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[bookmark: OLE_LINK13][bookmark: OLE_LINK14]In last meeting, the evaluation performance of CSI compression and CSI prediction are discussed. In this contribution, we discuss the details of remaining evaluation assumptions and provide more evaluation results for the performance gain. Some general agreements and working assumptions are provided below:
	Working Assumption
For the AI/ML based CSI prediction sub use case, the nearest historical CSI w/o prediction as well as non-AI/ML/collaboration level x AI/ML based CSI prediction approach are both taken as baselines for the benchmark of performance comparison, and the specific non-AI/ML/collaboration level x AI/ML based CSI prediction is reported by companies.
· Note: the specific non-AI/ML based CSI prediction is compatible with R18 MIMO; collaboration level x AI/ML based CSI prediction could be implementation based AI/ML compatible with R18 MIMO as an example
· It does not imply any restriction on future specification for CSI prediction
· FFS how to model the simulation cases for collaboration level x CSI prediction and LCM for collaboration level y/z CSI prediction

Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different input dimensions of CSI generation part (e.g., different bandwidths/frequency granularities, or different antenna ports), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed dimension X1 (e.g., a fixed bandwidth/frequency granularity, and/or number of antenna ports), and then the AI/ML model performs inference/test on a dataset from the same dimension X1.
· Case 2: The AI/ML model is trained based on training dataset from a single dimension X1, and then the AI/ML model performs inference/test on a dataset from a different dimension X2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of X1, X2,..., Xn, and then the AI/ML model performs inference/test on a single dataset subject to the dimension of X1, or X2,…, or Xn.
· Note: For Case 2/3, the solutions to achieve the scalability between Xi and Xj, are reported by companies, including, e.g., pre-processing to angle-delay domain, padding, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases

Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different output dimensions of CSI generation part (e.g., different generated CSI feedback dimensions), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed output dimension Y1 (e.g., a fixed CSI feedback dimension), and then the AI/ML model performs inference/test on a dataset from the same output dimension Y1.
· Case 2: The AI/ML model is trained based on training dataset from a single output dimension Y1, and then the AI/ML model performs inference/test on a dataset from a different output dimension Y2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of Y1, Y2,..., Yn, and then the AI/ML model performs inference/test on a single dataset of Y1, or Y2,…, or Yn.
· Note: For Case 1/2/3, companies to report whether the output of the CSI generation part is before quantization or after quantization.
· Note: For Case 2/3, the solutions to achieve the scalability between Yi and Yj, are reported by companies, including, e.g., truncation, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases

Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side) with sequential training, companies to report the set of information (e.g., dataset) shared in Step 2
· For NW-first training
· Dataset construction, e.g., the set of information includes the input and output of the Network side CSI generation part, or includes the output of the Network side CSI generation part only, or other information if applicable.
· Quantization behavior, e.g., whether the shared output of the Network side CSI generation part is before or after quantization.
· For UE-first training
· Dataset construction, e.g., the set of information includes the input and label of the UE side CSI reconstruction part, or includes the input of the UE side CSI reconstruction part only, or other information if applicable.
· Quantization behavior, e.g., whether the shared inputof the UE side CSI reconstruction part is before or after quantization.

Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different input/output dimensions, companies to report which case(s) in the following are evaluated
· Case 0 (benchmark for comparison): One CSI generation part with fixed input and output dimensions to 1 CSI reconstruction part with fixed input and output dimensions for each of the different input and/or output dimensions.
· Case 1: One CSI generation part with scalable input and/or output dimensions to N>1 separate CSI reconstruction parts each with fixed and different output and/or input dimensions
· Case 2: M>1 separate CSI generation parts each with fixed and different input and/or output dimensions to one CSI reconstruction part with scalable output and/or input dimensions
· Case 3: A pair of CSI generation part with scalable input/output dimensions and CSI reconstruction part with scalable output and/or input dimensions





CSI compression
In this section, we express our views on the per-area model evaluation and the generalization of CSI compression in input, output scalability and rank number respectively. On top of that, we discuss the performance of CSI compression with different training method and field data.
Evaluation on per-area model
Principle of per-area model
AI/ML is data driven. Thus, it would be natural to use a per-area model for CSI compression: training models based on data collected from a specific area, which will then be used within the corresponding area. By “specific area”, we refer to a relatively smaller region, such as one cell, one sector, or one zone.  One of the most promising advantage of per-area models compared with conventional general models is potentially higher performance gain. As presented in 2.1.2 and 2.1.3, SGCS performance of per-area models is higher than that of general models over 30%~50%. Note that SGCS of general models is only 10% higher than that of legacy Rel-16 Type II codebooks. Therefore, the performance gain achieved by per-area models could reach 40-60% compared with legacy R-16 Type II codebook. The additional performance gain in per-area models comes from the fact that per-area models only need to fit data with less variety of characteristics. It should be clarified that there are no serious overfitting issues for per-area models, as the distribution of testing data (also collected from the same area as training data) is usually similar to that of training data. 
Per-area models could be naturally deployed within each cell, i.e., each cell trains its own model based on data collected within the cell. However, one problem is that as a UE moves from one cell to another, CSI generation part at UE side should also be updated to adapt to the new cell. For training collaboration type 1, such procedure could be done via transferring the updated model to the target UE. For training collaboration type 2, another over-the-air training procedure is needed to update the model. For training collaboration type 3, new model input/output data will be shared from network to UE or vice versa so as to complete the updating of models. If the model structure of CSI generation part is simple (e.g., one-layer MLP), overhead of the model updating procedure will be very small (probably less than 100kB).
Training per-area models requires to enhance the data collection mechanism by some assistance information. Cell ID/sector ID or some other information that could represent the collecting area should be assigned to the corresponding data during dataset delivery. However, there could be some concerns on user privacy, UE storage, power consumption or overhead. More studies on data collection for per-area models should be considered in the future meetings.
Some initial results for spatial consistency data
Here we consider using data where the channel has spatial consistency characteristics. Each UE generates random variables with spatial consistency based on its own geographic location at the T=0, both the cluster specific random variables and the correlation distance for spatial consistency procedure a follow 38.901. The detailed parameters are provided below.
Parameters of spatial consistency data of CSI compression.
	Parameters
	Value

	Scenario
	Uma

	Channel model
	Uma 38.901 with spatial consistency

	Carrier frequency
	4GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	32 antenna ports
[Mg Ng P M N, Mp Np] = [1 1 2 8 8, 2 8]
= (0.8, 0.5) λ, +45°/-45° polarization

	UE antenna
	2 antenna ports
[Mg Ng P M N, Mp Np] = [1 1 2 1 1, 1 1]
= (0.8, 0.5) λ, 0°/+90° polarization

	BS receiver noise figure
	10

	UE receiver noise figure
	7

	UE distribution
	100% outdoor

	UE speed 
	30km/h

	Mechanic tilt
	180° in GCS (pointing to the ground)

	Beam set at TRxP
	Azimuth angle φi = [0], Zenith angle θj = [102].

	UE beam set
	Azimuth angle φi = [0], Zenith angle θj = [90]



Cell specific model is considered and then different AI/ML models are used for different cells. Simple AI/ML model, which is a one layer MLP encoder, and complex transformer encoder are evaluated in this simulation. It is seen that the performance of simple AI/ML model is similar to that of complex AI/ML model. Compared with simple MLP encoder, the SGCS gain of transformer encoder is only about 3%, but the complexity of transformer encoder is about 14 times higher. Considering the performance and complexity, simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
The SGCS results of multiple AI/ML models trained by the data in each area separately.
	
	AI with a cell specific model (One layer MLP encoder) ~285kB
	AI with a cell specific model (Transformer encoder) ~4.08MB

	Cell 0
	0.8345
	0.8895

	Cell 1
	0.8815
	0.9168

	Cell 2
	0.9132
	0.9412

	Cell 3
	0.9148
	0.9439

	Cell 4
	0.8718
	0.9049

	Cell 5
	0.9076
	0.938

	Cell 6
	0.8698
	0.9072



[bookmark: _Ref118741401]From initial results for spatial consistency data, performance of simple model structure, e.g., one hidden layer full-connected encoder, can achieve good performance when per cell model is used.

Some initial results for field test
We provide some initial results for field test of CSI compression. The data is collected from actual 5G network and the collecting area is about 400m * 350m. About outdoor 50000~100000 samples per area or cell are collected. The detailed parameters are provided in Table 3
Parameters of field test of CSI compression.
	Parameters
	Value

	Scenario
	Actual 5G network, about 400m * 350m collecting area.
About outdoor 50000~100000 samples per area or cell.

	Carrier frequency
	3.45GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	8 antenna ports

	UE antenna
	4 antenna ports

	CSI payload
	167/58 bits payload



Field test result of different areas
There are 3 data collecting areas. Area B is the main road of the industrial park, with many tall trees and cars along the road. Area C is the road behind several buildings. Area D is the indoor scenario in a building. UE in the left part of the industrial park usually accesses to a different cell, compared with the right part of the industrial park. So, we focus on the right part of the industrial park and current areas are chosen. 
[image: ]
The map of data collecting areas.
The SGCS results of eType II codebook and multiple AI/ML models are provide in the following. In Table 4, the AI/ML models are trained by the data in each area separately, and multiple AI/ML models are used. 
It is seen that the performance gaps between different AI/ML models are small. Even one layer MLP encoder can provide good performance, which is very simple and small. With much higher complexity, Transformer encoder has better performance than one layer MLP encoder, but the performance gain is small Area B. Considering the performance and complexity, simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
The SGCS results of multiple AI/ML models trained by the data in each area separately.
	167 bits overhead
	eTypeII
	AI with an area specific model (One layer MLP encoder) ~67kB
	AI with an area specific model (small CNN encoder) ~250kB
	AI with an area specific model (Transformer encoder) ~3.6MB

	Area B
	0.8429
	0.9217
	0.929
	0.9406

	Area C
	0.7871
	0.898
	0.9037
	0.9116

	Area D
	0.8489
	0.9315
	0.9323
	0.9423



	58 bits overhead
	eTypeII
	AI with an area specific model (One layer MLP encoder) ~30kB
	AI with an area specific model (small CNN encoder) ~213kB
	AI with an area specific model (Transformer encoder) ~3.3MB

	Area B
	0.7290
	0.8573
	0.8725
	0.8868

	Area C
	0.6438
	0.8015
	0.8162
	0.8389

	Area D
	0.6853
	0.8701
	0.8814
	0.8873



From initial results for field test, performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical zone/site specific optimization.
Field test result of different physical cells
The performance of different physical cells is analyzed in the following. We have tested the coverage of different cells in the industrial park, according to the measured RSRP, RSRQ and SINR. The coverage areas of two typical cells in the industrial park are shown in the below figure.
[image: ]
Figure 1-2: The map of data collecting cells.
The SGCS results of eType II codebook and multiple AI/ML models are provide in the following. The AI/ML models are trained by the data in each area separately, and multiple AI/ML models are used. 167 bits overhead is used. Compared with the results of Areas B, C and D, similar insights can be seen in the results of Cell 1 and Cell 2. The performance gaps between different AI/ML models are small. The performance gain of Transformer encoder is small, compared with one layer MLP encoder.
	167 bits overhead
	eTypeII
	AI with an area specific model (One layer MLP encoder) ~67kB
	AI with an area specific model (small CNN encoder) ~250kB
	AI with an area specific model (Transformer encoder) ~3.6MB

	Cell 1
	0.8067
	0.8706
	0.8833
	0.8979

	Cell 2
	0.8145
	0.8974
	0.9044
	0.9172


From initial results for field test, as the model applicable area increases, simple model structure can still achieve good performance.

