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1  Introduction

In RAN1#111 meeting [1], the following agreements and conclusions were made for evaluation on AI/ML for positioning accuracy enhancement.

Agreement

Study how AI/ML positioning accuracy is affected by: user density/size of the training dataset.

Note: details of user density/size of training dataset to be reported in the evaluation.
Agreement

For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.

· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.

Agreement
For reporting the model input dimension NTRP * Nport * Nt:

· If the model input is CIR, then each input value of CIR is a complex number, i.e. it contains two real values, either {real, imaginary} or {magnitude, phase}.

· If the model input is PDP, then each input value of PDP is a real value.

Agreement

At least for model inference of AI/ML assisted positioning, evaluate and report the AI/ML model output, including (a) the type of information (e.g., ToA, RSTD, AoD, AoA, LOS/NLOS indicator) to use as model output, (b) soft information vs hard information, (c) whether the model output can reuse existing measurement report (e.g., NRPPa, LPP). 

Agreement
For AI/ML assisted positioning, evaluate the three constructions:

· Single-TRP, same model for N TRPs

· Single-TRP, N models for N TRPs

· Multi-TRP (i.e., one model for N TRPs)

Note: Individual company may evaluate one or more of the three constructions.

Agreement

For AI/ML assisted approach, study the performance of model monitoring metrics at least where the metrics are obtained from inference accuracy of model output.
Agreement

For both direct and AI/ML assisted positioning methods, investigate at least the impact of the amount of fine-tuning data on the positioning accuracy of the fine-tuned model.

· The fine-tuning data is the training dataset from the target deployment scenario.

Agreement

For the RAN1#110bis agreement on the calculation of model complexity, the FFS are resolved with the following update:

	
	Model complexity to support N TRPs

	Single-TRP, same model for N TRPs
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where 
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 is the model complexity for one TRP and the same model is used for N TRPs.


	Single-TRP, N models for N TRPs
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Where [image: image6.png]


 is the model complexity for the i-th AI/ML model.




Note: The reported model complexity above is intended for inference and may not be directly applicable to complexity of other LCM aspects.
Observation

Direct AI/ML positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods when the generalization aspects are not considered.

· For InF-DH with clutter parameter setting {60%, 6m, 2m}, evaluation results submitted to RAN1#111 indicate that the direct AI/ML positioning can achieve horizontal positioning accuracy of <1m at CDF=90%, as compared to >15m for conventional positioning method. 

Agreement

For AI/ML based positioning, company optionally evaluate the impact of at least the following issues related to measurements on the positioning accuracy of the AI/ML model. The simulation assumptions reflecting these issues are up to companies.

· SNR mismatch (i.e., SNR when training data are collected is different from SNR when model inference is performed).

· Time varying changes (e.g., mobility of clutter objects in the environment)
· Channel estimation error
Conclusion

Companies describe how their computational complexity values are obtained. 

· It is out of 3GPP scope to consider computational complexity values that have platform-dependency and/or use implementation (hardware and software) optimization solutions.
Observation

AI/ML assisted positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods when the generalization aspects are not considered.

· For InF-DH with clutter parameter setting {40%, 2m, 2m}, evaluation results submitted to RAN1#111 indicate that the AI/ML assisted positioning can achieve horizontal positioning accuracy of <0.4m at CDF=90%, as compared to >9m for conventional positioning method. 

· For InF-DH with clutter parameter setting {60%, 6m, 2m}, evaluation results submitted to RAN1#111 indicate that the AI/ML assisted positioning can achieve horizontal positioning accuracy of <1m at CDF=90%, as compared to >15m for conventional positioning method. 
Note: how to capture the observation(s) into TR is separate discussion.

Agreement

· For AI/ML assisted approach, for a given AI/ML model design (e.g., input, output, single-TRP vs multi-TRP), identify the generalization aspects where model fine-tuning/mixed training dataset/model switching is necessary.

In this contribution, we provide the evaluation methodology and performance results of spatial-domain beam prediction (BM-Case1).
2  Evaluation methodology and performance results 
2.1 Dataset generation
For model training and performance evaluation, we totally generated 10 different drops of data. For data generated by the same drop, uniform distribution is assumed as the distribution of UE location. The evaluation parameters are set according to the agreed parameters of InF-DH scenario, as illustrated in Appendix. Network synchronization error is not considered.
2.2 AI/ML model
In our simulation, one sided model with CNN-based architecture is assumed to be applied at the UE side for AI/ML based positioning. For example, if CIR is taken as the model input, each sample size of the model input is 18×1×256, which corresponds to 18 BSs, single antenna port, and CIR of 256 length. Since the CIR value consists of the real part and the imaginary part, the model input can be further formulated as 18×256×2. The architecture of the AI model is shown in Fg.1
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Fig. 1 Architecture of AI/ML model for positioning
The related parameters for training phase are given in Table I.

