	Terminology
	Description

	Model identification
	A process/method of identifying an AI/ML model for the common understanding between the NW and the UE
Note: The process/method of model identification may or may not be applicable.
Note: Information regarding the AI/ML model may be shared during model identification.

	Terminology
	Description

	Functionality identification
	A process/method of identifying an AI/ML functionality for the common understanding between the NW and the UE
Note: Information regarding the AI/ML functionality may be shared during functionality identification.
FFS: granularity of functionality

Note: whether and how to indicate Functionality will be discussed separately.

The following was also agreed in RAN1 #111
	Agreement
For UE-part/UE-side models, study the following mechanisms for LCM procedures:
· For functionality-based LCM procedure: indication of activation/deactivation/switching/fallback based on individual AI/ML functionality
· Note: UE may have one AI/ML model for the functionality, or UE may have multiple AI/ML models for the functionality.
· FFS: Whether or how to indicate Funtionality
· For model-ID-based LCM procedure, indication of model selection/activation/deactivation/switching/fallback based on individual model IDs

In RAN2 #119bis, it was agreed:
	R2 assumes that a model is identified by a model ID. Its usage is FFS.
R2 assumes that from Management or Control point of view mainly some meta info about a model may need to be known, details FFS

Associated with the above agreements and working assumptions, functionality and model-ID based LCMs can be described as follows.

For functionality-based LCM, UE notifies network for the AI/ML functionality via UE capability reporting. Hence, network is aware of AI/ML functionality, where functionality may refer to a particular use case or procedure at UE where AI/ML is expected to be used, such as AI/ML-based beam prediction, AI/ML-based positioning, etc. Then, network can indicate activation and deactivation of each AI/ML functionality. As agreed in RAN1 #111, UE may have only one model or transparently operate multiple models for a given functionality without network’s explicit knowledge. For the latter, UE may select/switch among them transparently to the network.

Granularity of functionality needs discussion - the functionality may refer to a sub-use-case or scenarios/configurations/sites in addition to a sub-use-case. Different scenarios/configurations/sites may be viewed either as distinct functionalities or as configurations within one functionality. To this end, UE may use functionality ID (or configurations within a functionality) provided by the network either as input to the AI/ML model or as a criterion to select/switch among multiple AI/ML models for the functionality.

For model-ID based LCM, UE notifies network for the AI/ML functionality and supported model IDs via UE capability reporting. Hence, network is aware of AI/ML model functionality at UE and supported model IDs for the functionality. Then, network can again indicate activation and deactivation of each AI/ML functionality. However, unlike the functionality-based LCM, models are identified by the network via assigned model IDs. As a result, the network can also activate/deactivate a particular model for the functionality. The network can also direct the UE to switch from one model to another model for the functionality.

Functionality-based LCM has several benefits:
· It provides deployment/operational flexibility. Functionality can be made coarse, e.g., at sub-use-case level. Or functionality can be defined in a very granular manner (or equivalently, configurations can be defined in very granular manner within a functionality) at various scenario/configuration/site levels. Therefore, functionality-based LCM can achieve various levels of network control vs. UE implementation freedom.
· It allows implementation flexibility at UE. For example, for CSI prediction or temporal beam prediction use cases, certain UE implementation may want to use separate models for low Doppler and high Doppler, while certain other UE implementation may want to use a single model that works across low and high Doppler. Such choice should be left to UE implementation. Therefore, what makes more sense is for the network to define functionality, and let UE to use either one (e.g., Doppler agnostic) model or switch among multiple (e.g., Doppler specific) models.
· It simplifies LCM operation at NW. With functionality-based LCM, NW needs to manage activation/deactivation/switching at a functionality level, without worrying about having to control individual models at UE. In particular, different UE implementations may have different model choices and granularities, and model-ID-based LCM would make the LCM at NW very complicated.

Observation 3: Functionality-based LCM has the following benefits:
· Deployment/operational flexibility
· UE implementation flexibility
· Simplified LCM operation at network

One of the open items from previous RAN1 meetings was the applicability of the two LCM flavors. We discuss their applicability in relation to
· Collaboration levels
· UE-side models and two-sided models
We also discuss granularity of functionality, which was FFS from the last RAN1 meeting.

LCM for Collaboration Level y

Functionality-based LCM
Functionality-based LCM simplifies the management at the network. Furthermore, it results in flexible model switching at the at the UE (e.g., switching between a low doppler and a high doppler model) without network interruptions such that network activates/deactivates functionalities at the UE, and UE autonomously switches the models transparently.