Scalability evaluations of input dimensions
There are agreements in last meeting to guide the study on model scalability over input-dimensions. The input dimension of AI model is corresponding to the input precoder matrices, i.e., the subband number by port number for each single layer. Different frequency granularity or different ports number can cause different input dimension of AI model. In general, the AI models for different input dimensions need to be trained independently, which may lead to difficulty in generalizing AI models.
In case that the training input dimension of AI model is larger than the inferring input dimension of AI model, the inferring input can be expanded to the same dimension with zero-padding. On the contrary, when inferring input dimension is larger, it can be truncated to the training input dimension.
Alternatively, the input dimension of AI model can be fixed to a given level with pre-processing like angle-delay compression in eType II codebook. With the fixed number of beam and path selected, the dimension of input is certain for different frequency granularity and different ports number. Also, the size of AI model can be reduced because the information to learn is decreasing. For AI model, since the compression and quantification are managed together, the restriction of NZC is not needed. So, compared with the eType II codebook, the beta is 1 for AI model and the payload of UCI is influenced by the length of encoder output.
In the simulation, we evaluate the lower boundary with generalization case 2. The AI/ML model is trained based on training dataset from configuration A (13 subbands and 32 ports) only. Then the AI/ML model is tested on a dataset from configuration B with different subband number of port number as below.
Case 1: (baseline) a different drop with 13 subbands and 32 ports
Case 2: (smaller subbands number and the same ports number) a drop with 10 subbands and 32 ports
Case 3: (the same subbands number and smaller ports number) a drop with 13 subbands and 16 ports
Case 4: (smaller subbands number and smaller ports number) a drop with 10 subbands and 16 ports
For each case, we test the normal AI/ML model and the preprocessing AI/ML model. For the normal AI model, the input is 13 subbands by 32 ports and a zero-padding is used to reduce the input dimension. For the preprocessing AI/ML model, an angle-delay compression is used for preprocessing and 4 top strong beams on each polarization and 4 top strong paths are selected, resulting in the input dimension of 8 * 4 complex coefficients.
The payload of the normal AI/ML model is fixed to 180 bits and the pre-processing AI/ML model is fixed to 154 bits. The reason to consider the different payload is, the pre-processing AI/ML model requires an additional bits to report the angle and delay information. Nevertheless,  the overall payload for different cases is the same, i.e., 180 bits, although the payloads in the four cases required for the pre-processing AI/ML model are different.
The SGCS of AI/ML model with different subband number and port number
	
	Normal AI/ML model
	Pre-processing AI/ML model

	Case 1 (13 subbands and 32 ports)
	0.879
	0.83

	Case 2 (10 subbands and 32 ports)
	0.839
	0.847

	Case 3 (13 subbands and 16 ports)
	0.727
	0.872

	Case 4 (10 subbands and 16 ports)
	0.707
	0.89



According to the evaluation results, for normal AI/ML models, the performance declines with the increasing difference between training data set and testing data set. For case 2 (the ports number is the same but the subbands number is different), the SGCS maintains in an acceptable level while for the case 3 and 4 (the ports number is different), the SGCS decreases severely. It means that the zero-padding is useful for subband number generalization but useless for port number generalization.
[bookmark: _Ref118741480]Zero-padding is feasible for subband number generalization while its performance degrades dramatically in port number generalization.
On contrast, the pre-processing AI/ML model performs even better when the inferring data sets are different. It is because the dataset in case 2-4 behaves less dimensionality and less complexity than that in case 1. For the pre-processing AI/ML model, although the dimension of new data in case 2-4 can be unknown, the coefficients projected on the angle-delay pairs can be stabilized and well trained. Therefore, through case 1 to case 4, the channel input after pre-processing becomes simple, that can bring the benefit to the model training processing. 
[bookmark: _Ref118741579]Pre-processing performs well for both subband number generalization and port number generalization.
Also, we evaluate the SE of the four cases and the results are shown below. For the baseline case, there are 2.63% gain loss between pre-processing AI/ML model and normal AI/ML model, which is also seen in SGCS. It is because that some information is lost in the angle-delay compression. 
The gain of pre-processing AI/ML model compared with the normal AI/ML model (180bits).
	
	Payload
	SE gain (%)

	Case 1 (13 subbands and 32 ports)
	175
	-2.63%

	Case 2 (10 subbands and 32 ports)
	173
	~0%

	Case 3 (13 subbands and 16 ports)
	171
	21.46%

	Case 4 (10 subbands and 16 ports)
	169
	49.45%



In case 2 where subband number is different between training and inferring, the SE gains of these two methods are almost the same. The loss from the zero-padding in subband is equal to the loss from angle-delay compression. However, In case 3 and 4 where port number is different between training and inferring, the SE gains is obvious.
In the simulation above, the training data set and inferring data set are independent, which means no information about the inferring data set can be observed in the training stage. It may cause the pre-processing AI/ML model superior because the normal AI/ML model can improve the zero-padding performance with fine-tuning based on data set from case 2-4 or even training with mixed data set. However, for each subband number, or even for each combination of subband number and port number, the corresponding data set is needed in training stage. It is neither effective nor feasible. Instead, the pre-processing AI/ML has no such problem and the performance can be improved further with more angle-delay bases selected.
Besides, some other methods can also be considered like grouping. Zero-padding focuses on the cases where the dimension of training data is larger than the inferring data. In turn, grouping can be used to deal with the cases where the dimension of training data is smaller than the inferring data. For example, an AI/ML model is trained with the data set from 16 ports and in the case of 32 ports, the 32 ports are divided into 2 groups with 16 ports in each group. The data in each group can be compressed independently by a 16-port AI/ML model and report together. In such a case, the performance of the AI/ML model is guaranteed while the overhead may increase. The further study is necessary.
[bookmark: _Ref118742553]Study the following three methods for generalization of input dimension 
· Option 1: use large dimension AI/ML model in small dimension cases: zero-padding
· Option 2: use small dimension AI/ML model in large dimension cases: grouping
· Option 3: use pre-processing to fix the input dimension: angle-delay domain compression
Study the pre-processing methods to support one CSI generation part with fixed input dimensions at UE side.
Scalability evaluations of output dimensions
In previous meeting, it was agreed that the scalability over output dimensions should be studied according to the above guidelines. In this part, we present our evaluation results on output scalability via truncation. 
The idea of truncation is illustrated in Figure 2, where one shared encoder outputs a sequence with maximum length, and multiple decoders are trained to reconstruct the CSI based on a sub-sequence of the encoder output. For example, in figure2, the encoder outputs totally 223bits, while decoder1 uses the first 177bits as its input; decoder2 uses the first 199bits as its input; decoder3 uses all 233bits as input. Note that all involved encoder and decoders should be jointly trained to maximize the reconstruction accuracy of all decoder outputs. Otherwise the performance cannot be guaranteed, which will be demonstrated in our results. The truncation can be either done on encoder output before or after quantization. If it is done after quantization, it should guarantee the truncated sequence can still be mapped to a complete floating sequence. We study the performance of payload truncation under various configurations, and the results are presented in Table 8.
[image: ]
The schematic of payload truncation.

The SGCS of different payload truncation methods.
	
	223bits payload
	199 bits payload
	176 bits payload
	132 bits payload

	Dedicated model for each payload
	0.902
	0.893
	0.877
	0.853

	Model trained for 233 but test on 199, 176, 132
	/
	<0.1
	<0.1
	<0.1

	Shared encoder and two decoders for 223 and 176 respectively 
	0.894
	/
	0.878
	/

	Shared encoder and two decoders for 223, 199 and 176 respectively
	0.891
	0.885
	0.876
	/

	Shared encoder and two decoders for 223, 176 and 132 respectively
	0.872
	/
	0.862
	0.838



First of all, we can see from the results that the performance of Case2 is very poor, i.e., a model trained without considering supporting multiple output dimensions cannot be directly utilized for another payload. If jointly trained,  the performance of shared encoder and two decoder for 223 and 176bits is slightly inferior to that of dedicated models (0.894 vs 0.902 and 0.876 vs 0.877). Meanwhile, if we extend to the case of one-to-three, the performance loss will enlarge. Furthermore, the truncation size will also affect the performance, as the performance of supporting 223, 199 and 176 is better than that of supporting 223, 176 and 132. To sum up, we find that schemes with good scalability on output dimensions will sacrifice some performance.
Truncation on output dimension provides scalability across different payload for the same encoder under generalization case3.
For truncation method, the closer the supported payload configurations are, the better performance model achieves (e.g., model supporting payload 223, 199, and 175 outperforms model supporting payload 223, 176, 132)
Methods with good scalability for several output configurations will sacrifice some performance compared with dedicated model
Further study the scalability over output dimensions, e.g., CSI payload truncation mechanism with N>1 separate CSI reconstruction parts.

AI/ML model settings for rank>1
The input of AI model can be raw channel matrix or eigenvector and the output of AI model can be fixed to eigenvector. If the input is raw channel matrix and the output is eigenvector, the SVD procedure is also completed by AI model. In our opinion, this is much difficult for AI model training. So, we consider the input and the output of AI model are both eigenvectors.
In case that rank number is larger than 1, we evaluate the per-rank model and per-layer model. The per-rank model means, for each rank, an independent AI model is trained. UE can use the corresponding AI model to infer the precoder of a given rank number. The per-layer AI model means an independent AI model is trained for each layer, especially, the AI model for each layer is the same. For each rank, UE can infer each layer with the single AI model, i.e., the generalization of rank number.
[image: ]
Two scheme of high rank AI model, per-ranks and per-layer AI models.
In the simulation, we use the same per-layer model for each layer and train the model with the dataset including all layers and only rank 2 is evaluated. For the per-rank models, one model is trained with rank 1 dataset and the other model is trained with rank 2 dataset. The former is for rank 1 CSI compression and the latter is for rank 2 CSI compression. For the per-layer model, the single model is trained with dataset from all layers. This single model can be applied for different layers and ranks.
The model sizes of the single per-layer model and each of the per-rank models are almost the same, while two models are trained for per-rank models and only one model is trained for per-layer model with the same dataset. So, the per-rank models are double size of the per-layer model.
The SGCS of per-rank models and per-layer model for rank 2.
	
	Layer 0
	Layer 1
	Average number

	Per-rank model
	0.91
	0.874
	0.892

	Common model across different layers Per-layer model
	0.924
	0.863
	0.893



According to the evaluation result, per-rank model and per-layer model can achieve similar SGCS, while the total size of per-rank AI model is double of per-layer model. Also considering the flexibility of layer selection, the per-layer model is better.
[bookmark: _Ref115456412]Rank generalization with per-layer model can achieve similar SGCS with half model size compared with per-rank model.
Since different layers have different eigenvalue, which means the contributions to final throughput are different. For the worse layer, assigning a less payload can benefit to reduce the total CSI payload. We evaluate the SE of rank 2 where the layer 0 is compressed with 180bits and layer 1 is compressed with 180bits, 153bits. 149bits, 127bits, 111bits, 95bits. The SE gain compared with eType II codebook (PC 4) is shown below. The simulation is based on FTP1 and MU schedular. In the simulation, UE only report rank 2 CSI without rank adaption.
The SE gain compared with eType II codebook (PC 4, 319bits) for rank 2
	AI model payload (bits)
	SGCS for each layer
	SE gain

	360 (180+180)
	[0.886 0.787]
	8.79%

	339 (180+159)
	[0.886 0.761]
	7.61%

	323 (180+143)
	[0.886 0.734]
	6.22%

	307 (180+127)
	[0.886 0.723]
	6.16%

	291 (180+111)
	[0.886 0.721]
	6.09%

	275 (180+95)
	[0.886 0.693]
	5.19%



According to the simulation results, compared with the 319 bits PMI based on eType II codebook, there is more than 5% gain even if the payload is less. With the increasing payload of layer 1, the SE gain increases stably, just like the SGCS. Therefore, different payloads can be set for different layers to reduce the total CSI payload.
The SGCS of eType II codebook is [0.839, 0.719]. Comparing the AI model with 275 bits and the eType II codebook, the SGCS of AI/ML model is larger for layer 0 and smaller for layer 1. It can be found that the accuracy of layer 0 can provide more effort in SE performance. So, in a fixed total payload, more payload for layer 0 and less payload for layer 1 can improve the final SE performance of AI/ML model.
In the case of rank = 2, assigning a less payload for the second layer can benefit to reduce the total CSI payload with less performance loss.

For rank > 1 cases, study option3 (layer specific) and option4 (layer common)
· One common model for all payloads trained with the data from all layers
· One specific model for each payload trained with the data from all layers

Generalization on scenarios
In this section, we will introduce our results of generalizing models over different scenarios. According to the agreement in previous meetings, the generalizing cases in CSI compression including: 1) case1: model trained on Scenario#A/Configuration#A and tested on Scenario#A/Configuration#A; 2) case2: model trained on Scenario#A/Configuration#A and tested on other Scenarioes/Configurations; 3) case3: model trained on mixed Scenarioes/Configurations and tested on each Scenario/Configuration. Therefore, we would clarify the considered generalizing cases in our observations in this part.

[bookmark: _Ref111217176]Carrier frequency 
In this part, we consider model generalizing over carrier frequency 2.2GHz, 3.5GHz, 5.5GHz. In the simulation, our model is trained on data collected at 3.5GHz. Other simulation parameters include: the antenna configuration is [8 8 2 1 1] and for each polarization, four adjacent vertical antennas are mapped into one TXRU with fixed 105 degrees DFT beam, i.e., a fixed analogy precoder is used. The total TXRU number is 32 and only rank 1 is considered. The total subband number is 13 with 4 PRB’s per subband. The evaluation results are shown below.

