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Introduction
This contribution further discusses two important aspects related to channel state information (CSI) feedback compression: CSI-enhanced framework and model life cycle management (LCM) [1][2].
Most of the discussions about CSI compression use case have so far focused on the CSI information related to multi-antenna adaptation, thus focusing either, on the channel matrix or the precoding matrix. Other aspects of the CSI information like rank adaptation and adaptive modulation & coding (AMC) need to be considered for system level evaluation in contrast to using fixed modulation & coding scheme (MCS) and a given number of layers to assess global key performance indicators (KPIs) such as throughput or block error rate (BLER).
In this contribution, we identify the key considerations that need to be considered to incorporate the above aspects of link adaptation into the evaluations.
Finally, we also present two frameworks that can be used for model selection, monitoring, and updating. The first framework is based on performance prediction. It relies on the fact that the performance of a model can be inferred from some large-scale parameters associated with the working scenario. The second framework is based on a hierarchical model-search consisting of a model sweeping and refinement.
The discussion and proposals in this contribution aim to help close the definition of the frameworks for evaluating the CSI feedback enhancement use case, both considering the system as a whole and including the AMC and rank adaptation mechanisms as well as remaining LCM implementation aspects.

Further discussions on enhanced CSI framework
CSI information is used for two paramount aspects of PHY and MAC layers: link adaptation [3], [4], and channel-aware scheduling [5]. Link adaptation at the PHY layer involves determining the optimal precoding matrix (i.e., multi-antenna adaptation), the number of layers (i.e., rank adaptation), and MCS (i.e., AMC) that maximizes the throughput while fulfilling a target BLER. To this end, three CSI reports quantities are vastly used in practical network (NW) configurations, which are: the precoding matrix indicator (PMI), rank indicator (RI), and channel quality indicator (CQI), respectively.
Most of the 3GPP contributions about the CSI feedback compression use case have focused on either the raw channel matrix or the precoding matrix, and they have compared the achieved performance with the PMI based on codebook type II as a benchmark [2][6][7][8][9]. Here, the AI/ML application to CSI enhancement consists of substituting the current PMI report quantity with a novel report based on either a compressed channel matrix (CCM) or a compressed precoding matrix (CPM).
Although the PMI might be the CSI quantity with the higher overhead, this quantity is closely related to the other two indicators: RI and CQI. This is because the CQI computation assumes a given RI and PMI, and the PMI assumes the number of layers provided by the RI. These three report quantities need to be jointly considered. This motivates the following proposal:

	Proposal 1:
	The evaluation of CSI feedback enhancement use-case should also consider rank adaptation (RI) and adaptive modulation and coding (CQI).


The evaluation of the benefits of AI/ML for CSI enhancement, including rank adaptation and AMC, requires defining a benchmark using classical communication & signal processing (CSP) techniques. The specific algorithms used may have impact on the results obtained for benchmarking. Reporting how this baseline has been obtained could be beneficial for comparing results between different simulations.
	Proposal 2:
	Companies should report the algorithms used to obtain the PMI, RI, and CQI used for the purpose of obtaining a baseline performance.


The following subsection introduces a possible state-of-the-art procedure to determine the PMI, RI, and CQI quantities for benchmarking. Then, we propose three examples of architectures for AI/ML-based CSI compression that can be considered depending on the actual amount compressed, i.e., CCM or CPM. These architectures also consider the RI and CQI; thus, they include the interplays between multi-antenna (i.e., precoding) adaptation with rank adaptation and AMC.
[bookmark: _Ref123229181]Reference computation of CSI reports for benchmarking
The following figure illustrates a high-level block diagram of one possible reference computation with CSP techniques of the CSI reports, assuming a type II codebook for benchmarking.


[bookmark: _Ref123231811]Figure 1: Block diagram of the reference computation of RI, PMI, and CQI reports using CSP techniques.