For functionality-based LCM, UE notifies network for the AI/ML functionality via UE capability reporting. Hence, network is aware of AI/ML functionality, where functionality may refer to a particular use case or procedure at UE where AI/ML is expected to be used, such as AI/ML-based beam prediction, AI/ML-based positioning, etc.

Once AI/ML Models are delivered, network may control AI/ML functionality for inference at UE. These may include activation, deactivation of the AI/ML functionality in UEs as well as performance monitoring of the functionality.

It is noted that which AI/ML model to use is not controlled by the network. UE is free to use one or more AI/ML models for the given functionality and can do the model selection/switching decision (i.e., the decision on which model among a family of models to use for inference). To illustrate, UE autonomously switches between a low doppler and a high doppler model without network interruptions. This decision may be made according to model monitoring in UEs as well as the applicability (e.g. estimated Doppler at UE) of the model.

Proposal 5: Functionality-based LCM is applicable to Level y collaboration.

Although network is not explicitly aware of the individual models, the network may still want to monitor performance for activation, configuration, switching, and deactivation of the related AI/ML functionality.

Proposal 6: Study which aspects of the monitoring can be handled by network and which others can be done by UEs with their expected benefits.

For two-sided model inference, the selection of the encoder at the UE should be compatible with the selection of the decoder at the NW. Therefore, the NW should provide information about the decoder to the UE, so that UE can use a compatible encoder. To achieve this, the NW could directly signal the decoder ID to the UE as a part of functionality configuration. Alternatively, to abstract out and hide network-side implementation details, information about the decoder choice can be abstracted as a “configuration ID” and signaled to UE. Essentially, a configuration ID represents one or more encoders and one or more decoders that are mutually compatible. This allows the network to upgrade one decoder to another decoder under the same configuration ID, as long as the new decoder is compatible with encoder(s) that are compatible with the old decoder. Moreover, this also allows the network to use multiple decoders, if needed, under the hood of one configuration ID, as long as the multiple decoders are compatible with the same set of encoders. Likewise, UE is free to choose one encoder or multiple encoders for the given configuration ID, as long as the multiple encoders are all compatible with the same decoder. UE may locally update or switch among encoder models based on other considerations as long as they are still compatible with the decoder that is indirectly announced in the form of configuration ID.

In summary, functionality-based LCM can be used for two-sided models, where the network indicates a configuration ID as a part of functionality configuration. Both network side and UE side are free to choose any encoders and decoders that are mutually compatible indicated by the configuration ID.

Proposal 7: Functionality-based LCM is applicable for both one-sided and UE-part of two-sided models.

Proposal 8: Configuration ID, which is an abstraction of decoder ID(s), is signaled to UE for two-sided models as a part of functionality configuration in functionality-based LCM.

One important aspect of functionality identification is the granularity. This point has been raised in the working assumption below.
	Working Assumption
	Terminology
	Description

	Functionality identification
	A process/method of identifying an AI/ML functionality for the common understanding between the NW and the UE
Note: Information regarding the AI/ML functionality may be shared during functionality identification.
FFS: granularity of functionality

Note: whether and how to indicate Functionality will be discussed separately.

Functionality may be defined with fine granularity, or equivalently, functionality may come with additional configurations. Configuration ID for two-sided models is one example. Another example may be gNB codebook index for spatial/temporal beam prediction use case. In fact, RAN1 in #110bis-e made the following agreement:

	Agreement
Study the specification impact to support multiple AI models for the same functionality, at least including the following aspects:
-	Procedure and assistance signaling for the AI model switching and/or selection
FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)

Proposal 9: Applicable information, such as gNB codebook index, is signaled to UE as a part of functionality configuration in functionality-based LCM.

Fine granularity of functionality allows the UE side to develop functionality-specific or configuration-specific models that perform better and/or have lower complexity. Alternatively, UE could use the functionality ID or functionality configuration as an input to a single model that works across multiple functionalities or configurations. In addition, as explained before, UE may use multiple models (e.g., Doppler specific models) even within one functionality or configuration.

Observation 4: The fine granularity of functionality (or fine granular configuration within a functionality) will allow developing higher performing or lower complexity models, e.g., functionality-specific or configuration-specific models.