The SGCS for different frequency carrier.

The gain of average SE for different frequency.
According to the evaluation result, the SGCS and spectral efficiency on 2.2GHz and 5.5GHz are almost the same with that on 3.5GHz, which suggests a good generalizing ability over carrier frequency. One possible reason is that since the carrier frequency is all below 6GHz and the UE speeds are all 3Km/h, the influence of carrier frequency to channel state is tiny. The AI model perform well in carrier frequency generalization.
[bookmark: _Ref115456289]CSI compression models trained on one carrier frequency generalizes well over other carrier frequencies below 6GHz (generalization case2). 

Scenarios
In this part, we consider model generalizing over UMi, UMa and InH scenarios. Firstly, our models are trained on UMi data and tested in UMi and UMa scenario, respectively. Other simulation parameters are the same with that in baseline simulation. Results are shown below.
[bookmark: _Ref111215372]The SGCS in UMi and Uma.
	
	AI model trained based on UMi data
	eType II codebook

	UMi
	0.91
	0.831

	UMa
	0.913
	0.839



According to the results, the model trained on UMi offers a fairly high channel SGCS in both UMi and UMa scenarios. 
[bookmark: _Hlk102160675]CSI compression models trained on UMi generalizes well over UMa scenario (generalization case2).

Then, we evaluate the generalizing performance over UMi and InH scenario. In the following Table, we consider case1, case2, and case3 generalizing settings: 
[bookmark: _Ref111215383]The SGCS of AI model with different training dataset composition in InH and UMi.
	Training dataset composition
	[300000, 0]
	[225000, 75000]
	[150000, 150000]
	[75000, 225000]
	[50000, 250000]
	[25000, 275000]
	[10000, 29000]
	[0, 300000]

	Test SGCS on InH
	0.94780
	0.94907
	0.94953
	0.94520
	0.94660
	0.93090
	0.87230
	0.68597

	Test SGCS on UMi
	0.74548
	0.84435
	0.87930
	0.90281
	0.90528
	0.90778
	0.90879
	0.90933



According to the table, model trained on UMi performs poorly in InH scenario and vice versa, suggesting that the case2 generalization over UMi and InH scenario is not good. To address the issue, we try models trained on mixed datasets (case3 generalization). Our results demonstrate that models trained on mixed datasets perform good on each involved scenario. Furthermore, we find that it is not necessary to evenly mix data from each scenario to achieve the best performance. For example, model trained on dataset composition [InH 50000, UMi 250000] performs good enough on InH. The reason for such observation might be the simpler patterns in InH channels, which will be easier to learn for models. 
[bookmark: _Ref111217181]CSI compression models trained on UMi generalizes poorly over InH scenario (generalization case2), and vice versa.
CSI compression models trained on a mixed UMi and InH dataset generalizes good over both UMi and InH scenario (generalization case3).
The best ratio of mixing data from each scenario is not necessarily to be evenly divided. For example, when considering mixing UMi and InH data, more samples from UMi scenario (e.g., 250k UMi samples and 25k InH samples) are required to achieve better performance. 

Generalization on antenna configuration
Antenna configuration is another important issue for generalization. In this section, we present our results on generalization over different antenna configuration in CSI compression. Similar to section 2.5, we also consider the three generalization cases in this part.
Rx antenna spacing
We first consider models’ generalization ability over different Rx antenna spacing. In our simulation, AI/ML models are trained with half wave length RX spacing. There are 4 RXs with dual polarization and 32 TX, and the input/output for the CSI compression model is channel eigenvectors. Results are provided in the following table:
The SGCS of the AI/ML model and eType II codebook for different spacing distance
	RX Spacing
	Type-II
	AI

	0.3 wave length
	0.8255
	0.8721

	0.5 wave length
	0.8319
	0.8793

	0.8 wave length
	0.8312
	0.8766



From the Table, we can find that model trained on data with half wavelength RX spacing generalizes well over other RX spacing configurations. One possible reason for such phenomenon is that different RX spacing mainly affects the receiving antenna patterns (i.e., matrix U in SVD results) while the model focuses on compressing the precoding matrix (e.g., matrix V in SVD results).
When compressing precoding matrix, CSI compression models generalize well over different RX antenna spacing (generalization case2).  

RX Antenna gain imbalance
We also investigate the impact of antenna gain imbalance. In our simulation, the gain imbalance on each RX antenna is modeled by a different amplitude and phase disturbance. When computing the precoding matrix (i.e., input for CSI compression model), phase disturbance is eliminated and the amplitude is a power mismatch when calculating secondary moment. There are four RXs with dual polarization and the power factor of the first one is 1. Different random power attenuations are set on other RX’s. In addition, our model is trained without considering any Rx antenna gain imbalance effect.
The SGCS of the AI/ML model and eType II codebook for different RX antenna gain imbalance
	power factor (dB)
	type2
	AI

	0.0
	0.8319
	0.8793

	0.5
	0.832
	0.8793

	1.0
	0.8317
	0.8791

	2.0
	0.8312
	0.8784

	3.0
	0.8302
	0.8775



Our results demonstrate that CSI compression model trained without considering RX antenna gain imbalance generalize well over data with Rx antenna gain imbalance. The reason might be similar with that for generalization over different RX antenna spacing, i.e., the imbalance on RX antenna gain does not affect the precoding very much.
When compressing precoding matrix, CSI compression models trained without considering RX antenna gain imbalance generalize well over cases considering various RX antenna gain imbalance (generalization case2).

TX antenna spacing
Since different antenna configurations mean different channel state with different beam width, the training data with different antenna configurations can lead to various spatial characters. We also evaluate the influence of the TX antenna spacing.
In the simulation above, we use the antenna spacing [0.8 0.5] at gNB side, which means the space between two antenna elements in vertical is 0.8 wave length and in horizontal is 0.5 wave length. To verify the generalization of antenna size, two cases are compared with different antenna spaces. We use the training dataset with channel fading matrices based on 0.8 wave length antenna as baseline and compare the training dataset with channel fading matrices based on 0.5 wave length. Both cases are simulated in the environment with [0.8 0.5] antenna spacing. The evaluation results of entire AI model are shown below.

The SGCS of entire AI models based on different training dataset.

The gain of average SE of entire AI models based on different training dataset.
From the evaluation results, we can find that, in case that antenna space is 0.8 wave length, there is almost 4% average SE loss if training dataset is constructed with channel fading matrices based on 0.5 wave length antenna. 
For a generic model (non-optimized for a specific zone/site), there is obvious performance loss for antenna spacing mismatch of training data.
Also, we evaluate the influence of the antenna spacing to the AI models with pre-processing, i.e., the small AI models with spatial domain and frequency domain compression as discussed in 2.2 and the evaluation results are shown below.

The SGCS of small AI models based on different training dataset.

The gain of average SE of small AI models based on different training dataset.
According to the evaluation results, there are tiny performance loss between two cases. For the small AI model with pre-processing, since the beam and delay are restricted in pre-processing, the performance loss caused by mismatching dataset can be omitted. Therefore, the small AI may have a better generalization performance.
For a generic model (non-optimized for a specific zone/site), there is obvious performance loss for antenna spacing mismatch of training data and this performance loss may decrease when the model size is reduced with reasonable pre-processing.

Antenna virtualization
Next, we consider the influence of antenna virtualization. In the simulation above, we use antenna configuration [8 8 2] with 4 successive vertical antenna elements mapping to one TXRU with a fixed 105 degrees DFT beam. We draw other two cases of antenna configuration [2 8 2] without antenna virtualization as contrast. 
Case 1: AI model is trained with dataset constructed by antenna configuration [8 8 2] and used in the case of antenna configuration [8 8 2].
Case 2: AI model is trained with dataset constructed by antenna configuration [8 8 2] and used in the case of antenna configuration [2 8 2]
Case 3: AI model is trained with dataset constructed by antenna configuration [2 8 2] and used in the case of antenna configuration [2 8 2]
The SGCS’s of the three cases and Rel-16 Type II codebook with antenna configuration [8 8 2] and [2 8 2] are shown below.

The SGCS of three cases and Rel-16 Type II codebook
According to the evaluation results, firstly, the SGCSs of the three AI cases are at least 0.07 higher than that of Rel-16 Type II codebook. From the comparison between the Rel-16 Type II codebook with these two antenna configurations, the channel state is easier to learn for antenna configuration [2 8 2], while more difficult to learn for antenna configuration [8 8 2].
The AI model trained with antenna configuration [8 8 2] has similar SGCS performance in both antenna configurations [8 8 2] and [2 8 2]. It seems that, when antenna configuration changes from [8 8 2] to [2 8 2], the original AI model trained with antenna configuration [8 8 2] can still work properly. However, considering the transmission ability, antenna configuration [8 8 2] can provide more spatial information than antenna configuration [2 8 2]. The SE may decrease if the same AI model is directed used in the case of antenna configuration [2 8 2].
The AI model trained with antenna configuration [2 8 2] performance better in antenna configurations [2 8 2]. So, in the case of antenna configuration [2 8 2], the AI model trained with antenna configuration [2 8 2] may achieve similar SE performance as the AI model trained with antenna configuration [8 8 2] in the case of antenna configuration [8 8 2].
For a generic model (non-optimized for a specific zone/site), SGCS performance of AI model may degrade slightly from 128 antennas with virtualization to 32 antennas without virtualization.
 For a generic model (non-optimized for a specific zone/site), in the case of 32 antennas, AI model trained with 32 antennas may have similar SE performance compared with AI model trained with 128 antennas and settled in the case of 128 antennas (generalization case 2).
Further study the generalization on antenna spacing and antenna virtualization, by using pre-processing mechanism.

Evaluations on ground-truth reporting
	Agreement
For the evaluation of the high resolution quantization of the ground-truth CSI in the CSI compression, Float32 is adopted as the baseline/upper-bound of performance comparison.
Agreement
For the evaluation of the high resolution quantization of the ground-truth CSI in the CSI compression, if R16 Type II-like method is considered, companies to report the R16 Type II parameters with specified or new/larger values to achieve higher resolution of the ground-truth CSI labels, e.g., L,, , reference amplitude, differential amplitude, phase, etc.


Ground-truth CSI reporting is an essential procedure in data collection for CSI compression. In last meeting, FL proposed to study high resolution scalar or codebook quantization methods for ground-truth CSI, and several schemes have been mentioned in the agreement. To this end, we consider CSI quantized via Float32 as our baseline scheme, and train different models based on Float16, high resolution R16 Type-II codebook, and regular resolution R16 Type-II codebook quantized CSI data. All models trained on quantized CSI are tested on Float32 format data to see the performance, and our results towards different methods in table below.
Results of different methods for ground-truth CSI quantization.
	
	Model trained on float32 format quantized data (baseline)
	Model trained on float16 format quantized data (baseline)
	Model trained on Legacy codebook quantized data (L=12, M=6, beta=1.0)
	Model trained on Legacy codebook quantized data (L=4, M=4, beta=0.75)

	SGCS results tested on float32 format data
	0.8710
	0.8661
	0.8549
	0.8192


From the table, we could observe that there is only a slight performance loss between ground-truth quantized in float32 and float16, and high-resolution legacy codebook also provide a satisfying performance in quantizing ground-truth CSI. However, when the parameters reduce to a conventional setting (i.e., from L=12, M=6, beta=1.0 to L=4, M=4, beta=0.75), the performance loss is obvious. Considering that the overhead of quantizing ground-truth via high resolution codebook is much lower than that of quantization via float16 (hundreds of bits versus thousands of bits), we believe that high resolution codebook is a promising solution to ground-truth CSI quantization and reporting in CSI compression.
[bookmark: _Ref118741596]Observations: High resolution R16-eType II codebook with large L, M, beta (for example, L=12, M=6, beta = 1.0) performs well for ground-truth CSI quantization.

Evaluation on quantization/dequantization
	Agreement
For the evaluation of quantization aware/non-aware training, the following cases are considered and reported by companies:
· Case 1: Quantization non-aware training, where the float-format variables are directly passed from CSI generation part to CSI reconstruction part during the training
· Fixed/pre-configured quantization method/parameters is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2: Quantization aware training, where quantization/dequantization is involved in the training process
· Case 2-1: Fixed/pre-configured quantization method/parameters are applied during the training phase; the same quantization codebook is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2-2: The quantization method/parameters are updated in together with the AI/ML models during the training; when training is finished, the final quantization codebook is applied for the inference phase
· Companies to report how to update the quantization method/parameters during the training
· Note: the above cases apply for training Type 1/2/3
· Others are not precluded.