In this example, to obtain the CSI report the UE first estimates the channel matrix, , and the wideband noise plus interference power, , using the CSI-RS signals. These two metrics allow the computation of the signal-to-interference plus noise ratio (SINR) per layer () and per resource element (RE), which is then used to compute the RI, PMI, and CQI reports [10][4]. As it is noticed, the computation of the SINR per layer and RE depends on the MIMO detection algorithm, which typically follows a linear minimum mean square error criterion [10].
The RI, PMI, and CQI selection aims to maximize the throughput while fulfilling the target BLER. However, some impairments make such selection under-optimal. For that reason, an outer loop link adaptation (OLLA) mechanism [11] based on the NACK/ACK reports is usually considered in state-of-the-art works. The OLLA algorithm computes an offset, , at each Transport Block (TB) reception, , that is used to improve the CQI selection. As shown in [11], the offset (in dB) is updated after the reception of TB  as follows:

being  the error indicator, which is 1 in case of NACK and 0 in case of ACK.  and  represents the constant increment and reduction values, respectively, of the offset in decibels, which fulfill the next expression:

where  stands for the target BLER. As shown in [11], the offset  converges after several iterations to a value that corrects the imperfections in the AMC mechanism, leading to an average BLER close to the .
The selection of the CSI report can be performed iteratively for all the valid ranks. At each iteration, one of the valid ranks is selected, and the optimal PMI and CQI are computed. With that PMI and CQI, the achievable throughput is predicted and stored. When all the iterations have finished, the rank (i.e., RI), PMI, and CQI that leads to the highest throughput are finally included in the CSI report.
The selection process is depicted with Algorithm 1 below.

	Algorithm 1: RI, PMI & CQI computation

	Input:  # estimated channel matrix (dimensions: number of REs, transmit antenna ports, receive antenna ports)

	Input:  # SINR per layer and RE

	Input:  # offset for the n-th TB 

	Output: RI, PMI, CQI # RI, PMI, and CQI report quantities

	Variables:
validRanks # set of M valid ranks
tmpRI # rank to be tested at iteration iRI
pmiVct = zeros(M, 1) # vector used to store the optimal PMI per iteration
cqiVct = zeros(M, 1) # vector used to keep the optimal CQI per iteration
RVct = zeros(M, 1) # vector used to store the predicted achievable throughput for a given RI, PMI, and CQI
bler # predicted BLER for a given RI, PMI, and selected CQI
W # precoding matrix (dimensions: number of layers by number of transmit antenna ports) associated with a given PMI of iteration iRI

	1
	for iRI = 1:M

	2
	
	tmpRI = validRanks(iRI)

	3
	
	[W, pmiVct(iRI)] = pmiSelection(H, tmpRI)

	4
	
	[bler, cqiVct(iRI)] = cqiSelection(tmpRI, W, , )

	5
	
	RVct(iRI) = throughputPrediction(cqiVct(iRI), bler)

	6
	end

	7
	[RI, PMI, CQI] = selectMaxRI(RVct, validRanks, pmiVct, cqiVct)



The function pmiSelection computes the PMI and its related precoding matrix, W, based on the channel matrix using the orthogonal matching pursuit (OMP) algorithm [12].
The function cqiSelection computes the CQI with a BLER prediction mechanism that relies on the well-known exponential effective SINR mapping (EESM) [10]. This method uses the effective SINR, , as a link quality metric (LQM), which is estimated for each candidate CQI as follows:

where  and  represent the number of REs and number of layers, respectively,  stands for the CQI index, and  is a parameter that needs to be calibrated [10].
Such LQM is a scalar value representing the equivalent SINR in a single input single output (SISO) additive white Gaussian noise (AWGN) channel that leads to the same BLER as the SINR per layer and RE in the multi-path MIMO channel that has filtered the received signals. Thus, once the effective SINR is computed for each candidate CQI index, , the BLER is predicted using mapping tables for the SISO AWGN channel. As it should be noticed, those mapping tables highly depend on the receiver implementation.
There are many impairments that degrade the BLER prediction capabilities of such approach under a given multi-path channel. Thus, state-of-the-art implementations normally include an OLLA that improves the estimation of the effective SINR. With this approach, the final LQM that is used can be computed in dB as follows [11]:

