
[bookmark: _Hlk47552872][bookmark: _Hlk127520618]3GPP TSG RAN WG1 #112 R1-2300443
Athens, Greece, February 27th – March 3rd, 2023

Source:	vivo
Title:	Discussions on AI/ML framework
Agenda Item:	9.2.1
Document for:	Discussion and Decision
Introduction
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]At RAN1 #111, some agreements and conclusions have been made as in appendix D [1].
In this contribution, we further discuss the general aspects of AI/ML framework.

Reference model structure and RAN4 related aspects
The challenges of RAN4 requirement definition and testability procedure definition aspects lie in the following:
· Multi-vendor (network vendor, UE vendor and TE vendor) involvement in two sided cases. The candidate sub-use case is mainly CSI compression. In RAN1 discussion, there are two training types defined for CSI compression: type 1 training and type 3 training. For type 1 training, the network side trained a model offline and update the model of the other side using model transfer/delivery. For type 3 training, the network side and UE side use separate training to obtain models on each side. With TE vendor involvement, how the three parties are involved together for testing procedure need to be considered carefully.
· Generalization performance definition. Non-AI algorithms are based on communication theories and have physical/interpretable meanings. Their performances are robust and predictable to some extent. AI/ML algorithms are based on machine learning and have weak physical meanings. If the scenarios for test is different from the scenario where the training data is generated, the performance would degrade. The channel conditions of real environment are complex and diversified. It is necessary in RAN4 to discuss whether and how to test the generalization performance of AI/ML algorithms.
· Performance requirement need to be defined to justify AI/ML gains. As a continuously evolving technology and also paving the way for future, performance requirement of the AI/ML based operations need to be defined to justify the efforts from industry.
· Performance of different models would be different, especially considering complicated training types. We show below one case for RAN1 type 3 training. It could be seen that with different model assumption, the performance could be worse than the legacy codebook. Thus, alignment between different parties on the model structure is needed for definition of performance requirement.
Table 2-1: The performance of separate training with different model assumption.
	
	Baseline0: Joint training of Encoder0 and Decoder @ NW
	Separate training of perfectly aligned Encoder0
	Separate training of misaligned CNN Encoder2
	Legacy codebook

	Test SGCS
	0.878
	0.870
	0.756
	0.795

The following challenges should be addressed for RAN4 related aspects:
· Multi-vendor (network vendor, UE vendor and TE vendor) involvement in two sided cases.
· Generalization performance definition.
· Performance requirement need to be defined to justify AI/ML gains.
· Performance of different models would be different, especially considering complicated training types.
To address above challenges, one possible way is to define a reference model structure that is widely used in the industry and RAN1 evaluation discussion, e.g., fully connected, CNN and/or transformer.
· Reference model structure can address the concerns due to the following aspects:
· With reference model structure, multiple vendors could be easily involved for both training type 1 and type 3. With training type1, both network vendor and TE vendor can update the model parameters of UE vendors and test the corresponding performance of paired models. For type 3 training, TE vendors could also take into account of reference model structure of the other side to properly train its own models.
· With reference model structure, performance requirement can be defined based on the agreed structure. The issues regarding different models having different performance can be resolved. Based on RAN1 evaluations and future RAN4 defined testing conditions, the corresponding performance of the reference model structure can be defined.
· The generalization performance of reference model structure can also be resolved for two sided case: for type 1 training, the parameters of the reference model can be updated to fit into local environments. For type 3 training, different data sets can be used to separately train different models for use considering the reference model structure. For one sided case, the generalization issue can also be resolved with update of model parameters from the other side. The only exception is UE sided model without parameters from the other side, discussion is needed on whether and how to test generalization for this case.
· Without reference model structure:
· It would be difficult to define performance requirement which can justify AI/ML gains.
· It would be difficult for TE vendors to involve in type 1 and type 3 training procedure.
There are some concerns that may also arise for defining reference model structure. We provide our understanding as below:
· Whether the inference performance would be different if the tested parameters are different from those used in field considering e.g., due to different quantization at UE side:
· We did some experiments as below showing that no matter the quantization level is 32bits/16bits/8bits, the performance difference is very small. Models are trained on FP32 and quantized for inference. Encoder and decoder are both quantized.
Table 2-2: The performance of different quantization levels for CSI compression.
	
	MLP model
	CNN model
	Transformer model

	SGCS of FP32 quantization inference
	0.9421
	0.9493
	0.9581

	SGCS of FP16 quantization inference
	0.9421
	0.9493
	0.9581

	SGCS of int8 quantization inference
	0.9413
	0.9486
	0.9573

· Whether additional UE compilation is needed with flexible model parameters update:
· It is widely used already in today’s implementation for UE to do on device parameter update for a specific model structure. Since the model structure is already fully compiled in a way with flexible model update, there is no additional concerns on power consumption related aspects.
· On device quantization may be needed if the two sides have different understanding. This is also not an issue from UE side due to the following:
· On the one hand, as shown above, different quantization levels have almost the same inference performance. UE would choose the most feasible way to do the quantization, e.g., by directly quantize the updated 32bits-quantized parameters with fixed 8bits-quantized parameters for inference. This additional effort would still be within feasibility region in typical implementation even with today’s chipset.
· On the other hand, specification on quantization would be another way to resolve this issue.
· Whether the performance would be different due to device specific implementations for performance requirement definition.
· We also did some evaluations to see the impact of antenna imbalance and antenna spacing. In Table 2-4, each UE antenna has a different amplitude and phase disturbance, where the power factor of the first antenna is 1 and different random power attenuations are set on other antennas. It could be seen from the performance of different spacings and antenna imbalance is negligible. It is not necessary for the network to maintain different models for different devices.
Table 2-3: The performance of different antenna spacing for CSI compression.
	Antenna spacing
	0.3 wave length
	0.5 wave length
	0.8 wave length

	Model performance
	0.8721
	0.8793
	0.8766

Table 2-4: The performance of antenna imbalance for CSI compression.
	Power factor (dB)
	Type II
	AI

	0.0
	0.8319
	0.8793

	0.5
	0.8320
	0.8793

	1.0
	0.8317
	0.8791

	2.0
	0.8312
	0.8784

	3.0
	0.8302
	0.8775

· Whether this would expose proprietary processing.
· From model proprietaries perspective, fully connected or CNN is widely used in the industry for decades. There are no model proprietaries issues for model itself. Other models like Transformer is also widely used and model itself also does not have proprietary issues.
· On the other hand, it is not prohibitive that UE or network can implement other models for processing outside the minimum requirement perspective. Proprietary processing can anyway be up to vendor’s implementations.
Base on above analysis, we have the following proposal
Consider to define reference model structure in RAN4 or RAN1.

Zone/site specific model v.s. generic model development for two sided cases
As agreed, there are three methods to fight against the AI/ML generalization problem across different scenarios/configurations/sites, i.e., model generalization, model switching and model update. Generic model development is corresponding to model generalization where one model is deployed for different zones/scenarios, while model switching and model update is corresponding to development of zone-specific model with different models or parameters used in different zones.
In generic model development, network or UE collects a large number of training data from various scenarios/configurations/sites. Post-processing of the collected data is needed, such as noise filtering. According to our contribution [3], the ratio of the collected data from different scenarios/configurations/sites has considerable impacts on the AI/ML performance, and then this ratio may be adjusted to match the practical wireless environment. And then the AI/ML model is trained and deployed to network or UE. The generic model would be of high complexity and large storage overhead, to fit the different channel characteristic of various scenarios/configurations/sites. This generic model development can be based on either level y or level z. In level y, joint training or separate training can be used for two-sided model. In joint training or separate training, if there is no data sharing between the network vendor and UE vendor, the AI/ML model is trained by the data collected from one side, and then the AI/ML performance may be decreased. In level z, the trained model can be transferred from network to UE, since network can collect data from various UEs all the time and the AI/ML model is likely to be well trained.
 In zone specific model deployment, network or UE collects training data from the target zone. Since the wireless channel condition is much simpler in this case, the number of collected training data would be much smaller and the AI/ML model may be simple and small, which has been verified in the following subsections. Also, the ratio adjustment of the collected data from different scenarios/configurations/sites would be not needed.
Compared with zone/site specific models, generic model applicable across multiple areas would typically have larger computation complexity and storage overhead.
In collaboration level y, UE needs to store a large number of AI/ML models. When the scenario/configuration/sites change, UE can select the proper AI/ML model among a group of models. If there are N1 scenarios, N2 configurations and N3 sites, UE needs to store N1*N2*N3 AI/ML models for just one functionality. The storage overhead may be unaffordable. Model updating is another option to improve the AI/ML generalization performance. If the AI/ML model is not suitable for current scenario/configuration/site, UE can collect training data by itself or network. Using the collected data, UE can update its AI/ML model. It is clear that the data collecting needs extra time and storage. The training procedure needs extra computation resource and time.
In collaboration level z, using model transfer, UE only needs to use the AI/ML model transferred from network. When current AI/ML model is no longer suitable, for both the new zone case and the channel condition changing case, the new model can be transferred to UE.
Collaboration level z can be used to facilitate zone specific model deploy.
Previously it has already been agreed to study zone/site specific model performance. In this section, we had more study on data collected from field and ray tracing to evaluate the performance of zone/site specific model.
	Agreement
Study potential specification impact needed to enable the development of a set of specific models, e.g., scenario-/configuration-specific and site-specific models, as compared to unified models.
Note: User data privacy needs to be preserved. The provision of assistance information may need to consider feasibility of disclosing proprietary information to the other side.
Agreement
Study various approaches for achieving good performance across different scenarios/configurations/sites, including
· Model generalization, i.e., using one model that is generalizable to different scenarios/configurations/sites
· Model switching, i.e., switching among a group of models where each model is for a particular scenario/configuration/site
1. [Models in a group of models may have varying model structures, share a common model structure, or partially share a common sub-structure. Models in a group of models may have different input/output format and/or different pre-/post-processing.]
· Model update, i.e., using one model whose parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. Fine-tuning is one example.

Some initial results for field test
We provide some initial results for field test of CSI compression. The data is collected from actual 5G network and the collecting area is about 400m * 350m. About outdoor 50000~100000 samples per area or cell are collected. The detailed parameters are provided in Table 3.1-1.
Table 3.1-1: Parameters of field test of CSI compression.
	Parameters
	Value

	Scenario
	Actual 5G network, about 400m * 350m collecting area.
About outdoor 50000~100000 samples per area or cell.