Previous meeting made an agreement to further study quantization of CSI feedback, including different quantization/dequantization methods and the corresponding training approaches (quantitation aware/non-aware training). Therefore, we would like to discuss the quantization issue for CSI compression systematically in this subsection. Quantization in CSI compression refers to the mapping from float-format CSI generation output to bit-format UCI payload, often placed on the tail of CSI generation part; Dequantization in CSI compression refers to the reverse procedure on the beginning of CSI reconstruction part, i.e., mapping from bit-format UCI payload to float-format decoder input.
There are usually two categories of quantization/dequantization methods, i.e., scalar quantization and vector quantization. In scalar quantization, each number in the float-format sequence will be mapped to several bits. In vector quantization, each sub-sequence of float-format sequence will be mapped to several bits. It could be seen that scalar quantization is a specific case of vector quantization. The averaged quantization bit can be used to describe the quantization effect of a specific quantization method, which is defined as the averaged bit to quantize a float number. For example, if 180bits are used to quantize a sequence of 80 float variables, the averaged quantization bit is 180bit/80float=2.25bits/float.
To define a specific scalar quantization rule, we can directly define the number of bits assigned to each float. For example, we can use a vector [2, 2, …, 2, 3, …, 3, …, 4] to express a scalar quantization method, which assigns 2 bits to the first several float number, 3 bits to the next several float number, and 4 bits to the last several float number. The most trivial scalar quantization method is to uniformly assign K bits for all float numbers in a sequence. The definition of a vector quantization method will be a little more complicated. The whole sequence to be quantized will usually be partitioned into several segments, as it is difficult to directly quantize the whole sequence. Otherwise, there will an extremely large quantization codebook of size. For example, 80 float variables can be partitioned into 16 sub-sequences, each of which is of size 5. Correspondingly, we can set 16 quantization codebooks, each of which will be used to quantize one segment. It is also quite common to assign a uniform codebook for all sub-sequences to save the storage space. Each column in the codebook, i.e., a codeword will be a quantization candidate for the input. The quantization procedure is to select one codeword in the codebook that most represents the input, and the most common criteria is to select the one with the least MSE distance to the input. 
For quantization non-aware training, quantization effect will not be considered during training stage, and the float-format variables will be directly passed from CSI generation part to CSI reconstruction part without any loss. After the model is trained, quantization module will be added to quantize and recover the intermediate result (CSI generation output). For quantization-aware training, CSI compression model will be trained under the consideration of the quantization loss of CSI generation output. In addition, the quantization codebook for scalar or vector quantization can be set fixed or optimized during training of CSI compression model. We will compare the performance of current quantization/dequantization methods as well as different training approaches in the following.


Inference performance of quantization non-aware training 

In figure above, inference performance of quantization non-aware training is presented, where the length of CSI generation output is set 80. After the model is firstly trained without considering quantization, various amounts of bits are considered to quantize the CSI generation output during inference stage. When the CSI generation output is quantized by 320 bits, the performance is quite close to ideal one, while when the quantization bits decrease to 240, the SGCS result reduces by 5% in absolute value. However, for the case of quantizing by 180bits and 80bits, the model is almost not workable due to the very low SGCS performance. 
[bookmark: _Ref118741907]Observation: Quantization non-aware training only achieves good performance when the averaged quantization bit is large (e.g., >= 4bits/float). When the averaged quantization bit is small (e.g., <= 2bits/float), the performance loss is significant.


Comparisons of different quantization methods (all models consider using 180bits to quantize 80 float-format variables).

In figure above we compare different quantization methods, where all models consider using 180bits to quantize 80 float-format variables. We can see that vector quantization with optimized codebook achieves the best SGCS performance among all candidates, while scalar quantization with fixed codebook ranks second with ~0.9% loss in SGCS. Interestingly, vector quantization with random initialized and fixed codebook is slightly inferior to scalar quantization. Last but not least, quantization non-aware training with the same setting demonstrates a much lower performance, which may suggest it is not a good choice.
[bookmark: _Ref118741909]Observation: Vector quantization with optimized codebook can achieve slightly better performance (e.g., by about 0.009 in SGCS in our considered configurations) than scalar quantization with fixed codebook.
[bookmark: _Ref118741911]Observation: Performance of vector quantization with randomly initialization and fixed codebook can be slightly inferior to that of scalar quantization with fixed codebook (e.g., by about 0.0065 in SGCS in our considered configurations).
[bookmark: _Ref118741912]Observation: Performance of quantization non-aware training could be significantly lower than that of quantization aware training (more than 0.1 in SGCS in our considered configurations).  

To our understanding, quantization method at UE side and dequantization method at NW side should be aligned anyhow for training collaboration type2 and 3. For training collaboration type2, if quantization/dequantization methods are not aligned at training stage, we find it difficult for the model to learn anything from the data, i.e., the performance stays in a randomly initialized level. Furthermore, if the length for the floating output is not aligned, the gradients cannot properly back propagate to the CSI generation part. For training collaboration type3, we also find that the model cannot even converge to a reasonable performance (loss in SGCS >= 0.1 compared with the case of aligned quantization/dequantization) if quantization/dequantization methods are not aligned. Therefore, we have the following proposal:
[bookmark: _Ref118741913]Observation: Quantization method at UE side and dequantization method at NW side should be aligned for training collaboration type2 and 3 to achieve a satisfying performance.
Study the method and procedure to align quantization/dequantization method at different entities for CSI compression.

Evaluations on Type 2: Joint training
The interaction approach of training collaboration type 2 is to exchange necessary training information over the air to enable the training procedure. More precisely, the whole procedure contains three main steps: 1) UE computes the forward-propagation result on CSI generation model based on collected data, and sends the (last layer) forward-propagation result together with the input data to gNB; 2) gNB completes the remaining forward-propagation computation based on the received forward-propagation result, computes loss function based on the received data, and  back propagates through CSI reconstruction part to acquire the gradients on the first layer of CSI reconstruction model. The backward propagation results, i.e., the gradients on the first layer of CSI reconstruction model, will be then sent back to the corresponding UE. UE completes the remaining back propagation procedure for CSI generation part based on the received gradients. 3) UE and gNB update CSI generation/reconstruction part based on the exchanged information. The above procedure will be repeated each batch, until the whole training procedure ends.
In training collaboration type 2, it is not necessary for UE and gNB to fully align their model structure. Namely, it is feasible for the training procedure to converge to a reasonable (usually not optimal) performance with CSI generation part and CSI reconstruction part having totally different model structure, e.g., MLP and CNN for CSI generation part while Transformer for CSI reconstruction part. But from our view, it is necessary to align the quantization method at CSI generation model and dequantization method at CSI reconstruction model. Otherwise, the trained model could not be properly validated, and there would a risk in training failure.
It is proposed to study the combinatorial problem of models in CSI compression in RAN #110, i.e., if dedicated models (CSI generation part and CSI reconstruction part) are made for specific scenarios/configurations, the number of required models for various conditions could be prohibitively high, which makes model management complicated. Basically, Combinatorial problem occurs in all generalization issues. However, given the fact that evaluation methodology for generalization is still under discussion, proposal in last meeting picked out one specific combinatorial issue, i.e., the support of one common CSI reconstruction part to multiple CSI generation parts of different UEs (and vice versa) to study in future meeting. In the following, we would like to report our results towards the above issue.
[image: ]
[bookmark: _Ref115450702]Training procedure of common CSI reconstruction part to multiple CSI generation parts of different UEs
We start with support of one common CSI reconstruction part to multiple CSI generation parts of different UEs. The basic procedure of the above method is: 1) the involved UEs compute their local forward-propagation results based on their local collected data (there could be some problems here, which will be discussed later.) and report them to gNB. The reported content contains not only the result of forward propagation but also the labels for loss function computation, which is paired with the forward-propagation results in reporting. 2) gNB computes the loss function as well as the gradients for back-propagation for each UE respectively and transmits the gradients to each UE. Note that different UEs’ gradients are computed based on their reported information, which are generally different for different UEs. 3) Each part of models completes the back-propagation procedure and updates the weights according to their gradients. Note that the gradients for CSI reconstruction part would take loss function for all UEs into account, thus achieving a common reconstruction part for multiple generation parts. For two-sided models, the ideal performance of joint training at a single entity and joint training at Network and UE side are almost the same. By “ideal”, we mean that the training data, training policy, training hyperparameters, optimizer, etc. are perfectly aligned for CSI generation and reconstruction part.
When UEs report their forward-propagation result to gNB, it could be challenging to strictly align the data from all UEs, as the amount of training data for different UEs is highly likely to be different. Such issue could bring some inconvenience to the joint training procedure. One way to relieve this problem is to broadcast training data in advance to all UEs, which is illustrated in step0 in Figure 15.
Then we introduce our simulation settings: joint training for one common CSI reconstruction part to two/three CSI generation parts of different UEs is considered, where the basic model structures for CSI generation parts are Transformer, CNN, and MLP, while a Transformer CSI reconstruction part is adopted. Each involved UE generates its forward-propagation results based on datasets with the same configurations (i.e., the same number of subbands, antenna ports, antenna configurations, etc.). We optimize all involved CSI generation parts equally by using the average SGCS as the loss function. However, the optimizer and learning rate scheduling policy for different CSI generation parts are different, as UEs are considered to have their own training implementations. Joint training of one to one CSI reconstruction and generation part serves as the baseline. Results are presented in the following table.
[bookmark: _Ref115453605]Performance of one common CSI reconstruction part to two/three CSI generation parts of different UEs
	[bookmark: _Hlk114146280]
	Transformer CSI Generation part
	CNN CSI Generation part
	MLP CSI Generation part

	Baseline of Rel-16 Type II
	0.7950

	Baseline one-to-one model
	~0.87
	/
	/

	Transformer CSI reconstruction part to Transformer and MLP CSI generation part
	0.8601
	/
	0.8137

	Transformer CSI reconstruction part to Transformer and CNN CSI generation part
	0.8599
	0.8485
	/

	Transformer CSI reconstruction part to Transformer, CNN, and MLP CSI generation part
	0.8475
	0.8364
	0.8125



From Table 16, it could be observed that there are certain level performance degradations for one common CSI reconstruction part to two/three CSI generation parts of different UEs. As the number of CSI generation parts increases, the performance degradation also enlarges. Considering one common CSI reconstruction part matching three CSI generation parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.052, i.e., losing about 30% performance gain. Besides, performance of CSI generation part with MLP structure is lower than those of CSI generation part with CNN and Transformer structure, indicating that certain structures are more suitable for CSI compression.
[bookmark: _Ref115456428]One common CSI reconstruction part could be trained to match multiple CSI generation parts of different UEs in training collaboration type 2 at the cost of some performance loss. 
[bookmark: _Ref115456437]Considering one common CSI reconstruction part matching three CSI generation parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduces from 0.075 to 0.052, i.e., losing about 30% performance gain.

