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Introduction
This contribution concerns the Agenda Item 9.2.3.1 Evaluation on AI/ML for BM management. 
The paper outline is as follows: 	
· Section 2: We share our views on the remaining evaluation methodology issues. 
· Section 3: We discuss the AI/ML assumptions
· Section 4: We outline the simulation assumptions used for the evaluations in this paper.
· Section 5: We present results for AI/ML-based spatial beam prediction. 
· Section 6: We present results for AI/ML-based temporal beam prediction. 
Remaining issues on evaluation methodologies
FFS on option 3 for RS-overhead
One of the benefits of temporal beam prediction is being able to reduce the number of periodic measurements, for example to configure a lower measurement periodicity and rely on predictions instead. Note that in line with the discussion in next section, only a prediction of the strongest beam is not solely sufficient to configure a data transmission, one might also need an extra measurement prior to the data transmission to assess the quality of the strongest beam. In the current formulation for the FFS on option 3, it is not clear what is meant by each time-instance. It is preferred to discuss around a time-window, that is repeated with measurements and predictions according to a certain periodicity depicted in the figure below. 
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Measured beams
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Time window 2





[bookmark: _Toc127532323]Update Option 3 with the text below
	· FFS: Option 3:  
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each repeated time instance window
· where M is the total number of beams (pairs) to be predicted for each repeated time instance window
· where L is ratio of periodicity of time instance for measurements to periodicity of time instance for prediction
· Companies to report the assumption on the repeated time-window (e.g. periodicity)
· Companies report the assumption on T1 and T2 patterns
· Other options are not precluded and can be reported by companies.



KPIs
Beam quality is needed to set relevant transmission parameters, a predicted beam quality could reduce the need for extra measurements when K=1 as discussed in subsequent section. There is hence a motivation for companies to also provide results for such predictions. One useful metric would comprise of the error of the L1-RSRP prediction with the ideal L1-RSRP for the Top-1 predicted beam.  
[bookmark: _Toc127532324]Define a metric for L1-RSRP predictions for the Top-1 predicted beam. 
[bookmark: _Toc127532325]Error metric comprises the absolute difference of the predicted L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of Top-1 predicted beam
As shown in [4], Section 3.2, the SSB/CSI-RS best beam statistics are highly skewed in the agreed simulation scenarios. For example, beams with azimuth angles pointing towards the horizon will occur more often than beams with other azimuth. AI/ML models can be trained to work well for common beams (e.g., beams on the horizon), and, potentially, ignore uncommon beams. One method for exploring the ability of AI/ML models to predict the uncommon beams is to visualize their performance on such rare events. For example, companies can provide tail percentiles (e.g., 99th percentile) when presenting L1-RSRP error results. One example for temporal beam prediction is provided in section 6. 
[bookmark: _Toc127532326]Evaluate more percentiles for the L1-RSRP error (e.g. 95th,99th percentile)

AI/ML related assumptions
[bookmark: _Ref127463187]Assumptions for beam management procedures (P1/P2/P3)
The use of a beam prediction model will impact the current P1/P2/P3 procedure in finding the best beam for a UE. It should be noted that finding a best beam is not sufficient, one should also assess the beam quality of such best beam to set adequate transmission parameters. How the P1/P2/P3 procedure are impacted are mainly due to the following beam prediction aspects:
· If Set B is SSB or CSI-RS
· If Top-1 beam or Top-K beams are predicted
· If P3 procedure is performed in case of TX-beam prediction
· If beam quality is assessed via predictions or measurements
[bookmark: _Ref126659202][bookmark: _Toc127485705]Figure 1: Flowchart on TX and TX/RX beam prediction in respect to P1/P2/P3
TX-beam prediction
TX/RX-beam prediction


On the discussion for RAN1#111 FL5:(FFS) Question 4.7a, the number of alternatives/options in respect to the above aspects are large and might be hard to capture in a limited set of options. Our view of the procedure is highlighted in the flowcharts in Figure 1. Given the flowchart, it should be noted that when performing measurements, it increases the latency in selecting the beam for the data transmission. For TX-beam prediction, the lowest latency would be when Set B is SSB, Top-1 beam is predicted, and L1-/RSRP/CQI/SINR is estimated via predictions. On contrast, the highest latency would comprise when Top-K beams are predicted using a set B of CSI-RS, and an additional P3 procedure is performed to find the best RX-beam. 
For TX-beam prediction, the NW can be based on the report from the P3 measurements acquire sufficient channel state information for performing link adaptation. Note that if there are no P3 procedure in place, there is a need to predict the beam quality for performing link-adaptation when K=1 or rely on the P2* measurements when K>1.
We have the following observations and proposals:
[bookmark: _Toc127537872]For the TX or TX/RX Top-1 beam pair prediction aiming to replace P2 and/or P3 procedure with beam prediction, L1-RSRP/CQI/SINR predictions are needed for link-adaptation to avoid additional measurement
[bookmark: _Toc127532327]Consider flowcharts in Figure 1 for the discussion on alternatives for spatial-beam predictions with respect to the P1/P2/P3 procedure
Selection on set B, variable beam selection
Regarding the variable beam set FFS, we first note that potential pre-processing/filtering of beam measurements are not part of the model input. Examples of pre-processing are when a UE only reports a subset of the measured beams, or the NW filters out certain beams prior to performing model training/inference. For example, the NW filters out the weak beams reported by the UE, similarly, the UE might not be able to hear all beams in set B. 
Regarding the FFS on option 2, when set B are variable, the beams that are input to the model can change deterministically based on the pre-configured pattern or based on pre-processing rules of the measurements (e.g., report K strongest). The option of a random selection of beam measurements for set B are not feasible in our view, there is no scenario where one would arbitrarily select a set of beams to be input to the model. Our view on the alternatives for a variable beam set is the following. 

[bookmark: _Toc127532328]Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/ report/measurement during training and/or inference), Set B is deterministically changed, based on the following alternatives
0. [bookmark: _Toc127532329]Pre-configured/pre-known pattern
0. [bookmark: _Toc127532330]Pre-processing of measurements (e.g. UE report K strongest beams, NW filters out K beams, etc.)
0. [bookmark: _Toc127532331]Combination of a) and b)
· [bookmark: _Toc127532332]#beams in Set B can be fixed or variable
· Set B can be a subset of set A
· Companies to report how variable set B is selected
· Assumptions on pre-configured/pre-known/pre-processing
· Companies to report the number of measurements

[bookmark: _Ref127177528]Assumptions on thermal noise
In this section we discuss the impact of thermal noise on KPI evaluations. According to Table 10.1.20.1.1-1 in 3GPP TS 38.133, UEs are only guaranteed to be able to measure RSRP down to an SNR of -3 dB. Based on the agreed UE receiver noise figure (NF) of 10 dB, a gNB Tx power of 40 dBm, 120 kHz SCS, and 624 subcarriers in the system BW, this corresponds to a maximum path loss of , if no power boosting is assumed. 
[image: Table

Description automatically generated]
In the agreed scenarios, many UEs will have a larger path loss, even for their respective best Tx/Rx beam pair, and hence they may not be able to report RSRP at all. This is illustrated in Figure 2, which shows a CDF over the path gains for the best beam pair of every gNB-UE link in agreed UMa 21-sector scenarios. For the case of 80% indoor UEs, about 25% of all UEs fall below -128 dB, and may hence not be able to report RSRP. Furthermore, many of the remaining UEs have other beams that are below -128 dB, and hence these beams might not be reported, making beam prediction harder than if the neural network had access to measurements for all beams.
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[bookmark: _Ref126868582][bookmark: _Toc127485706]Figure 2: CDF over UEs for the path gain of each UE’s best SSB Tx/Rx beam pair, for scenarios with and without indoor UEs. A 4x8 antenna array with 32 beams in Set A and 8 SSB beams in Set B was used.

[bookmark: _Toc127532333]Conclude that UEs can only detect beams with SNR higher than -3 dB in the evaluations.
According to Table 6.3.2.2-1 in 3GPP TS 38.104, NR allows for power boosting by up to 3 dB for PDSCH with QPSK or 16QAM modulation, but even with boosting, many UEs would be below the limit.
See Section 5.3.5 for evaluation of the thermal noise impact. Note that the SNR limit is not considered in the other sections of this contribution.
[bookmark: _Ref127174403]Assumptions on measurement error
All evaluations in previous sections have been performed under the assumption of no RSRP measurement errors. However, there are always measurement errors in the UE. Excerpts from 3GPP TS 38.133 on UE L1‑RSRP measurement requirements are shown in the following table.
[image: Table

Description automatically generated]
The above values are defined for SSB based L1-RSRP, however, the same values are specified for CSI-RS based L1-RSRP to be found in the TS 38.133.
To exemplify the impact of measurement inaccuracy errors in RSRP reporting, in section 5.3.6, evaluations with varying level of errors have been performed. According to the discussion in RAN4 for determining the L1-RSRP accuracy requirement, the contributing elements for agreed above range consist of 4dB RF impairments, 1dB fading condition, and other factors like additive noise at the receiver side. RF impairment model is composed of different elements, including I/Q imbalance, Quantization noise, Phase noise, Filters/Ripple noise, RF PA distortion noise. Adding fading and additive thermal noise at receiver on top of this, for the sake of simplicity and counting for many different types of noise factors, we assume Normal distribution for modelling the RF impairments in our evaluations. The variance of normal distribution is set so that the 95% of the density function lay within the specified accuracy range in the evaluations. We also provide the results with RF impairments modelled as uniformly distributed random offsets in the dB domain. 
In the evaluations provided in section 5.3.6, we investigate the following aspects regarding RSRP measurement inaccuracy error: 
· The impact of the different measurement error values on the performance of the AI based beam prediction algorithms,
· We also consider the effect of quantization of RSRP values for reporting and investigate the effect of RSRP granularity level for different measurement error values,
· We further look into the impact of having RSRP measurement from UEs with different measurement accuracy capability and how to improve the AI model training in that case. 