	Carrier frequency
	3.45GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	8 antenna ports

	UE antenna
	4 antenna ports

	CSI payload
	167/58 bits payload

Field test result of different areas
There are 3 data collecting areas. Area B is the main road of the industrial park, with many tall trees and cars along the road. Area C is the road behind several buildings. Area D is the indoor scenario in a building. UE in the left part of the industrial park usually accesses to a different cell, compared with the right part of the industrial park. So, we focus on the right part of the industrial park and current areas are chosen.
[image:]
Figure 3.1-1: The map of data collecting areas.
The SGCS results of eType II codebook and multiple AI/ML models are provide in the following. In Table 3.1-2 and 3.1-3, the AI/ML models are trained by the data in each area separately, and multiple AI/ML models are used. 167 bits overhead is used in Table 3.1-2 and 58 bits overhead is used in Table 3.1-3. In Table 3.1-4 and 3.1-5 only one hidden layer full-connected encoder is used and it is trained by the data of all 4 areas, with 167 bits overhead and 58 bits overhead separately.
It is seen that the performance gaps between different AI/ML models are small. Even one layer MLP encoder can provide good performance, which is very simple and small. With much higher complexity, Transformer encoder has better performance than one layer MLP encoder, but the performance gain is small Area B. Considering the performance and complexity, simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
Table 3.1-2: The SGCS results of multiple AI/ML models trained by the data in each area separately, with 167 bits overhead.
	167 bits overhead
	eTypeII
	AI with an area specific model (One layer MLP encoder) ~67kB
	AI with an area specific model (small CNN encoder) ~250kB
	AI with an area specific model (Transformer encoder) ~3.6MB

	Area B
	0.8429
	0.9217
	0.929
	0.9406

	Area C
	0.7871
	0.898
	0.9037
	0.9116

	Area D
	0.8489
	0.9315
	0.9323
	0.9423

Table 3.1-3: The SGCS results of multiple AI/ML models trained by the data in each area separately, with 58 bits overhead.
	58 bits overhead
	eTypeII
	AI with an area specific model (One layer MLP encoder) ~30kB
	AI with an area specific model (small CNN encoder) ~213kB
	AI with an area specific model (Transformer encoder) ~3.3MB

	Area B
	0.7290
	0.8573
	0.8725
	0.8868

	Area C
	0.6438
	0.8015
	0.8162
	0.8389

	Area D
	0.6853
	0.8701
	0.8814
	0.8873

Table 3.1-4: The SGCS results of one hidden layer full-connected encoder trained by the data of all 4 areas, with 167 bits overhead.
	167 bits overhead
	Training SGCS on data from all areas
	Testing SGCS in area B
	Testing SGCS in area C
	Testing SGCS in area D

	One hidden layer full-connected encoder~67kB
	0.9055
	0.905
	0.8799
	0.8959

Table 3.1-5: The SGCS results of one hidden layer full-connected encoder trained by the data of all 4 areas, with 58 bits overhead.
	58 bits overhead
	Training SGCS on data from all areas
	Testing SGCS in area B
	Testing SGCS in area C
	Testing SGCS in area D

	One hidden layer full-connected encoder~30kB
	0.8184
	0.8201
	0.7592
	0.7958

From initial results for field test, performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical zone/site specific optimization.
Field test result of different physical cells
The performance of different physical cells is analyzed in the following. We have tested the coverage of different cells in the industrial park, according to the measured RSRP, RSRQ and SINR. The coverage areas of two typical cells in the industrial park are shown in the below figure.
[image:]
Figure 3.1-2: The map of data collecting cells.
The SGCS results of eType II codebook and multiple AI/ML models are provide in the following. In Table 3.1-6, the AI/ML models are trained by the data in each area separately, and multiple AI/ML models are used. 167 bits overhead is used.
Compared with the results of Areas B, C and D, similar insights can be seen in the results of Cell 1 and Cell 2. The performance gaps between different AI/ML models are small. The performance gain of Transformer encoder is small, compared with one layer MLP encoder.
Table 3.1-6: The SGCS results of multiple AI/ML models trained by the data in each cell separately, with 167 bits overhead.
	167 bits overhead
	eTypeII
	AI with an area specific model (One layer MLP encoder) ~67kB
	AI with an area specific model (small CNN encoder) ~250kB
	AI with an area specific model (Transformer encoder) ~3.6MB

	Cell 1
	0.8067
	0.8706
	0.8833
	0.8979

	Cell 2
	0.8145
	0.8974
	0.9044
	0.9172

From initial results for field test, as the model applicable area increases, simple model structure can still achieve good performance.

Some initial results for spatial consistency data
Here we consider using data where the channel has spatial consistency characteristics. Each UE generates random variables with spatial consistency based on its own geographic location at the T=0, both the cluster specific random variables and the correlation distance for spatial consistency procedure a follow 38.901. The detailed parameters are provided in Table 3.2-1.
Table 3.2-1: Parameters of spatial consistency data of CSI compression.
	Parameters
	Value

	Scenario
	UMa

	Channel model
	Uma 38.901 with spatial consistency

	Carrier frequency
	4GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	32 antenna ports
[Mg Ng P M N, Mp Np] = [1 1 2 8 8, 2 8]
= (0.8, 0.5) λ, +45°/-45° polarization

	UE antenna
	2 antenna ports
[Mg Ng P M N, Mp Np] = [1 1 2 1 1, 1 1]
= (0.8, 0.5) λ, 0°/+90° polarization

	BS receiver noise figure
	10

	UE receiver noise figure
	7

	UE distribution
	100% outdoor

	UE speed
	30km/h

	Mechanic tilt
	180° in GCS (pointing to the ground)

	Beam set at TRxP
	Azimuth angle φi = [0], Zenith angle θj = [102].

	UE beam set
	Azimuth angle φi = [0], Zenith angle θj = [90]

Cell specific model is considered and then different AI/ML models are used for different cells. Simple AI/ML model, which is a one layer MLP encoder, and complex transformer encoder are evaluated in this simulation. It is seen that the performance of simple AI/ML model is similar to that of complex AI/ML model, similar as observed in field test results. Considering the performance and complexity, simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
Table 3.2-2: The SGCS results of multiple AI/ML models trained by the data in each area separately.
	
	AI with a cell specific model (One layer MLP encoder) ~285kB
	AI with a cell specific model (Transformer encoder) ~4.08MB

	Cell 0
	0.8345
	0.8895

	Cell 1
	0.8815
	0.9168

	Cell 2
	0.9132
	0.9412

	Cell 3
	0.9148
	0.9439

	Cell 4
	0.8718
	0.9049

	Cell 5
	0.9076
	0.9380

	Cell 6
	0.8698
	0.9072

From initial results for spatial consistency data, performance of simple model structure, e.g., one hidden layer full-connected encoder, can achieve good performance for zone/site specific operations.

Some initial results for ray tracing data
To better compare the performance of AI/ML model in level y and level z, we utilize a typical ray-tracing channel model [2] in our experiment. The outdoor scenario map [2] is plotted in Figure 3.3-1.
[image:]
Figure 3.3-1: Ray tracing map.
Specifically, we collect the channel from BS3 to UEs in user grid 1 (nearly LoS scenario) and user grid 2 (nearly NLoS scenario) respectively and all channels (~50,000 samples) in one experiment are collected in an area of 100m*35m, which is similar to a cell range. Other parameters with regarding to ray tracing could be referred to the official website [2]. The initial results are presented in Table 3.3-1.
Table 3.3-1: Results for per-cell (region) model in CSI compression.
	
	SGCS of General model*,**
	SGCS of per-cell model with Transformer structure**
	SGCS of per-cell model with one-layer fc structure**

	User grid 1 (LoS)
	0.841
	>0.99
	>0.99

	User grid 2
(NLoS)
	0.795
	>0.99
	>0.99

*General model is trained on channel data (~600,000 samples) collected from 21 cells generated from 38.901 model.
**More simulation parameters: carrier frequency 3.5GHz, subcarrier spacing 15KHz, 13 subbands (10MHz, 4RBs/subband), 32 gNB antenna ([Mg Ng M N P; Mp Np] = [1 1 8 8 2; 2 8]), 4 UE antennas ([Mg Ng M N P; Mp Np] = [1 1 1 2 2; 1 2]), horizontal beam sweeping along x-axis, vertical beam sweeping along z-axis, 180bits payload.
Following observations are drawn on per-cell (region) model:
[bookmark: _Hlk118745925]From initial results for ray tracing based data generated with the map provided in [2], performance of simple model structure, e.g., one hidden layer full-connected encoder, can achieve good performance for zone/site specific operations.

Performance degradation for type 2 and type 3 training for CSI
In this subsection, we discuss the performance of joint training and separate training for level y.
For type 2 training, as shown in our companion contribution, it could be observed that there are certain level performance degradations for one common CSI reconstruction part to two/three CSI generation parts of different UEs. As the number of CSI generation parts increases, the performance degradation also enlarges. For the case with one common CSI generation part and multiple CSI reconstruction parts, it also suffers from some performance loss, which enlarges as the number of supported CSI reconstruction parts increases. Interestingly, the performance loss in common CSI generation part is generally lower than that in common CSI reconstruction part, which needs further study and verification.
[bookmark: _Ref115456456]For type 2 training for CSI, considering one common CSI generation part matching three CSI reconstruction parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.061, i.e., losing about 19% performance gain.
One major concern for joint training is the huge overhead of exchanged information. According to the procedure, the forward- and backward- propagation information should be exchanged each batch. Besides, the training data should also be exchanged during training to serve as the labels. The overall overhead could be roughly computed as
Overhead ≈ # of epoch*(forward-propagation information + back-propagation information + input data)
Suppose the size of each forward- and backward-propagation sample is ~1/10 of the input (e.g., 13*32*2 floats are typically compressed into 50 floats without quantization), the total overhead could still be ten times of those for separate training and model transferring depending on the number of epochs. It is worth pointing out that there are still approaches to further reduce the overhead, but it is extremely challenging to reduce the over-the-air overhead to the similar level of separate training or model transfer.
Overhead in information exchange for training collaboration type 2 grows linearly with the number of iterations at training stage.
For type 3 separate training, also as shown in our companion contribution, the performance could reach that of joint training if the number of exchanged data samples is large enough, i.e., similar level to the scale of training data, and some key information of encoder and decoder is aligned, such as the quantization and dequantization method. In addition, we find that it is possible to train a pair of encoder and decoder subject to different structures, e.g., an MLP encoder and a Transformer decoder, to a reasonable performance. It is not necessary to fully align the model structure of encoder at UE and decoder at network. Finally, the quantization and dequantization methods play an important role in separate training. Our simulation shows that when the quantization approach at UE and dequantization approach at network do not match, there will be an unacceptable performance loss for the model.
If the model structure is not aligned (e.g., dequantization method at decoder and the quantization method in encoder could not match), there will be an obvious performance loss compared with that in case where the dequantization and quantization method are matching.
It is possible for separate training collaborations to develop one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts. For sequential training starting with UE side training, it is trivial to realize one common CSI generation part to multiple CSI reconstruction parts of different networks, since it is natural for UEs to broadcast the input/output of the same CSI generation part to multiple gNBs. Supporting one common CSI reconstruction part to multiple CSI generation parts of different UEs is also not difficult.
To this end, we try to verify the performance of this case. Consider UE-active separate training with three UEs, each of which uses different backbone structures for their CSI generation part, i.e., Transformer, CNN, and MLP. Each UE reports 10,000, 50,000, or 300,000 data samples for separate training, and the gNB combines all reported data to train the CSI reconstruction model. In this experiment, we consider separate training with one to one CSI generation/reconstruction part (assumed to exchange 300,000 data samples between UR and gNB) to serve as the baseline. Various combinations of amounts of reported samples are simulated.
Compared with one-to-one model, one common CSI reconstruction part to multiple CSI generation parts of different UEs demonstrates a degraded performance. Such degradation gets worse as the amount of exchanged data decreases. Performance of one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts of different networks/UEs is affected by the amount of exchanged data from each network/UE.