[image: ]
Training procedure of one common CSI generation part to multiple CSI reconstruction parts of different networks.
Next, we move on to the case of one common CSI generation part to multiple CSI reconstruction parts of different networks. We believe that such case is a little bit simpler than the other one, since the training data is naturally aligned among all involved CSI reconstruction parts. The basic procedure is similar: 1) UE computes the forward-propagation result based on the local data, which will be transmitted to all involved networks. 2) Involved networks compute the loss and the back-propagation results based on the reported information. Back-propagation results are then sent to UE. Note that the sent back-propagation results should be kept in the same order with forward-propagation results. 3) Finally, involved CSI reconstruction/generation parts update their own weights according to the computed gradients. Although technically feasible, we find the joint training of one common CSI generation part to multiple CSI reconstruction parts difficult to be implemented online, as one UE could not connect to multiple networks simultaneously. 
We consider one common CSI generation part to two/three CSI reconstruction parts in our experiments. The basic model structures for CSI reconstruction parts are Transformer, CNN, and MLP, while a Transformer CSI generation part is adopted. All involved CSI reconstruction parts equally by using the average SGCS as the loss function. The optimizer and learning rate scheduling policy for different CSI reconstruction parts are also different, as networks are considered to have their own training implementations. 
[bookmark: _Ref115453643]Performance of one common CSI generation part to two/three CSI reconstruction parts of different networks
	
	Transformer CSI reconstruction part
	CNN CSI reconstruction part
	MLP CSI reconstruction part

	Baseline of Rel-16 Type II
	0.7950

	Baseline one-to-one model
	~0.87
	/
	/

	Transformer CSI generation part to Transformer and MLP CSI reconstruction part
	0.8526
	/
	0.8350

	Transformer CSI generation part to Transformer and CNN CSI reconstruction part
	0.8633
	0.8582
	/

	Transformer CSI generation part to Transformer, CNN, and MLP CSI reconstruction part
	0.8563
	0.8525
	0.8434


Results in Table 17 demonstrate that one common CSI generation part to multiple CSI reconstruction parts of different networks also suffer from some performance loss, which enlarges as the number of supported CSI reconstruction parts increases. Considering one common CSI generation part matching three CSI reconstruction parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.061, i.e., losing about 19% performance gain. Interestingly, the performance loss in common CSI generation part is generally lower than that in common CSI reconstruction part, which needs further study and verification. 
[bookmark: _Ref115456452]One common CSI generation part could be trained to match multiple CSI reconstruction parts of different networks in training collaboration type 2 at the cost of some performance loss.
[bookmark: _Ref115456456]Considering one common CSI generation part matching three CSI reconstruction parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.061, i.e., losing about 19% performance gain.
One major concern for joint training is the huge overhead of exchanged information. According to the procedure, the forward- and backward- propagation information should be exchanged each batch. Besides, the training data should also be exchanged during training to serve as the labels. The overall overhead could be roughly computed as 
Overhead ≈ # of epoch*(forward-propagation information + back-propagation information + input data)
Suppose the size of each forward- and backward-propagation sample is ~1/10 of the input (e.g., 13*32*2 floats are typically compressed into 50 floats without quantization), the total overhead could still be ten times of those for separate training and model transferring depending on the number of epochs. It is worth pointing out that there are still approaches to further reduce the overhead, but it is extremely challenging to reduce the over-the-air overhead to the similar level of separate training or model transfer.
[bookmark: _Ref115456460]Overhead in information exchange for training collaboration type 2 grows linearly with the number of iterations at training stage.

Evaluations on Training collaboration Type 3
	Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following evaluation cases for sequential training are considered for multi-vendors
· Case 1 (baseline): Type 3 training between one NW part model and one UE part model
· Note 1: Case 1 can be naturally applied to the NW-first training case where 1 NW part model to M>1 separate UE part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training UE part model is the same or a subset of the dataset for training NW part model
· Note 2: Case 1 can be naturally applied to the UE-first training case where 1 UE part model to N>1 separate NW part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training NW part model is the same or a subset of the dataset for training UE part model
· Companies to report the AI/ML structures for the combination(s) of UE part model and NW part model, which can be the same or different
· FFS: different quantization methods between NW side and UE side
· Case 2: For UE-first training, Type 3 training between one NW part model and M>1 separate UE part models
· Note: Case 2 can be also applied to the M>1 UE part models to N>1 NW part models
· Companies to report the AI/ML structures for the M>1 UE part models and the NW part model
· Companies to report the dataset used at UE part models, e.g., same or different dataset(s) among M UE part models
· Case 3: For NW-first training, Type 3 training between one UE part model and N>1 separate NW part models
· Note: Case 3 can be also applied to the N>1 NW part models to M>1 UE part models
· Companies to report the AI/ML structures for the UE part model and the N>1 NW part models
· Companies to report the dataset used at NW part models, e.g., same or different dataset(s) among N NW part models
· FFS: whether/how to report overhead of dataset
Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side) with sequential training, companies to report the set of information (e.g., dataset) shared in Step 2
· For NW-first training
· Dataset construction, e.g., the set of information includes the input and output of the Network side CSI generation part, or includes the output of the Network side CSI generation part only, or other information if applicable.
· Quantization behavior, e.g., whether the shared output of the Network side CSI generation part is before or after quantization.
· For UE-first training
· Dataset construction, e.g., the set of information includes the input and label of the UE side CSI reconstruction part, or includes the input of the UE side CSI reconstruction part only, or other information if applicable.
· Quantization behavior, e.g., whether the shared input of the UE side CSI reconstruction part is before or after quantization.




In this section, we would like to present our evaluations and observations for training collaboration type3, i.e., separate training, according to the agreements in last meeting. As discussed in previous meetings, separate training further consists of (at least) two cases: NW-first training and UE-first training.
UE-first training
[image: ]
[bookmark: _Ref111214830]An illustration of separate training procedure.
We start our discussion on UE-first training, of which the detailed procedure is presented as follows: (also illustrated in Figure 17, where “Encoder” refers to CSI generation part and “Decoder” refers to CSI reconstruction part.)
Step 1: The encoder is trained firstly at UE or a server at UE side using collected dataset0. Specifically, a complete model containing both encoder and decoder is trained and then the encoder is picked out for separate training. The decoder obtained in step 1 is termed as decoder0.
Step 2: UE passes dataset1 into encoder to obtain the encoded feature1, and combines the dataset1 (encoder input) and encoded feature1 (encoder output) into the exchanging dataset, i.e., the encoder output serves as the label of encoder input.
Step 3: UE transmits the exchanging dataset to gNB.
Step 4: gNB utilizes the exchanging dataset to train the decoder via supervised learning. The decoder obtained in this step is termed as decoder1.
Step 5: Test the SGCS of joint inference of encoder and decoder based on dataset2.
Results for UE-first separate training.
	Samples in exchanging dataset
	Joint training 
	300k
	150k
	50k
	10k
	5k

	Test SGCS for perfectly aligned model
	0.878
	0.869
	0.861
	0.843
	0.818
	0.787

	Test SGCS for misaligned SQ method
	/
	0.751 
	/
	/
	/
	/

	Test SGCS for misaligned VQ method
	/
	<0.1 
	/
	/
	/
	/



By “perfectly aligned model”, we refer to the setting that the structure and hyper-parameter of Decoder1 is exactly the same with that for Decoder0. By “misaligned SQ” and “misalign VQ”, we mean that the dequantization method at NW side is different from the quantization method at UE.
From our results, performance of separate training could reach that of joint training if the number of exchanged data samples is large enough, i.e., similar level to the scale of training data, and some key information of encoder and decoder is aligned, such as the quantization and dequantization method. In addition, the quantization and dequantization methods play an important role in separate training. Our simulation shows that when the quantization approach at UE and dequantization approach at network do not match, there will be an unacceptable performance loss for the model.
[bookmark: _Ref111217220]There is a slight performance loss compared with joint training when all model configurations are aligned and enough data is exchanged (e.g., the same amount of data as that for local training)
If the quantization/dequantization method for separately trained CSI generation/reconstruction model does not match, the performance will drop significantly (more than 0.1 SGCS in our experiment).

[image: ]
Procedure of training one common CSI reconstruction part to multiple CSI generation parts of different UEs for sequential training starting with UE side training.
It is feasible for separate training collaborations to develop one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts. For UE-first training, it is trivial to realize one common CSI generation part to multiple CSI reconstruction parts of different networks, since it is natural for UEs to broadcast the input/output of the same CSI generation part to multiple gNBs. To support one common CSI reconstruction part to multiple CSI generation parts of different UEs, one gNB could collect paired input/output data from multiple UEs and then train one CSI reconstruction part based on a mixed dataset of all collected data. 
However, as the UEs tend to have different model structure for CSI generation part and it is also hard to strictly align the data for exchange among UEs, supporting one common CSI reconstruction part to multiple CSI generation parts of different UEs still takes the risk of obvious performance degradation. Consider UE-active separate training with three UEs, each of which uses different backbone structures for their CSI generation part, i.e., Transformer, CNN, and MLP. Each UE reports 10,000, 50,000, or 300,000 data samples for separate training, and the gNB combines all reported data to train the CSI reconstruction model. In this experiment, we consider separate training with one to one CSI generation/reconstruction part (assumed to exchange 300,000 data samples between UR and gNB) to serve as the baseline. Various combinations of amounts of reported samples are simulated, and the results are presented in the table below.
[bookmark: _Ref115453922]Performance of one common CSI reconstruction part to multiple CSI generation parts of different UEs for UE-first separate training.
	
	Transformer CSI generation part
	CNN CSI generation part
	MLP CSI generation part

	SGCS for Baseline
	0.8528
	0.8424
	0.8025

	SGCS for Setting0
	0.8128
	0.8021
	0.7637

	SGCS for Setting1
	0.8358
	0.8303
	0.7942

	SGCS for Setting2
	0.8434
	0.7999
	0.7631

	SGCS for Setting3
	0.8439
	0.7957
	0.6983

	SGCS for Setting4
	0.7313
	0.8016
	0.7938



	
	Data samples from Transformer CSI generation part
	Data samples from CNN CSI generation part
	Data samples from MLP CSI generation part

	Setting0
	50,000
	50,000
	50,000

	Setting1
	300,000
	300,000
	300,000

	Setting2
	300,000
	50,000
	50,000

	Setting3
	300,000
	50,000
	10,000

	Setting4
	10,000
	50,000
	300,000



The table on top side of  Table 19 presents the SGCS results for different settings, where each of the three UE shares different amount of data to gNB for separate training. Specific data amount for each setting is given in the table on bottom side of Table 19. Compared with one-to-one model, one common CSI reconstruction part to multiple CSI generation parts of different UEs demonstrates a degraded performance. Such degradation gets worse as the amount of exchanged data decreases. 
[bookmark: _Ref115456511]There would be non-negligible performance loss for the case where one common CSI reconstruction/generation part is trained to match multiple CSI reconstruction/generation parts of different UEs in training collaboration type 3 (e.g., considering one common CSI reconstruction part to three CSI generation part and each UE sharing 50,000 samples with NW, the performance loss in SGCS is around 0.04). 
[bookmark: _Ref115456515]Performance of one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts of different networks/UEs is affected by the amount of exchanged data from each network/UE.
[bookmark: _Ref115456519]Performance loss in supporting common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts gets worse as the number of supported UEs/networks increases.

NW-first training
Then we present our results for NW-first training. The considered NW-first training procedure is:
Step 1: An encoder-decoder pair is trained firstly at NW using collected dataset0. The encoder obtained in step 1 is termed as encoder0.
Step 2: NW passes dataset1 into encoder to obtain the encoded feature1, and combines the dataset1 (encoder input) and encoded feature1 (encoder output) into the exchanging dataset, i.e., the encoder output serves as the label of encoder input.
Step 3: NW transmits the exchanging dataset to UE.
Step 4: UE utilizes the exchanging dataset to train the local encoder via supervised learning. The encoder obtained in this step is termed as encoder1.
Step 5: Test the SGCS of joint inference of encoder1 and decoder0 based on dataset2.

Results for NW-first separate training.
	Samples in exchanging dataset
	Joint training 
	300k
	150k
	50k
	10k
	5k

	Test SGCS for perfectly aligned model
	0.878
	0.870
	0.866
	0.856
	0.787
	0.741

	Test SGCS for misaligned SQ method
	/
	<0.1 
	/
	/
	/
	/

	Test SGCS for misaligned VQ method
	/
	<0.1 
	/
	/
	/
	/


We can draw similar observations from the results of NW-first training, i.e., the performance of separate training degrades as the amount of exchanged data becomes less. Besides, we find that NW-first training cannot work for both misaligned SQ and VQ method, which is slightly different from UE-first training.
Then we would like to check the impacts of impairments between UE’s encoder and NW’s encoder. The impairments between UE’s encoder and NW’s encoder are inevitable in separate training, as it is impossible in practice for each UE to acquire enough information for the original encoder at NW side due to model proprietary. If the design between these two encoders are not aligned, it could be difficult to for UE’s encoder to perfectly mimic the behaviors of NW’s encoder. Our initial results are as follows:
Results for structure impairments in NW-first separate training.
	
	Joint training of Encoder0 and Decoder@NW
	Separate training of perfectly aligned transformer Encoder
	Joint training of CNN Encoder1 and decoder0
	Separate training of a CNN Encoder1 
	Legacy codebook

	Test SGCS
	0.878
	0.870
	0.835
	0.756
	0.795


It can be observed that if the structure of encoder at UE side (i.e., Encoder2) differs from that of encoder at NW side (i.e., Encoder0), the performance will drop significantly. Note that although the capability of utilized CNN encoder1 (i.e., 0.83 SGCS) is inferior to the powerful transformer structure Encoder (i.e., 0.878 SGCS), the performance gap between separate and joint training is still obvious. One possible reason is that the feature extraction pattern for different model structure is different, and it is challenging for a CNN model to learn the behavior of a transformer model well. To avoid severe performance loss, we propose to study the necessity of aligning model backbone structure for separate training.
In NW-first training, if the backbone structure for separately trained CSI generation/reconstruction models does not match, the performance will drop significantly (more than 0.1 SGCS in our experiment).