[bookmark: _Toc115446146][bookmark: _Toc115446185][bookmark: _Toc115446222][bookmark: _Toc115446452][bookmark: _Toc127532334]For beam prediction evaluations consider providing the results with measurement accuracy noise modelled as additive gaussian noise with 95% of the density function within the measurement accuracy range, and/or uniformly distributed noise 

Simulation scenario
For the following discussion, we consider randomly dropped UEs in the 3GPP UMa scenario with 200 m inter-site distance, see appendix for details. We use spatially consistent channel model, and we fix a common random seed for the propagation conditions for all simulations (unless otherwise stated). The total number of UEs (samples) generated was typically in the order of 20000–30000 per sector (cell). About 90% of the samples were used to train AI/ML model for spatial beam prediction. The remaining channel samples were used for testing/inference. 
For the gNBs, SSB and CSI-RS beams were defined based on Table 1. No mechanical down tilt is used. We will use the following abbreviations for the gNB antenna array configurations:
· “4x8”: One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ

Cell selection: UEs were associated with their best gNB based on link gain. UE-side beamforming: Unless otherwise stated, we assume that the best UE-side Rx beam are used. That is, the SSB and CSI-RS L1-RSRPs were calculated assuming the best UE-side Rx beam. These RSRP values were then used as dataset for training and inference. Some evaluations will use additional assistance information to train the AI/ML beam prediction models, see later sections for more details.
The complete set of SSB beams and CSI RS beams, in terms of zenith and azimuth angles, is listed in Table 1. All beams are generated using linearly increasing phase across antennas, with same amplitude on all elements. The prediction target (Set A) is always the complete set of CSI-RS beams. The considered measurement sets (Set B) are illustrated in Figure 3 (4x8 gNB array). Set B beams are the same in training and inference unless otherwise stated.
[bookmark: _Ref111022483][bookmark: _Ref111191499]Table 1: gNB SSB and CSI-RS beam directions
	Array size (#elements)
	RS type
	#zenith × #azimuth = total #beams
	Beam width
	List of angles 


	4x8
	SSB
	2×4 = 8
	Half-wide1)
	Zenith angles [deg]: 75, 105
Azimuth angles [deg]: -45, -15, 15, 45

	
	CSI-RS
	4×8 = 32
	Narrow
	Zenith angles [deg]: 67.5, 82.5, 97.5, 112.5
Azimuth angles [deg]: -52.5, -37.5, -22.5, -7.5, 7.5, 22.5, 37.5, 52.5


1) Only half of the antenna elements in each dimension are used, i.e. a quarter of all antenna elements.

 [image: ]
[bookmark: _Ref83924636][bookmark: _Toc127485707]Figure 3: Beam patterns for 4x8 gNB array, with filled circles indicating the Set B beams (4, 8, or 16).

Spatial beam prediction
In this section, we present our evaluation methodology and results for the spatial beam prediction sub use case.

Baseline description 
The baseline scheme uses the Set B beam sets defined by Figure 3 and Table 1. All beams in Set B are transmitted and reported. The baseline prediction is the best beam (Top-1) in Set B.
Spatial beam prediction description
Conventional beam prediction
The conventional beam prediction evaluated has the same structure as the AI/ML model Tx beam prediction described in Section 3.1, with Set A = SSB beams. The difference is only in how the set of K CSI-RS beams for step P2 is determined. In the conventional scheme, every CSI-RS beam is given an association with its closest SSB beam in terms of beam angle difference (defined as squared zenith angle difference plus squared azimuth angle difference). The set of CSI-RS beams for step P2 is then all the CSI-RS beams associated with the best SSB beam found in step P1. With the SSB and CSI-RS patterns used in this contribution,  is always 4.
Neural network architectures
We use a neural network model with dense layers, and training is performed with a SoftMax cross-entropy loss function. Input normalization is based on scaling the beam RSRP values in dB per sample to yield the range 0.0 to 1.0 for RSRP values for each sample. Results also with a more complex neural network can be found in [5].
An overall description of our evaluation methodology and its complexity is provided in the Table 2. 

[bookmark: _Ref115343387]Table 2: AI/ML evaluation parameters, methodology, and complexity KPIs
	Parameters
	Potential Values

	Dataset description (Training/Test data)
	· Number of samples: Typically, in the order of 20000–30000 per sector (depending on scenario)
· Training on single sector, inference on same sector, unless otherwise stated

	Model validity area
	· Sector-specific training 

	Model description
	· Neural network, 2–3 dense layers, ReLU, dropout
· Model hyperparameters: learning rate 0.001–0.01

	Model input description
	· RSRP from SSB and/or CSI RS (one real value per measured beam unless otherwise stated)
· UE location information (only where explicitly stated)

	Model output description
	· Likeliness of beam being strongest beam, used to derive top-K beams

	Training methodology
	· Loss function: Softmax cross-entropy

	Model complexity KPIs
	· Number of parameters:1) ~1300 (TX prediction), ~19000 (joint TX/RX prediction)
· FLOPs for inference:1) ~2700 (TX prediction), ~37000 (joint TX/RX prediction)



1) For Set B with 8 SSB TX beams.
Results
[bookmark: _Ref115199518]Beam prediction KPIs
Based on agreements and discussion in previous sections, we report the following KPIs:
· Beam prediction accuracy (%) for Top-1 and Top-3 beams, with 0 dB margin and 1 dB margin
· We use the Option 2 interpretation of “Top-K”; that is, the beam prediction accuracy (%) is the percentage of the Top-1 genie-aided beam is one of the Top-K predicted beams.
· CDF of L1-RSRP difference for Top-1 (and in some cases also Top-3) predicted beams [compared to genie aided best beam?]
· Average RSRP difference
· RS measurement overhead reduction (for one UE)
In all cases, the RS transmission overhead reduction is defined according to Option 1, i.e. as 1-N/M, where N is the number of beams (SSB and/or CSI-RS) that are transmitted in the beam finding procedure (sum of steps P1 and P2), and M is the total number of (CSI-RS) beams in Set A.
For the AI/ML and baseline schemes,  is calculated as

Note that this can be seen as a worst-case estimate, since if there are multiple UEs in a cell, they may have overlap between their respective top-K sets, and transmissions of top-K beams in step P2 may then be shared between UEs. Also, if Set B uses CSI-RS beams, some of the top-K beams may have been transmitted already during P1 and need not be repeated. Note that the baseline scheme used does not employ a multi-step procedure, and hence effectively has K = 1.
For the conventional scheme, the number of CSI-RS beams associated with a Set B SSB beam is fixed to  and Set B is the full set of SSB beams, i.e.  and hence .
As mentioned above, we trained one model for each sector (cell) in the network. Performance varies somewhat from sector to sector depending on shadow fading etc, and we show results for one representative sector unless otherwise stated.
ML KPIs TX-beam prediction
ML KPI results for 4x8 gNB array are provided in Table 3 and Figure 4, for a representative sector in the network. Table 3 shows the beam prediction accuracy (with 0 dB and 1 dB margins) along with corresponding beam transmission overhead. Figure 4 provides CDFs over the differences between RSRP for the predicted beam and the RSRP for the optimal beam, over all UEs in a cell, for various scenarios and schemes. 

[bookmark: _Ref127485765]Table 3: Beam-finding accuracy and overhead, 4x8 gNB array
	AI/ML model
input/output
	Model input
	Normalized L1-RSRP

	
	Model output
	Likeliness of beam being strongest beam

	Data Size
	Training
	~30000

	
	Testing
	~3000

	AI/ML model
	model description
	2 dense layers

	
	Model complexity
	~1300 parameters 1) 

	
	Computational complexity
	~2700 FLOPs 1)

	Assumptions
	Number of beams in Set A
	32

	
	Number of beams in Set B
	8 or 16

	Scheme
	Beam accuracy [%]
	Meas. overhead 
1 - N/M [%]

	
	100% outdoor
	80%/20% in/outdoor
	

	
	0 dB margin
	1 dB margin
	0 dB margin
	1 dB margin
	

	Evaluation results
	Beam prediction accuracy (%)
	AI/ML, 8 SSB
	Top-1
	94.6
	97.0
	79.8
	87.6
	75

	
	
	
	Top-3
	99.7
	99.8
	97.1
	98.7
	66

	
	
	AI/ML, 8 CSI-RS
	Top-1
	96.9
	98.6
	76.3
	82.6
	75

	
	
	
	Top-3
	99.7
	99.8
	95.7
	97.1
	66

	
	
	AI/ML, 16 CSI-RS
	Top-1
	98.5
	99.7
	89.5
	96.0
	50

	
	
	
	Top-3
	99.9
	99.9
	99.0
	99.6
	41

	
	
	Baseline, 8 CSI-RS
	34.9
	41.3
	26.5
	37.4
	75

	
	
	Baseline, 16 CSI-RS
	37.0
	46.7
	46.1
	63.3
	50

	
	
	Conventional, 8 SSB
	97.6
	98.9
	94.6
	97.7
	62

	Note: “n SSB” / ”n CSI-RS” indicates the type and number of beams in Set B in accordance with Figure 1. 
1) For Set B with 8 SSB TX beams.




[image: ] [image: ] 
(a) 									(b)
[bookmark: _Ref127485820][bookmark: _Toc127485708]Figure 4: RSRP difference CDF, for 4x8 array, for (a) 100% outdoor UEs and (b) 80%/20% in/outdoor UEs. 

The results show that AI/ML schemes can outperform the baseline/conventional schemes. For example, considering the scenario with 100% outdoor users in Table 3, the trained AI/ML model with 25% overhead (using 8 SSB beams in Set B vs. 32 CSI‑RS beams in Set A) could predict the Top-1 beam for 97% of the users with a 1dB margin, while the baseline schemes reach only about 46% correct predictions at twice the overhead. The corresponding CDFs can be seen in Figure 4(a). 
The prediction problem can be expected to be more challenging for scenarios with many indoor UEs. This is confirmed in Table 3 and Figure 4(b). Although the Top-3 schemes can give good prediction accuracy, they lead to larger overhead (9% more overhead) comparing to the Top-1 schemes. It also shows that the conventional scheme in the current beam pattern has very good performance, which is because the conventional scheme with 8 SSB beams could be regarded as 8 SSB beams with Top-4 scheme.  
[bookmark: _Toc118704664][bookmark: _Toc118705232][bookmark: _Toc118705487][bookmark: _Toc127537873]In outdoor scenarios, AI/ML can reduce beam spatial-domain beam prediction overhead substantially while maintaining good accuracy for 4x8 (32 beams in Set A). 
[bookmark: _Toc127537874]In scenarios with primarily indoor UEs, spatial-domain beam predication is more challenging.
[bookmark: _Toc127537875]With the adopted beam pattern, the conventional scheme could have very good performance which significantly outperforms the baseline schemes and have similar performance as AI/ML schemes.  