Summary for comparison between zone/site specific models and generic models
In this section, various evaluation results and analysis have been done for zone/site specific models and generic models, including field test, spatial consistency data and ray tracing data. To fight against the AI/ML generalization problem across different scenarios/configurations/sites, generic model applicable across multiple areas would typically have larger computation complexity and storage overhead, while zone/site specific models would need simple model structure and small model size. For example, one hidden layer full-connected encoder is good enough for typical zone/site specific optimization.
Using the model transfer aided model switching, UE can achieve the benefits of zone/site specific models and does not need to store so many AI/ML models. If UE enters into a new scenario/configuration/site and does not have a proper AI/ML model, network can transfer a suitable AI/ML model to UE, which may be small and simple. The cost of storage, computation resource and time would be acceptable.
For separate training based operations, the model is also expected be updated in a long term which have similar shortcomings as mentioned above for generic models. Another issue is related to performance degradation due to single(multiple) reconstruction part paired with multiple(single) construction parts.
To fight against the AI/ML generalization problem, generic model would typically have larger computation complexity and storage overhead, while zone/site specific models would need simple model structure and small model size.

Model transfer considerations and specification impact
In RAN1#110b, the following agreement was achieved.
	Working Assumption
· Define Level y-z boundary based on whether model delivery is transparent to 3gpp signalling over the air interface or not.
· Note: other procedures than model transfer/delivery are decoupled with collaboration level y-z
Clarifying note: Level y includes cases without model delivery.

In this section, we will introduce model transfer considerations and specification impact.
Necessity of model delivery/transfer
In this subsection, the necessity of model deliver/transfer is analyzed.
Flexibility for model update
Model update is needed since AI/ML model would be outdated for various reasons.
· The change of UE hardware. For example, the phone case is widely used and different types of phone case would have different impacts on the UE signal reception. During the usage of UE device, the performance of UE antenna module would also change over time.
· Updated AI/ML model with better performance. Network and UE would collect data samples during daily usage. With the newly collected data samples, the parameters of the AI/ML model would be finetuned to achieve better performance. Moreover, new model structure would be designed to reduce the complexity and improve the performance.
· New AI/ML functionality. The original AI/ML models on the device may not cover all the AI/ML functionalities. New AI/ML functionalities would be needed to improve the system performance, such as channel prediction for higher speed, channel compression for larger PMI overhead, beam prediction for new beam pattern.
· The change of wireless conditions. The AI/ML model is trained based on the data samples from certain areas and certain time. As time goes by, the environment is always changing, such as the increasing or decreasing of the buildings, or the change of weather.
Model delivery/transfer can update the AI/ML model flexibly with small overhead and delay. Model updating or finetuning may be also used, but it would need extra computation resource and large delay due to the training procedure, extra time and storage due to data collecting.
Per cell or area optimization
As shown in Section 3, different cells or areas have different wireless channel characteristics. Per cell or area model is able to achieve good performance, with simple model structures, such as one hidden layer full-connected model or small CNN model. With model delivery/transfer, network can store the AI/ML model optimized for certain cells or areas and deliver it to UE.
Model switching or model updating is hard to achieve the gain of per cell or area optimization. If model switching is used, UE needs to store a large number of AI/ML models. Since there would be large number of cells or areas, the storage overhead may be unaffordable. Then consider model updating. If the AI/ML model is not suitable for current scenario/configuration/site, UE can collect training data by itself or network and then update its AI/ML model. It is clear that the data collecting needs extra time and storage, and the training procedure needs extra computation resource and time.
Without per cell or area optimization, the generic model is needed, which is generalizable to different cells or areas. The generic model would be of high complexity and large storage overhead, to fit the different channel characteristic of various scenarios/configurations/sites.
Model delivery/transfer is necessary due to flexibility for model update and per cell or area optimization.

Comparison between open format and proprietary format
In the following, we share our further views on the comparison between open format and proprietary format.
Proprietary information disclosure across vendors
Little proprietary information is disclosed across vendors when proprietary format is used. The model structure is disclosed in open format, but if widely-known model (e.g., fully connected or CNN) is used, this issue does not exist.
Flexibility for model update and per cell or area optimization
Open format can support flexible model update and optimize the model per cell or area, while proprietary format would need the network to store all the non-recognizable image files at the network side, or UE side would need to store large number of image files.
If open format is used, network can collect the data from nearby cells, optimize its AI/ML model and deliver the optimized AI/ML model to UE. It has been shown in Section 3 that per cell or area model could achieve good performance with simple model structures. It is noted that the same AI/ML model in open format can be optimized by network for multiple UE vendors. Moreover, UE only needs to store small number of models, since the AI/ML model can be easily delivered from network with small deliver delay.
If proprietary format is used, the AI/ML model is non-recognizable image file for network and network could not optimize the AI/ML model for UE. UE would need to store large number of image files to achieve the gain from per cell or area optimization. Moreover, different UE vendors would use different proprietary formats, and then network needs to store all these non-recognizable image files.
Offline co-engineering efforts and feasibility for deployment involving multiple vendors
Delivery model with proprietary format requires offline consensus among multiple vendors on how to use a proprietary file which is non-feasible in most cases. The performance of AI/ML model with proprietary format needs be tested offline across multiple vendors, to ensure that the AI/ML performance meet requirements.
For open format, such offline co-engineering may not be needed since the vendors responsible for the development are well aware of how to use the developed models. As long as the other side can conduct the corresponding operation required by the open format model, the corresponding functionality would be achieved without any offline efforts.
For proprietary format, multiple UE vendors use their own AI/ML models, and network delivers the corresponding AI/ML model to the UE according to its vendor. For open format, multiple UE vendors can use different AI/ML models or same AI/ML model. The storage overhead of open format would be lower than that of proprietary format. Moreover, as discussed above, for cases involving testing equipment vendors, it would not be feasible to design test cases with proprietary format thus non-feasible for deployment involving multiple vendors.
Device capability and delay for compiling, updating and running the model
For parameter-only updating with properly aligned information, no additional compiling is needed. If flexible model structure updating is also involved, it would lead to extra delay or extra device capability.
For executable images in proprietary format, UE does not need to compile the model format. For parameter-only updating, it is also not needed for the device to compile the model with properly aligned information, and then the overhead will be smaller than proprietary format. If the updated model parameters are float-point, UE would need to transform the model parameters into fixed-point. Moreover, UE may compress the AI/ML model into a smaller and simpler model. If network tries its best to optimize the AI/ML model using simple model structures, UE would not need to do the further compression. Model structure updating of open format may need the compiling of the updated AI/ML model, and the overhead will be large than proprietary format and parameter-only updating.
Another aspect is related whether additional offline effort is needed for model updating. For cases where the model is developed at the network side and then deployed at the UE side, the network can deliver the updated model to UE flexibly. For proprietary format, the model delivery would need additional offline effort to change it to executable images.
AI/ML model with proprietary format is usually optimized according to UE hardware implementation. UE hardware would optimize part of AI/ML model structures, such as full-connected layers and convolutional layers. If AI/ML model with open format contains some other AI/ML model structures which are not optimized in UE hardware, the UE hardware efficiency for AI/ML model with open format would be lower than that with proprietary format. However, if AI/ML model with open format only contains simple model structures or with parameter-only update, its hardware efficiency would be the same as to proprietary format.
The model structure is disclosed in open format, but if widely-known model (e.g., fully connected or CNN) is used, this issue does not exist.
One advantage of open format is flexibility for model update and per cell or area optimization. Open format can support flexible model update and optimize the model per cell or area, while proprietary format would need the network to store all the non-recognizable image files at the network side, or UE side would need to store large number of image files.
Delivery model with proprietary format requires offline consensus among multiple vendors on how to use a proprietary file which is non-feasible in most cases. Moreover, for proprietary format, network has to prepare multiple models for different UE vendors.
For parameter-only updating with properly aligned information, no additional compiling is needed. If flexible model structure update is also involved, it would lead to extra delay or extra device capability.
[bookmark: _Hlk118745995]Study open format with widely-used model structures and parameter-only updating, which can obtain the most gain of open format and proprietary format.
· Using widely-used model structures to avoid the concern of disclosing model structure.
· Using parameter-only updating to avoid additional compiling at UE side.

Model structures in model transfer
It is agreed in last meeting that 3GPP signaling is used for model transfer. There are two options of 3GPP signaling for model transfer. One is control plane based solution, and the other is user plane based solution. In CP-based solution, model transfer is over SRB, and is point-to-point between UE and RAN node/CN entity. In UP-based solution, model transfer is over DRB, and is point-to-point between UE and server via UPF.
If arbitrary AI/ML is transferred from network to UE, there is possibility that UE can not compile this AI/ML model into executable format, since some complexity AI/ML structures or new AI/ML techniques may be not supported by UE. UE can only compile certain AI/ML structures. It is mentioned above that update of model parameters is already supported by current typical chipset implementations. Model structure can be aligned between companies to update parameters only.
From current simulation results and field test results in Section 3 and our other contributions [3], it is seen that simple model structures, such as full-connected network or CNN, are good enough for typical per single cell or multiple cell operations.
Performance of simple model structures, such as full-connected layers or convolutional layers, are good enough for typical per single cell or multiple cell operations.
Another concern in model transfer is the model proprietorship. There are two key aspects of AI/ML models, where one aspect is model structure and the other aspect is model parameters. If full-connected layers or convolutional layers are used, the privacy of the model structure is not so important since these models have been widely used for a lot of areas. Thus, simple model structures also have low proprietorship risk for model transfer.
The models currently evaluated by companies, such as those with full-connected layers or convolutional layers, are widely used for decades and have low proprietorship risk for model transfer.

Model transfer format for model description
Another important spec impact of model transfer is the model delivery format. There are many options for public format, some of which are listed in the following.
· AI/ML model public format coordinated by the two sides：Current AI/ML frameworks chosen by two sides. Currently, there are many AI/ML frameworks, such as such as TensorFlow, PyTorch and Caffe. Two sides can choose one of them to describe the AI/ML model.
· One public format for model description, such as ONNX (Open Neural Net Exchange, ‘https://onnx.ai/’). ONNX aims to support a common intermediate representation for AI/ML model transmission for both deep learning and machine learning. It is developed as a common data format but not an AI framework or a development tool, so it can be compatible with any AI framework including TensorFlow, PyTorch and so on. With the help of ONNX, all developers can choose their own tools to develop their models and load other models in different framework.
· New format for model description defined by 3GPP. However, 3GPP public format will take great efforts and may not be considered in this release.
All these mentioned public formats have
Study the following public formats for model transfer:
· AI/ML model public format coordinated by the two sides;
· One public format for model description, such as ONNX;
· New format for model description defined by 3GPP.	