Model ID-based LCM
In the case of model-ID based LCM, the model is identified by the network via an assigned model ID. The network addresses the model with the model ID for inference operation and model management (configuration, activation, deactivation, switching, monitoring, fallback). Despite that, in collaboration level y where the model is stored outside the NW, the network does not know the model structure or parameters.

Proposal 10: Model ID-based LCM is applicable to Level y collaboration.

For model ID-based approach, UE notifies network for the AI/ML functionality and supported model IDs via UE capability reporting. Hence, network is aware of AI/ML model functionality at UE and supported model IDs for the functionality. For collaboration level y, the AI/ML models are then stored outside the network and delivered to the UEs via mechanisms outside air interface.

· Once AI/ML Models are delivered to UE, network may control AI/ML functionality for inference at UE. These may include model selection, activation, deactivation, switch, fallback, monitoring. For model-ID based LCM, model selection from a deployed family of models may be done at network or UEs based on the performance and the applicability of the model.

Observation 5: Model switching, and selection are performed by UEs for functionality-based LCMs, whereas this can be done by network and/or UE for model-ID based LCM.

For model selection, activation, deactivation, switching, and fallback, RAN1 #111 has made the following agreement.

	Agreement
For model selection, activation, deactivation, switching, and fallback at least for UE sided models and two-sided models, study the following mechanisms:
· Decision by the network
· Network-initiated
· UE-initiated, requested to the network
· Decision by the UE
· Event-triggered as configured by the network, UE’s decision is reported to network
· UE-autonomous, UE’s decision is reported to the network
· UE-autonomous, UE’s decision is not reported to the network
FFS: for network sided models
FFS: other mechanisms

In model-ID-based LCM, for the network to be able to make model selection and switching decisions, the network needs to know the applicability of each model. This information can be made available at the network during model registration/identification via meta information as agreed in RAN2 #119bis:
	RAN2 agreement
R2 assumes that a model is identified by a model ID. Its usage is FFS.
R2 assumes that from Management or Control point of view mainly some meta info about a model may need to be known, details FFS

In the above, the meta information, among others, contains information about model applicability.

Proposal 11: Models are identified by the model ID, and associated meta information known at the network is used for selection of the right model at the inference time.

In Collaboration Level y, the multiple models that are identified at the network may be developed and trained at the UE side. Let’s take gNB codebook index for beam prediction as an illustrative example. Suppose there are two codebook patterns indexed 1 and 2. For the UE side to develop codebook-specific models, UE should be provided with the active codebook index so that training data (RSRP measurements at UE) can be collected for each codebook pattern separately. After the two models are developed/trained, UE side can provide identification of the two models 1 and 2 with their respective meta information containing applicable codebook pattern to the network.

Taking CSI compression use case as another example, information about CSI-RS configuration can allow the model developer to categorize the collected CSI-RS observations into N different groups and help the model developer determine whether one model or a family of K<=N models may have to be developed. We refer to the offline decision process of determining how many (K) models to develop and determining the applicable scenario, configuration, or coverage area of each model as scenario discovery.

If the model developer decides to develop K>1 different models for the same functionality, then at inference time, the right model would have to be chosen during inference time that matches with the meta information at inference. During the model identification, each model {1,...,K} could be provided with meta information indicating applicable CSI-RS configuration, so that the NW may know which of the K models to activate at the gNB and UE for the given CSI-RS configuration used at inference time. We refer to this process as scenario association.

In general, assistance information (e.g., scenario/configuration/zone ID) may need to be provided to UE for UE-side model development/training, so that identification of each developed/trained model may be provided to the network with applicable model scope (e.g., applicable scenario/configuration/zone IDs), so that network can use them for model selection and switching.

Proposal 12: introduce the following terminologies
	assistance information
	information provided from the network to the UE to assist UE-side model training, inference, monitoring, or activation/deactivation/switching decisions

	Meta information
	Information being provided about a model during model identification process.

Proposal 13: Network should provide sufficient assistance information to UE in order to allow exploring various model development decisions, such as developing a family of models for the given functionality.

From all the above discussions, it is clear that model-ID-based LCM is applicable to both UE-side models and UE-part of two-sided models.

Proposal 14: Model-ID-based LCM is applicable for both UE-side models and UE-part of two-sided models.

LCM for Collaboration Level z
For collaboration level z, the model is stored at NW and is transferred to the target device over the air interface. AI/ML model transfer is defined as a working assumption below.