[bookmark: _Ref115102623]ML-specific KPIs for joint TX/RX beam prediction
In this section, we investigate joint TX/RX beam prediction, and compare it with a reference case where the optimal UE beam is assumed like in previous sections (i.e., where the UE implicitly is assumed to scan all of its RX beams for each TX beam, and only report the best value).
For the joint TX/RX prediction, we evaluate the following configuration:
· Set A consists of 32 TX CSI-RS beams and 8 RX CSI-RS beams, i.e., Set A consists of 32 × 8 = 256 TX/RX beam pairs.
· Set B: 8 TX SSB with Option 1 and Option 2 in below: 
· Option 1: consists of 64 TX/RX beam pairs defined as follows (Figure 5): 
· There are 8 TX SSB beams defined in accordance with Figure 3, and 8 RX beams (4 per UE panel), each RX beam is used to measure all TX SSB beams, i.e., in total there are 8 x 8 = 64 TX/RX beam pairs measured.
·  Option 2: consists of 32 TX/RX beam pairs defined as follows (in Figure 5): 
· There are 8 TX SSB beams defined in accordance with Figure 3, and 8 RX beams (4 per UE panel), but each RX beam is only used to measure 4 of the TX SSB beams, i.e., in total there are 8 x 4 = 32 TX/RX beam pairs measured.
For a Top-1 scheme, option 1 and option 2 lead to RS measurement overhead 64/256 = 25% and 32/256 = 12.5%, respectively.
For the reference case, we consider a configuration with the same number of Set A beams and the same number of TX beams in Set B (i.e., 8), but assume that the UE scans all its RX beams for each TX beam in Set B. For a Top-1 scheme, this leads to RS overhead (8 x 8)/256 = 25%, i.e., twice as high as for joint prediction option 2. The results are illustrated in Table 4 and Figure 6, and show that: 
· For option 1: The performance of joint TX/RX is very similar to the DL TX-only prediction with always optimal RX beam.
· For option 2: The performance of joint TX/RX with less measurements only has negligible degradation when comparing to the DL TX-only prediction with always optimal RX beam.
[bookmark: _Toc127537876]For Set B with SSB beams, the joint TX/RX prediction can give quite good performance while significantly reducing RS overhead compared to measurements of all RX beams for each TX beam in Set B.
[image: ][image: ]
(a) 								   (b)
[bookmark: _Ref126967854][bookmark: _Toc127485709]Figure 5 Set B beams for joint TX/RX prediction: (a) Option 1 and (b) Option 2

[bookmark: _Ref127431311]Table 4: Joint TX/RX beam prediction, 4x8 gNB array, 100% outdoor, Top-1
	
	Ericsson, Tx-only prediction, for reference
	Ericsson, joint Tx/Rx prediction, Option 1
	Ericsson, joint Tx/Rx prediction, Option 2

	Assumptions
	Number of beam pairs in Set A
	256
	256
	256

	
	Number of beams pairs in Set B
	64
	64
	32

	
	Baseline scheme
	– 
	–
	–

	AI/ML model
input/output
	Model input
	Normalized L1-RSRP
	Normalized L1-RSRP
	Normalized L1-RSRP

	
	Model output
	Likeliness of beam being strongest beam
	Likeliness of beam being strongest beam
	Likeliness of beam being strongest beam

	Data Size
	Training
	~30000
	~30000
	~30000

	
	Testing
	~3000
	~3000
	~3000

	AI/ML model
	Model description
	2 dense layers
	2 dense layers
	2 dense layers

	
	Model complexity
	~82000 parameters
	~82000 parameters
	~74000 parameters

	
	Computational complexity
	~170000 FLOPs
	~170000 FLOPs
	~154000 FLOPs

	Evaluation results
	Beam prediction accuracy (%)
	Accuracy, 0 dB margin
	94.6
	92.7
	92.5

	
	
	Accuracy, 1 dB margin
	97.0
	97.6
	97.3

	
	System performance
	RS overhead reduction 1-N/M
	75%
	75%
	87.5%





[image: ]
[bookmark: _Ref115110191][bookmark: _Ref126967769][bookmark: _Toc127485710]Figure 6: RSRP difference CDF, for 4x8 array, with or without joint TX/RX prediction. 

Variable number of beams in Set B (reduced reporting) 
In this section, we investigate variable number of beams in Set B, focusing on the case where a fixed set of beams is measured, but the number of reported beams for NW-sided model inference is variable due to pre-processing of measurements at the UE-side. The objective is to see to what extent the reporting overhead can be reduced while maintaining good accuracy.
We consider a scheme with gNB-side inference where the UE measures a fixed set of beams, but only reports beams with RSRP exceeding a certain threshold relative to the strongest beam, i.e., only beams with an RSRP at most X dB below the RSPR of the strongest measured beam are reported. This is valuable as it reduces reporting overhead. Figure 7 shows results with X = 10 dB and X = 15 dB, for the measured set consisting of CSI-RS, in comparison with the case where all measured beams are reported. The average reporting overhead reduction obtained in simulations is indicated in the legend but note that the number of reported beams may vary significantly between UEs. As can be seen, despite the rather large reporting overhead reduction (up to almost 86%), in case of Top-1, performance degradation for X=10 dB is acceptable, and in case of X=15 dB (70% reporting reduction), even negligible. And for the Top-3, the performance degradation is hardly noticeable. 
[bookmark: _Toc127537877]By allowing variable number of reported beams via UE pre-processing of measurements, the reporting overhead can be substantially reduced with little performance degradation.


[image: ]
[bookmark: _Ref110879900][bookmark: _Toc127485711]Figure 7: RSRP difference CDF, for 4x8 array, 100% outdoor, Top-1, for different average number of reported beams. 
Rx beam for DL Tx beam prediction
	Agreement
At least for evaluation on the performance of DL Tx beam prediction, consider the following options for Rx beam for providing input for AI/ML model for training and/or inference if applicable
· Option 1: Measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample
· Option 2: Measurements of specific Rx beam(s)
· Option 2a: Measurements of specific Rx beam(s) per model input sample 
· Option 2b: Measurements of specific Rx beam(s) for all model input sample
· FFS how to select the specific Rx beam(s)
· Option 3: Measurements of random Rx beam(s) per model input sample
· Other options are not precluded and can be reported by companies.



In this section, we investigate the impact of UE Rx beam for DL Tx beam when the Set B is 16 out of 32 CSI-RS beams. As can be seen in Figure 8, the performance of Option 1 with “best” Rx beam and Option 2 (Option2a and Option 2b) with specific Rx beam are quite similar, while Option 3 with random Rx beam per model input sample achieves very poor performance. Similar findings can be seen when considering 80%/20% in/outdoor UEs.
[bookmark: _Toc127537878]For DL Tx beam prediction, Option 3 with random Rx beam per model input sample achieves very poor performance. 

[image: ][image: ]
(a) 								   (b)
[bookmark: _Ref127056736][bookmark: _Toc127485712]Figure 8 RSRP difference CDF, for 4x8 array, Top-1, for different UE Rx. beams for DL TX beam prediction: (a) 100% Outdoor UE and (b) 80%/20% in/outdoor UE. 
Use of UE location information
As was shown in [4], the UE location is strongly correlated with the best beam. This correlation is particularly strong for outdoor UEs. It is, therefore, of interest to make use of UE location in beam prediction. In Figure 910, we show that even UE location only (i.e. without any RSRP measurements) can achieve about 90% prediction accuracy of best beam with 1 dB margin. This could be useful in scenarios where RS-transmission is costly, e.g. at high load situations.

[image: ]

[bookmark: _Ref126946874][bookmark: _Toc127485713]Figure 9: RSRP difference CDF, for 4x8 array, Set A = 32 beams, Set B = 8 SSB beams, 100% outdoor UEs, with only UE location as model input.


[bookmark: _Toc127537879]Using solely location information (i.e. no RSRP measurements), we could achieve almost 90% prediction accuracy of best beam (Top-1). This could be useful in scenarios where RS-transmission is costly, e.g. at high load situations.


Table 5: Performance with only UE location as model input (no RS measurements at all)
	
	Ericsson, input is only UE position

	Assumptions
	Number of [beams/beam pairs] in Set A
	32

	
	Number of [beams/beam pairs] in Set B
	8

	
	Baseline scheme
	–

	AI/ML model
input/output
	Model input
	UE location in terms of zenith and azimuth angle relative to gNB panel

	
	Model output
	Likeliness of beam being strongest beam

	Data Size
	Training
	~20000

	
	Testing
	~2000

	AI/ML model
	Model description
	2 dense layers

	
	Model complexity
	~800 parameters

	
	Computational complexity
	~1700 FLOPs

	Evaluation results
	Beam prediction accuracy (%)
	Accuracy, 0 dB margin
	87.5

	
	
	Accuracy, 1 dB margin
	90.3

	
	L1-RSRP diff
	Average L1-RSRP diff 
	1.1 dB

	
	System performance
	RS overhead reduction 1-N/M [%]
	100 (no RS overhead at all)





[bookmark: _Ref127177179]Impact on thermal noise
We estimated the KPI impact from the thermal noise (as detailed in Section 3.3) through evaluations with the following assumptions:
· UEs with no Set B beam pair above -128 dB were excluded from both training and testing datasets.
· For the remaining UEs, all Set B beam pairs with path gain below -128 dB had their path gain set to -128 dB before training and testing.

In Figure 11 and Table 6, the results are compared with KPI evaluations without thermal noise. Set B here consists of 8 SSB beams. Evidently, there is a substantial impact from thermal noise for scenarios with indoor UEs, and the impact should therefore be considered in KPI evaluations.
[image: ]
[bookmark: _Ref126868584][bookmark: _Toc127485714]Figure 11: Performance with and without thermal noise impact. 

[bookmark: _Ref126941872]Table 6: Comparison of performance with and without thermal noise impact
	
	Ericsson, w/o thermal noise
	Ericsson, with thermal noise

	Assumptions
	Number of [beams/beam pairs] in Set A
	32
	32

	
	Number of [beams/beam pairs] in Set B
	8
	8

	
	Baseline scheme
	–
	–

	AI/ML model
input/output
	Model input
	Normalized L1-RSRP
	Normalized L1-RSRP

	
	Model output
	Likeliness of beam being strongest beam
	Likeliness of beam being strongest beam

	Data Size
	Training
	~20000
	~20000 1)

	
	Testing
	~2000
	~2000 1)

	AI/ML model
	Model descriptionm
	2 dense layers
	2 dense layers

	
	Model complexity
	~1300 parameters
	~1300 parameters

	
	Computational complexity
	~2700 FLOPs
	~2700 FLOPs

	Evaluation results
	Beam prediction accuracy (%)
	Accuracy, 0 dB margin
	84.8
	80.1

	
	
	Accuracy, 1 dB margin
	91.0
	86.8

	
	L1-RSRP diff
	Average L1-RSRP diff 
	0.43 dB
	0.72 dB

	
	System performance
	RS overhead reduction 
1-N/M [%]
	75
	75


        1) Before removing low-SNR UEs

[bookmark: _Toc127537880]Thermal noise has significant impact on prediction KPIs in scenarios with indoor UEs, and should therefore be considered in evaluations.