Table I. Parameters for model training
	Loss function
	MSE

	Optimizer
	Adam

	Initial learning rate
	0.0001

	Batch size
	256


2.3 Simulation results
In our simulation, we focus on direct AI/ML positioning. We respectively use CIR and CIR+RSRP as the model input, and the impact of the size of training dataset is also considered. The simulation results are illustrated in this section. 
2.3.1 Impact of training dataset size and model input type
Table II shows the evaluation results when CIR and CIR+RSRP are used as model input, and three different sizes of training dataset (i.e.,25000,5000,2500) are respectively used. All the training data and test data are taken from the same drop with spatial consistency.
Table II. Evaluation results for AI/ML model deployed on UE side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR

size：18*1*256
	UE coordinates


	ideal UE coordinates


	{60%, 6m, 2m}, Drop 1


	{60%, 6m, 2m}, Drop 1 


	25000
	2500
	3.71M
	7.42M
	0.38

	
	
	
	{60%, 6m, 2m}, Drop 1


	{60%, 6m, 2m}, Drop 1 


	5000
	2500
	
	
	1.32

	
	
	
	{60%, 6m, 2m}, Drop 1


	{60%, 6m, 2m}, Drop 1 


	2500
	2500
	
	
	2.36

	CIR

(size:18*1*256)+
RSRP
(size:18*1)

	UE coordinates


	ideal UE coordinates


	{60%, 6m, 2m}, Drop 1


	{60%, 6m, 2m}, Drop 1 


	25000
	2500
	3.71M
	7.42M
	0.33

	
	
	
	{60%, 6m, 2m}, Drop 1


	{60%, 6m, 2m}, Drop 1 


	5000
	2500
	
	
	0.90

	
	
	
	{60%, 6m, 2m}, Drop 1


	{60%, 6m, 2m}, Drop 1 


	2500
	2500
	
	
	1.27


From the results, we can see that for the two kinds of model input, the positioning accuracy is smaller than 1 meter if the dataset size is large than a value, and taking RSRP as an additional model input to CIR can improve the positioning accuracy. When the training dataset size decreases from 25000 to 2500, the positioning accuracy decreases accordingly, and the performance of taking CIR as model input is more sensitive to the training dataset size. For example, the positioning accuracy of taking CIR as model input is decreased from 0.38m to 2.36m, while the positioning accuracy of taking CIR and RSRP as model input is decreased from 0.33m to 1.27m.
Observation 1: If RSRP is taken as an additional model input to CIR, the positioning accuracy can be improved.

Observation 2: The positioning accuracy is sensitive to the training dataset size, when the dataset size is large than a value, the positioning accuracy is smaller than 1 meter.
2.3.2 Generalization capability
To verify the generalization capability of different drops, we evaluate the AI/ML model trained with the dataset of Drop 1 and tested with the dataset of Drop 2. We also evaluate the AI/ML model trained with mixed dataset consists of samples from different drops. The simulation results are shown in Table III. 
Table III. Evaluation results for AI/ML model deployed on UE side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR

size：18*1*256
	UE coordinates


	ideal UE coordinates


	{60%, 6m, 2m}, Drop1
	{60%, 6m, 2m}, Drop 2
	25000
	2500
	3.71M
	7.42M
	18.45

	
	
	
	{60%, 6m, 2m}, Drop1&Drop2 mixed
	{60%, 6m, 2m}, Drop 2
	25000(12500/Drop

)
	2500
	
	
	0.49

	
	
	
	{60%, 6m, 2m}, 10 Drops mixed 


	{60%, 6m, 2m}, 10 Drops mixed


	25000（2500/Drop）
	2500 (250/Drop

)
	
	
	0.88

	CIR

(size:18*1*256) +RSRP
(size:18*1)

	UE coordinates


	ideal UE coordinates


	{60%, 6m, 2m}, Drop1
	{60%, 6m, 2m}, Drop 2
	25000
	2500
	3.71M
	7.42M
	14.58

	
	