Model transfer requirement
The following potential options of model transfer/delivery were considered in RAN2 post-meeting email discussion.
	-	Solution 1a: gNB can transfer/deliver AI/ML model(s) to UE via RRC signalling.
-	Solution 2a: CN (except LMF) can transfer/deliver AI/ML model(s) to UE via NAS signalling.
-	Solution 3a: LMF can transfer/deliver AI/ML model(s) to UE via LPP signalling.
-	Solution 1b: gNB can transfer/deliver AI/ML model(s) to UE via UP data.
-	Solution 2b: CN (except LMF) can transfer/deliver AI/ML model(s) to UE via UP data.
-	Solution 3b: LMF can transfer/deliver AI/ML model(s) to UE via UP data.
-	Solution 4: Server can transfer/delivery AI/ML model(s) to UE (transparent to 3GPP).

When analyzing the pros/cons of the potential solutions, the following evaluation metrics can be considered:
	Capability to transfer/delivery models for the following model characteristics (RAN1/RAN2 may discuss it):
-	AI/ML model size (e.g. individual model size, cumulative model size). It may have some categories, e.g. large size, small size
-	Model transmission/update frequency. It may have some categories, e.g. frequent/infrequent transmission/update
-	Latency. It may have some categories, e.g. low-latency/high-latency
-	Robustness
-	Signalling overhead
-	Support of delta configuration
-	Impacts due to handover
-	Impacts due to failures (e.g. radio link failure)
-	Possible specification impacts (e.g. RAN2, SA2, and etc)
-	Inter-operability impacts

To facilitate the discussion of solutions for the model transfer, further specific requirements on model transfer, such as typical model size, frequency of model transfer/update, latency, ciphering and integrity protection requirements, etc. may be required.
RAN1 concludes typical model size, frequency of model transfer/update and latency requirement and send LS to RAN2 to facilitate the discussion of solutions for the model transfer.

Model transfer related capability
To support collaboration level z, UE should have model transfer capability. Model transfer is one of the key tools to resolve AI/ML generalization problem. Then the AI/ML model, which fits the current wireless environment, can be transferred from the network to UE, to improve the system performance. The model transfer procedure includes the following steps from UE perspective.
· Receive the new AI/ML from the network. Since the signal for transmitting the new AI/ML model is similar to the data signal, UE always has the capability of this step.
· Decode the information of the new AI/ML model. The information of the new AI/ML model has been encoded by the network, to better describe the AI/ML model with lower overhead. Some popular AI/ML frameworks can be used as the encoder and decoder, such as TensorFlow, PyTorch and Caffe. The AI/ML model information decoding can be done in UE baseband chipset or UE AP. Currently, this has been already supported by typical UE AP implementations, for several popular AI/ML frameworks. Other options can also work well. One option is reusing the public format for model description, such as ONNX, and another option is introducing a new format for model description defined by 3GPP.
· Load the new AI/ML model in the chipset. After decoding the AI/ML model information, it is time to load the new AI/ML model and use it in the chipset. Whether the AI/ML model structure is changed or not has a considerable impact on the UE capabilities.
· The AI/ML model structure is not changed. Only model parameters need to be updated in this situation. The new model parameters are sent to the AI/ML module and then just replace the old model parameters. Recompilation may be not needed here. This has been already supported by nowadays typical chipset implementations. The premise is that UE and network have aligned the AI/ML model structure offline or online before usage.
· The AI/ML model structure is changed. Dependent on how much the model structure is changed, recompilation may be needed. Also, the changed model structure should be supported by UE. For example, if UE only supports full-connected layers and convolutional layer, the new AI/ML model can only be made of full-connected layers and convolutional layer.
Based on the above analysis, we have the following proposal on model transfer capability.
Model transfer capability may consider the alignment between UE and network on supported structures, quantization and processing.

Functionality/model identification
In the last meeting, the definitions of functionality identification and model identification have been agreed. In this section, further details and approaches on functionality/model identification are provided.
	Agreement
For UE-part/UE-side models, study the following mechanisms for LCM procedures:
· For functionality-based LCM procedure: indication of activation/deactivation/switching/fallback based on individual AI/ML functionality
· Note: UE may have one AI/ML model for the functionality, or UE may have multiple AI/ML models for the functionality.
· FFS: Whether or how to indicate Funtionality
· For model-ID-based LCM procedure, indication of model selection/activation/deactivation/switching/fallback based on individual model IDs

Working Assumption
	Terminology
	Description

	Model identification
	A process/method of identifying an AI/ML model for the common understanding between the NW and the UE
Note: The process/method of model identification may or may not be applicable.
Note: Information regarding the AI/ML model may be shared during model identification.

	Terminology
	Description

	Functionality identification
	A process/method of identifying an AI/ML functionality for the common understanding between the NW and the UE
Note: Information regarding the AI/ML functionality may be shared during functionality identification.
FFS: granularity of functionality

Note: whether and how to indicate Functionality will be discussed separately.

Functionality identification
In this subsection, the main considerations on functionality identification are discussed.
What is the applicability of functionality identification?
In functionality identification, there is no explicit model ID. UE may have one or multiple AI/ML models for one functionality. Whether have UE one or multiple models is not needed to be aware from network operation perspective. Based on this assumption, we have the following analysis for different modes of operation.
· The model is developed at the network side and run by the UE side: Since the model is developed by the network, the model related LCM should be controlled by the network. Model ID is at least needed for the two sides to be aligned on model delivery/transfer purposes, e.g., which ID is still maintained at UE side and does not need delivery from network side. For one certain functionality, UE has at least a model to support this functionality. If UE receives a new model delivered from network, there will be a conflict between the old model and the new model. If two models are both used, model ID will be needed here to indicate the exact model. To use the new model, UE has to delete the old model, which can work well in various conditions, while UE may have concerns on the generalization performance of the new model. If UE uses the old model and deletes the old model, there will be no need of the model deliver.
· The model is developed at the UE side and managed by the network side: Network controls LCM of the AI/ML based functionality. UE reports its supported AI/ML based functionality and other necessary information (e.g., needed assistance from network) to network. The network controls LCM of AI/ML at the granularity of functionality level.
· Two sided models are jointly developed by the UE side and network side: Joint training or separate training can be used for joint model development of two sides. As seen in our other contributions [3], one UE-side model could not match all the network-side models from different network vendors. Also, it is not possible to develop a model that is generic enough to cover all different scenarios and thus needs flexible model switch/update for two sided model case.
· The model is developed and managed the UE side: Network may assist LCM of the AI/ML based functionality. The LCM is mainly managed by UE. To obtain the assistance of network, UE can also report its supported AI/ML based functionality and other necessary information to network.
Functionality identification can be applicated in the following cases:
· [bookmark: _Hlk127376615]The model is developed at the UE side and managed by the network side.
· The model is developed at the UE side and managed by the UE side.
Functionality identification are mainly applicated for the case where the models stored within UE are static and does not need frequent update.
How the functionality-based LCM generally works?
Figure 5.1-1 shows the procedure of the functionality-based LCM, which is based on UE capability report and typical RRC configuration framework.
[image:]
Figure 5.1-1. The procedure of the functionality-based LCM.
Functionality-based LCM can be divided into two steps.
· Step 1: UE reports its supported AI/ML based functionality and other necessary information (e.g., needed assistance from network) to network. In functionality-based LCM, functionality is the target object for AI/ML operations. Network does not need to touch the actually working AI/ML model, and UE does not need to report the model description to network, such as model structure. Other the description of functionality, network may need some necessary information, e.g., what is the input needed and what is the output from the AI/ML functionality operation. UE may have one or multiple AI/ML models for one functionality, and then UE selects the suitable AI/ML model according to current wireless conditions. Wireless conditions would include the network antenna configuration, the UE antenna configuration, carrier frequency, SNR and so on. Network can provide these wireless conditions after receiving the request from UE.
· Step 2: Based on UE report, network controls LCM of the AI/ML based functionality. After receiving the UE report, network has the list of the supported AI/ML based functionality of UE. Typical RRC configurations can be used to enable/disable the functionalities. Since there is no model ID model selection and model switching are not supported in the functionality-based LCM.
 Functionality identification is based on UE capability report and RRC enabling and disabling procedures.

Model identification
In this subsection, the main considerations on model identification are discussed.
What is the applicability of model identification?
In model identification, explicit model ID can be used to indicate the exact model among multiple models of UE or network. Based on this assumption, we have the following analysis.
· The model is developed at the network side and run by the UE side: Network can control or assist LCM based on model ID. During or before model deliver, model ID can be sent to UE as one part of model description information. With model ID, network can indicate the exact model and there is no conflict between the old model of UE and the new model delivered from network. Then using model ID, network can manage or assist the LCM of the delivered model.
· The model is developed at the UE side and managed by the network side: Network controls LCM based on model ID. UE reports the description information of its supported AI/ML model and other necessary information (e.g., needed assistance from network) to network. Then using model ID, network can manage the LCM of the target model.
· Two sided models are jointly developed by the UE side and network side: Model ID is needed for the matching of two sided models. As discussed in functionality identification, one UE-side model could not match all the network-side models from different network vendors, and then model ID will be needed to manage LCM of different models.
· The model is developed and managed the UE side: Model ID is not necessary in the LCM. The LCM is mainly managed by UE. To obtain the assistance of network, UE can also report its supported AI/ML based functionality and other necessary information to network. Model ID may not need to be needed.
Model identification can be applicated in the following cases:
· The model is developed at the network side and run by the UE side.
· The model is developed at the UE side and managed by the network side where flexible model update/switch is needed for different scenarios.
· Two sided models are jointly developed by the UE side and network side.
How the model-based LCM generally works?
Figure 5.2-1 shows the procedure of the model identification.
[image:]
Figure 5.2-1. The generally procedure of the model-based LCM.
Firstly, the following is the procedure of model identification for Type 1 training two-sided model and one-sided model transferred from network to UE.
· Step 0: Alignment of model structure or other necessary information between network and UE or UE side server. To ensure that the delivered model can work well at UE, network and UE or UE side server may need to align some necessary model information. Online alignment and offline alignment may both be needed. Since UE chipset is designed and optimized for certain model structures, it is important of network to know the supported model structures at UE. Other necessary information may include quantization supported by the UE and inference latency for a specific model etc.
· Step1: Network trains the model (hyper)-parameters based on collected data. Based on the aligned model structure or other restrictions, the model can be trained by network using the collected data.
· Step2: Network delivers the UE-sided model parameters to UE, with model ID and other necessary information. After alignment and model training, the UE-sided model can be delivered to UE. Model ID is also delivered to UE as one part of model description information.
· Step3: Using model ID, network controls LCM of the UE sided part of two sided models. Model ID can be used for two sides to indicate the exact model. Take performance monitoring as an example. The configuration or indication of performance monitoring measurement resource or report resource would include model ID, so that UE can measure and report the performance KPIs of the right model.
Then the following is the procedure of model identification for Model identification for Type 3 training two-sided model (separate training at two sides).
· Step0: Alignment of model structure, quantization, or other necessary information between network and UE or UE side server. As discussed in Subsection 3.4, if the model structure is not aligned (e.g., dequantization method at decoder and the quantization method in encoder could not match), there will be an obvious performance loss compared with that in case where the dequantization and quantization method are matching. To ensure the performance of separate training, network and UE or UE side server would also need to align some necessary model information, including model structure.
· Step1: Network/UE collects the data needed for training. After collecting enough training data samples, network/UE can train a two-sided model, based on the aligned model structure, quantization or other restrictions.
· Step2: Network/UE exchange data needed, trains the two-sided model and align on model ID. After collecting enough training data samples, network/UE can train a two-sided model at one side and this side can generate the needed training data for other side, based on the aligned model structure, quantization or other restrictions. Then the other side can train its part of the two-sided model. Model ID should be assigned to the exchanged training data, so that two sides can have alignment on the two-sided model.
· Step3: Using model ID, network can indicate or assist LCM, including model selection or switching. Model ID can be used for two sides to indicate the same two-sided model, and the LCM of this two-sided model can work correctly.
Consider to define the procedures as in Figure 5.2-1 for Model identification.

