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[bookmark: _Ref111191969]Introduction
Rel-18 study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface. RAN1#110bis-e AI/ML for CSI feedback enhancement has the following agreements and conclusions [1].
	Agreement
In CSI compression using two-sided model use case, study potential specification impact for performance monitoring including: 
· NW-side performance monitoring:  NW monitors the performance and make decisions of model activation/ deactivation/updating/switching    
· UE-side performance monitoring: UE monitors the performance and reports to Network, NW makes decisions of model activation/ deactivation/updating/switching    

Agreement
In CSI compression using two-sided model use case, further study potential specification impact related to assistance signaling and procedure for model performance monitoring. 

Agreement
In CSI compression using two-sided model use case, further study potential specification impact related to potential co-existence and fallback mechanisms between AI/ML-based CSI feedback mode and legacy non-AI/ML-based CSI feedback mode.

Agreement
In CSI compression using two-sided model use case, further study at least the following options for performance monitoring metrics/methods:
· Intermediate KPIs as monitoring metrics (e.g., SGCS)
· Eventual KPIs (e.g., Throughput, hypothetical BLER, BLER, NACK/ACK).
· Legacy CSI based monitoring: schemes using additional legacy CSI reporting
· Other monitoring solutions, at least including the following option:
· Input or Output data based monitoring: such as data drift between training dataset and observed dataset and out-of-distribution detection

Agreement
In CSI compression using two-sided model use case, further study at least use cases of the following potential specification impact on quantization method alignment between CSI generation part at UE and CSI reconstruction part at gNB: 
· Alignment of the quantization/dequantization method and the feedback message size between Network and UE




In this contribution, we provide the details of two main sub-use cases within the use case of CSI feedback enhancement with AI/ML, namely CSI feedback compression with two-sided models and CSI prediction. 
[bookmark: _Hlk510705081]Discussion
[bookmark: _Ref111191898]CSI compression with two-sided models 
An autoencoder (two-sided model) consists of three parts as described in Figure 1: 1) the encoder (the UE part of the two-sided model), 2) the bottleneck (codeword here), and 3) the decoder (the network part of the two-sided model). The encoder aims at compressing the input data, in our case the channel matrix or the eigenvectors, into a codeword that is of dimension smaller than the original information. The bottleneck, in our case the codeword, is the compressed representation of the original information. The bottleneck is followed by the decoder, a module that decompress the codeword and reconstruct the data: the recovered information .  is then compared to  It is a lossy process, and the recovered matrix  will not be the same as  
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[bookmark: _Ref100763549][bookmark: _Ref100763524]Figure 1: Autoencoder architecture.

In order to improve the encoding efficiency, the quantization of codewords is needed. Therefore, it is important to consider the quantization of the CSI after compression. The quantizer module is depicted in Figure 2. The quantization process introduces quantization noise/distortion, it is then important to design an efficient quantizer that minimized the quantization noise. The methods proposed in the literature are not differentiable and cannot be included in the backpropagation of the training. To get optimal performance, the quantization module should be optimized with the overall structure of the neural network. 
[image: ]
[bookmark: _Ref100763745]Figure 2: Lossy compression and recovery.

In RAN1 #110 meeting, RAN1 agreement further facilitates discussions on how two-sided input, output, pre-post processing and other configuration changes considering CSI reporting framework.  
	Agreement
In CSI compression using two-sided model use case, further study potential specification impact on CSI report, including at least
· CSI generation model output and/or CSI reconstruction model input, including configuration(size/format) and/or potential post/pre-processing of CSI generation model output/CSI reconstruction model input. 
· CQI determination
· RI determination




In the next sub-section, Section 2.1.1, we try to understand different flavors of CSI generation model output and/or CSI reconstruction model input. In the later sub-sections, we further discuss related other aspects of two-sided model handling. 
Possible input/output considerations for Two-sided model
Compressing channels
[image: ]
[bookmark: _Ref100199080]Figure 3: General conceptual structure of an Auto-Encoder based CSI feedback via compressing the full channel matrix 