Evaluation methodology for Performance Monitoring
Effective monitoring methods are the essential part for life cycle management of AI/ML for CSI compression. It has been agreed that performance monitoring for CSI compression considers following options: 1) intermediate KPIs such as SGCS; 2) Eventual KPIs such as throughput, BLER; 3) legacy CSI based monitoring; 4) Other monitoring solutions at least including input/output data-based monitoring. Intermediate KPIs such as SGCS could best reflect whether the model active for inference is suitable for the current environments/configurations, while there are potential concerns on the effectiveness/accuracy/relevance of other monitoring methods such as monitoring based on input data distribution or system level KPIs. Therefore, we propose to discuss and develop an evaluation methodology for performance monitoring approaches in CSI compression, which takes accuracy/relevance, overhead, complexity, and latency into consideration. 
Among the above factors, we believe the evaluation of accuracy/relevance for performance monitoring approaches is the main challenge. To our understanding, following options can be taken as a starting point: 
[bookmark: _Hlk118733261]1) linking metrics/results for specific monitoring methods to intermediate KPI result to see their relevance;
2) modeling an environment changing procedure where models may be outdated and measuring the accuracy for different monitoring methods via system KPIs (e.g., throughput).
Take the input data distribution-based performance monitoring as an example. For the first option, we can record the intermediate KPIs for models and the performance monitoring results to see: i) whether the undergoing model indeed suffers from an obvious performance degradation when a drifting has been detected in input data distribution or a model selection has been suggested; or ii) whether the performance monitor reports a performance degradation or triggers a model selection when the actual intermediate KPIs do degrade significantly. For the second option, we can simulate a procedure where UEs move from a typical indoor scenario to an outdoor scenario which dramatically changes the input data distribution. The considered performance monitoring methods are utilized to suggest whether a model selection/switching will be triggered, and the corresponding system level KPIs such as throughput or BLER are recorded. If the system KPIs can be maintained to a satisfying level, it is likely that the accuracy for current monitoring methods is ok. 
To our understanding, issues to be discussed for option 1 include at least:
1) deciding the KPIs to reflect the relevance between monitoring results (metrics) and intermediate KPIs;
2) threshold to judge whether the accuracy for a performance monitoring method is good or not.
Issues to be discussed for option 2 include at least:
1) how to model the procedure where performance degradations could potentially happen;
2) threshold to judge whether the accuracy for a performance monitoring method is good or not.

[bookmark: _Ref118741624]Discuss and develop an evaluation methodology for performance monitoring approaches. Following options can be considered as a starting point:
· linking metrics/results for specific monitoring methods to intermediate KPI results to see their relevance;
· modeling an environment changing procedure where models may be outdated and measuring the accuracy for different monitoring methods via system KPIs (e.g., throughput).
CSI prediction

Basic assumptions for CSI prediction
In the AI-based CSI prediction design, the AI model is designed to derive the prediction of CSIs as the output of model when using the historical CSIs as the input. The block diagram of AI-based CSI prediction is illustrated in Figure 19.


[bookmark: _Ref111237779]The block diagram of AI-based CSI prediction.
For CSI prediction, the data for training is derived from the SLS platform. If not specifically stated, the simulation parameters are set according to [1]-[4].










2D fully connected networks (FCN) is used as the backbone of AI-based CSI prediction model, which is illustrated in Figure 20. In detail, the CSI prediction model is composed of 3 layers of 2D FCN where the first two layers are with ReLU activation function. Each basic block (the dotted box in Figure 20) conducts the operation of where  is the right multiplication matrix,  is the left multiplication matrix, and  is the bias matrix. The bias matrix of first two blocks are with the dimension of , and the size of hidden layer is defined as . The dimension of the last bias matrix is decided by the dimension of predicted channel. Dimension of  and  can be calculated from the dimension of  and .


[bookmark: _Ref115451071]The structure of 2D FCN.

Results for CSI prediction
In this subsection, the gain of AI-based CSI prediction, the generalization aspects of AI-based CSI prediction and the impact of observation window and prediction window on AI-based CSI prediction are discussed.
The gain of AI-based CSI prediction
In RAN1 #111, the following working assumption is achieved [4]:
Working Assumption
For the AI/ML based CSI prediction sub use case, the nearest historical CSI w/o prediction as well as non-AI/ML/collaboration level x AI/ML based CSI prediction approach are both taken as baselines for the benchmark of performance comparison, and the specific non-AI/ML/collaboration level x AI/ML based CSI prediction is reported by companies.
· Note: the specific non-AI/ML based CSI prediction is compatible with R18 MIMO; collaboration level x AI/ML based CSI prediction could be implementation based AI/ML compatible with R18 MIMO as an example
· It does not imply any restriction on future specification for CSI prediction
FFS how to model the simulation cases for collaboration level x CSI prediction and LCM for collaboration level y/z CSI prediction











In this subsubsection, we show the gain of AI based CSI prediction over the nearest historical CSI w/o prediction and non-AI/ML based CSI prediction approach. Then, in the following subsubsection, we provide the comparison between level y/z AI-based CSI prediction and level x AI-based CSI prediction by discussing the generalization aspects.

A. The comparison of spectral efficiency (SE)
In this subsection, SE of following 4 schemes is compared in Table 22:
scheme #1: AI-based CSI compression without scheduling delay
scheme #2: AI-based CSI compression with scheduling delay (nearest historical CSI w/o prediction)
scheme #3: First AI-based CSI prediction and then AI-based CSI compression with scheduling delay
scheme #4: First non-AI-based CSI prediction and then AI-based CSI compression with scheduling delay. As for the non-AI CSI prediction, we adopt auto-regression (AR) based method whose details are provided in appendix I.
Simulation parameters are given below:
Umi 38.901; 7 cells, 3 sectors for each cell, 10 user for each sector; carrier frequency 4GHz, subcarrier spacing 30KHz, 13 subbands (10MHz, 4RBs/subband); 32 gNB antenna ( [Mg Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]), 2 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 1 2; 1 1]); 100% outdoor UE, 30km/h, Channel type: NLOS; MU max layer number 8, traffic model full buffer; Period of CSI: 5ms; Input of AI model for CSI prediction: 15 raw historic channels in PRB; AI-based CSI compression model: Transformer model with 200 bits payload; Spatial consistency is not considered.

[bookmark: _Ref111215458]The spectral efficiency comparison of AI-based compression and AI-based prediction
	Scheme ID
	Scheme description
	Predicting time
	UE Average SE (bps/Hz)
	SE loss percentage

	#1
	Without scheduling delay
	AI-based CSI compression only
	
	0.447
	

	#2
	With 4ms scheduling delay
	AI-based CSI compression only (nearest historical CSI w/o prediction)
	
	0.298
	33.3%

	#3
	
	First AI-based CSI prediction and then AI-based CSI compression
	+4ms
	0.372
	16.8%

	
	
	
	+5ms
	0.386
	13.6%

	
	
	
	+6ms
	0.388
	13.2%

	#4
	
	First non-AI CSI prediction and then AI-based CSI compression
	+5ms
	0.354
	20.8%



It is shown that the scheduling delay will lead to significant degradation of SE when only using AI-based CSI compression (nearest historical CSI w/o prediction), i.e., scheme #2, due to the mismatch between the scheduling channel and measurement channel, which is also known as the channel aging phenomenon. By adding the AI-based CSI prediction, this mismatch can be relieved so as to improve the SE significantly. Specifically, the SE gain of scheme #3 over scheme #2 is up to 20%. The AI-based CSI prediction also outperforms the non-AI based one. Furthermore, AI-based CSI prediction can predict CSIs of any future time while the predicting time of AR-based method is limited to the periodic future time slot.

[bookmark: _Ref115456532]Without CSI prediction (scheme #2), using only AI/ML based CSI compression, there exist significant spectral efficiency loss due to the channel aging. 
[bookmark: _Ref111218901]The AI-based CSI prediction (scheme #3) can make up the spectral efficiency loss caused by channel aging.
[bookmark: _Ref115456538]The AI-based CSI prediction (scheme #3) outperforms the non-AI based one (scheme #4).
The AI-based CSI prediction (#3) can predict CSIs of any future time, which has different performance.
B. The comparison of intermediate KPI
Next, the intermediate KPI of AI-based CSI prediction, the nearest historical CSI w/o prediction and non-AI/ML based CSI prediction approach is compared considering the spatial consistency procedure. The corresponding simulation parameters are given below and the NMSE of CSI prediction is plotted in Figure 21:
Simulation parameters: Uma 38.901, carrier frequency 2GHz, subcarrier spacing 15KHz, 32 gNB antenna ( [Mg Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]), 2 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 1 2; 1 1]), 100% outdoor UE, Channel type: NLOS, Period of CSI: 4ms; Input of AI model for CSI prediction: 15 raw historic channels in PRB. The spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms.

[image: ]
[bookmark: _Ref127374470]The NMSE of CSI prediction.

It is shown that, considering the spatial consistency, the AI-based CSI prediction still outperforms the AR based non-AI approach and the nearest historical CSI w/o prediction. Furthermore, compared to the AR based non-AI approach, the AI-based CSI prediction is more flexible in the predicting time while the predicting time of AR-based method is limited to the periodic future time slot. This will bring about additional benefit when further considering the scheduling scheme.
Considering the spatial consistency, the AI-based CSI prediction still outperforms the non-AI approaches. 
AI-based CSI prediction can predict CSIs of any future time while the predicting time of AR-based method is limited to the periodic future time slot.
The study on AI-based CSI prediction can rely on the channel with/without the spatial consistency. The channel assumptions with/without the spatial consistency should be reported by each proponent.

The generalization of AI-based CSI prediction
The generalization describes the adaptability of an AI model to fresh data, which is one of the key capabilities for evaluating the performance of an AI model. 
In this subsubsection, the generalization of AI-based CSI prediction over PRBs, deployment scenarios (Uma/Umi, LOS/NLOS) and speeds are evaluated.
A. The generalization of AI-based CSI prediction over PRBs
In this case, firstly, the AI model is trained using the data only collected from 1-st PRB. Then, the trained model is directly inferred on the 10-th, 20-th, and 40-th to evaluate the generalization performance. In this simulation, the period of CSI is 4 ms, and the prediction is with 15 historical CSIs as the input and the future CSI at +4ms as output. For the bandwidth, 52 PRBs are considered while the AI-based CSI prediction is conducted with the PRB-based granularity. The UE is travelling at the speed of 30km/h in the NLOS scenario. The carrier frequency is 2GHz and the subcarrier spacing is 15kHz. The spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms. The corresponding performance is provided below.
[bookmark: _Ref111215676]The generalization performance of AI-based CSI prediction over different PRBs
	Inferred PRB
	1st PRB (trained)
	10th PRB
	20th PRB
	40th PRB

	NMSE (dB)
	-19.84
	-18.44
	-20.10
	-19.16


 It is shown that the CSI prediction model trained from one specific PRB achieves almost the same performance on other PRBs, i.e., the generalization of AI-based CSI prediction with respect to PRBs is good. Therefore, it is preferable to train and save only one single PRB AI model and derive prediction of all PRBs in parallel way, just as shown in Figure 22.

[image: ]
[bookmark: _Ref111214987] The process of deriving CSI prediction of all PRBs using one common single-PRB model
[bookmark: _Ref111218935]The generalization of AI-based CSI prediction with respect to PRBs is good.
[bookmark: _Ref111219029]The generalization of AI-based CSI prediction over frequency granularities should be studied.

B. The generalization of AI-based prediction over speeds
In this subsubsection, the generalization of AI-based CSI prediction over different speeds is evaluated. The corresponding simulation parameters are given below:
Simulation parameters: Uma 38.901 ,carrier frequency 2GHz, subcarrier spacing 15KHz, 32 gNB antenna ( [Mg Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]), 2 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 1 2; 1 1]), 100% outdoor UE, Channel type: NLOS, Period of CSI-RS: 4ms; Input of AI model for CSI prediction: 15 raw historic channels in PRB，the spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms.
The AI model is trained using the data with one specific UE speed (30, 60, or 120 km/h) or mixed speeds. Then, the trained model is tested on the data with the UE speed of 30 and 60 km/h and 120km/h, respectively, to evaluate the generalization performance. 
The generalization performance of AI-based CSI prediction over speeds
	Inference speed(km/h)
Scheme
	30
	60
	120

	NMSE (dB) of using model trained at 30 km/h
	-19.84
	7.79
	8.36

	NMSE (dB) of using model trained at 60 km/h
	-12.60
	-7.95
	0.13

	NMSE (dB) of using model trained at 120 km/h
	-4.85
	-3.14
	-5.25

	NMSE (dB) of using model trained at uniformly mixed speed of {30, 60, 120}km/h
	-13.45
	-6.16
	-1.81



It is shown that the model trained at each speed can only cope with its corresponding speed but performs very poor at other speed. For CSI prediction, as a consequence, with a level y/z collaboration, the speed-specific model can be switched according to the information associated with the UE change speed so as to guarantee the prediction performance for different speed scenarios. However, using a level x AI/ML model, it can be observed that the NMSE increases by a fact of 6.39dB, 1.79 and 3.44dB, respectively for inference speed of 30km/h, 60km/h and 120km/h. Furthermore, the model trained from the mixed-speed data set can improve the generalization performance while there still exist performance gap with speed-specific model. Besides the model switching, finetuning is also a good approach to improve the generalization performance where the model trained by mixed dataset can be a good starting point for finetuning.