General AI/ML framework
The General framework for RAN intelligence is illustrated in Figure 6-1.

Figure 6-1: Functional Framework for RAN Intelligence in RAN3.
For the general framework on the network side, model management is mainly an internal implementation, such as model transfer, model performance feedback. In comparison, the AI/ML for air interface involves massive interactions between the UE and the network, which are related to model management, e.g., model monitoring, activation/deactivation. Therefore, reusing the framework for RAN directly is not suitable and it is beneficial to introduce more components in on top of the framework for RAN.
To our understanding, the updated framework is shown in Figure 6-2.

Figure 6-2: Updated general framework of AI for air interface.
Based on the Framework for RAN intelligence, RAN1 to introduce an updated general framework that can reflect the key components of AI for air interface.

Discussion on other aspects of LCM
In this section, other aspects of LCM would be discussed.
Data collection
There are different purposes of data collection, e.g. model inference, model training and monitoring. Data collection for model inference would reuse current CSI framework, since the main difference is that traditional algorithm is replaced by AI/ML model and the input and output would be largely the same. Data collection for offline training does not require low latency and the number of data samples would be small or large due to different types of training. Compared with model training, model monitoring requires low latency for data collection to deactivate/switch model in a short time when the performance of the activated model turns unacceptable.
Study data collection for both model training and model monitoring.
UE can collect large number of data samples through newly defined RS or legacy RS. Some data processing may be used to improve the validity of the collected samples, such as noise filtering and sample selection. After the data processing, the collected data samples need to be reported from UE to network.
There are several ways of collected data, i.e., L1, L2 and L3 reporting. L1 collected data reporting would be similar to legacy CSI reporting. Newly defined CSI reporting or enhanced legacy CSI reporting can be used. Take beam management as an example. The beam qualities of most 4 beams are included in legacy beam reporting, while AI/ML beam L1 reporting may include all the measured beams. Current L3 beam reporting is also not suitable for data collection, since the number of reported beams is limited and the beam qualities have been filtered through L3 filtering.
Study L1, L2 and L3 reporting of collected data.
Legacy CSI information has been reported from UE to gNB. The positioning related information is collected from UEs to LMF. The data for AI/ML can be reported to gNB or other 3GPP entities, such as LMF, NWDAF and OAM. Some of the interactions between these entities may go beyond the scope of RAN1. But common understanding of what these interactions are like may well impact RAN1 discussion on the framework and use cases.
Study options for interactions between different entities for data collection, e.g., the interactions between UE, gNB, LMF, NWDAF, etc.
To collect data from real world, there are several ways as below. These different ways of data collection would have different overheads and latencies.
· Direct collection of data.
· The data is collected at one entity and then exchanged between multiple entities.
· Overhead of this collection would be large since size of the raw data would be huge. Sometimes direct collection of data would be of very high cost, if possible. Rewarding in actors for reinforcement learning can also be viewed as direct collection of data. Overhead of such data collection would be relatively small.
· Latency of this way of data collection can be small if the data is collected in real time very few samples interval.
· Collection of processed data or data characteristics.
· For example, distribution information for the channel can be collected and exchanged between entities. Based on the characteristics, the data is re-generated at different entities.
· Overhead of the collection can be small but may cause performance degradation if not properly designed.
· Latency of this way of data collection would be dependent on how many samples are needed for the compression.
Study the following two kinds of data collection from overhead and latency perspective.
· Direct collection of raw data over air-interface
· Techniques to reduce data collection overhead should also be studied
· Collection of data characteristics/statistics over air interface
Some assistance information would be needed for data collection. First, general description of collected data can be reported, such as purpose, size and configuration. Different purposes result in different types and format of collected data. For example, the beam qualities are collected for beam management and the estimation of CSI-RS channels are collected for CSI compression or CSI prediction.
Second, UE hardware information can be reported, such as antenna information, so that network can further split the collected data. For example, the beam qualities of one UE panel containing 16 antenna elements can be separated from data of one UE panel containing 8 antenna elements.
Third, environment information can be reported, such as cell ID, scenario ID and SNR. UE may report the data collected in a long period, which may contain the data of multiple cells, different scenarios and large range of SNRs. With the cell ID or scenario ID, AI/ML model for a small area or certain scenario can be trained, and then flexible model selection or model switching can be used to improve the generalization performance. SNR information can also be used for model selection or model switching, if AI/ML model per SNR range has been trained. Also, SNR information can be used as assistance information for model inference.
Study the following assistance information for data collection:
· General description of collected data, such as purpose, size and configuration;
· UE hardware information (meta data), such as antenna information;
· Environment information, such as cell ID, scenario ID and SNR.
To report a large number of collected data samples, there are two options. The first option is to report large number of samples in one report with low reporting frequency. UE needs to store a large number of samples on the chipset or memory, which may be not supported by all types of UEs. The second option is to report small number of samples in one report with high reporting frequency. Compared with the first option, the requirement of UE storage capability is lower but the reporting overhead may be higher.
Study the two following reporting formats for a large number of collected data samples:
· Large number of samples in one report with low reporting frequency;
· Small number of samples in one report with high reporting frequency.
In legacy CSI framework, only one sample is reported in one time. A lot of work has been done to compress the information of one sample. However, there may be multiple samples in one report. How to compress the information of multiple samples has not been studied before. It is clear that there is more redundancy in the report containing multiple samples, compared with the report having one sample. Then this topic is worth of studying.
Study the data compression for multiple samples in collected data reporting.
Collected data reporting can be periodic, semi-persistence, aperiodic and event triggered. Different types of collected data reporting have different purposes. The periodic collected data reporting is used for common data collection and the frequency can be low. When a UE with new antenna information has accessed this cell, or a UE has moved to a place that most UEs have not moved through, a semi-persistence or aperiodic collected data reporting can be indicated by network. When the SNR or speed of UE has been changed for a large value, event triggered collected data reporting can be used to record the samples which are largely different from previous samples.
Study the periodic, semi-persistence, aperiodic and event triggered collected data reporting.
Different from the synthetic data generated by SLS or LLS, the real world data suffers from noise and interference. Complex estimation algorithm can only reduce but not eliminate the impact of noise and interference. Also, the perfect labels can not be collected in most use case.
Study how to overcome the impact of noisy or imperfect labels.
Different UE capabilities would be needed for the expected pre-processing, data storage, feature extraction and report for data collection. Some UEs may have the ability to collect a large amount of data while others would be limited. Depending on the reference point definition, some UEs may leave some interfaces for collection in the corresponding reference point while others may not. These should also be discussed in UE capability.
Study ways for UE to report its capability for data collection regarding expected pre-processing, data storage, feature extraction and report for data collection.

Model training and model update
Model training or model updating is another key tool to fight against the AI/ML generalization problem, in addition to model transfer. It is known that AI/ML is a technology of data and the AI/ML model is memorizing the features of the training set. For some unseen samples with new features, the performance of AI/ML model is unpredictable. By collecting or transferring the unseen samples, the AI/ML model can be updated to adapt to the new environment.
There are mainly three categories of model training as follows.
· Transparent model training using its own collected data. In this category, UE can collect some samples in real network from time to time, considering its power consumption and data service. Then using these collected samples, the one-sided model of UE can be fine-tuned to alleviate the generalization problem.
· Model training for one-sided model with the assistance of other sides. In this category, network can send some assistance information to UE, to assist the AI/ML model training. Network can collect a large number of samples and select some representative samples from them. The number of the selected samples is much smaller, while they represent the main features of the environment nearby. The assistance of other sides will speed up the AI/ML model training.
· Model training for two-sided model with the assistance of other sides. In this category, the training of two-sided model is considered. Taking CSI compression as an example, the encoder of UE can not be trained without the assistance of network, since the loss of encoder output is not available for UE. There are two methods of two-sided model training. One is joint training and the other is separate training. In joint training, the label and the gradient information are exchanged between two sides, with high frequency but a small amount of information in each time. In separate training, the input and the output of the encoder or decoder are exchanged between two sides, with low frequency but a large amount of information in each time.
Since the capability of model training is challenging from UE side. It is expected that the model training would need some offline effort based on computing resources from UE. These offline efforts can also be dimensioned from UE capability perspective, e.g., time needed for model training. Size of dataset would also need to be considered for model training.
Based on the above analysis, we have the following proposal on model training capability.
Study the feasibility and necessity of defining model training capability, regarding latency of model training, dataset size for model training, etc.
There are two options for model transfer. One option is to transfer both model structure and parameters, and the other option is to transfer only model parameters. Then similar to model transfer, model updating has similar two options, where one option is only parameters updating and the other option is both structure and parameters updating. Only parameters updating can be considered as finetuning and the model updating gap would be small, since only the values of model parameters need to be modified. Both structure and parameters updating may need the compiling and then the updating gap will be larger.
Study different requirements of two different kinds of model updating:
· Only parameters updating;
· Both structure and parameters updating.
Consider the CSI prediction use case. If the predicted future CSI is on the time occasion of a CSI measurement, finetuning is available for the AI-based CSI prediction. The starting and stopping condition/policy of finetuning should be clarified. How to determine the finetuning parameters, e.g., the pre-trained model, finetunable network layer, learning rate, batch size and epoch number, may introduce some specification impacts. The followed-by event, e.g., model switch, model set update, data set update, furthermore, may introduce some specification impacts as well.
Study impact of finetuning on other LCM aspects.

Model inference
In the study of CSI compression, beam and location, assistance information can be used to improve the model inference performance. For example, the network transmit beam pattern can be used to improve the model inference at UE in the beam management. Also, the speed is useful for model inference in both channel prediction and beam prediction in time domain.
Study the assistance information needed for model inference.
Computation power at the UE side is growing fast in recent years. Figure 9-1 shows the AI capability of NPU in mobile phones in recent years. The capacity of one typical NPU used in current mobile phone is 22.5T operations (OPs) per second. One OP denotes one addition or one multiplication. From 2017Q1, the capacity of typical NPU in mobile phone is growing very fast year by year. This trend is expected to continue for the coming years.
[image:]
Figure 7.3-1: The growing capacity of NPU in mobile phone.
Typical physical layer modules have strict requirements for latency. The latency of AI/ML operation should be within several milliseconds, otherwise, the AI model would not be applicable for air interface use cases. Since latency is highly correlated with complexity, they are discussed together in this subsection. For this important issue, we have collected some latency information from the area of image processing. Figure 7.3-2 shows the inference performance of typical AI models for image and video in typical chipsets. The latency of the AI models in Figure 7.3-2 is about 0.9ms~5.1ms. The AI models for air interface would be much simpler than the listed AI models and the latency of AI models for air interface will be much smaller. Then AI models for air interface would be likely to meet the latency requirement.