Considering a massive MIMO system with  transmit antennas at a gNB,  receive antennas at a UE, and  PRBs, the input size of the original channel matrix  is (), where  is the number of samples. The real and imaginary parts of the channel matrix are extracted and stacked together (i.e., ) since ML models cannot handle complex inputs directly. The UEs measure and predict the channel matrix , and apply ML models to compress and feedback the channel information to the gNB. The encoder model takes the  input channel matrices as images with a size of  pixels and  “feature maps” (as the RGB for color images). The encoder usually consists of a few convolutional layers to generate feature maps of the input channel matrix and then reshape the feature maps into a vector and compress it into a codeword. Then, the codeword is quantized and feedback to the gNB (as shown in Figure 3). At the gNB, the feedback codeword is the input to a pre-trained decoder model. The decoder decompresses the codeword and reconstructs the channel matrix . Optimization algorithms like Adaptive Moment Estimation (ADAM) are used to update the set of parameters of the autoencoder-like model, where the loss function is the mean squared error (MSE) between the original and reconstructed channel matrices.
Instead of inputting the channel matrix  directly to the encoder at the UE side, pre-processing is needed to shorten the training period, compress the feedback bits, and improve the prediction accuracy. In our work, we first take a 3D inverse Discrete Fourier transform (IDFT) of the channel matrix across transmit antennas, receive antennas and frequency units, which transforms it from the spatial-frequency domain to the angle-delay domain and normalize the elements of  to a range of [0, 1]. The channel matrix in the angle-delay domain only has a small fraction of large components, and the other components are close to zero. Then we retain the first few rows of the channel matrix and remove the remaining rows (with large delays). At the gNB side, after the reconstruction of channel matrix , zero padding is applied. Finally, inverse normalization and 3D DFT are applied to recover the reconstructed channel matrix back to its original scale.   

Compressing channel eigenvector(s)
[bookmark: _Hlk98779172]We consider a typical MIMO system with  transmit antennas at the gNB and  receive antennas at UE side. Denoting  as the number of subbands consisting of  resource blocks (RBs) as the basic feedback granularity, the downlink channel can be written as , where ,  indicates the downlink channel of the th subband.  
With these definitions, one can refer to the conceptual block diagram of an Auto-Encoder based CSI feedback via compressing the full channel matrix  in Figure 3, where normalized mean-squared error (NMSE) is shown as an example objective function to be minimized, whereas other objective functions can also be used as discussed.  
We can consider a single-stream downlink transmission and ideal channel estimation at the UE side, the corresponding eigenvector for the th sub-band, denoted as with normalization , will be directly used as the downlink precoding vector and can be calculated using eigenvector decomposition as , where  represents the maximum eigenvalue of  and also indicates the precoding power gain obtained from MIMO system. Obviously, all  eigenvectors should be reported to the BS for downlink precoding. Hence total  complex coefficients should be compressed and recovered for each channel sample using various kinds of neural networks. 
[bookmark: _Hlk98784391]As the objective function to be minimized, the generalized cosine similarity (GCS) on the th sub-band, denoted as , is utilized to evaluate the CSI feedback and recovery performance, which is written as  where  represents the recovered eigenvector for the th sub-band. Furthermore, the average GCS on the whole band can be written as a loss function to be minimized during the optimization of the encoder’s weights by . Obviously, we have , and larger  indicates better CSI feedback and recovery performance.
Figure 4 illustrates the general conceptual block diagram of an autoencoder-based CSI feedback with compressing the eigenvectors, where GCS is used as the objective function to be minimized in optimization of the auto-encoder. 
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[bookmark: _Ref100204822]Figure 4: General conceptual structure of NN (autoencoder) based CSI Feedback with Compressing the Eigenvectors.

The details of the computations of eigenvalues per sub-band are provided in Figure 5. For each sub-band, we form the covariance matrix snapshots by summing the products over the PRBs included in each sub-band. Then we compute the eigenvalue decomposition and pick the eigenvector corresponding to the largest eigenvector of the covariance matrix snapshot matrix for each subband. In this manner, we obtain  (number of subbands) eigenvectors of dimension . In Figure 5 the number of subbands is taken as 13, and the number of PRBs per sub-band is taken as 4, and these parameter selections are provided as an example to facilitate the ease of illustration. 
[image: ]
[bookmark: _Ref101933608][bookmark: _Ref101933594]Figure 5: An illustration of the details of Eigenvector computation per subband.