Working Assumption
	AI/ML model transfer
	Delivery of an AI/ML model over the air interface, either parameters of a model structure known at the receiving end or a new model with parameters. Delivery may contain a full model or a partial model.

With model transfer, it is reasonable that LCM is performed at the model ID level.

Proposal 15: Model-ID-based LCM is applicable to Level z collaboration.

For model-ID based LCM in the case of model transfer, UE notifies network for the AI/ML functionality and supported model IDs via UE capability reporting. Hence, network is aware of AI/ML model functionality at UE and supported model IDs for the functionality.

[bookmark: _Ref127434607]Discussion of Collaboration Level z for UE-side (and UE-part of two-side) models

We note that Collaboration Level z has many different flavors. This includes
· Network-side training of UE-side (and UE-part of two-sided) models
· Transfer of updated model parameters

In this section, we provide our views on them.

Network-side training of UE-side (and UE-part of two-side) models
One option for level z is to train the AI/ML models outside network. In this scenario, the model (structure and parameters) can be developed offline, fully tested, and packaged offline, stored inside NW and delivered to the target device over the air interface.

Another option for Level z collaboration is to train the model inside the network.

However, network-side model training comes with several potential issues that need to be addressed to make it practically feasible, as discussed below.

Proprietary information disclosure across vendors:
Training UE-side AI/ML models (and UE-part of two-sided AI/ML models) in a 3gpp network will inevitably disclose UE-side proprietary model design information.
Needless to say, preserving proprietary design is important to promote innovation and vendor differentiation.

Proposal 16: Model training needs to consider feasibility of disclosing proprietary model information to the other side

Device-specific optimization:
Just like any other modem algorithms, AI/ML models for the sub-use-cases being discussed in the current SI need to be highly optimized for the given device in terms of power consumption, latency, area, and concurrency with the rest of the model algorithms. The optimization is heavily dependent on device implementation, including its hardware, software, various memory types and sizes, CPU, DSP, and ML accelerator capabilities/structures/dimensions. Typically, an ML model structure whose operations are supported by the target device’s ML accelerator runs a lot faster than an alternative ML model whose operations are not fully supported by the ML accelerator, even when the alternative ML model has a lower FLOP count. Therefore, the architectural choice (e.g., convolutional, LSTM, transformer, etc.) for the AI/ML Model very well depends on the device’s ML accelerator capability. More often than not, the device’s hardware, software, memory, and ML accelerator are co-designed in consideration of the AI/ML models that the device needs to support. As an example, a given target device may have an ML accelerator that supports acceleration of certain types (but not all types) of neural network layers (e.g., 2D convolution of certain kernel size and activation size). What types of layers enjoy acceleration, and how much is the acceleration, is device specific. It is often the case that inference latency can be an order of magnitude different depending on whether the layers used in a deep neural network are supported by the ML accelerator or not, and also depending on whether the size of activations fit into the memory/cache size or not. For example, a chipset vendor may decide to add support for LSTM layers in the device’s ML accelerator if the chipset vendor sees enough benefit despite the added device cost and chip area due to adding such support. The chipset vendor will be more willing to add the LSTEM support to the ML accelerator if the device has more than one LSTM-based AI/ML models. Though this is an illustrative example, it is easy to see why the AI/ML model design should be device-specific.

Moreover, after an AI/ML model is developed, it needs to be compiled to be used for inference at target devices. This step may include model quantization and compression for a fixed-point inference. The fixed-point AI/ML model then go through standalone and end-to-end performance simulations for link level KPIs. The designed ML Model then may be mapped to a sequence of operations for execution targets (e.g., hardware, firmware, DSP, ML accelerator) and converted into a run-time format. This process involves various optimization for power, area, and latency, via various levels of parallelism and optimization decisions. The model compilation process is target-device specific. Finally, the run-time images are tested for correctness, and the devices with the run-time image goes through rigorous functional and performance testing to ensure good end-to-end performance and error-free operations in conjunction with the rest of the device implementation, before they can be deployed in the commercial devices. The entire process from data collection, model design, training, compile, and testing is an iterative engineering process, and key decisions are often made in the context of the overall modem design in consideration of optimization across performance, power consumption, chip area, latency, concurrency, memory efficiency, hardware reuse, etc.

The above considerations/observations practically rule out the possibility of device-agnostic one-size-fit-all AI/ML model design. Chipset/UE vendors will want to design their own proprietary models optimized for each of their devices, by tailoring the design to the device’s internal implementations/capabilities of CPU, GPU, DSP, HW accelerator, physical/virtual memory, and cache. Such a device-specific optimized model will be more competitive in terms of power consumption, latency, and area than one-size-fit-all model.