Figure 7.3-2: The latency of typical AI models for image and video in typical chipsets.
[bookmark: _Hlk118746353]Initial test of typical models for latency on typical chipsets in Figure 7.3-2 shows that the latency for neural network operation latency on UE are within the range of interest for air interface applications.
Study ways for UE to report its capability for latencies with respect to the model inference.
Float point is usually used in study and initial evaluation. Fixed point is usually used in implementation, where the parameters of AI model are transformed to integer value and the complexity could be reduced. Some kinds of hardware only support fixed point.
For float point or fixed point, there are also different levels of bits used for one number. It is clear that the overhead of 32 bits is twice of 16 bits, and 4 times of 8 bits. Considering the overhead reduction of model transfer, low quantization level would be better than high quantization level. The actual complexities of different quantization levels would be slightly different from the overhead, due to the practical hardware design and AI model structure.

Figure 7.3-3: The latency ratio of typical AI models of different quantization levels in one typical chipset, compared to CPU-FP32 of AI model 4.

Figure 7.3-4: The power consumption ratio of typical AI models of different quantization levels in one typical chipset, compared to CPU-FP32 of AI model 4.
Some evaluation results of different quantization levels are shown in Figure 7.3-3 and 7.3-4. INT8 denotes integer value with 8 bits, FP16 denotes float point value with 16 bits. The performance of NPU-INT8 is about 1.8 times of NPU-FP16, 4.8~17 times of GPU-FP32, and 4.5~17 times of CPU-FP32. INT8 is suitable for service with high complexity and power consumption, such as photographing and video. FP16 is suitable for service with high accuracy and low power consumption, such as pixel-wise image processing.
Quantization of the model has impacts on latency performance.
Quantization of the model has impacts on power consumption.
Study UE capability on supported quantization levels.

Model monitoring
In RAN1#110b, the following agreement was achieved.
	Agreement
Study AI/ML model monitoring for at least the following purposes: model activation, deactivation, selection, switching, fallback, and update (including re-training).
FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)

Agreement
Study at least the following metrics/methods for AI/ML model monitoring in lifecycle management per use case:
1. Monitoring based on inference accuracy, including metrics related to intermediate KPIs
1. Monitoring based on system performance, including metrics related to system peformance KPIs
1. Other monitoring solutions, at least following 2 options.
6. Monitoring based on data distribution
0. Input-based: e.g., Monitoring the validity of the AI/ML input, e.g., out-of-distribution detection, drift detection of input data, or something simple like checking SNR, delay spread, etc.
0. Output-based: e.g., drift detection of output data
6. Monitoring based on applicable condition
Note: Model monitoring metric calculation may be done at NW or UE

Agreement
Study performance monitoring approaches, considering the following model monitoring KPIs as general guidance
· Accuracy and relevance (i.e., how well does the given monitoring metric/methods reflect the model and system performance)
· Overhead (e.g., signaling overhead associated with model monitoring)
· Complexity (e.g., computation and memory cost for model monitoring)
· Latency (i.e., timeliness of monitoring result, from model failure to action, given the purpose of model monitoring)
· FFS: Power consumption
· Other KPIs are not precluded.
Note: Relevant KPIs may vary across different model monitoring approaches.
FFS: Discussion of KPIs for other LCM procedures

Agreement
Study various approaches for achieving good performance across different scenarios/configurations/sites, including
· Model generalization, i.e., using one model that is generalizable to different scenarios/configurations/sites
· Model switching, i.e., switching among a group of models where each model is for a particular scenario/configuration/site
1. [Models in a group of models may have varying model structures, share a common model structure, or partially share a common sub-structure. Models in a group of models may have different input/output format and/or different pre-/post-processing.]
· Model update, i.e., using one model whose parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. Fine-tuning is one example.

Agreement
The following are additionally considered for the initial list of common KPIs (if applicable) for evaluating performance benefits of AI/ML
· Clarification on inference complexity
· Note: Inference complexity includes complexity for pre- and post-processing.
· LCM related complexity and storage overhead
· Storage/computation/latency for training data collection.
· Storage/computation/latency for training and model update
· Storage/computation/latency for model monitoring.
· Storage/computation/latency for other LCM procedures, e.g., model activation, deactivation, selection, switching, fallback operation.
· FFS: Power consumption, latency (e.g., Inference latency)

For CSI compression, it has been agreed that SGCS between reconstructed CSI and target CSI would serve as one of the basic KPIs for model inference accuracy, which means that directly measuring SGCS could be a baseline monitoring method. For positioning, the positioning accuracy can be used for direct positioning monitoring, while the error of intermediate positioning information, e.g., TDOA, can be used for indirect poisoning monitoring. The beam accuracy between predicted beam quality and actual beam quality can be used for intermediate KPIs in the beam prediction in space domain and time domain.
Study intermediate KPIs of performance monitoring case by case.
System performance KPIs can also be used to monitor the performance of AI/ML models. Typical system performance KPIs include throughput, BLER, hypothetical BLER, NACK/ACK, etc. Conventionally, throughput and BLER are calculated at network side, while NACK/ACK is determined after CRC at UE side and will be reported to NW. By monitoring instantaneous or averaged system performance KPIs and comparing them with historical results, network or UE could infer whether the current AI/ML model is outdated or not, which could avoid the overhead of sharing CSI measurements or any models.
However, compared with intermediate KPIs, system performance KPIs are usually affected by more factors, such as user distribution, channel condition, inter-cell interference, scheduling strategies, etc., indicating that it is more difficult to judge whether an observed system performance degradation is caused by an outdated AI/ML model or some other reasons. In addition, fluctuations of system performance KPIs are usually severer than those for intermediate KPIs due to various time-varying factors. Therefore, a longer time window is usually considered to guarantee a stable result, which may increase the latency of such kind of monitoring methods.
It is difficult to use system KPIs for performance monitoring to judge whether and which AI/ML models cause the system performance degradation.
The monitoring of data distribution is another method of performance monitoring. Take the input distribution based monitoring as an example. During training phase, each trained model will be assigned with an applicable input distribution according to its training dataset. The applicable input distribution may be quantitatively described by a series of measurable variables, e.g., the range or CDF of delay spread or angular spread of estimated channel information. After that, we can compute a hard or soft index indicating how a coming CSI measurement suits the input for current model. Once there are too many input samples not suitable for the current model in a certain period of time, a performance degradation can be foreseen. More advanced drifting detection on data distribution can be considered to improve the accuracy of the above monitoring methods.
One of the most attractive advantages of monitoring based on data distribution is the convenience in computing monitoring results, e.g., drifting detection on input data distribution does not require sharing data/models between network and UE or calculating system level KPIs over a long time window. However, the cost comes from two aspects: 1) overhead in describing applicable conditions for models; 2) monitoring accuracy could be sacrificed as a drifting in applicable condition, which does not necessarily lead to a model performance degradation. In other words, monitoring based on applicable conditions may cause false alarms. Therefore, we believe that the feasibility of monitoring based on data distribution and applicable conditions should be further evaluated and discussed.
Study the overhead and accuracy of performance monitoring based on data distribution.
The measurement of performance KPIs can be instantaneous, short term or long term. Instantaneous performance KPIs shows the exact AI/ML performance of current input sample. Short term performance KPIs indicate the AI/ML performance for a certain period of time, e.g., 1 min or longer, and shows how AI/ML works in certain scenario. The long term performance KPIs may need the measurement of hours, days or even weeks. The generalized AI/ML performance can be evaluated by the long term performance KPIs. From this perspective, intermediate KPIs can be used as instantaneous performance KPIs, data distribution KPIs is suitable for short term performance KPIs, and system performance KPIs is appropriate for long term performance KPIs.
Study the instantaneous, short term and long term measurement of the performance KPIs.

Model selection/activation/deactivation/switching/fallback
The problems of model selection, activation, deactivation, switching, and fallback are different for different use case. In beam management, UE or network can do the beam prediction in space domain or time domain. If beam prediction is done at UE, UE can monitor the AI/ML performance and decide the activation and deactivation of the AI/ML model, or network monitors the AI/ML performance and indicates UE to activate or deactivate the AI/ML model. If beam prediction is done at network, it is more likely that network monitors the AI/ML performance and decide the activation and deactivation of the AI/ML model.
In CSI compression, the AI encoder is running at UE and the AI decoder is running at network. If the AI encoder is delivered from network to UE, network has the whole picture of the AI/ML model and it is more convenient that network indicates UE to activate or deactivate the encoder, or deliver another encoder to UE. If AI decoder is delivered from UE to network, it would be better that UE is dominant in this part. If the AI encoder and AI decoder are paired by separate training or joint training, both network and UE can make the decision with the assistance of the other side.
Model selection, activation, deactivation, switching, and fallback can be studied per use case.
Previously, the following agreement was achieved.
	Agreement
For UE-part/UE-side models, study the following mechanisms for LCM procedures:
· For functionality-based LCM procedure: indication of activation/deactivation/switching/fallback based on individual AI/ML functionality
· Note: UE may have one AI/ML model for the functionality, or UE may have multiple AI/ML models for the functionality.
· FFS: Whether or how to indicate Funtionality
· For model-ID-based LCM procedure, indication of model selection/activation/deactivation/switching/fallback based on individual model IDs