The generalization of AI-based CSI prediction over speed is not good if the training set contains only one speed. 
The generalization of AI-based CSI prediction over speed can be improved using training set with mixed speed, whose prediction accuracy is still worse than that of speed-specific models.
For AI-based CSI prediction, with a level y/z collaboration, the speed-specific model can be switched according to the information associated with the UE change speed so as to guarantee the prediction performance for different speed. However, using a level x AI/ML model, it is hard to generalize well across different speeds.
[bookmark: _Ref115456819]The comparison of level y/z AI-based CSI prediction and level x AI-based CSI prediction should be studied in the generalization aspects of AI-based CSI prediction.






Beside the model switching with a level y/z collaboration, we also notice that a preprocessing based model scaling can be utilized to handle the situation of speed changing. For the preprocessing based model scaling, we train a base model using the data with speed  where the CSI-RS periodicity in historical CSI is  and the predicted Future CSI is at . Then, for the scenario with the speed of , we compute the corresponding CSI periodicity in historical CSI () and the predicted Future CSI () using the following rule:




For example, the base model is trained with the UE speed of 30km/h where CSI-RS periodicity in historical CSI is 4ms and the predicted Future CSI is at +4ms. If we want to inference at 15km/h, then the CSI-RS periodicity in historical CSI should turn to 8ms and the predicted Future CSI should be at +8ms; If we want to inference at 60km/h, then the CSI-RS periodicity in historical CSI should turn to 2ms and the predicted Future CSI should be at +2ms (as illustrated in Figure 21 as follows). 
[image: ]
[bookmark: _Ref127368491][bookmark: _Ref127546353]The illustration of preprocessing based model scaling for AI-based CSI prediction: from 30km/h to 60km/h

The key issue for preprocessing based model scaling is to derive the input CSI of model with the periodicity of . We consider two options: 

1) Reconfigure the CSI-RS periodicity to ; 




2) Construct the input CSIs with the periodicity of  from the CSIs with the periodicity of . If , we just need to extract corresponding CSIs; If , CSI interpolation is needed to derive denser CSIs.
The performance of preprocessing based model scaling is provided in the following Table 25. It can be seen that, the prediction accuracy at 60 km/h with 2 ms historical CSI spacing to predict +2 ms and +4 ms are almost the same as that at 30 km/h with 4 ms historical CSI spacing to predict +4 ms and +8 ms. This means that using the preprocessing, the model trained at one speed can scales to other speeds.
[bookmark: _Ref127471233]The performance of preprocessing based model scaling
	The NMSE (dB) at 30 km/h with 4ms historical CSI spacing
	Predict the CSI at +4ms
	Predict the CSI at +8ms

	
	-19.84
	-10.65

	The NMSE (dB) at 60 km/h with 2ms historical CSI spacing
	Predict the CSI at +2ms
	Predict the CSI at +4ms

	
	-19.51
	-10.67



Using the preprocessing-based model scaling mechanism, the model trained at one speed can scales to other speeds.

The generalization of AI-based CSI prediction across speeds should be studied, relying on, e.g., level y/z collaboration-based model switching and model scaling mechanisms.
The monitoring of the AI-based CSI prediction should be studied.

C. The generalization of AI-based prediction over deployment scenarios

The generalization over LOS and NLOS channel types:
The LOS and NLOS channel type will lead to different time varying regularity. To this end, we discuss the generalization performance of AI-based CSI prediction over LOS and NLOS channel types. In details, the models are trained by using data set from LOS, NLOS and mixed types respectively and then test these models in LOS and NLOS channel. In this simulation, the period of CSI is 4 ms, and the prediction is with 15 historical CSIs as the input and the future CSI at +4ms as output. The UE is travelling at the speed of 30km/h. The carrier frequency is 2GHz and the subcarrier spacing is 15kHz. The spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms. The corresponding performance is provided below. 
[bookmark: _Ref127369586]The generalization performance of AI-based CSI prediction over LOS and NLOS channel types
	                                      Test
NMSE(dB)                    
Train
	LOS
	NLOS

	LOS
	-34.20
	-13.87

	NLOS
	5.67
	-20.736

	Mixed {LOS, NLOS}
	-27.96
	-17.67


It is shown that the prediction accuracy decreases significantly when the model mismatch is happened. To overcome this problem, assistance information based model switching/selection is a solution. Here, the assistance information is the estimation of LOS and NLOS type of current channel. Once the estimated assistance information changes, the procedure of model monitoring and model switching is triggered and the CSI prediction is switched to the corresponding model by using a level y/z collaboration. Furthermore, as seen from the evaluation result, using the mixed data set of LOS and NLOS can also improve the generalization performance, whose prediction accuracy is still worse than that of scenario-specific models. For the scheme using mixed training set, the data collection principle and procedure should be carefully designed to acquire a good training set.

The generalization over Uma and Umi scenarios:
Similarly, the scenarios of channel such as Uma and Umi also impact the time varying regularity of wireless channel. In details, the models are trained by using data set from Uma, Umi and mixed scenarios, respectively and then test these models in Uma and Umi channel accordingly. In this simulation, the period of CSI is 4 ms, and the prediction is with 15 historical CSIs as the input and the future CSI at +4ms as output. The UE is travelling at the speed of 30km/h. The carrier frequency is 2GHz and the subcarrier spacing is 15kHz. The spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms. The corresponding performance is provided in the following Table 27.
[bookmark: _Ref127372954]The generalization performance of AI-based CSI prediction over Uma and Umi scenarios
	                                      Test
NMSE(dB)                    
Train
	Uma
	Umi

	Uma
	-20.736
	-19.89

	Umi
	-9.53
	-41.48

	Mixed {Uma, Umi}
	-17.71
	-30.09


It can be seen that the prediction performance decreases significantly when the model trained by Uma is tested on the Umi data and the model trained by Umi is tested on the Uma data. This problem can also be solved by a level y/z collaboration based model switching. Furthermore, the model trained by the mixed scenarios can improve the generalization performance while its data collection is needed to be carefully designed. 

The generalization over the deployment scenarios, e.g., LOS/NLOS, Uma/Umi, is not good if the training set contains only one scenario.
The generalization and model switching/selection of AI-based CSI prediction over scenarios, e.g., LOS/NLOS, Uma/Umi, should be studied.

The impact of observation window and prediction window on the AI-based CSI prediction
For the AI-based CSI prediction, time varying characteristic of the CSI required to be extracted from historical CSIs in observation window and utilized to make prediction. Therefore, the construction of the observation window impacts the performance. The observation window can be described by the number of historical CSIs and the spacing of the historical CSIs. The choice of observation window has significant influence on the performance of the CSI prediction. The larger the number and the smaller the spacing of historical CSIs, the better the prediction performance that can be achieved. However, this will in return increase the complexity and the storage (buffer) overhead of the model. Furthermore, for different scenario and different prediction target, the observation window should also be different.
The corresponding simulation parameters are given below and the NMSE of CSI prediction with respect to different observation window is shown in Figure 22.
Simulation parameters: Uma 38.901, carrier frequency 2GHz, subcarrier spacing 15KHz, 32 gNB antenna ( [Mg Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]), 2 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 1 2; 1 1]), 100% outdoor UE, Channel type: NLOS. The spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms. The future time for prediction is  +4ms.

  [image: ]
[bookmark: _Ref127545173][bookmark: _Ref127546323]The NMSE of CSI prediction with respect to different observation windows
It is shown that, the prediction performance can be improved by increasing the number of historical CSIs. However, this improvement is marginal when the number of historical CSIs within the observation window is large enough, e.g., larger than 10 in this case. But the complexity and the storage (buffer) overhead will continuously increases. Therefore, the choice of the number of historical CSIs is important and its tradeoff should be studied. Furthermore, for different speed, the requirement for the spacing of historical CSIs is different. For example, 4ms CSI spacing is enough for 30km/h while 2ms CSI spacing seems to be more suitable for 60 km/h. Therefore, with the change of speed, the observation window should also be changed, perhaps impacting the model switching /selection for AI-based CSI prediction as well.
For the prediction window, we can revisit in Figure 19, that the prediction accuracy decreases with the prediction length. In reality, the decision of the prediction length should consider the scheduling time, the processing delay and feedback delay. The change of prediction length will impact the data collection and monitoring.
The observation window can be described by the number of historical CSIs and the spacing of the historical CSIs.
The larger the number and the smaller the spacing of historical CSIs within the observation window, the better the prediction performance that can be achieved. However, this will in return increase the complexity and the storage (buffer) overhead of the model.
For different speeds, the requirement for the observation window is different.
The prediction accuracy will decrease with the prediction length.
The change of observation window and prediction window will impact the LCM of AI-based CSI prediction.
The performance impact of observation window and prediction window on the AI-based CSI prediction should be studied.
Conclusions
1. From initial results for spatial consistency data, performance of simple model structure, e.g., one hidden layer full-connected encoder, can achieve good performance when per cell model is used.
From initial results for field test, performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical zone/site specific optimization.
[bookmark: _GoBack]From initial results for field test, as the model applicable area increases, simple model structure can still achieve good performance.
Zero-padding is feasible for subband number generalization while its performance degrades dramatically in port number generalization.
Pre-processing performs well for both subband number generalization and port number generalization.
Truncation on output dimension provides scalability across different payload for the same encoder under generalization case3.
For truncation method, the closer the supported payload configurations are, the better performance model achieves (e.g., model supporting payload 223, 199, and 175 outperforms model supporting payload 223, 176, 132)
Methods with good scalability for several output configurations will sacrifice some performance compared with dedicated model 
Rank generalization with per-layer model can achieve similar SGCS with half model size compared with per-rank model.
In the case of rank = 2, assigning a less payload for the second layer can benefit to reduce the total CSI payload with less performance loss.
ression models trained on one carrier frequency generalizes well over other carrier frequencies below 6GHz (generalization case2). 
CSI compression models trained on UMi generalizes well over UMa scenario (generalization case2).
CSI compression models trained on UMi generalizes poorly over InH scenario (generalization case2), and vice versa.
CSI compression models trained on a mixed UMi and InH dataset generalizes good over both UMi and InH scenario (generalization case3).
The best ratio of mixing data from each scenario is not necessarily to be evenly divided. For example, when considering mixing UMi and InH data, more samples from UMi scenario (e.g., 250k UMi samples and 25k InH samples) are required to achieve better performance. 
When compressing precoding matrix, CSI compression models generalize well over different RX antenna spacing (generalization case2).  
When compressing precoding matrix, CSI compression models trained without considering RX antenna gain imbalance generalize well over cases considering various RX antenna gain imbalance (generalization case2).
When compressing precoding matrix, CSI compression models generalizes poorly over different TX antenna spacing (generalization case2). 
For a generic model (non-optimized for a specific zone/site), there is obvious performance loss for antenna spacing mismatch of training data and this performance loss may decrease when the model size is reduced with reasonable pre-processing
For a generic model (non-optimized for a specific zone/site), SGCS performance of AI model may degrade slightly from 128 antennas with virtualization to 32 antennas without virtualization.
 For a generic model (non-optimized for a specific zone/site), in the case of 32 antennas, AI model trained with 32 antennas may have similar SE performance compared with AI model trained with 128 antennas and settled in the case of 128 antennas (generalization case 2).
Observations: High resolution R16-eType II codebook with large L, M, beta (for example, L=12, M=6, beta = 1.0) performs well for ground-truth CSI quantization.
Observation: Quantization non-aware training only achieves good performance when the averaged quantization bit is large (e.g., >= 4bits/float). When the averaged quantization bit is small (e.g., <= 2bits/float), the performance loss is significant.
Observation: Vector quantization with optimized codebook can achieve slightly better performance (e.g., by about 0.009 in SGCS in our considered configurations) than scalar quantization with fixed codebook.
Observation: Performance of vector quantization with randomly initialization and fixed codebook can be slightly inferior to that of scalar quantization with fixed codebook (e.g., by about 0.0065 in SGCS in our considered configurations).
Observation: Performance of quantization non-aware training could be significantly lower than that of quantization aware training (more than 0.1 in SGCS in our considered configurations).  
Observation: Quantization method at UE side and dequantization method at NW side should be aligned for training collaboration type2 and 3 to achieve a satisfying performance.
One common CSI reconstruction part could be trained to match multiple CSI generation parts of different UEs in training collaboration type 2 at the cost of some performance loss. 
Considering one common CSI reconstruction part matching three CSI generation parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduces from 0.075 to 0.052, i.e., losing about 30% performance gain.
One common CSI generation part could be trained to match multiple CSI reconstruction parts of different networks in training collaboration type 2 at the cost of some performance loss.
Considering one common CSI generation part matching three CSI reconstruction parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.061, i.e., losing about 19% performance gain.
There is a slight performance loss compared with joint training when all model configurations are aligned and enough data is exchanged (e.g., the same amount of data as that for local training)
If the quantization/dequantization method for separately trained CSI generation/reconstruction model does not match, the performance will drop significantly (more than 0.1 SGCS in our experiment).
There would be non-negligible performance loss for the case where one common CSI reconstruction/generation part is trained to match multiple CSI reconstruction/generation parts of different UEs in training collaboration type 3 (e.g., considering one common CSI reconstruction part to three CSI generation part and each UE sharing 50,000 samples with NW, the performance loss in SGCS is around 0.04). 
Performance of one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts of different networks/UEs is affected by the amount of exchanged data from each network/UE.
Performance loss in supporting common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts gets worse as the number of supported UEs/networks increases.
In NW-first training, if the backbone structure for separately trained CSI generation/reconstruction models does not match, the performance will drop significantly (more than 0.1 SGCS in our experiment).
Without CSI prediction (scheme #2), using only AI/ML based CSI compression, there exist significant spectral efficiency loss due to the channel aging. 
The AI-based CSI prediction (scheme #3) can make up the spectral efficiency loss caused by channel aging.
The AI-based CSI prediction (scheme #3) outperforms the non-AI based one (scheme #4).
The AI-based CSI prediction (#3) can predict CSIs of any future time, which has different performance.
Considering the spatial consistency, the AI-based CSI prediction still outperforms the non-AI approaches. 
AI-based CSI prediction can predict CSIs of any future time while the predicting time of AR-based method is limited to the periodic future time slot.
The generalization of AI-based CSI prediction with respect to PRBs is good.
The generalization of AI-based CSI prediction over speed is not good if the training set contains only one speed. 
The generalization of AI-based CSI prediction over speed can be improved using training set with mixed speed, whose prediction accuracy is still worse than that of speed-specific models.
For AI-based CSI prediction, with a level y/z collaboration, the speed-specific model can be switched according to the information associated with the UE change speed so as to guarantee the prediction performance for different speed. However, using a level x AI/ML model, it is hard to generalize well across different speeds.
Using the preprocessing-based model scaling mechanism, the model trained at one speed can scales to other speeds.
The generalization over the deployment scenarios, e.g., LOS/NLOS, Uma/Umi, is not good if the training set contains only one scenario.
The observation window can be described by the number of historical CSIs and the spacing of the historical CSIs.
The larger the number and the smaller the spacing of historical CSIs within the observation window, the better the prediction performance that can be achieved. However, this will in return increase the complexity and the storage (buffer) overhead of the model.
For different speeds, the requirement for the observation window is different.
The prediction accuracy will decrease with the prediction length.
The change of observation window and prediction window will impact the LCM of AI-based CSI prediction.