The CQI selection for a given channel state, with a given number of layers and precoding matrix, involves the BLER prediction of CQI indices in ascending order and selecting the highest CQI index associated with a smaller BLER than the target one.
Once the CQI is selected, the throughput can be computed based on the predicted BLER (line 5 in Algorithm 1, function throughputPrediction). As detailed in Algorithm 1, this process is performed for each valid number of layers. Finally, the number of layers leading to the highest throughput is selected as RI (see line 7 in Algorithm 1, function selectMaxRI). The associated PMI and CQI quantities are then reported.
Enhanced CSI framework based on compressed channel matrix (CCM) feedback with full UE assistance
This framework assumes that the enhanced CSI (eCSI) report is composed of the CCM, computed by the encoder neural network (NN), the RI, and CQI, which are calculated based on classical CSP techniques. Figure 2 illustrates a sketch of such a framework.
The symbols drawn in Figure 2 are summarized in Table 1.
[bookmark: _Ref123229455]Table 1. Summary of symbols used in Figure 2.
	Symbol
	Description

	
	Transport block (TB) information bits from the MAC layer

	
	M-QAM symbols after coding & modulation procedures as per 38.212 and 38.211 (i.e., CRC attachment, code-block segmentation, and concatenation, LDPC coding, rate matching, etc.)

	
	M-QAM symbols after layer mapping and MIMO precoding

	
	Estimated channel matrix at the UE side

	
	Reconstructed channel matrix at the gNB/NW side

	
	Pre-processed channel matrix before encoding by the encoding NN at the UE side

	
	Wideband noise and interference power estimation




[bookmark: _Ref109489358]Figure 2: Enhanced CSI framework based on compressed channel matrix (CCM) feedback with full UE assistance.

As shown in the figure, the UE estimates the channel matrix, , based on reference signals, e.g., CSI-RS. Then, it pre-processes, compresses with an encoding NN, and quantizes it to obtain a reduced binary representation, i.e., CCM. This quantity is sent to the gNB within the eCSI report, and thus, the gNB can reconstruct the channel matrix, , using a decoding NN.
The reconstructed channel matrix is used at the gNB side to compute the optimal precoding matrix, e.g., using SVD decomposition.
The RI and CQI are computed using classical CSP techniques, as explained in Section 2.1. It should be remarked that the computation of the CQI at the UE side assumes a given precoding matrix at the gNB side. Therefore, the determination of the precoding matrix from the channel matrix should be considered by both parts when computing the CQI. This can be summarized with the following observation.
	Observation 1:
	The enhanced CSI framework based on CCM with full UE assistance requires that the network and UE agree on the same method to determine the precoding matrix from the raw channel matrix, e.g., SVD decomposition.


Enhanced CSI framework based on CCM feedback with partial UE assistance
The previous framework substitutes the PMI quantity in the CSI report with a CCM, but it reuses the RI and CQI from current specifications to enable a full link adaptation mechanism. Nevertheless, the channel matrix has enough information to fully characterize the channel estate at the gNB if the noise & interference power is known.
Unfortunately, a full characterization of the channel estate (i.e., SINR) is not enough to select a given MCS to maximize the throughput while fulfilling a target BLER because the BLER depends on the receiver implementation (e.g., LDPC decoder, MIMO detection, etc.), which is unknown at the NW side.
Here is where AI/ML techniques can be applied since they have the potential to learn the BLER behavior of the UE based on previous transmissions and the ACK/NACK reports, similar as the OLLA mechanism.
Figure 3 illustrates another possible framework in which the eCSI report consists of the CCM and the interference & noise power level (INL), being the INL a wideband measure that requires less overhead than the sub-band CQI report quantity. Thus, this framework avoids including the RI and CQI in the CSI report.