[bookmark: _Ref127174339]Impact from measurement errors 
The errors described in 3.4 are independently selected for each gNB beam, according to the following:
· During training: Errors were applied to model input as well as to targeted model output (ground truth).
· During inference: Errors were applied to model input but not to targeted model output (ground truth).
In Figure 12, evaluation results for different distributions and noise ranges are provided. We can observe that although for measurement inaccuracy error up to 2dB the results can be tolerable with 1dB deviation margin from measurements without error at 95%.  However, for larger error inaccuracy values the degradation becomes substantial. Therefore, the impact of measurement inaccuracy error on the AI beam prediction should be further investigated, and if necessary proper solutions including possible specification changes should be considered e.g. setting new requirement, reporting UE capability in this regard etc.It may also be necessary to further discuss UE measurement accuracy modelling, e.g., correlations between errors for different gNB beams. It may be helpful for the network to have better knowledge of the accuracy of the UE measurements.

[image: Chart

Description automatically generated] 
[bookmark: _Ref115439999][bookmark: _Toc127485715]Figure 12: L1-RSRP error when having imperfections in model input and ground truth due to measurement noise
The natural solution to this problem is to tighten the require on measurement accuracy. However, this may not be applied to the legacy UEs, so to mitigate this issue, different capability of UEs could be defined with different measurement accuracy. In this way, the ML algorithm can take into account the level of L1-RSRP measured value when training the ML model, e.g. RSRP values that have higher accuracy can get higher importance when calculating the training loss metric. 
[bookmark: _Toc115446149][bookmark: _Toc115446188][bookmark: _Toc115446225][bookmark: _Toc115446455][bookmark: _Toc127532335]Consider the following to mitigate the L1-RSRP measurement inaccuracy impact in ML based beam prediction
0. [bookmark: _Toc127532336]RAN4 to explore possibility to tighten requirements on L1-RSRP measurement accuracy
0. [bookmark: _Toc127532337]Define different UE capability based on their capability in fulfilling a measurement accuracy requirement. 

In order to show how the knowledge of UE measurement accuracy can help the network to improve the AI beam prediction performance we consider the following scenario where the RSRP measurements for model training are assumed to be collected from two types of UEs. One UE class provides L1-RSRP without any measurement error, while the other class measures L1-RSRP with inaccuracy of +-6dB. In this scenario, We also assume that 20% of collected data belongs to the first class, and 80% belongs to the second class. We also as
In our approach, we make the assumption that every UE reports its capability regarding measurement accuracy. By doing so, we obtain information on the measurement error inaccuracy of each L1-RSRP. When training our model, we modify the loss function to give larger weights to the loss of L1-RSRP measurements that have higher measurement accuracy. This technique is frequently utilized when dealing with the issue of imbalanced data in classification tasks.
More specifically, assuming the cross-entropy loss function for training, we multiply each sample loss by a weight parameter , and set a larger  values to more accurate L1-RSRP samples:

Where  is the SoftMax output or logits, and  is the true labels. For our evaluation here, we assigned  for samples without measurement error and  for samples with 6dB measurement inaccuracy error. We should notice that ratio between these values matters rather than their absolute values. The evaluation results are shown in Figure 13 for top-1 KPI conventional ( for all training examples regardless of their measurement inaccuracy) and weighted loss function explained above. Despite the weight parameter values being selected without optimization, we observe considerable improvement in the beam prediction performance. Further gains can likely be achieved through optimization.
[image: Chart, line chart

Description automatically generated]
[bookmark: _Toc127485716][bookmark: _Ref127450121]Figure 13 performance with/without applied weighted parameters to the loss function
In the study item, it has been suggested to set higher resolution on reporting L1-RSRP measurements for data collection and thus improving the beam predictions. Here, we demonstrate that setting higher accuracy on reported L1-RSRP values does not lead further gains without requiring higher measurement accuracy. For this aim, we performed evaluations with varying L1-RSRP reporting granularity for two different levels of measurement inaccuracy. The results are shown in Figure 14. More precisely, the quantized absolute L1-RSRP values are used as input to the train and test algorithm of Neural Network. 

As we can observe, when the measurement inaccuracy is as high as 4dB, reducing the quantization level has a negligible impact on the prediction performance. While when the inaccuracy is at 1dB, the reduction of quantization level can significantly improve the prediction performance. The reason is that the granularity provided by reducing quantization level below the noise floor, would be dissolved by the measurement noise, while doing so for values above noise floor can provide more information model’s training. 

Although we used the quantization for absolute L1-RSRP values, the general concept is also applicable to reporting of relative L1-RSRP values. Based on this we make the following observation:

[bookmark: _Toc127537881]Setting higher reporting accuracy in terms of granularity of reported values cannot improve the AI model performance without setting higher accuracy level on measurement error accuracy.  
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[bookmark: _Toc127485717][bookmark: _Ref127450155]Figure 14 Performance for varying quantization level of L1-RSRP report with difference level of noise inaccuracy 
	Assumptions
	Number of [beams/beam pairs] in Set A
	8

	
	Number of [beams/beam pairs] in Set B
	32

	
	Baseline scheme
	8

	AI/ML model
input/output
	Model input
	Quantized L1-RSRP 
	L1-RSRP

	
	Model output
	Likeliness of beam being strongest beam

	Data Size
	Training
	~21000

	
	Testing
	~2300

	AI/ML model
	[Short model description]
	2 dense layers

	
	Model complexity
	~1300 parameters

	
	Computational complexity
	~2700 FLOPs

	Measurement error (dB) 
	0
	4

	Quantization step size (dB)
	0
	1
	2
	4
	0
	1
	2
	4

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	0 dB margin Top-1 
	93.5
	90
	87.5
	83
	74
	73
	72.5
	70.5

	
	
	1 dB margin Top-1
	96.5
	95.5
	93
	87
	79.5
	79
	78.8
	75

	
	[System performance]
	[RS overhead Reduction (1 – N/M) % ]
	75




[bookmark: _Ref115203946]Generalization evaluations 
Impact of various deployment scenarios (UMa, UMi, and different UE distributions)

Results of model generalization where the AI/ML model is trained in one cell (i.e., sector) which is 1 out of 21 cells (i.e., 7 sites) and used for beam prediction in another cell in the network (without additional training) are shown in Table 7 and Table 8. The 4x8 gNB antenna array configuration with 32 CSI-RS beams is used to generate the dataset for training, testing and inference. 
Table 11 in Appendix shows the performance when the model is trained and tested using the data from the same sector (from sector [0] to sector [20]) with 90% for training and 10% for testing. It is found that the performance significantly depends on the selection of Set B and the sector used for training. For example, the performance for different sectors varies from 2% (16-32 CSI-RS beams) to 14% (4-8 CSI-RS beams) when considering 100% outdoor UE with the deployment of UMa. Similar findings can be seen when considering 80%/20% in/outdoor UEs with the deployment of UMa.

Table 7 presents the generalization performance when the model is tested in different sectors in comparison to the training with the same scenarios, i.e., training the model using the data from one of the sectors and performing the inference in different sectors. The detailed performance for each sector can be found in Table 12 in Appendix. From the Table 7, the model trained using the data from sector [5] is used to perform the inference for different sectors. It is shown that, for a given selected Set B, the performance heavily depends on the data from which sector. Therefore, it is important to know the sector information used for training and testing. 

Table 75: Generalization evaluations of the inference in different sectors.
	AI/ML model
input/output
	Model input
	Normalized L1-RSRP

	
	Model output
	Likeliness of beam being strongest beam

	Data Size
	Training
	~30000

	
	Testing
	~3000

	AI/ML model
	model description
	2 dense layers

	
	Model complexity
	~1300 parameters 1) 

	
	Computational complexity
	~2700 FLOPs 1)

	Assumptions
	Number of beams in Set A
	32

	
	Number of beams in Set B
	4, 8, or 16

	Scheme
	Beam prediction accuracy (%)
With 1 dB margin

	
	Top 1/Top 3 
	Max
	Min
	Mean

	Evaluation results
	Beam prediction accuracy (%)
	100% outdoor
	4-8 SSB
	0.921/0.995
	0.681/0.903
	0.788/0.970

	
	
	
	8-8 SSB
	0.970/0.998
	0.819/0.942
	0.903/0.986

	
	
	
	4-32 CSI-RS
	0.564/0.922
	0.240/0.572
	0.350/0.720

	
	
	
	8-32 CSI-RS
	0.985/0.998
	0.778/0.898
	0.848/0.960

	
	
	
	16-32 CSI-RS
	0.997/0.999
	0.857/0.951
	0.949/0.985

	
	
	80%/20% in/outdoor
	4-8 SSB
	0.759/0.950
	0.639/0.904
	0.690/0.928

	
	
	
	8-8 SSB
	0.868/0.984
	0.831/0.971
	0.845/0.977

	
	
	
	4-32 CSI-RS
	0.407/0.796
	0.280/0.664
	0.321/0.715

	
	
	
	8-32 CSI-RS
	0.817/0.972
	0.729/0.935
	0.756/0.956

	
	
	
	16-32 CSI-RS
	0.968/0.997
	0.922/0.986
	0.940/0.991

	Note: train the model based on the data from sector [5] and perform the inference in different sectors within the same scenario.
1) For Set B with 8 SSB TX beams.
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(a) 									(b)
[bookmark: _Ref118743111][bookmark: _Ref118502080][bookmark: _Toc127485718]Figure 15: RSRP difference CDF, for 4x8 array, selecting 16 out of 32 CSI-RS beams as Set B, performing the inference in different scenarios for (a) model trained based on the dataset with 100% outdoor UEs and (b) model trained based on the dataset with 80%/20% in/outdoor UEs


[bookmark: _Hlt127486741]Table 8 presents the generalization performance when the model is tested in different scenarios (i.e., various deployment scenarios and various outdoor/indoor UE distributions) in comparison to the training, where the model trained based on the data in sector [5] is selected to perform the inference, and the data in sector [0] is selected for inference. It is shown that it is more challenging to use a model trained based on 100% UE distribution to perform the inference of the scenario with 80%/20% In/outdoor UE distribution. However, the performance is much better if using a model trained based on 80%/20% In/outdoor UE distribution to perform the inference of the scenario with 100% UE distribution. Therefore, the model training should ensure a mix of various UE deployments. 