Proposal 17: Model training needs to consider device-specific design optimization, input, and capability.

Transfer of updated model parameters
In collaboration level z for UE-side (and UE-part of two-side) models, one active discussion point is whether to allow transfer of unknown model parameters to the UE. In this case, the model structure is known at UE, but the model parameters are previously unseen at UE. This situation may arise when the network further trains an initial model and wants to transfer the update model parameters to the UE.

To make this operation feasible, several challenges need to be answered as discussed below.

Testability aspects and lack of performance guarantee:
Models developed by the target vendor can go through extensive testing with the rest of the device implementation during the development time. For models trained at the 3gpp network, one can only test model structure but not the full model with parameters. Parameter updates on an existing structure also needs testing, given that the model compiling process involves quantization and other operations that may alter the model performance. It is a lot safer to go through end-to-end device performance testing with fully developed and compiled models during the model development, in order to ensure performance requirements and interoperability with other existing features in the target device.

Device capability for compiling and running the model:
AI/ML models delivered in a target-specific pre-compiled format won’t need device’s capability for compiling the model.
Transferring new (unseen) parameters to the target UE requires advanced UE capability. As the model is delivered in an open format, the target device becomes responsible for converting the standardized model description into an executable form. This includes run-time compiling of the model and going through various target-specific procedures such as quantization, compression, mapping to execution targets (hardware, firmware, neural accelerator, etc.), all inside the device in run-time, which would require advanced capabilities at the target device. It is unlikely for UEs in the near future to have such capability. The compilation process is CPU intensive and requires tools that are better optimized offline.

One of the claimed benefit of model parameter transfer is flexible model update, in the sense that the network may update the model parameters and deliver the updated model to the target devices. In most conceivable practical scenarios, however, model update needs due to mobility and configuration changes can be addressed by pre-developing multiple models. For example, if different deployment scenarios/configurations/sites merit different models, then multiple models having scenario-/configuration/site-specific parameters can be pre-trained and stored, and appropriate model can be selected for the given inference scenario via model selection/switching, thereby avoiding the need of model update. Also, any slow-time-scale model update need, such as propagation environment changes over time, can be addressed by re-training the model or re-developing a new model offline.

Observation 6: Model transfer of updated model parameters requires advanced UE capability and risks performance issues due to lack of rigorous testing.

Initial model transfer
At least for the initial models (structure and parameters), it is highly desirable to fully develop (i.e., quantize and compile) and test the model offline prior to deployment. There is no reason to ask UE to accept unseen parameters and compile the model, when the process (quantization, compile) being asked to be done at the UE can be done offline and when rigorous testing could be done offline prior to model transfer.

The same applies to occasional model updates. It is highly preferable to compile and fully test the updated model prior to transferring the model to UE for inference. There is little reason to expose UE to unseen/untested parameters.

Proposal 18: Prioritize offline model compiling and testing over model transfer of updated model parameters

[bookmark: _Ref118324701]Two-sided model development and training
In this section, we discuss considerations related to the development and training of two-sided models, and compare the different training types.

In collaboration level y, models are trained offline, and stored at the target device or at a server and delivered to the target device in a proprietary manner.

For type 1 training in collaboration level y, the UE-part of the two-sided model trained by the type 1 training is delivered to the UE over-the-top in a manner transparent to air-interface signaling. For example, with offline coordination between the NW-side vendor and UE-side vendor, type 1 training may be performed at a training server and hosted at a model server, and the trained UE-part model may be delivered from the model server to the UE over-the-top in a manner transparent to air-interface signalling. Similarly, the trained NW-part model may be delivered from the model server to the gNB over-the-top.

For type 2 or type 3 training, the UE-side vendor is directly involved in the training process of the UE-part, and the NW-side vendor is directly involved in the training process of the NW-part. Hence, it is natural for the UE-vendor to compile, test and store the UE-part model for delivery, and similarly on the NW-side.

Considering these aspects, we make the following observation:

Observation 7: Training type 1 (with device-specific encoder), training type 2, and training type 3 are all applicable to both collaboration level y and level z.