[bookmark: _Ref123231575]Figure 3: Enhanced CSI framework based on CCM feedback with partial UE assistance.

As seen in  Figure 3, the gNB uses the reconstructed channel matrix, the INL, and the ACK/NACK reports as the inputs to the block that determines the precoding matrix, the CQI (or MCS), and the RI. It is important to highlight that these three inputs represent the same information as used by state-of-the-art receivers using CSP techniques (see Figure 1). However, less overhead is required in this approach since the CQI, RI, and PMI do not need to be reported.
The reconstructed channel matrix, , can be used to compute the optimal precoding matrix using SVD decomposition. Besides of this, with, , and the INL, the gNB can compute the SINR per layer and RE, which is used by the iterative process described in Algorithm 1 for RI and CQI selection.
Nevertheless, once the effective SINR is obtained for CQI selection, the gNB must use BLER mapping curves for the SISO AWGN channel obtained by a reference UE, (i.e., not the actual UE that might be communicating with the gNB).
Here is where the ACK/NACK reports can be used to improve the CQI estimation. As shown in [11], if the OLLA algorithm is used to compute the offset that modifies the effective SINR, it can overcome the imperfections of the AMC process, i.e., having an inaccurate BLER mapping table.

Enhanced CSI framework based on compressed precoding matrix (CPM) feedback with full UE assistance
An AI-based alternative to compress the channel matrix is to compress the precoding channel matrix, CPM, which is the matrix that is finally required by the gNB to perform multi-antenna adaptation.
Figure 4 illustrates the block diagram of this approach, where the eCSI is composed of the CPM, the RI, and the CQI. This approach assumes that the UE estimates the channel matrix, and then, it computes the optimal precoding matrix, e.g., by using SVD decomposition. Then, the precoding matrix is compressed. The estimated channel matrix, , noise & interference power, , precoding matrix, , and ACK/NACK reports are used for CQI, and RI selection as detailed by Algorithm 1.
The gNB then use the CPM to reconstruct the optimal precoding matrix, , and it uses the RI to select the number of layers and CQI to select the MCS.


[bookmark: _Ref123232736]Figure 4: Enhanced CSI framework based on compressed precoding matrix (CPM) feedback with full UE assistance.

[bookmark: _Ref124158888]Further discussions on dataset generation for enhanced CSI feedback
As agreed in RAN#1109-e, the dataset generation for training, validation, and testing uses 3GPP channel models (TR 38.901 v17.0.0) [1]. These 3GPP channel models can be categorized as channel models for link-level simulations (i.e., TDL and CDL channel models) and channel models for system-level simulations (e.g., UMa, UMi, InH, RMa, InF).
The preferred models for AI compression evaluation have been UMa, UMi, and InH. The generation of the channel coefficients of such system-level models include a common process of 12 steps that are particularized with different parameters that depend on the chosen scenario, i.e., UMa, UMi, and InH (see TR 38.901 v17.0.0, tables 7.2-1, 7.2-2, 7.2-3, and 7.5-6). The first steps of this procedure determine some large-scale parameters (LSP) that are roughly constant during a period, i.e., coherence time, in a real communication scenario.
More specifically, in step 2, the propagation conditions of each UE are determined. This involves determining whether a given UE is an outdoor or indoor UE (e.g., UMa, UMi) and whether the propagation is LOS or NLOS. In principle, the probability of being outdoor for UMa and UMi is fixed as per TR 38.901 v17.0.0, table 7.2-1, whereas the probability of being a LOS link is determined by table 7.4.2-1 as a function of the link distance. Other LSPs, such as the delay spread (DS), Ricean K factor, angular spread, or shadow fading (SF), are determined in step 4 from random log-normal distributions considering the parameters defined in TR 38.901 table 7.5-6 and a given cross-correlation procedure as per [14].
As it can be observed, these system-level 3GPP channel models, i.e., UMa/UMi/InH as defined in TR 38.901 with tables 7.2-1, 7.2-2, 7.2-3, and 7.5-6 model different propagation scenarios, i.e., outdoor, and indoor, LOS and NLOS with different LSPs. Nevertheless, it is interesting to investigate the performance of trained AI models under a channel model, e.g., UMa, particularized for a given propagation condition, e.g., outdoor LOS and/or LSP parameters, e.g., DS.
The relevance of such investigation of generalization capabilities concerning propagation conditions and LSPs is that it might be possible to perform model switching based on the propagation conditions and LSPs of a given link if some trained AI models perform better in some conditions than others.
This proposal can be summarized as follows:
	Proposal 3:
	The generalization capabilities of AI models for CSI compression should be investigated using datasets built for 3GPP channel models (e.g., UMa/UMi/InH) particularized for a given propagation condition (outdoor/indoor, LOS/NLOS). In addition, some LSPs, such as DS or UE speed, can also be particularized to investigate the generalization capabilities of such LSPs.