When considering the different ISDs for training and testing (i.e., ISD=200 and ISD=500 for training and testing, respectively), the performance degrades when the model is trained only using the data generated by one deployment scenario (i.e., ISD=200) and perform the inference in another deployment scenario (i.e., ISD=500). Therefore, the model training would benefit from a mix of various deployment scenarios in terms of generalizing to different ISD. It is also found that for various UE distribution, the performance varies according to the considered deployment scenario (i.e., UMa or UMi). For instance, for 100% Outdoor UE distribution, the performance degrades if the model is trained based on the deployment scenario (i.e., UMa) and the inference is done in a different deployment scenario (i.e., UMi). However, for 80%/20% In/outdoor UE distribution, the performance does not always depend on the deployment scenario (UMa or UMi) if different deployment scenarios are considered for training and inference. Therefore, it is not clear the impact of deployment scenario (UMa or UMi) for 80%/20% In/outdoor UE distribution, which needs further investigations. Therefore, it is important to have proper model monitoring procedures in place to detect the deployment scenarios and UE distribution when the inference is used to for the target cell. 
Table 86: Generalization evaluations of various deployment scenarios and various outdoor/indoor UE distributions for the setting with 4x8 gNB array
	AI/ML model
input/output
	Model input
	Normalized L1-RSRP

	
	Model output
	Likeliness of beam being strongest beam

	Data Size
	Training
	~30000

	
	Testing
	~3000

	AI/ML model
	model description
	2 dense layers

	
	Model complexity
	~1300 parameters 1) 

	
	Computational complexity
	~2700 FLOPs 1)

	Assumptions
	Number of beams in Set A
	32

	
	Number of beams in Set B
	4, 8, or 16

	Scheme
	Beam prediction accuracy (%) with 1 dB margin

	100% outdoor
	Description
	Top 1/Top 3 
	4-8 
SSB
	8-8 SSB
	4-32
CSI-RS
	8-32
CSI-RS
	16-32
CSI-RS

	
	Same UE Distribution
Same Deployment
Same ISD
	Out (UMa) ->Out (UMa)
ISD=200 ->ISD=200
	0.841
/
0.975
	0.914
/
0.990
	0.415
/
0.848
	0.889
/
0.978
	0.963
/
0.992

	
	Same UE Distribution
Same Deployment
Different ISD
	Out (UMa) ->Out (UMa)
ISD=200 ->ISD=500
	0.759
/
0.931
	0.835
/
0.948
	0.381
/
0.730
	0.793
/
0.938
	0.910
/
0.969

	
	Same UE Distribution
Different Deployment
Same ISD
	Out (UMa) ->Out (UMi)
ISD=200 ->ISD=200
	0.754
/
0.928
	0.832
/
0.964
	0.246
/
0.704
	0.776
/
0.933
	0.914
/
0.972

	
	Same UE Distribution
Different Deployment
Different ISD
	Out (UMa) ->Out (UMi)
ISD=200 ->ISD=500
	0.757
/
0.939
	0.812
/
0.961
	0.360
/
0.709
	0.798
/
0.949
	0.883
/
0.972

	
	Different UE Distribution
Same Deployment
Same ISD
	Out (UMa) ->Inout (UMa)
ISD=200 ->ISD=200
	0.698
/
0.907
	0.783
/ 0.940
	0.318
/
0.686
	0.722
/
0.913
	0.848
/
0.952

	
	Different UE Distribution
Same Deployment
Different ISD
	Out (UMa) ->Inout (UMa)
ISD=200 ->ISD=500
	0.685
/
0.888
	0.758
/
0.931
	0.306
/
0.660
	0.705
/
0.908
	0.831
/
0.945

	
	Different UE Distribution
Different Deployment
Same ISD
	Out (UMa) ->Inout (UMi)
ISD=200 ->ISD=200
	0.682
/
0.896
	0.775
/
0.942
	0.291
/
0.663
	0.700
/
0.903
	0.852
/
0.955

	
	Different UE Distribution
Different Deployment
Different ISD
	Out (UMa) ->Inout (UMi)
ISD=200 ->ISD=500
	0.719
/
0.909
	0.780
/
0.945
	0.326
/
0.694
	0.720
/
0.927
	0.854
/
0.964

	80%/20% in/outdoor
	Same UE Distribution
Same Deployment
Same ISD
	Inout (UMa) ->Inout (UMa)
ISD=200 ->ISD=200
	0.713
/
0.938
	0.855
/
0.981
	0.330
/
0.735
	0.773
/
0.963
	0.952
/
0.994

	
	Same UE Distribution
Same Deployment
Different ISD
	Inout (UMa) ->Inout (UMa)
ISD=200 ->ISD=500
	0.745
/
0.943
	0.857
/
0.982
	0.337
/
0.755
	0.762
/
0.956
	0.950
/
0.994

	
	Same UE Distribution
Different Deployment
Same ISD
	Inout (UMa) ->Inout (UMi)
ISD=200 ->ISD=200
	0.709
/
0.936
	0.852
/
0.982
	0.277
/
0.686
	0.741
/
0.948
	0.947
/
0.993

	
	Same UE Distribution
Different Deployment
Different ISD
	Inout (UMa) ->Inout (UMi)
ISD=200 ->ISD=500
	0.789
/
0.964
	0.859
/
0.987
	0.341
/
0.766
	0.767
/
0.966
	0.965
/
0.997

	
	Different UE Distribution
Same Deployment
Same ISD
	Inout (UMa) ->Out (UMa)
ISD=200 ->ISD=200
	0.782
/
0.957
	0.892
/
0.986
	0.390
/
0.826
	0.909
/
0.989
	0.983
/
0.999

	
	Different UE Distribution
Same Deployment
Different ISD
	Inout (UMa) ->Out (UMa)
ISD=200 ->ISD=500
	0.778
/
0.961
	0.874
/
0.989
	0.395
/
0.798
	0.825
/
0.971
	0.963
/
0.997

	
	Different UE Distribution
Different Deployment
Same ISD
	Inout (UMa) ->Out (UMi)
ISD=200   ->ISD=200
	0.743
/
0.952
	0.875
/
0.981
	0.225
/
0.692
	0.761
/
0.945
	0.953
/
0.993

	
	Different UE Distribution
Different Deployment
Different ISD
	Inout (UMa) ->Out (UMi)
ISD=200   ->ISD=500
	0.791
/
0.973
	0.867
/
0.989
	0.372
/
0.769
	0.809
/
0.977
	0.966
/
0.998

	Note: 1) For Set B with 8 SSB TX beams.



Observation 1 [bookmark: _Toc127537882]With identical antenna configuration, initial evaluations indicates that a model trained in one cell is found to be generalized well while the performance heavily depends on the sector is selected for the inference. 
Observation 2 [bookmark: _Toc127537883]Generalization results indicate the importance of having model monitoring procedures that detects issues when a model trained in one cell is used in another.
Impact of Rx beam
	Agreement
At least for evaluation on the performance of DL Tx beam prediction, consider the following options for Rx beam for providing input for AI/ML model for training and/or inference if applicable
· Option 1: Measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample
· Option 2: Measurements of specific Rx beam(s)
· Option 2a: Measurements of specific Rx beam(s) per model input sample 
· Option 2b: Measurements of specific Rx beam(s) for all model input sample
· FFS how to select the specific Rx beam(s)
· Option 3: Measurements of random Rx beam(s) per model input sample
· Other options are not precluded and can be reported by companies.



[bookmark: _Hlt127486758]In this subsection we discuss the impact of Rx beam on the performance of DL Tx beam prediction. It is noted that the model trained based on the data in sector [5] is selected for inference, and the data in sector [2] is selected for inference. The KPIs of Top 1 RSRP difference are summarized in Table 9. 
When considering the same option of Rx beam for training and inference, it is very challenging to train the model without knowing any information of UE Rx beam. As shown in Figure 16, Option 3 (i.e., random Rx beam per model input sample) achieves very bad performance for models trained on the dataset with 100% outdoor UEs and 80%/20% in/outdoor UEs. However, the performance is improved significantly if the best Rx beam information or at least partial Rx beam information, e.g., the Rx beam is fixed during the measurement period or the Rx beam is changed according to the pre-configured pattern. 
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(a) 									(b)
[bookmark: _Ref127197462][bookmark: _Toc127485719]Figure 16: RSRP difference CDF, for 4x8 array, selecting 16 out of 32 CSI-RS beams as Set B, performing the inference for given option of Rx beam for (a) model trained based on the dataset with 100% outdoor UEs and (b) model trained based on the dataset with 80%/20% in/outdoor UEs

For different options of Rx beam for training and inference, in Figure 17, we take an example of performing inference on dataset using different UE Rx beam option to see the impact of UE Rx beam applied differently between training and inference. More specifically, the model is trained on the dataset with mixed 80%/20% in/outdoor UEs from sector [5] and the inference is performed on the dataset with 100% outdoor UEs from sector [2]. Different Rx beam options are used for training and inference. As shown Figure 17, performing the inference on dataset using random Rx beam, i.e., Option 3 always have very poor performance no matter the model is trained on which kind of UE Rx beam option. In addition, the performance of using trained model on Option 1, Option 2a, and Option 2b have very similar performance in terms of inference, which significantly outperforms the one using random Rx beams, i.e., Option 3. 
[bookmark: _Hlt127486955][bookmark: _Hlt127486958]Based on the observations from Figure 16 and Figure 17, the information of UE Rx beam plays a vital role on prediction KPIs in DL Tx beam prediction. Therefore, it is good to discuss the impact of Rx beam.  

[image: ]
[bookmark: _Ref127202928][bookmark: _Toc127485720]Figure 17 RSRP difference CDF, for 4x8 array, selecting 16 out of 32 CSI-RS beams as Set B, performing the inference on dataset of 100% outdoor UEs for different options of Rx beam for model trained based on the dataset with 80%/20% in/outdoor UEs. 
Table 9 Generalization evaluations of Rx beam impact in various deployment scenarios and various outdoor/indoor UE distributions for the setting with 4x8 gNB array.
	AI/ML model
input/output
	Model input
	Normalized L1-RSRP

	
	Model output
	Likeliness of beam being strongest beam

	Data Size
	Training
	~30000

	
	Testing
	~3000

	AI/ML model
	model description
	2 dense layers

	
	Model complexity
	~1600 parameters

	
	Computational complexity
	~4000 FLOPs

	Assumptions
	Number of beam pairs in Set A
	32

	
	Number of beams pairs in Set B
	16

	Scheme
	Beam accuracy [%]

	Evaluation results
	Beam prediction accuracy (%)
	Same option of Rx beam for training and inference

	
	
	Case
	Option 1
	Option 2a
	Option 2b
	Option 3

	
	
	Outdoor -> Outdoor
	94.0
	94.7
	94.9
	51.3

	
	
	Outdoor -> In/Out
	83.3
	88.9
	88.0
	48.9

	
	
	In/Out -> Outdoor
	95.3
	95.7
	95.9
	53.6

	
	
	In/Out -> In/Out
	93.1
	94.4
	95.0
	53.3

	
	
	Different options of Rx beam for training and inference

	
	
	Case
	Option of Rx beam for inference

	
	
	In/Out->Outdoor
	Option 1
	Option 2a
	Option 2b
	Option 3

	
	
	Option of Rx beam for loaded model
	Option 1
	95.3
	95.2
	95.1
	42.3

	
	
	
	Option 2a
	96.2
	95.7
	95.5
	43.5

	
	
	
	Option 2b
	96.3
	96.0
	95.9
	42.2

	
	
	
	Option 3
	75.6
	74.9
	75.2
	53.6

	Note: 
(1) Case summary: 4x8 gNB, UMa, ISD=200m, Set B: 16-32 CSI-RS, Top 1, 1 dB margin
(2) Train the model using the data in Sector [5] and perform the inference in different scenarios using the data in Sector [2].