1. Consider to capture observations from field data test into TR. 
Study the performance and overhead of per-cell (region) model transfer in CSI compression.
Study the following three methods for generalization of input dimension 
· Option 1: use large dimension AI/ML model in small dimension cases: zero-padding
· Option 2: use small dimension AI/ML model in large dimension cases: grouping
· Option 3: use pre-processing to fix the input dimension: angle-delay domain compression
Study the pre-processing methods to support one CSI generation part with fixed input dimensions at UE side.
Further study the scalability over output dimensions, e.g., CSI payload truncation mechanism with N>1 separate CSI reconstruction parts.
For rank > 1 cases, study option3 (layer specific) and option4 (layer common)
· One common model for all payloads trained with the data from all layers
· One specific model for each payload trained with the data from all layers
Further study the generalization on antenna spacing and antenna virtualization, by using pre-processing mechanism.
Study the method and procedure to align quantization/dequantization method at different entities for CSI compression.
Discuss and develop an evaluation methodology for performance monitoring approaches. Following options can be considered as a starting point:
· linking metrics/results for specific monitoring methods to intermediate KPI results to see their relevance;
· modeling an environment changing procedure where models may be outdated and measuring the accuracy for different monitoring methods via system KPIs (e.g., throughput).
The study on AI-based CSI prediction can rely on the channel with/without the spatial consistency. The channel assumptions with/without the spatial consistency should be reported by each proponent.
The generalization of AI-based CSI prediction over frequency granularities should be studied.
The comparison of level y/z AI-based CSI prediction and level x AI-based CSI prediction should be studied in the generalization aspects of AI-based CSI prediction.
The generalization of AI-based CSI prediction across speeds should be studied, relying on, e.g., level y/z collaboration-based model switching and model scaling mechanisms.
The monitoring of the AI-based CSI prediction should be studied.
The generalization and model switching/selection of AI-based CSI prediction over scenarios, e.g., LOS/NLOS, Uma/Umi, should be studied.
The performance impact of observation window and prediction window on the AI-based CSI prediction should be studied. 
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Appendix I: the non-AI CSI prediction based on AR
In statistics and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it is used to describe certain time-varying processes. The autoregressive model specifies that the output variable depends linearly on its own previous values and on a stochastic term (an imperfectly predictable term). 
An AR model is described as

	,	







where  is the sample at time, the  are the parameters of the model, and  is white noise. For CSI prediction,  is the CSI at time .The parameters  can be directly derived from some samples using least square estimation. However, this estimation will be impacted by the noise. Another solution is to estimate the parameters based on the Yule-Walker equations.
There is a direct correspondence between these parameters and the covariance function of the process, and this correspondence can be inverted to determine the parameters from the autocorrelation function (which is itself obtained from the covariances). This is done using the Yule-Walker equations. The Yule-Walker equations is given by

		









where, yielding  equations. Here  is the autocovariance function of , is the standard deviation of the input noise process, and  is the Kronecker delta function. Because the last part of an individual equation, i.e., , is non-zero only if, the set of equations can be solved by representing the equations for in matrix form, thus getting the equation

		

which can be solved for all  Then the parameters of AR model can be estimated by

                                                                                     	                                                                        




The average cosine similarity

5.5GHz	85	95	111	127	159	175	191	207	223	0.82399999999999995	0.84399999999999997	0.85499999999999998	0.86399999999999999	0.873	0.88500000000000001	0.89500000000000002	0.89400000000000002	0.91200000000000003	3.5GHz	85	95	111	127	159	175	191	207	223	0.82299999999999995	0.84299999999999997	0.85699999999999998	0.86399999999999999	0.872	0.88300000000000001	0.89700000000000002	0.89700000000000002	0.91	2.2GHz	85	95	111	127	159	175	191	207	223	0.82199999999999995	0.84399999999999997	0.85899999999999999	0.86099999999999999	0.874	0.88100000000000001	0.89800000000000002	0.89700000000000002	0.91100000000000003	payload (bits)


The average cosine similarity




The gain of average SE 

5.5GHz	85	95	111	127	159	175	191	207	223	0.15797788309637895	1.1058451816745531	2.6066350710900394	2.9225908372827689	4.4233807266982552	4.9763033175355389	6.3191153238546747	6.0821484992101205	6.9510268562401336	3.5GHZ	85	95	111	127	159	175	191	207	223	0.23696682464454	1.3428120063191216	2.5276461295418642	2.9225908372827689	4.186413902053701	5.0552922590837426	6.3191153238546747	6.3191153238546747	7.3459715639810526	2.2GHZ	85	95	111	127	159	175	191	207	223	0	1.2638230647709321	2.5276461295418642	2.9225908372827689	4.186413902053701	4.9763033175355389	6.240126382306471	6.5560821484992147	7.0300157977883089	payload (bits)


The gain of average SE (%)




The SGCS of different antenna sapces

0.8λ antenna space for training	85	95	111	127	159	175	191	207	223	0.82299999999999995	0.84299999999999997	0.85699999999999998	0.86399999999999999	0.872	0.88300000000000001	0.89700000000000002	0.89700000000000002	0.91	0.5λ antenna space for training	85	95	111	127	159	175	191	207	223	0.80800000000000005	0.82399999999999995	0.83699999999999997	0.85199999999999998	0.873	0.88	0.88700000000000001	0.89500000000000002	0.89900000000000002	payload (bits)


SGCS




The gain of average  SE compared with 
85 bits baseline AI model 

0.8λ antenna space for training	85	95	111	127	159	175	191	207	223	0	1.1041009463722276	2.3659305993690936	2.7602523659305831	4.0220820189274491	4.8107255520504708	6.1514195583596347	6.1514195583596347	7.1766561514195644	0.5λ antenna space for training	85	95	111	127	159	175	191	207	223	-2.9968454258675052	-1.5772870662460576	-0.47318611987381587	0.55205047318611378	2.3659305993690936	3.0757097791798174	3.5488958990536332	4.4164037854889528	4.8107255520504708	payload (bits)


The gain of average SE (%)




The SGCS of small AI models

0.8λ antenna space for training	87	117	147	177	207	237	267	297	327	0.78300000000000003	0.81599999999999995	0.83499999999999996	0.84499999999999997	0.85099999999999998	0.85499999999999998	0.85699999999999998	0.85799999999999998	0.85799999999999998	0.5λ antenna space for training	87	117	147	177	207	237	267	297	327	0.78900000000000003	0.82099999999999995	0.83899999999999997	0.84799999999999998	0.85399999999999998	0.85699999999999998	0.85899999999999999	0.86	0.86	payload (bits)


SGCS




The gain of average  SE of small AI models compared with 
87 bits baseline AI model 

0.8λ antenna space for training	87	117	147	177	207	237	267	297	327	0	3.0176026823135089	4.6940486169320934	5.6160938809723291	6.4543168482816355	6.8734283319362959	7.1248952221290835	7.292539815590942	7.292539815590942	0.5λ antenna space for training	87	117	147	177	207	237	267	297	327	0.58675607711651878	3.5205364626990701	5.1131601005867537	6.2028499580888479	6.621961441743494	6.8734283319362959	7.2087175188600128	7.4601844090528004	7.5440067057837297	payload (bits)


The gain of average SE (%)




The SGCS of Rel-16 Type II codebook and AI model 

Rel-16 Type II with [2 8 2]	64	96	116	180	244	302	0.69099999999999995	0.73899999999999999	0.77400000000000002	0.82699999999999996	0.84099999999999997	0.86599999999999999	AI Case 2	78	95	111	127	143	159	180	207	223	0.79	0.81799999999999995	0.83699999999999997	0.84499999999999997	0.86499999999999999	0.86899999999999999	0.88500000000000001	0.89800000000000002	0.90400000000000003	Rel-16 Type II with [8 8 2]	64	96	116	180	244	302	0.68500000000000005	0.72799999999999998	0.76500000000000001	0.81200000000000006	0.82399999999999995	0.84499999999999997	AI Case 1	78	95	111	127	143	159	180	207	223	0.79500000000000004	0.82199999999999995	0.84	0.84499999999999997	0.85699999999999998	0.871	0.88600000000000001	0.89700000000000002	0.90300000000000002	AI Case 3	85	95	111	127	159	175	191	207	223	0.82299999999999995	0.84299999999999997	0.85699999999999998	0.86399999999999999	0.872	0.88300000000000001	0.89700000000000002	0.89700000000000002	0.91	feedback bits


SGCS





SGCS	
Quantization non-aware training (80 floats)	Quantize by 320bits for inference	Quantize by 240bits for inference	Quantize by 180bits for inference	Quantize by 80bits for inference	0.90449999999999997	0.89161999999999997	0.85045000000000004	0.73597999999999997	0.51866000000000001	



SGCS (all models consider using 180bits to quantize 80 float-format variables)

SGCS	
Vector quantization with optimized codebook	Vector quantization with fixed codebook	Scalar quantization with fixed codebook	Quantization non-aware training	0.87168000000000001	0.85553000000000001	0.86258000000000001	0.73597999999999997	
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