Our companion paper R1-2301404 has in-depth discussion of various training types of two-sided models. Table 1 below summarizes the findings.
[bookmark: _Ref127455804]Table 1: Comparison of training types for two-sided models
	
	Type 1
(with device-agnostic encoder)
	Type 1
(with device-specific encoder)
	Type 2
	Type 3 NW-first (dataset exchange)
	Type 3 NW-first (gradient exchange)
	Type 3 UE-first

	Model structure accounts for device capability
	No
	Yes
	Yes
	Yes
	Yes
	Yes

	Data distribution matched to device?
	No
	Yes
	Yes
	No
	Yes
	Yes

	Applicable to non-backward compatible deployment
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Applicable to train new UE-side model backward compatible with existing NW-side model
	No
	No
	No
	No
	Yes
	No

	Applicable to train new NW-side model backward compatible with existing UE-side model
	No
	No
	No
	No
	No
	Yes

Based on the table, we make the following observations.

Observation 8: Type 1 training with device-agnostic encoder would result in a UE-side model that:
· is not optimized in a device-specific manner for the intended UE-side device,
· assumes a structure and input format that is not compatible with the UE-side implementation capabilities, and
· may have sub-optimal performance due to a discrepancy between the training and inference data distribution due to device-side variations.

Observation 9: For Type 3 (separate) training, the engineering effort of adding a new UE type or new UE-side vendor is contained and does not propagate to other vendors even if the NW-side or UE-side use a common model for multiple models on the opposite side.

The discussion above summarizes the pros and cons of the different training approaches. However, the overall framework for training two-sided models need not be restricted to one of the training types. The framework has to accommodate various aspects such as new vendors, new device types, new cell-sites, and the need for backward compatibility of the model to already deployed models on the other side. Taking these into consideration, we have the following proposal.

Proposal 19: Adopt the following two-sided model development/training framework:
Case 1: Initial (non-backward-compatible) development/training of “nominal encoder + nominal decoder”
· The use of the nominal encoder at the UE-side is not mandated
· If needed, UE-side may implement a different proprietary encoder based on this decoder using Case 2.
· As the encoders are only nominal, input used in the training process is only a nominal input. The actual input to the CSI encoders may be different and of proprietary choice.
· The use of the nominal decoder at the NW-side is not mandated
· If needed, NW-side may implement a different proprietary decoder based on this encoder using Case 3.
· Case 2: Encoder development/training to be interoperable with existing decoders (e.g., encoders for new UEs or updating encoders for existing UEs):UE-side vendor trains new encoders based on the existing decoders. Infra vendor should make the existing decoders available (via either a run-time image or an API for training) for the encoder training.
Case 3: Decoder development/training to be interoperable with existing encoders (e.g., decoders for new cell sites or updating decoders for existing cell sites):
· Network-side vendor trains new decoders based on the existing encoders.
· FFS: Need for encoder availability for decoder training

Conclusions
In this paper, we discussed general aspects for AI/ML framework for Rel-18 SI and made the following observations and proposals.
Proposal 1: Adopt the general AI/ML framework diagram shown in Figure 1.

Observation 1: 3GPP relies on RAN1 to standardize the physical layer features as described above. Other groups standardize how the control plane signaling, user plane data and logging are performed and transported throughout the network (along with many other network features).

Proposal 2: For data collection for model training, RAN1 should focus on what data should be collected. Mechanism for training data collection needs architectural considerations and should be handled by other working groups.

Proposal 3: Data collection need for real-time model monitoring, switching, and selection should be evaluated and justified first by each use case, taking OTA overhead into account. Methods without data collection should be favored.

Observation 2: Model development is best to be done by the vendor who will implement the device where the AI/ML model inference runs.

Proposal 4: Regardless of how and where training data has been collected, the training data should be made available to the vendor(s) responsible for model development, and where the model development is done is determined according to where the AI/ML model inference runs.

Observation 3: Functionality-based LCM has the following benefits:
· Deployment/operational flexibility
· UE implementation flexibility
· Simplified LCM operation at network

Proposal 5: Functionality-based LCM is applicable to Level y collaboration.

Proposal 6: Study which aspects of the monitoring can be handled by network and which others can be done by UEs with their expected benefits.

Proposal 7: Functionality-based LCM is applicable for both one-sided and UE-part of two-sided models.

Proposal 8: Configuration ID, which is an abstraction of decoder ID(s), is signaled to UE for two-sided models as a part of functionality configuration in functionality-based LCM.

Proposal 9: Applicable information, such as gNB codebook index, is signaled to UE as a part of functionality configuration in functionality-based LCM.