[bookmark: _Toc127537884]The information of UE Rx beam plays a vital role on prediction KPIs in DL Tx beam prediction. Therefore, it is important to address the impact of Rx beam selection

Impact of Fine-tuning
	Agreement

The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· The following case for generalization verification, can be optionally considered by companies:
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Company to report the fine-tuning dataset setting (e.g., size of dataset) and the improvement of performance
· FFS: Investigate of the feasibility the fine-tuning on the UE/Network side



In this subsection we mainly discuss Case 2A of model generalization focusing on the impact of fine-tuning on the generalization performance of DL Tx beam prediction. It is noted that the data in sector [5] is used for both model training and model inference. We aim to load the model trained on the data on 100% outdoor UEs and perform the inference on the data based on mixed 80%/20% in/outdoor UEs. 
We denote the case of “Outdoor-> In/Out” as the baseline which could be regarded as a lower bound. We also denote the case of “In/Out -> In/Out” as the ideal result which could be regarded as an upper bound. The KPIs of Top 1 RSRP difference are summarized in Table 10.  
[bookmark: _Ref127488719]Table 10 Generalization evaluations of Case 2A with fine-tuning. 
	[bookmark: _Ref127219922]Assumptions
	Number of beams in Set A
	32

	
	Number of beams in Set B
	16

	AI/ML model
input/output
	Model input
	Normalized L1-RSRP

	
	Model output
	Likeliness of beam being strongest beam

	Data Size
	Training
	~30000

	
	Testing
	~3000

	AI/ML model
	[Short model description]
	2 dense layers

	
	Model complexity
	~1600 parameters

	
	Computational complexity
	~4000 FLOPs

	scheme
	With fine-tuning

	Evaluation results
	Beam prediction accuracy (%)
	Accuracy 
with 1 dB margin 
	Outdoor -> In/Out

	Epochs
	200
	94.8

	
	
	
	
	Data
	30%
	

	
	
	
	
	Epochs
	200
	92.4

	
	
	
	
	Data
	10%
	

	
	
	
	
	Epochs
	100
	93.6

	
	
	
	
	Data
	30%
	

	
	
	
	
	Epochs
	100
	90.9

	
	
	
	
	Data
	10%
	

	
	
	
	Without fine-tuning

	
	
	
	Outdoor -> In/Out
	Epochs
	2000
	90.7

	
	
	
	
	Data
	90%
	

	
	
	
	In/Out -> In/Out
	Epochs
	2000
	97.1

	
	
	
	
	Data
	90%
	

	Note: 
(1) Case summary: 4x8 gNB, UMa, ISD=200m, Set B: 16-32 CSI-RS, Top 1, 1 dB margin, Rx beam with Option 2b
(2) data in Sector [5] are used for both model training and model inference.
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[bookmark: _Ref127217512][bookmark: _Toc127485721]Figure 18: RSRP difference CDF, for 4x8 array, selecting 16 out of 32 CSI-RS beams as Set B, performing the inference on dataset of 80%/20% in/outdoor UEs using the pre-trained model with fine-tuning.
For the fine-tuning process, we first load the model trained on the data on 100% outdoor UEs. Then, we aim to fine-tune the model by quickly re-training the model using parts of the inference dataset (i.e., 10% or 30%) with less than hundreds number of epochs (i.e., 100 or 200). It is noted that the normal training process will 90% of the data with 2,000 epochs, so the retraining process will significantly reduce the time and resource when comparing to the normal training process. As shown in Figure 18, the greater number of epochs and number of percentages of data from the inference dataset are used, the bigger improvement are presented. Besides, the curve with “100 Epochs + 30% data” outperforms the curve with “200 Epochs + 10% data”. So, it could see that increasing the percentages of inference data is a more effective way to improve the performance. Therefore, it exists the trade-off between the number of epochs and the number of percentages of data from the inference dataset. 
[bookmark: _Toc127537885]It is shown that increasing the amount of fine-tuning data improves the performance
[bookmark: _Ref127176053]Temporal TX-beam prediction	
In this section, the objective for a trained Neural Network (NN) is to predict the CSI-RS beam that is most likely to have the maximum L1-RSRP value, from the L1-RSRPs of CSI-RS measured at the observation time instances. In addition, the periodicity of the measurements and predictions are changed.
Evaluation description
The assumed CSI report periodicity is 80ms, see Figure 19a, and at each reporting time instance there are 32 CSI-RS and 8 SSB L1-RSRPs from each UE. The NN’s inputs at training and inference are the L1-RSRPs selected from the first 3 available time instances, numbered as {0,2,4}, such that the observation duration T1=2*80ms=160ms. The labels for the overall best CSI-RS beam at the time instance {5} serve as the NN’s outputs at training. In this scheme, the RS-overhead can be reduced to 50% in comparison with transmitting every 40ms. At inference, the NN predicts for the time instances at which the measurement report is absent. Our view is that this is the most promising use case for temporal beam prediction, where our other investigated use case of predicting e.g. 160ms ahead does not reduce the RS-overhead substantially. This other scenario is mainly useful to predict and avoid beam failures (beam failures are not seen in our current evaluation assumptions). 
Figure 19b shows the beam grid, i.e., azimuth and zenith angle combinations, for the assumed single panel gNB antenna configuration. The following are defined wrt the beam grid in Figure 19b.
 [image: ]
Figure 19a) assumed CSI periodicity
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                  Figure 19b) Beam grid for CSI-RS ad SSB
Figure 19c) Percentage of occasions the CSI-RS beam is strongest 


· Set A: The set with all the 32 CSI-RS L1-RSRP values, i.e., |Set A|=32.
· Set B: The set of beam indices (either SSB or CSI-RS), that are measured in T1 and serve as NN’s input. The overall best beam, i.e., the beam with the maximum L1-RSRP value, may or may not be present in Set B. Depending on the complexity requirement, more than one Set B can be formed. Few alternatives include,  
· Alt 1: Set B ≠ Set A. e.g., |Set B|=8, 
· Alt 2: Set B ⊆ Set A. e.g., |Set B|= 16, 8 or 4,
· Alt 3: Set B = Set A. e.g., |Set B|=32.	
Alt 1 corresponds to the SSB based training while Alt 2 and Alt 3 correspond to CSI-RS based training.

Figure 19c shows the beam grid for the optimal CSI-RS L1-RSRP, taken at each time instance, over all the users (~60k users). For the assumed setup, the CSI-RS beams above the elevation angle 82.5 degrees are most likely to be picked, which is about 91%. Based on the visualization of Figure 19c, various fixed beam subset selections for Set B, may be selected.
Results
An all outdoor UMa scenario is considered here. Each randomly dropped user is moving in a straight line in a random direction. It is assumed that each UE always uses its best beam. 
Except for the input layer, which changes with Set B, the to be trained model retains the hidden layers and the output layer for various cases considered here. The NN functions as a classifier, hence the output layer is length 32 softmax output vector. The NN’s input size is (Nip, 3), where Nip is the number of selected L1-RSRPs as explained above. 
Towards the performance evaluation, the considered KPI is the absolute L1-RSRP difference and NNs for Alt 2, Alt 3 are separately trained and tested. For Alt 2, a 16-beam fixed pattern with L1-RSRP values taken from the top 2 rows of Figure 19 is considered.
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Figure 20b) mean KPI. Predicting time instance {8}
Figure 20a) mean KPI. Predicting time instance {5}




For Alt2 and Alt3, Figures 20a, 20b plot the mean KPI, which is the mean value of the absolute L1-RSRP difference at the predicting time instance {5} and {8} respectively for the following cases,
1) difference between the overall best beam of Set A and best predicted beam where the figure text  indicates the time instances of the NN’s inputs.
2) difference between the overall best beam of Set A and best beam of Set B at time instance {4} (labelled as baseline in the Figures considered), i.e., the baseline (sample-and-hold), assumes that the best Set B beam at time instance {4} is carried over as the best beam at prediction instance {5}. 
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Figure 22) 95 and 99 percentiles for the instantaneous KPI. Predicting time instance {5}