LCM can be divided into model based operation and functionality based operation. In model ID based LCM, model ID can be used for network to indicate the exact AI/ML model that is to be selected, activated, deactivated and switched. If all AI/ML models are deactivated, UE has to fallback to non-AI method. Also, network can direct indicate UE to fallback.
In functionality based LCM, there is no model ID and network only knowns whether UE at least has an AI/ML model for this wireless condition. Then network can indicate UE to enable or disable the AI/ML function, and then UE does model activation, model deactivation or fallback. But network does not know how many AI/ML models UE have for this wireless condition. Network can indicate UE that the wireless conditions have been changed, and model selection and model switching are done by UE implementation.
If model identification is used, model ID can be used for network to indicate the exact AI/ML model that is to be selected, activated, deactivated and switched.
If functionality identification is used, model selection and switching is done by UE through implementation, while model activation, deactivation, and fallback can be control by network using the indication of the model functionality.
Model selection, activation, deactivation, and switching procedure can be triggered in the following cases: i) any performance degradation observed for the undergoing model during regular performance monitoring; ii) significant changes in UEs’ wireless environment due to mobility, handover, or other reasons; iii) unsatisfying performance of legacy non-AI mechanism over a long time-window. Specifically, it can be a consensus that performance degradation will trigger a model selection procedure to check whether there are better models for the current situation, and it is likely that significant changes in UE’s environments usually indicate a potential performance degradation for the undergoing model. Besides, we believe that an unsatisfying performance of legacy non-AI mechanism can also trigger a model selection procedure to switch from legacy mechanism to AI/ML based solutions to achieve better system performance. Fallback can be triggered when the performance of legacy non-AI mechanism is better than AI mechanism over a long time-window.
Study event triggered model selection, activation, deactivation, switching, and fallback.
If the AI/ML models inference operation is on UE and the model on/off related operations are initiated by network, there would be unavoidable latency. One part of the latency is caused by the transmission of performance monitoring KPIs from UE to network. Another part of the latency comes from the signaling transmission from network to UE. To avoid the latency, some event trigged mechanisms can be studied. For example, network can define a fallback event and send the trigger condition to UE. During the performance monitoring, UE finds that the fallback condition has been satisfied, then the AI/ML is deactivated and non-AI module is used instead. It is seen that the fallback operation is faster in event trigged mechanisms than that in signaling based mechanisms.
Different types of performance monitoring, i.e., periodic, semi-persistence, aperiodic and event triggered, can work together to achieve high monitoring accuracy with low overhead. For example, periodic monitoring with long period is used to monitor the long term AI/ML model performance. Some event, for example, that the AI/ML model performance is being pool for a certain period of time, can be defined to trigger short term AI/ML model performance monitoring, such as aperiodic monitoring or semi-persistence monitoring with short period.
Moreover, different types of events can be defined for different purposes. For model switch, the event can be like that the performance of one unused AI/ML model has been better than currently used AI/ML model for a certain period of time. For model fallback, the event would be like that the performance of the non-AI algorithm has been better than currently used AI/ML model for a certain period of time.
Different types of performance monitoring, i.e., periodic, semi-persistence, aperiodic and event triggered, can work together for model selection, activation, deactivation, switching, and fallback. For event triggered performance monitoring, different types of events can be defined for different purposes.
Network may obtain the AI/ML calculation capability of UE through UE AI/ML capability report. If the AI/ML model structure is known by network, or the AI/ML model complexity has been reported during model registration, network can have an estimation of UE’s free AI/ML calculation resource. Based on this estimation, model selection, activation, deactivation, switching, and fallback can be indicated by network to make sure that UE’s AI/ML calculation resource is enough for all current working AI/ML models.
However, there are gaps (as indicated by previous conclusion) between actual complexity and the complexity evaluated using TOP/FLOP/MACs due to the platform- dependency and implementation (hardware and software) optimization solutions. One possible way is for the UE to dynamically report whether it has enough calculation power to run a specific model indicated by the network side.
Study the mechanism for dynamic UE reporting of whether it has enough resources to run AI/ML models.

Conclusions
1. The following challenges should be addressed for RAN4 related aspects:
· Multi-vendor (network vendor, UE vendor and TE vendor) involvement in two sided cases.
· Generalization performance definition.
· Performance requirement need to be defined to justify AI/ML gains.
· Performance of different models would be different, especially considering complicated training types.
1. Consider to define reference model structure in RAN4 or RAN1.
Compared with zone/site specific models, generic model applicable across multiple areas would typically have larger computation complexity and storage overhead.
Collaboration level z can be used to facilitate zone specific model deploy.
From initial results for field test, performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical zone/site specific optimization.
From initial results for field test, as the model applicable area increases, simple model structure can still achieve good performance.
From initial results for spatial consistency data, performance of simple model structure, e.g., one hidden layer full-connected encoder, can achieve good performance for zone/site specific operations.
From initial results for ray tracing based data generated with the map provided in [2], performance of simple model structure, e.g., one hidden layer full-connected encoder, can achieve good performance for zone/site specific operations.
For type 2 training for CSI, considering one common CSI generation part matching three CSI reconstruction parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.061, i.e., losing about 19% performance gain.
Overhead in information exchange for training collaboration type 2 grows linearly with the number of iterations at training stage.
If the model structure is not aligned (e.g., dequantization method at decoder and the quantization method in encoder could not match), there will be an obvious performance loss compared with that in case where the dequantization and quantization method are matching.
Compared with one-to-one model, one common CSI reconstruction part to multiple CSI generation parts of different UEs demonstrates a degraded performance. Such degradation gets worse as the amount of exchanged data decreases. Performance of one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts of different networks/UEs is affected by the amount of exchanged data from each network/UE.
To fight against the AI/ML generalization problem, generic model would typically have larger computation complexity and storage overhead, while zone/site specific models would need simple model structure and small model size.
Model delivery/transfer is necessary due to flexibility for model update and per cell or area optimization.
The model structure is disclosed in open format, but if widely-known model (e.g., fully connected or CNN) is used, this issue does not exist.
One advantage of open format is flexibility for model update and per cell or area optimization. Open format can support flexible model update and optimize the model per cell or area, while proprietary format would need the network to store all the non-recognizable image files at the network side, or UE side would need to store large number of image files.
Delivery model with proprietary format requires offline consensus among multiple vendors on how to use a proprietary file which is non-feasible in most cases. Moreover, for proprietary format, network has to prepare multiple models for different UE vendors.
For parameter-only updating with properly aligned information, no additional compiling is needed. If flexible model structure update is also involved, it would lead to extra delay or extra device capability.
Study open format with widely-used model structures and parameter-only updating, which can obtain the most gain of open format and proprietary format.
· Using widely-used model structures to avoid the concern of disclosing model structure.
· Using parameter-only updating to avoid additional compiling at UE side.
Performance of simple model structures, such as full-connected layers or convolutional layers, are good enough for typical per single cell or multiple cell operations.
The models currently evaluated by companies, such as those with full-connected layers or convolutional layers, are widely used for decades and have low proprietorship risk for model transfer.
Study the following public formats for model transfer:
· AI/ML model public format coordinated by the two sides;
· One public format for model description, such as ONNX;
· New format for model description defined by 3GPP.	
RAN1 concludes typical model size, frequency of model transfer/update and latency requirement and send LS to RAN2 to facilitate the discussion of solutions for the model transfer.
Model transfer capability may consider the alignment between UE and network on supported structures, quantization and processing.
Functionality identification can be applicated in the following cases:
· The model is developed at the UE side and managed by the network side.
· The model is developed at the UE side and managed by the UE side.
Functionality identification are mainly applicated for the case where the models stored within UE are static and does not need frequent update.
Functionality identification is based on UE capability report and RRC enabling and disabling procedures.
Model identification can be applicated in the following cases:
· The model is developed at the network side and run by the UE side.
· The model is developed at the UE side and managed by the network side where flexible model update/switch is needed for different scenarios.
· Two sided models are jointly developed by the UE side and network side.
Consider to define the procedures as in Figure 5.2-1 for Model identification.
Based on the Framework for RAN intelligence, RAN1 to introduce an updated general framework that can reflect the key components of AI for air interface.
Study data collection for both model training and model monitoring.
Study L1, L2 and L3 reporting of collected data.
Study options for interactions between different entities for data collection, e.g., the interactions between UE, gNB, LMF, NWDAF, etc.
Study the following two kinds of data collection from overhead and latency perspective.
· Direct collection of raw data over air-interface
· Techniques to reduce data collection overhead should also be studied
· Collection of data characteristics/statistics over air interface
Study the following assistance information for data collection:
· General description of collected data, such as purpose, size and configuration;
· UE hardware information (meta data), such as antenna information;
· Environment information, such as cell ID, scenario ID and SNR.
Study the two following reporting formats for a large number of collected data samples:
· Large number of samples in one report with low reporting frequency;
· Small number of samples in one report with high reporting frequency.
Study the data compression for multiple samples in collected data reporting.
Study the periodic, semi-persistence, aperiodic and event triggered collected data reporting.
Study how to overcome the impact of noisy or imperfect labels.
Study ways for UE to report its capability for data collection regarding expected pre-processing, data storage, feature extraction and report for data collection.
Study the feasibility and necessity of defining model training capability, regarding latency of model training, dataset size for model training, etc.
Study different requirements of two different kinds of model updating:
· Only parameters updating;
· Both structure and parameters updating.
Study impact of finetuning on other LCM aspects.
Study the assistance information needed for model inference.
Initial test of typical models for latency on typical chipsets in Figure 7.3-2 shows that the latency for neural network operation latency on UE are within the range of interest for air interface applications.
Study ways for UE to report its capability for latencies with respect to the model inference.
Quantization of the model has impacts on latency performance.
Quantization of the model has impacts on power consumption.
Study UE capability on supported quantization levels.
Study intermediate KPIs of performance monitoring case by case.
It is difficult to use system KPIs for performance monitoring to judge whether and which AI/ML models cause the system performance degradation.
Study the overhead and accuracy of performance monitoring based on data distribution.
Study the instantaneous, short term and long term measurement of the performance KPIs.
Model selection, activation, deactivation, switching, and fallback can be studied per use case.
If model identification is used, model ID can be used for network to indicate the exact AI/ML model that is to be selected, activated, deactivated and switched.
If functionality identification is used, model selection and switching is done by UE through implementation, while model activation, deactivation, and fallback can be control by network using the indication of the model functionality.
Study event triggered model selection, activation, deactivation, switching, and fallback.
Different types of performance monitoring, i.e., periodic, semi-persistence, aperiodic and event triggered, can work together for model selection, activation, deactivation, switching, and fallback. For event triggered performance monitoring, different types of events can be defined for different purposes.
Study the mechanism for dynamic UE reporting of whether it has enough resources to run AI/ML models.

References
[bookmark: _Ref101427648]Chair's notes of RAN1#111, November 10th-19th, 2022.
A. Alkhateeb, “DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications,” in Proc. of The Information Theory and Applications Workshop (ITA), San Diego, CA, Feb. 2019. Codes and instructions available at ‘https://deepmimo.net/’.
vivo, R1- 2300444, “Evaluation on AI/ML for CSI feedback enhancement”, RAN1 #112, February 27th – March 3rd, 2023.
[bookmark: _Ref102033778]vivo, “Dataset for AI CSI feedback”, https://commonbox.vivo.xyz/s/VkhgUFG2hhd.
[bookmark: _Ref102074620]vivo, “Dataset For AI CSI Prediction”, https://commonbox.vivo.xyz/s/1qv4tjQ5efk.
vivo, “Dataset for beam management”, https://commonbox.vivo.xyz/s/gMEadbdyFtd.
vivo, “Dataset for AI Positioning”, https://commonbox.vivo.xyz/s/UQnWAcqp2DL.