Observation 4: The fine granularity of functionality (or fine granular configuration within functionality) will allow developing higher performing or lower complexity models, e.g., functionality-specific or configuration-specific models.

Proposal 10: Model ID-based LCM is applicable to Level y collaboration.

Observation 5: Model switching, and selection are performed by UEs for functionality-based LCMs, whereas this can be done by network and/or UE for model-ID based LCM.

Proposal 11: Models are identified by the model ID, and associated meta information known at the network is used for selection of the right model at the inference time.

Proposal 12: Introduce the following terminologies
	assistance information
	information provided from the network to the UE to assist UE-side model training, inference, monitoring, or activation/deactivation/switching decisions

	Meta information
	Information being provided about a model during model identification process.

Proposal 13: Network should provide sufficient assistance information to UE in order to allow exploring various model development decisions, such as developing a family of models for the given functionality.

Proposal 14: Model-ID-based LCM is applicable for both UE-side models and UE-part of two-sided models.

Proposal 15: Model-ID-based LCM is applicable to Level z collaboration.

Proposal 16: Model training needs to consider feasibility of disclosing proprietary model information to the other side

Proposal 17: Model training needs to consider device-specific design optimization, input, and capability.

Observation 6: Model transfer of updated model parameters requires advanced UE capability and risks performance issues due to lack of rigorous testing.

Proposal 18: Prioritize offline model compiling and testing over model transfer of updated model parameters

Observation 7: Training type 1 (with device-specific encoder), training type 2, and training type 3 are all applicable to both collaboration level y and level z.

Observation 8: Type 1 training with device-agnostic encoder would result in a UE-side model that:
· is not optimized in a device-specific manner for the intended UE-side device,
· assumes a structure and input format that is not compatible with the UE-side implementation capabilities, and
· may have sub-optimal performance due to a discrepancy between the training and inference data distribution due to device-side variations.

Observation 9: For Type 3 (separate) training, the engineering effort of adding a new UE type or new UE-side vendor is contained and does not propagate to other vendors even if the NW-side or UE-side use a common model for multiple models on the opposite side.

Proposal 19: Two-sided model development/training framework
Case 1: Initial (non-backward-compatible) development/training of “nominal encoder + nominal decoder”
· The use of the nominal encoder at the UE-side is not mandated
· If needed, UE-side may implement a different proprietary encoder based on this decoder using Case 2.
· As the encoders are only nominal, input used in the training process is only a nominal input. The actual input to the CSI encoders may be different and of proprietary choice.
· The use of the nominal decoder at the NW-side is not mandated
· If needed, NW-side may implement a different proprietary decoder based on this encoder using Case 3.
Case 2: Encoder development/training to be interoperable with existing decoders (e.g., encoders for new UEs or updating encoders for existing UEs):
· UE-side vendor trains new encoders based on the existing decoders.
· Infra vendor should make the existing decoders available (via either a run-time image or an API for training) for the encoder training.
Case 3: Decoder development/training to be interoperable with existing encoders (e.g., decoders for new cell sites or updating decoders for existing cell sites):
· Network-side vendor trains new decoders based on the existing encoders.
· FFS: Need for encoder availability for decoder training

References
[1] [bookmark: _Ref101451885]RP-213599, “New SI: Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface”, 3GPP RAN Plenary
[2] [bookmark: _Ref101453495]3GPP TR 37.817, Technical Specification Group RAN; Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Study on enhancement for Data Collection for NR and EN-DC (Release 17)
[3] R1-2205023, “General Aspects of AI/ML Framework”, Qualcomm, 3GPP TSG RAN WG1 #109-e
[4] R1-2207223, “General Aspects of AI/ML Framework”, Qualcomm, 3GPP TSG RAN WG1 Meeting #110
[5] R1-2209975, “General Aspects of AI/ML Framework”, Qualcomm, 3GPP TSG RAN WG1 Meeting #110-Bis-e
[6] R1-2212107, “General Aspects of AI/ML Framework”, Qualcomm, 3GPP TSG RAN WG1 Meeting #111
[7] R1-2210708, Summary#1 of General Aspects of AI/ML Framework, Moderator (Qualcomm), 3GPP TSG RAN WG1 Meeting #110-Bis-e
[8] R1-2213003, Revised final summary of General Aspects of AI/ML framework, Moderator (Qualcomm), 3GPP TSG RAN WG1 Meeting #111

2/9