Figure 21) CDF of the instantaneous KPI. Predicting time instance {5}




For the given inputs from Set B, for both 16 and 32 CSI-RS beams, a loss of ~0.3 dB is observed. The trained model in any case is better than the baseline.           
Figure 20 shows a metric that reflects the average performance. For a better understanding of the performance deviation from the optimal, the instantaneous prediction values need to be considered. For this, the cdf of the predicted L1-RSRPs is shown in Figure 21 and the corresponding 95 percentile (for 5 %worst UEs), 99 percentiles (for 1% worst UEs) are shown in Figure 22 for the model {0,2,4} and the above-mentioned baseline. 
As seen in Figure 22, at predicting time instance {5} and for various Set Bs, the 5% worst UEs have a performance deviation of 1.8dB to 3.2dB, while the 1% worst UEs suffer from a higher deviation of 6.3dB to 7.1dB. The large L1-RSRP error in the lower percentiles may motivate TX-beam prediction for UEs with high reliability requirements, to mitigate a large drop in signal quality.
[bookmark: _Toc127537886]Evaluations indicate the possibility to increase the measurement periodicity from 40ms to 80ms, where the prediction-based method used to predict 40ms ahead indicates slight gain over baseline for the worst UEs
[bookmark: _Toc127537887]Temporal beam prediction achieves minor gains over baseline in the considered scenarios. The gains for the 16-beam case are mainly due to the spatial beam prediction. 
Conclusions
In the previous sections we made the following observations: 
Observation 1	For the TX or TX/RX Top-1 beam pair prediction aiming to replace P2 and/or P3 procedure with beam prediction, L1-RSRP/CQI/SINR predictions are needed for link-adaptation to avoid additional measurement
Observation 2	In outdoor scenarios, AI/ML can reduce beam spatial-domain beam prediction overhead substantially while maintaining good accuracy for 4x8 (32 beams in Set A).
Observation 3	In scenarios with primarily indoor UEs, spatial-domain beam predication is more challenging.
Observation 4	With the adopted beam pattern, the conventional scheme could have very good performance which significantly outperforms the baseline schemes and have similar performance as AI/ML schemes.
Observation 5	For Set B with SSB beams, the joint TX/RX prediction can give quite good performance while significantly reducing RS overhead compared to measurements of all RX beams for each TX beam in Set B.
Observation 6	By allowing variable number of reported beams via UE pre-processing of measurements, the reporting overhead can be substantially reduced with little performance degradation.
Observation 7	For DL Tx beam prediction, Option 3 with random Rx beam per model input sample achieves very poor performance.
Observation 8	Using solely location information (i.e. no RSRP measurements), we could achieve almost 90% prediction accuracy of best beam (Top-1). This could be useful in scenarios where RS-transmission is costly, e.g. at high load situations.
Observation 9	Thermal noise has significant impact on prediction KPIs in scenarios with indoor UEs, and should therefore be considered in evaluations.
Observation 10	Setting higher reporting accuracy in terms of granularity of reported values cannot improve the AI model performance without setting higher accuracy level on measurement error accuracy.
Observation 11	With identical antenna configuration, initial evaluations indicates that a model trained in one cell is found to be generalized well while the performance heavily depends on the sector is selected for the inference.
Observation 12	Generalization results indicate the importance of having model monitoring procedures that detects issues when a model trained in one cell is used in another.
Observation 13	The information of UE Rx beam plays a vital role on prediction KPIs in DL Tx beam prediction. Therefore, it is important to address the impact of Rx beam selection
Observation 14	It is shown that increasing the amount of fine-tuning data improves the performance
Observation 15	Evaluations indicate the possibility to increase the measurement periodicity from 40ms to 80ms, where the prediction-based method used to predict 40ms ahead indicates slight gain over baseline for the worst UEs
Observation 16	Temporal beam prediction achieves minor gains over baseline in the considered scenarios. The gains for the 16-beam case are mainly due to the spatial beam prediction.
Based on the discussion in the previous sections we propose the following:
Proposal 1	Update Option 3 with the text in section 2
Proposal 2	Define a metric for L1-RSRP predictions for the Top-1 predicted beam.
Proposal 3	Error metric comprises the absolute difference of the predicted L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of Top-1 predicted beam
Proposal 4	Evaluate more percentiles for the L1-RSRP error (e.g. 95th,99th percentile)
Proposal 5	Consider flowcharts in Figure 1 for the discussion on alternatives for spatial-beam predictions with respect to the P1/P2/P3 procedure
Proposal 6	Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/ report/measurement during training and/or inference), Set B is deterministically changed, based on the following alternatives
a.	Pre-configured/pre-known pattern
b.	Pre-processing of measurements (e.g. UE report K strongest beams, NW filters out K beams, etc.)
c.	Combination of a) and b)
o	#beams in Set B can be fixed or variable
Proposal 7	Conclude that UEs can only detect beams with SNR higher than -3 dB in the evaluations.
Proposal 8	For beam prediction evaluations consider providing the results with measurement accuracy noise modelled as additive gaussian noise with 95% of the density function within the measurement accuracy range, and/or uniformly distributed noise
Proposal 9	Consider the following to mitigate the L1-RSRP measurement inaccuracy impact in ML based beam prediction
a.	RAN4 to explore possibility to tighten requirements on L1-RSRP measurement accuracy
b.	Define different UE capability based on their capability in fulfilling a measurement accuracy requirement.
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Appendix: Simulation Assumptions
[bookmark: _Ref118502017][bookmark: _Ref111030355]Table 11: Evaluations of training and inference using the data from the same sector for the setting with 4x8 gNB array
	Top 1/Top 3 
(1 dB margin)
	UMa, 100% outdoor UEs
4x8 gNB, ISD=200m
with 1 dB margin
	UMa, 80%/20% in/outdoor UEs
4x8 gNB, ISD=200m
with 1 dB margin

	
	SSB beams 
(8 beams)
	CSI-RS beams
(32 beams)
	SSB beams 
(8 beams)
	CSI-RS beams
(32 beams)

	
	4-8
	8-8
	4-32
	8-32
	16-32
	4-8
	8-8
	4-32
	8-32
	16-32

	Sector [0]
	0.902
/0.994
	0.964
/1.000
	0.538
/0.918
	0.964
/0.994
	0.994
/0.999
	0.753
/0.948
	0.877
/0.988
	0.375
/0.787
	0.819
/0.975
	0.953
/0.997

	Sector [1]
	0.840
/0.982
	0.959
/0.992
	0.656
/0.915
	0.928
/0.993
	0.984
/0.998
	0.695
/0.907
	0.845
/0.975
	0.360
/0.724
	0.757
/0.943
	0.945
/0.995

	Sector [2]
	0.866
/0.989
	0.960
/0.998
	0.516
/0.830
	0.950
/0.994
	0.989
/1.000
	0.699
/0.919
	0.867
/0.979
	0.358
/0.694
	0.800
/0.966
	0.944
/0.991

	Sector [3]
	0.880
/0.991
	0.960
/0.997
	0.424
/0.853
	0.967
/0.998
	0.995
/0.999
	0.705
/0.942
	0.848
/0.982
	0.374
/0.731
	0.801
/0.968
	0.963
/0.995

	Sector [4]
	0.882
/0.993
	0.959
/0.998
	0.556
/0.898
	0.939
/0.997
	0.994
/0.999
	0.716
/0.934
	0.857
/0.982
	0.398
/0.781
	0.784
/0.963
	0.961
/0.997

	Sector [5]
	0.921
/0.995
	0.969
/0.997
	0.556
/0.925
	0.986
/0.997
	0.995
/0.998
	0.759
/0.951
	0.868
/0.986
	0.407
/0.798
	0.817
/0.970
	0.970
/0.997

	Sector [6]
	0.918
/0.993
	0.970
/0.998
	0.617
/0.907
	0.958
/0.994
	0.994
/1.000
	0.692
/0.915
	0.857
/0.980
	0.352
/0.747
	0.775
/0.957
	0.945
/0.995

	Sector [7]
	0.909
/0.995
	0.974
/0.998
	0.631
/0.923
	0.970
/0.996
	0.995
/1.000
	0.715
/0.946
	0.869
/0.983
	0.395
/0.768
	0.797
/0.964
	0.961
/0.996

	Sector [8]
	0.911
/0.978
	0.961
/0.996
	0.604
/0.915
	0.950
/0.993
	0.987
/0.998
	0.723
/0.928
	0.855
/0.982
	0.402
/0.772
	0.800
/0.965
	0.956
/0.995

	Sector [9]
	0.858
/0.994
	0.971
/0.996
	0.451
/0.847
	0.977
/0.995
	0.994
/0.999
	0.709
/0.934
	0.855
/0.979
	0.366
/0.741
	0.812
/0.967
	0.953
/0.995

	Sector [10]
	0.800
/0.981
	0.935
/0.995
	0.482
/0.843
	0.946
/0.993
	0.987
/0.998
	0.729
/0.941
	0.867
/0.984
	0.376
/0.747
	0.795
/0.964
	0.959
/0.997

	Sector [11]
	0.802
/0.968
	0.948
/0.997
	0.497
/0.833
	0.947
/0.994
	0.981
/0.999
	0.712
/0.944
	0.868
/0.979
	0.350
/0.738
	0.804
/0.970
	0.956
/0.995

	Sector [12]
	0.938
/0.995
	0.971
/0.997
	0.745
/0.957
	0.936
/0.998
	0.991
/0.999
	0.722
/0.921
	0.854
/0.975
	0.395
/0.755
	0.786
/0.968
	0.936
/0.993

	Sector [13]
	0.896
/0.990
	0.963
/0.996
	0.682
/0.899
	0.959
/0.995
	0.993
/1.000
	0.694
/0.932
	0.859
/0.980
	0.399
/0.764
	0.788
/0.963
	0.961
/0.997

	Sector [14]
	0.904
/0.994
	0.978
/0.999
	0.596
/0.923
	0.976
/0.998
	0.996
/0.999
	0.694
/0.923
	0.862
/0.984
	0.332
/0.728
	0.774
/0.957
	0.945
/0.994

	Sector [15]
	0.863
/0.992
	0.965
/0.996
	0.581
/0.891
	0.952
/0.995
	0.991
/0.999
	0.703
/0.938
	0.844
/0.977
	0.358
/0.723
	0.779
/0.959
	0.945
/0.995

	Sector [16]
	0.885
/0.990
	0.958
/0.996
	0.654
/0.891
	0.948
/0.991
	0.982
/0.999
	0.727
/0.931
	0.858
/0.982
	0.397
/0.753
	0.781
/0.952
	0.949
/0.996

	Sector [17]
	0.876
/0.986
	0.951
/0.999
	0.652
/0.921
	0.963
/0.995
	0.989
/0.999
	0.692
/0.934
	0.861
/0.984
	0.391
/0.755
	0.794
/0.969
	0.956
/0.995

	Sector [18]
	0.893
/0.997
	0.977
/0.999
	0.462
/0.858
	0.982
/0.999
	0.998
/1.000
	0.704
/0.928
	0.863
/0.985
	0.363
/0.758
	0.804
/0.960
	0.953
/0.997

	Sector [19]
	0.891
/0.995
	0.978
/0.999
	0.524
/0.907
	0.974
/0.995
	0.998
/1.000
	0.729
/0.939
	0.861
/0.983
	0.395
/0.770
	0.789
/0.966
	0.950
/0.996

	Sector [20]
	0.894
/0.989
	0.959
/0.997
	0.571
/0.900
	0.953
/0.996
	0.990
/0.998
	0.749
/0.945
	0.867
/0.983
	0.398
/0.798
	0.807
/0.965
	0.962
/0.996

	Max
	0.938
/0.997
	0.978
/1.000
	0.745
/0.957
	0.986
/0.999
	0.998
/1.000
	0.759
/0.951
	0.877
/0.988
	0.407
/0.798
	0.819
/0.975
	0.970
/0.997

	Min
	0.800
/0.968
	0.935
/0.992
	0.424
/0.830
	0.928
/0.991
	0.981
/0.998
	0.692
/0.907
	0.844
/0.975
	0.332
/0.694
	0.757
/0.943
	0.936
/0.991

	Mean
	0.882
/0.990
	0.963
/0.997
	0.571
/0.893
	0.958
/0.995
	0.991
/0.999
	0.715
/0.933
	0.860
/0.982
	0.378
/0.754
	0.793
/0.963
	0.953
/0.995



[bookmark: _Ref118501965]Table 12: Generalization evaluations of the inference in different sectors
	Top 1/Top 3 
(1 dB margin)
	Train model based on the data from sector [5] to 
perform the inference in different sectors with the same scenario

	Dataset
	Set B
	[0]
	[1]
	[2]
	[3]
	[4]
	[5]
	[6]
	[7]
	[8]
	[9]
	[10]
	[11]