Model life cycle management for enhanced CSI feedback
The trends observed by more than one company related to the generalization over scenarios suggest that model switching might have a relevant role in the CSI feedback use case. More specifically, the following findings have been obtained [2]:

	Preliminary trends observed by more than one company
· AI model generalizes well from UMa to UMi and vice versa. It is relatively difficult to generalize from UMa or UMi to InH.
· AI model generalizes well from UMa to UMi and vice versa.
· It is rather difficult to generalize from UMa or UMi to InH.



The above observation suggests that a performance improvement can be achieved using model switching, since the scenario of a given UE can change during the connection with the NW. In addition, as argued in section 3, the changes in propagation conditions (e.g., indoor, or outdoor, LOS or NLOS) of a given UE and gNB pair during the connection can motivate a model switching. For instance, a fraction of the UEs associated with a given gNB are generally indoor, while the others are outdoor, but each indoor UEs can become an outdoor UE at a specific time and vice versa. Thus, a performance improvement might be achieved using model switching, selecting the most appropriate model for each propagation condition.
Mixing datasets for different scenarios have been shown to alleviate the performance degradation when using a given model trained for scenario A on a different scenario B. Nevertheless, there are some parameters, such as the antenna spacing, where generalization does not behave well [2]:
	Generalization over scenarios (dimensions of the input/output of the AI/ML model are unchanged)
Several companies evaluated the generalization under varying scenarios.
· Generic views
· For a generic model (non-optimized for a specific area/cell), AI models perform well in generalization of carrier frequency, channel scenario, indoor/outdoor ratio.
· For a generic model (non-optimized for a specific area/cell), AI models perform poorly in antenna spacing and antenna virtualization, which can be further studied.



These findings suggest that multiple trained models for the same functionality might be needed. A procedure to select the most appropriate one to the current scenario and working conditions of the UE and gNB pair is required.
In other words, those parameters where the trained AI models do not generalize well might require a model-switching procedure to select the most appropriate model for the current scenario. The performance of a model LCM process, including model selection and model monitoring, should be assessed in those cases to identify the potential performance benefits and overhead cost of model switching compared with a single model solution where the model has been trained for mixed datasets. These ideas can be summarized with the following proposal:
	Observation 2:
	There are situations where a performance benefit can be obtained thanks to model switching compared to the case of using a model trained with a mixed dataset that represents different scenarios.


	Proposal 4:
	Solutions using model LCM should be assessed to evaluate the performance benefits and overhead costs of this solution compared with a single model solution.



In the following subsections, we propose two examples of model LCM architectures that might be used for model selection, model monitoring, and model update.