	
	{60%, 6m, 2m}, Drop1&Drop2 mixed
	{60%, 6m, 2m}, Drop 2
	25000(12500/Drop

)
	2500
	
	
	0.37

	
	
	
	{60%, 6m, 2m}, 10 Drops mixed 


	{60%, 6m, 2m}, 10 Drops mixed


	25000（2500/Drop）
	2500 (250/Drop

)
	
	
	0.58


From the simulation results in Table III, it can be noted that the positioning accuracy of the AI/ML model trained with dataset of Drop 1 and tested with dataset of Drop 2 is larger than 10 meters, for both types of model input we evaluated. If the mixed training dataset comprises the samples of the drop as the test dataset, the positioning accuracy can be improved obviously.
Observation 3: If the mixed training dataset comprises the samples of the drop as the test dataset, the positioning accuracy can be improved obviously.
2.3.3 Model fine-tuning
One possible way to improve the generalization capability is fine-tuning. The evaluation results of generalization of different drops under different sizes of fine-tuning data is shown in Table IV. In our simulations, the model trained with 25000 samples in Drop 1 are fine-tuned with 500, 1000, 2000, 3000 samples in Drop 2, respectively. And the fine-tuned model is tested in the test dataset in Drop 2.
Table IV. Evaluation results for AI/ML model deployed on UE side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR

size:18*1*256

	UE coordinates

	ideal UE coordinates


	{60%, 6m, 2m}, Drop1

	{60%, 6m, 2m}, Drop 2
	{60%, 6m, 2m}, Drop 2
	25000

	500

	2500


	3.71M
	7.42M
	4.14

	
	
	
	
	
	
	
	1000


	
	
	
	3.35

	
	
	
	
	
	
	
	2000
	
	
	
	2.74

	
	
	
	
	
	
	
	3000
	
	
	
	1.95


From the results shown in Table IV, it can be observed that model fine-tuning with a small amount of data can obviously improve the generalization performance of different drops. When the fine-tuning dataset is increasing, the positioning accuracy will be improved accordingly.
Observation 4: Model updating with a small amount of fine-tuning data can obviously improve the generalization performance of different drops.

3 Conclusion

In this contribution, we share our views on the evaluation methodology for AI/ML based positioning accuracy enhancement, and some evaluation results are also provided. The observations and proposals are summarised as follows:
Observation 1: If RSRP is taken as an additional model input to CIR, the positioning accuracy can be improved.

Observation 2: The positioning accuracy is sensitive to the training dataset size, when the dataset size is large than a value, the positioning accuracy is smaller than 1 meter.
Observation 3: If the mixed training dataset comprises the samples of the drop as the test dataset, the positioning accuracy can be improved obviously.
Observation 4: Model updating with a small amount of fine-tuning data can obviously improve the generalization performance of different drops.
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Appendix
Parameters common to InF scenario (Modified from TR 38.857 Table 6.1-1)

	
	FR1 Specific Values 
	FR2 Specific Values

	Channel model
	InF-DH
	InF-DH

	Layout 
	Hall size
	InF-DH: 

(baseline) 120x60 m



	
	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.

-
for the small hall (L=120m x W=60m): D=20m

-
for the big hall (L=300m x W=150m): D=50m

[image: image8.emf] 



	
	Room height
	10m

	
	
	

	Total gNB TX power, dBm
	24dBm
	24dBm

EIRP should not exceed 58 dBm

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1

Note: Other gNB antenna configurations are not precluded for evaluation
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), dH=dV=0.5λ – Note 1

One TXRU per polarization per panel is assumed

	gNB antenna radiation pattern
	Single sector – Note 1
	3-sector antenna configuration – Note 1

	Penetration loss
	0dB


	Number of floors
	1

	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- (baseline) the whole hall area, and the CDF values for positioning accuracy is obtained from whole hall area.
- (optional) the convex hull of the horizontal BS deployment, and the CDF values for positioning accuracy is obtained from the convex hull.

	UE antenna height
	Baseline: 1.5m

	UE mobility
	3km/h 

	Min gNB-UE distance (2D), m
	0m

	gNB antenna height
	Baseline: 8m

	Clutter parameters: {density [image: image10.png]


, height [image: image12.png]


,size [image: image14.png]A.rorerer



}
	High clutter density:

- {40%, 2m, 2m} 

- {60%, 6m, 2m}

· Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.

	Note 1:
According to Table A.2.1-7 in TR 38.802
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