	UMa
Outdoor
	4-8
SSB
	0.841/
0.975
	0.681/
0.903
	0.714/
0.970
	0.721/
0.959
	0.827/
0.977
	0.921/
0.995
	0.771/
0.972
	0.848/
0.984
	0.833/
0.952
	0.800/
0.989
	0.729/
0.957
	0.711/
0.945

	
	8-8
SSB
	0.914/
0.990
	0.819/
0.942
	0.911/
0.991
	0.820/
0.980
	0.905/
0.989
	0.970/
0.998
	0.903/
0.989
	0.927/
0.992
	0.908/
0.962
	0.922/
0.994
	0.856/
0.978
	0.854/
0.965

	
	4-32
CSI-RS
	0.415/
0.848
	0.321/
0.749
	0.290/
0.597
	0.313/
0.641
	0.382/
0.785
	0.564/
0.922
	0.305/
0.675
	0.353/
0.831
	0.240/
0.683
	0.307/
0.669
	0.292/
0.572
	0.297/
0.651

	
	8-32
CSI-RS
	0.889/
0.978
	0.778/
0.898
	0.889/
0.962
	0.840/
0.966
	0.818/
0.942
	0.985/
0.998
	0.820/
0.953
	0.798/
0.970
	0.856/
0.959
	0.899/
0.984
	0.788/
0.928
	0.802/
0.933

	
	16-32
CSI-RS
	0.963/
0.992
	0.857/
0.951
	0.943/
0.980
	0.944/
0.988
	0.954/
0.991
	0.997/
1.000
	0.948/
0.992
	0.972/
0.991
	0.925/
0.970
	0.977/
0.996
	0.917/
0.975
	0.906/
0.952

	
	
	[12]
	[13]
	[14]
	[15]
	[16]
	[17]
	[18]
	[19]
	[20]
	Max
	Min
	Mean

	
	4-8
SSB
	0.768/
0.972
	0.783/
0.973
	0.791/
0.983
	0.713/
0.964
	0.801/
0.969
	0.852/
0.983
	0.819/
0.987
	0.825/
0.988
	0.807/
0.976
	0.921/
0.995
	0.681/
0.903
	0.788/
0.970

	
	8-8
SSB
	0.950/
0.994
	0.917/
0.991
	0.945/
0.995
	0.883/
0.994
	0.875/
0.985
	0.932/
0.992
	0.929/
0.997
	0.918/
0.996
	0.905/
0.987
	0.970/
0.998
	0.819/
0.942
	0.903/
0.986

	
	4-32
CSI-RS
	0.383/
0.778
	0.466/
0.801
	0.327/
0.699
	0.324/
0.598
	0.317/
0.658
	0.455/
0.790
	0.386/
0.702
	0.301/
0.739
	0.316/
0.738
	0.564/
0.922
	0.240/
0.572
	0.350/
0.720

	
	8-32
CSI-RS
	0.823/
0.944
	0.841/
0.970
	0.843/
0.963
	0.810/
0.947
	0.820/
0.953
	0.898/
0.983
	0.852/
0.981
	0.876/
0.981
	0.879/
0.972
	0.985/
0.998
	0.778/
0.898
	0.848/
0.960

	
	16-32
CSI-RS
	0.948/
0.988
	0.954/
0.991
	0.957/
0.996
	0.953/
0.993
	0.933/
0.977
	0.971/
0.992
	0.966/
0.996
	0.973/
0.996
	0.966/
0.988
	0.997/
1.000
	0.857/
0.951
	0.949/
0.985

	

	Dataset
	Set B
	[0]
	[1]
	[2]
	[3]
	[4]
	[5]
	[6]
	[7]
	[8]
	[9]
	[10]
	[11]

	UMa
80%/20%
In/outdoor
	4-8
SSB
	0.713/
0.938
	0.644/
0.912
	0.664/
0.919
	0.639/
0.925
	0.707/
0.929
	0.759/
0.950
	0.643/
0.913
	0.708/
0.935
	0.709/
0.922
	0.684/
0.937
	0.700/
0.934
	0.667/
0.924

	
	8-8
SSB
	0.855/
0.981
	0.834/
0.974
	0.846/
0.974
	0.832/
0.978
	0.840/
0.980
	0.868/
0.984
	0.848/
0.971
	0.846/
0.979
	0.843/
0.975
	0.842/
0.978
	0.846/
0.979
	0.850/
0.977

	
	4-32
CSI-RS
	0.330/
0.735
	0.296/
0.676
	0.305/
0.671
	0.298/
0.664
	0.355/
0.746
	0.407/
0.796
	0.280/
0.677
	0.341/
0.743
	0.308/
0.727
	0.318/
0.699
	0.323/
0.710
	0.292/
0.688

	
	8-32
CSI-RS
	0.773/
0.963
	0.729/
0.935
	0.767/
0.952
	0.760/
0.966
	0.743/
0.959
	0.817/
0.972
	0.741/
0.950
	0.733/
0.960
	0.738/
0.951
	0.769/
0.961
	0.761/
0.958
	0.752/
0.960

	
	16-32
CSI-RS
	0.952/
0.994
	0.922/
0.986
	0.931/
0.990
	0.946/
0.994
	0.947/
0.992
	0.968/
0.997
	0.923/
0.990
	0.947/
0.992
	0.936/
0.988
	0.951/
0.994
	0.948/
0.993
	0.942/
0.990

	
	
	[12]
	[13]
	[14]
	[15]
	[16]
	[17]
	[18]
	[19]
	[20]
	Max
	Min
	Mean

	
	4-8
SSB
	0.705/
0.923
	0.672/
0.924
	0.658/
0.904
	0.661/
0.929
	0.728/
0.925
	0.686/
0.929
	0.688/
0.927
	0.724/
0.938
	0.736/
0.943
	0.759/
0.950
	0.639/
0.904
	0.690/
0.928

	
	8-8
SSB
	0.840/
0.975
	0.843/
0.976
	0.831/
0.973
	0.841/
0.977
	0.847/
0.976
	0.851/
0.980
	0.834/
0.976
	0.854/
0.982
	0.853/
0.980
	0.868/
0.984
	0.831/
0.971
	0.845/
0.977

	
	4-32
CSI-RS
	0.341/
0.723
	0.337/
0.721
	0.295/
0.673
	0.288/
0.683
	0.320/
0.727
	0.347/
0.722
	0.310/
0.722
	0.306/
0.745
	0.345/
0.768
	0.407/
0.796
	0.280/
0.664
	0.321/
0.715

	
	8-32
CSI-RS
	0.748/
0.954
	0.758/
0.958
	0.739/
0.947
	0.754/
0.949
	0.729/
0.951
	0.761/
0.959
	0.759/
0.954
	0.766/
0.959
	0.776/
0.962
	0.817/
0.972
	0.729/
0.935
	0.756/
0.956

	
	16-32
CSI-RS
	0.929/
0.987
	0.938/
0.991
	0.925/
0.987
	0.935/
0.992
	0.939/
0.990
	0.938/
0.991
	0.935/
0.991
	0.948/
0.994
	0.949/
0.993
	0.968/
0.997
	0.922/
0.986
	0.940/
0.991




Table 9: Evaluation scenario
	[bookmark: _In-sequence_SDU_delivery]Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz
· SCS: 120 kHz

	Deployment
	200m ISD,
· 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	· For spatial domain beam prediction, 3km/h
· For time domain beam prediction: 30km/h (baseline), 60km/h (optional)
· Other values are not precluded

	UE distribution
	· FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded.
 
· For spatial domain beam prediction: FFS:
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	·         [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline]
·         [Four panels: (M, N, P, Mg, Ng) = (4, 8, 2, 2, 2), (dV, dH) = (0.5, 0.5) λ. (dg,V, dg,H) = (2.0, 4.0) λ as optional]
·         Other assumptions are not precluded.
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,2)]
·         2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
·         Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	Companies to explain beam correspondence assumptions (in accordance to the two types agreed in RAN4)

	Link adaptation
	Based on CSI-RS

	Traffic Model
	FFS:
· Option 1: Full buffer
· Option 2: FTP model
Other options are not precluded

	Inter-panel calibration for UE
	Ideal, non-ideal following 38.802 (optional) – Explain any errors

	Control and RS overhead
	Companies report details of the assumptions

	Control channel decoding
	Ideal or Non-ideal (Companies explain how it is modelled)

	UE receiver type
	MMSE-IRC as the baseline, other advanced receiver is not precluded

	BF scheme
	Companies explain what scheme is used

	Transmission scheme
	Multi-antenna port transmission schemes
Note: Companies explain details of the using transmission scheme.

	Other simulation assumptions
	Companies to explain serving TRP selection
Companies to explain scheduling algorithm

	Other potential impairments
	Not modelled (assumed ideal).
If impairments are included, companies will report the details of the assumed impairments

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB
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Table 10.1.20.1.1-1: $SB based L1-RSRP absolute accuracy in FR2

Accuracy Gonditions
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120kHz | 240kHz
65 95 53 | Samevalue as SSB_RP NA 70
in Table B.2.4.1-2,
according to UE Power
class, operating band
and angle of arrival
85 =115 >3 NA 70 50
NOTE 1. 1o specified at the Reference point, and assumed to have constant EPRE across the bandwidtn
NOTE 2: Values based on Refsens and EIS spherical coverage as defined in clauses 7.3.2 and 7.3.4 of
TS 38.101-2 [19]. Applicable side conditon selected depending on angle of arrival
NOTE 3: In the test cases, the SSB Es/lot and related parameters may need to be adjusted to ensure

Es/lot at UE baseband is above the value defined in this table.
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Table 10.1.20.1.2-1: SSB based L1-RSRP relative accuracy in FR2

Accuracy Conditions
Normal Extreme SSB JoN® 1 range
condition | condition Esllot
Minimum lo Maximum lo
dB dB dB dBm / SCSssgNote? dBm/BWchanne
SCSssg = SCSssa =
120kHz 240kHz
16.5 +9.5 23 Same value as SSB_RP in -50

Table B.2.4.1-2, according
to UE Power class,
operating band and angle
of arrival

NOTE 1: lo specified at the Reference point, and assumed to have constant EPRE
across the bandwidth. N

NOTE 2: The parameter SSB Es/lot is the minimum SSB Es/lot of the pair of SSBs
to which the requirement applies.

NOTE 3: Values based on Refsens and EIS spherical coverage as defined in
clauses 7.3.2 and 7.3.4 of TS 38.101-2 [19]. Applicable side condition
selected depending on angle of arrival.

NOTE 4: In the test cases, the SSB Es/lot and related parameters may need to be
adjusted to ensure Es/lot at UE baseband is above the value defined in
this table.
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