Model LCM based on performance prediction
As has been discussed, the following statements can be made about the generalization performance of CSI compression [2]:
· A model trained with a dataset from scenario A will perform better if it performs inference in the same scenario A than in a different scenario B. The performance loss depends on the parameters that are different between both scenarios. It has been observed that some parameters (e.g., antenna spacing) lead to high-performance degradation whereas others (e.g., the carrier frequency) lead to slight performance degradation.
· Mixing the training set between two scenarios, e.g., A & B, reduces the performance degradation of the model when it is tested either on A or B.
We can categorize the parameters that define a scenario for CSI compression as follows:
· Estimable large-scale parameters: These parameters represent large-scale parameters of the MIMO multipath channel whose coherence time is greater than the small-scale fading fluctuations. Most of them can be estimated at the UE side using reference signals (e.g., primary & secondary synchronization signals (PSS & SSS), CSI-RS, etc.). Among these parameters, we find the following: DS, Doppler spread, power delay profile (PDP), K factor and azimuth, and zenith angle spread of arrivals (ASA).
· Non-estimable large-scale parameters: Some parameters of the considered 3GPP channel model whose estimation is not suitable with existing 3GPP reference signals or existing CSP techniques.  Examples of this kind might be the cross-polarization power ratios.
· Channel type & propagation conditions: This represents the link propagation conditions, i.e., LOS or NLOS, and channel type, i.e., indoor, or outdoor.
· Configuration parameters: Known parameters since they are configured by the NW, such as the carrier frequency, subcarrier spacing, bandwidth, and gNB virtual antenna port array structure (N1, N2, Ng, Mg, etc.).
· Physical parameters: These are parameters related to the physical antenna arrays, such as the antenna spacing, antenna virtualization, or network layout parameters in the case of 3GPP system-level channel models such as UMa/UMi/InH.
Many of the parameters that define the scenario can be known, either because they are configured or reported by the network, such as virtual antenna array panel structure (e.g., N1, N2, Ng, Mg), or because they can be estimated at the UE side (DS, PDP, ASA, etc.). This knowledge can be exploited to select the most appropriate model if more than one is available since the performance of the available models on each scenario can be learned to predict the performance.
In addition, the performance of intermediate key performance indicators (IKPIs) can be easily evaluated on the UE side, if a decoding NN is also instantiated. These IKPIs can be used for model monitoring and model update functionality. More specifically, it can yield decisions (e.g., fallback to codebook-based precoding) and model updates of the autoencoder used for CSI compression or the model that performs performance prediction for model selection.
In the following two sub-section we present two architectures that exploit these ideas for model LCM. The difference between these two proposed architectures is whether the UE or the NW drives the decision about model selection.

Decision by the UE
The block diagram of model LCM based on performance prediction with decisions driven by the UE is illustrated in Figure 5.


[bookmark: _Ref123655128][bookmark: _Hlk123293266]Figure 5: Model LCM based on performance prediction with decision driven by the UE.
With this approach, the UE determines a set of parameters to decide the most suitable AI model for CSI compression to the current channel scenario. The set of parameters can range from configuration parameters obtained from RRC information elements to large-scale parameters estimated using reference signals such as CSI-RS and PSS/SSS from SSBs.
This set of parameters is the input to a model selection block that selects the AI models for CSI compression based on performance prediction. These performance predictions can be found on simple methods that map intervals of input parameter values to a given model, or they can be based on NN models that can also be trained offline but updated online.
Each time that a model switching is performed, the UE must request such switching to the NW, indicating the model ID that has been selected.
On the UE, a model monitoring and update block computes IKPIs by reconstructing the compressed CSI, i.e., either CCM or CPM, and compares it with the desired (i.e., non-compressed metric). This IKPI estimation can be used to perform decisions (i.e., fallback) and to perform the model update of both the autoencoder model for the CSI compression model and the model for performance prediction.

Decision by the network
The block diagram of model LCM based on performance prediction with decisions driven by the NW is illustrated in Figure 6.