Appendix A: Analysis for zone/site specific model update
One of the key issues for lifecycle management is how often the model needs to be updated. In this section, we have some preliminary analysis on the granularities of model update.
In most cases, the parametric model defines a distribution and we simply use the principle of maximum likelihood. This means we use the cross-entropy between the training data and the model’s predictions as the cost function, as described

where is the input data vector, is the known data vector (or label), is the coefficient vector or the weight vector, acquired by the training procedure, all in a given AI neural network.
It is worthwhile noting that, the training set associated with any input pair of can be expressed as

In such a procedure, accordingly, the AI model can be trained by means of the off-line training manner under the condition of the statistic wireless channel model and can be considered as a universal AI model for any UE or gNB uses.
However, the channel factors influenced by gNB are comparatively stable, while the channel factors influenced by UE are unpredictable, with respect to the antenna direction and location. In addition, the channel model utilized for performance evaluation mainly refers to TR 38.901, where the long-term channel factors such as receive antenna field patterns (i.e., AoA and ZoA), receive antenna location vector, transmit antenna field patterns (i.e., AoD and ZoD), and transmit antenna location vector update statically, while the short-term channel factors such as Doppler frequency update dynamically. Consequently, therefore, a universal AI model purely trained by a statistic wireless channel model may be not feasible in terms of the complexity of neural network and the overall AI-based system performance. Somewhat UE assistance mechanism in addition to cell-based training model may be necessary.
Thanks to the unique wireless channel behaviors, we believe that the training set can be possibly divided into training subsets relying on the long-term statistic channel parameters. If we assume that the -th subset is associated with the parameter of , the training set can be represented as

where can be seen as the assisted parameter vector, , and the -th training subset can be expressed as
;			for	 .
If the subset and subset are completely independent, i.e., , for , and the distribution associated with the parameter of is approximated as

Then, the cross-entropy between the training data and the model’s predictions can be

If the parameter vector of is given, the cross-entropy in the training procedure for the parametric model with the pre-known can be individually represented as
 Eq. 1
where , and is the total number of training models.
It is worthwhile noting that, the AI models can be trained by means of offline manner and utilized by each UE accordingly. This does imply that each AI-model can be seen as a sub model, and the K sub models form a cell-specific AI model which can be operated by all the UEs if connected with the corresponding gNB.
As one specific example, by geographically dividing the network area, AI models associated with different areas can be distinguished and the related tasks associated with AI models would be limited. This results in the improvement of the accuracy and effectiveness of the AI model, and the reduction of the complexity of AI neural networks. To achieve the above purpose, the network may perform regional division of geographic coordinates through a zone identification (i.e., Zone-ID). The network determines the network coverage area related to the maximum communication range according to the geographic location of the gNB, which is further divided into multi-zones represented by Zone-ID. As illustrated in Figure B-1, the size of each zone with is configurable according to the use-cases and the deployed scenarios, where is the zone length and is the zone width. During the AI model training procedure, the training dataset can be distinguished by the Zone-ID in the network coverage area. Therefore, the trained AI model behaves the characteristics of the zone indicated by Zone-ID.
Therefore, the training procedure for the parametric model with the pre-known parameter, , can be individually trained as formulated in Eq. 1, where is the Zone-ID within the maximum communication range .
It is worthwhile noting that this type of AI model training process can be completed by either the UE or by the network.
[image:]
Figure A-1: Schematic diagram of distinguishing AI models based on geographic information
By dividing different orientations of the network, alternatively, AI models associated with different orientations from gNB can be distinguished and the related tasks associated with AI models can be limited. This also results in the improvement of the accuracy and effectiveness of the AI model and the reduction of the complexity of AI neural networks.
As illustrated in Figure B-1, the area covered by the network is divided into orientations (or azimuths), and each orientation forms a pie-shaped directional sub area, denoted by , where is the ID of the gNB and is the subregion-orientated index. Optionally, the widths of the pie-shaped sub regions formed by the orientation of each sub region could be the same or different and determined by high-level configuration. More specifically, each sub region orientation can be regarded as an orientated beam (i.e., directional beamforming), where the orientated beam width is . During the AI model training procedure, if the gNB or UE can roughly acquire the geographic location of the UE or the AoA/DoA associated with the gNB, the AI training dataset can be distinguished by the orientation of each sub region. In such a case, the gNB or UE only uses the data related to the orientation of the sub region to train the AI model, which behaves the orientation features.
Therefore, the training procedure for the parametric model with the pre-known parameter, , can be individually trained as formulated in Eq. 1, where is the subregion-orientated index within the maximum communication range .
It is worthwhile noting that this type of AI model training process can be completed by either the UE or by the network as well.
[image:]
Figure A-2: Schematic diagram of distinguishing AI models based on direction information

Appendix B: Introduction of ONNX
ONNX (Open Neural Net Exchange, ‘https://onnx.ai/’) aims to support a common intermediate representation for AI model transmission for both deep learning and machine learning. It is developed as a common data format but not an AI framework or a development tool, so it can be compatible with any AI framework including TensorFlow, PyTorch and so on. In the design of ONNX, model structure and weights are sequenced by Protobuf. It defines an extensible computation graph with nodes with operators and handles all weights as inputs or outputs. It also defines the standard data types.
In ONNX, the computation graph is composed of some nodes and each node has several inputs and outputs. All the tensors are identified by its name. The same input name of node A and output name of node B means node A and B are connected. All weights are also identified by their names and corresponding to some nodes as inputs or outputs. Then the computation graph is constructed with the input name and the output name of each node.
With the help of ONNX, all developers can choose their own tools to develop their models and load other models in different framework. And now, ONNX is supported in many frameworks, tools and even some hardwires officially. Since ONNX does not impose restriction on operators, the same construct or function can be transformed to different combinations of nodes for different developers. All developers can have their specific transition code, which means it can be enhanced further to support other destinations like security.

Appendix C: Power consumption
Power consumption is one of the key parameters in current chipsets and much work has been done for power saving. If AI models largely increase power consumption, the commercialization of AI algorithm in air interface would be not a good deal.
The actual power consumptions of typical AI models are listed in Table C-1. From the discussion of power saving, the UE power consumption model for FR1 is shown in Table C-2, in which the basic unit would be assumed as 5 mA. It is seen that the power consumptions of complex AI models are comparable with typical physical layer operations. Power consumption for typical neural network operation on typical chipsets are at the same level of power consumption as for SSB or CSI-RS processing or PDCCH decoding.
Table C-1: The actual power consumptions of typical AI models in typical chipsets.	
	
	Electron current (mA)

	AI Model 2 (1.14 GOPs)
	291

	AI Model 4 (11.5 GOPs)
	420

Table C-2: UE power consumption model for FR1 from the discussion of power saving.
	Power state
	Relative power

	Deep sleep
	1*5 (Optional: 0.5)

	Light sleep
	20*5

	Micro sleep
	45*5

	PDCCH-only
	100*5

	SSB or CSI-RS proc
	100*5

	PDCCH+PDSCH
	300*5

	UL
	250*5 (0dBm)
700*5 (23dBm)

Performance of model is not directly related to FLOPs, but specifically tuned for models. Even with the similar FLOPs, the performance may be drastically different. For example, as shown in Figure C-1, the complexity of AI model 1 is 77.2% of AI model 2, and then the expected latency of AI model 1 is 77.2% of AI model 2. However, the actual latency of AI model 1 is 152% of AI model 2 in Chipset 2. For another example, the complexity of AI model 2 is 9.9% of AI model 4, while the power consumption of AI model 2 is 69.3% of AI model 4.

[bookmark: _GoBack]Figure C-1: The complexity and latency comparison between AI models.

Appendix D: Agreement from previous meeting
Some agreements and conclusions have been made in previous meeting.
	Agreement
For UE-part/UE-side models, study the following mechanisms for LCM procedures:
· For functionality-based LCM procedure: indication of activation/deactivation/switching/fallback based on individual AI/ML functionality
· Note: UE may have one AI/ML model for the functionality, or UE may have multiple AI/ML models for the functionality.
· FFS: Whether or how to indicate Funtionality
· For model-ID-based LCM procedure, indication of model selection/activation/deactivation/switching/fallback based on individual model IDs

Working Assumption
Consider “proprietary model” and “open-format model” as two separate model format categories for RAN1 discussion,

	Proprietary-format models
	ML models of vendor-/device-specific proprietary format, from 3GPP perspective
NOTE: An example is a device-specific binary executable format

	Open-format models
	ML models of specified format that are mutually recognizable across vendors and allow interoperability, from 3GPP perspecive

From RAN1 discussion viewpoint, RAN1 may assume that:
· Proprietary-format models are not mutually recognizable across vendors, hide model design information from other vendors when shared.
· Open-format models are mutually recognizable between vendors, do not hide model design information from other vendors when shared

Working Assumption
	Terminology
	Description

	Model identification
	A process/method of identifying an AI/ML model for the common understanding between the NW and the UE
Note: The process/method of model identification may or may not be applicable.
Note: Information regarding the AI/ML model may be shared during model identification.

	Terminology
	Description

	Functionality identification
	A process/method of identifying an AI/ML functionality for the common understanding between the NW and the UE
Note: Information regarding the AI/ML functionality may be shared during functionality identification.
FFS: granularity of functionality

Note: whether and how to indicate Functionality will be discussed separately.

Working Assumption
	Terminology
	Description

	Model update
	Process of updating the model parameters and/or model structure of a model

	Model parameter update
	Process of updating the model parameters of a model

The latency (ms) of typical AI models for image and video in typical chipsets

Chipset 1	
AI Model 1 	
(0.88 GTOPs)	AI Model 2 	
(1.14 GTOPs)	AI Model 3 	
(4.39 GTOPs)	AI Model 4	
 (11.5 GTOPs)	1.1001100110011	1.1299435028248588	2.0491803278688527	1.8214936247723132	Chipset 2	
AI Model 1 	
(0.88 GTOPs)	AI Model 2 	
(1.14 GTOPs)	AI Model 3 	
(4.39 GTOPs)	AI Model 4	
 (11.5 GTOPs)	1.3698630136986301	0.90009000900090008	3.3003300330033003	2.6315789473684208	Chipset 3	
AI Model 1 	
(0.88 GTOPs)	AI Model 2 	
(1.14 GTOPs)	AI Model 3 	
(4.39 GTOPs)	AI Model 4	
 (11.5 GTOPs)	1.5105740181268883	1.5105740181268883	3.3670033670033668	5.1020408163265305	
The latency (ms)

The latency ratio of typical AI models of different quantization levels

NPU-INT8	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	0.02	5.9171597633136092E-2	NPU-FP16	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	3.2051282051282048E-2	0.11764705882352941	GPU-FP32	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	9.6153846153846159E-2	1	CPU-FP32	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	9.0090090090090086E-2	1	
The latency ratio

The power consumption ratio of typical AI models of different quantization

NPU-INT8	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	2.0593080724876441E-3	1.029654036243822E-2	NPU-FP16	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	6.1779242174629318E-3	3.130148270181219E-2	GPU-FP32	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	1.9769357495881382E-2	0.23929159802306421	CPU-FP32	
AI Model 2 	
(1.14 GTOPs)	AI Model 4 	
(11.5 GTOPs)	0.10378912685337727	1	
The power consumption ratio

The complexity and latency comparison between AI models

AI Model 1 (0.88 GTOPs)	
Complexity	Latency in Chipset 2	Latency in Chipset 3	0.77200000000000002	1.522	1	AI Model 2 (1.14 GTOPs)	
Complexity	Latency in Chipset 2	Latency in Chipset 3	1	1	1	

image1.png

image2.png

image3.png

image4.png

image5.png

image6.emf
Data CollectionModel Training Model Inference ActorTraining DataInference DataOutputModel Deployment/UpdateModel PerformanceFeedbackFeedback

Microsoft_Visio_Drawing.vsdx
Data Collection
Model Training
Model Inference
Actor
Training Data
Inference Data
Output
Model Deployment/
Update
Model Performance
Feedback
Feedback

image7.emf
Data CollectionModel Training Training DataInference DataModel transfer/delivery/UpdateModel InferenceModel MonitoringOutputModel (de)activation/switchingModel retraining requestMonitoring Data

Microsoft_Visio_Drawing1.vsdx
Data Collection
Model Training
Training Data
Inference Data
Model transfer/delivery/
Update
Model Inference
Model Monitoring
Output
Model (de)activation/
switching
Model retraining request
Monitoring Data

image8.png

image9.emf
TrainingZonegNB-nUE

image10.emf
gNB-nDirectionalSub-area,