[bookmark: _Ref123656397]Figure 6: Model LCM based on performance prediction with decision driven by the network.

In this case, the NW drives the decisions about model switching or fallback to non-AI mode; thus, the information needed to perform such decisions must be sent to the gNB. For this reason, the large-scale parameters used and IKPIs estimated at the UE side are reported. The NW then decides on the model for a given scenario and informs about the model switching by indicating a model ID.

Model LCM based on hierarchical model-search
An alternative to model selection	based on performance prediction is to perform a model search. With this approach, the NW indicates a model ID and receives reports about the IKPIs of such a model. Based on these reported IKPIs, the NW can search for the best model.
An exhaustive search is impractical as it can lead to a high delay in model selection. Thus, we propose a two-stage hierarchical model-search based on model sweeping and model refinement. This approach relies on the following assumptions:
1) A model trained with a dataset for scenario A performs better (or roughly equal) in that scenario than any other model trained for different scenarios.
2) A model trained for a mixed dataset from scenarios A & B & C performs better in any of those scenarios, e.g., than a model trained in any other set of scenarios.
3) A mode trained with a dataset from scenario A performs better (or roughly equal) in scenario A than a model trained with a mixed dataset including A.
The proposed approach is illustrated in Figure 7. Figure 7-(a) represents the process of model ID indication and IKPI report to perform a model search and select the model ID whose IKPI is the highest. Figure 7-(b) represent the procedure of hierarchical model search based on model sweeping and model refinement.


[bookmark: _Ref123659636]Figure 7: Model LCM based on hierarchical model-search.

Model sweeping first tries a few generalizable models trained with mixed datasets. The NW indicates one of the models, e.g., the model trained with a mixed dataset from scenarios A, B, and C (Model A & B & C in Figure 7-(b)). After that indication, the NW receives an IKPI report to monitor the model’s performance. Then, the NW repeats the process for Model D & E & F and Models G & H & I.
After this model sweeping process, the NW knows which of the general models that mixed dataset from different scenarios is the most appropriate to the actual scenario of the gNB and UE link.
Afterward, the NW initiates a model refinement. This implies that the NW assesses the performance of more refined models to the actual scenario. Thus, for instance, if the best general model is Model D & E & F after the model sweeping process, then the NW assesses the performance of Model D, Model E and Model F in a sequential fashion. Once the IKPI reports of these three models are obtained, the NW can select the most appropriate model for the actual scenario.






Conclusions
In this contribution, we discussed our views on aspects related to CSI feedback compression. More specifically, we have the following observations and proposals:
	Proposal 1:
	The evaluation of CSI feedback enhancement use-case should also consider rank adaptation (RI) and adaptive modulation and coding (CQI).

	Proposal 2:
	Companies should report the algorithms used to obtain the PMI, RI, and CQI used for the purpose of obtaining a baseline performance.

	Observation 1:
	The enhanced CSI framework based on CCM with full UE assistance requires that the network and UE agree on the same method to determine the precoding matrix from the raw channel matrix, e.g., SVD decomposition. 

	Observation 2:
	There are situations where a performance benefit can be obtained thanks to model switching compared to the case of using a model trained with a mixed dataset that represents different scenarios.


	Proposal 3:
	The generalization capabilities of AI models for CSI compression should be investigated using datasets built for 3GPP channel models (e.g., UMa/UMi/InH) particularized for a given propagation condition (outdoor/indoor, LOS/NLOS). In addition, some LSPs, such as DS or UE velocity, can also be particularized to investigate the generalization capabilities of such LSPs.

	Proposal 4:
	There are situations where a performance benefit can be obtained thanks to the use of model switching compared to the case of using a model trained with a mixed dataset that represents different scenarios. Solutions using model LCM should be assessed to evaluate the performance benefits and overhead costs of this solution compared with a single model solution.
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