Currently, there have been three major autoencoders proposed in [2],[3], and [4], for the aforementioned autoencoder blocks within Figure 3 and Figure 4. For that matter, [2] is one of the first major contributions that proposed autoencoder-decoder framework, as depicted in Figure 6, and the autoencoder block of [2] is called CsiNet. For the performance evaluation in the accompanying contribution [5], we devised the following neural network architecture to compress strongest eigenvector(s). As in [2] and other publications on CSI feedback compression, convolutional neural networks (CNNs) for the encoder and decoder are utilized due to the fact that they can exploit local spatial correlation by enforcing a local connectivity pattern among the neurons of adjacent layers.
[image: ]
[bookmark: _Ref115431282]Figure 6: Neural network architecture to compress eigenvector(s).
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Figure 7: Transformer based neural network architecture to compress eigenvector(s).
To further improve the performance of ML based method on CSI compression, a transformer-based ML model [7] is explored and the neural network architecture is presented in Figure 7. The transformer-based ML model also takes the eigenvectors as the input (Trans-EigvecNet) and follows the general encoder-decoder structure. The Trans-EigvecNet uses stacked multi-head self-attention layers and fully connected layers in both the encoder and decoder as depicted in Figure 7. The encoder composes a stack of N identical multi-head self-attention blocks (currently using N=3 but it can be extended to more layers, for example N = 6), and each block contains two sublayers. The first sublayer is an 8-head self-attention layer, and the second sublayer is a position-wise fully connected feed-forward layer. A residual connection is employed around each of the two sublayers. After the multi-head self-attention blocks, a fully-connected layer and a quantization layer are used to compress the data to different feedback bits/quantized codewords (e.g., 26-416 bits). 
The quantized codeword is sent back through the uplink from the UE to the gNB, and at the gNb, the decoder is also composed of a stack of N identical blocks (N = 3 is used in this contribution). In addition to the two sublayers in each encoder block, the decoder contains one more multi-head attention layer. Similar to the encoder, residual connections are employed around each of the sublayers, followed by layer normalization. Then, after the softmax operation [7] and a fully connected layer, an estimated eigenvector is obtained from the output of the decoder.

Compressing W2
Consider a massive MIMO system with  transmit antennas at the gNB and  receive antennas at UE side. Instead of compressing the full channel matrix , we proposed a general conceptual structure of autoencoder-based CSI feedback compressing only  of the precoder matrix.
The 3GPP Release 15 codebook is defined as a two-stage CSI codebook. The precoder matrix is given by , where  represents the wideband part and  the subband part. The  matrix identifies an orthogonal set of beams selected, and the  matrix identifies the co-phasing factors across polarizations.
In Release 16, the precoder matrix is further compressed in both spatial and frequency domain. Therefore, using the R16  requires both spatial and frequency pre-processing followed by the ML encoder at the UE side. To ensure efficient implementation with reduced computational complexity at the UE, we focus on the R15 precoder matrix – only compressed in spatial domain.
[bookmark: _Hlk110321285]The input size of  is (), where  is the number of samples,  is the number of spatially aggregated ports, is the number of frequency subbands, and  is the number of MIMO streams. The real and imaginary parts of the channel matrix are extracted and stacked together (i.e.,2*) since ML models cannot handle complex inputs directly. The  matrices used as input of the AI encoder are phase aligned, i.e., a phase alignment has been applied across the subbands with respect to the phases observed on the strongest  aggregated port. In other words,  coefficients for the strongest aggregated port are guaranteed to be real-valued.
The general conceptual structure is illustrated in Figure 8: General conceptual structure of an Auto-Encoder based CSI feedback via compressing  of the precoder matrix. The encoder model takes the  original  matrices as images with a size of  pixels and  “feature maps”. The encoder usually consists of a few convolutional layers to generate feature maps of the original  matrix and then reshape the feature maps into a vector and compress it into a codeword. Then, the codeword is quantized and feedback to the gNB. At the gNB, the feedback codeword is the input to a pre-trained decoder model. The decoder decompresses the codeword and reconstructs the matrix . Optimization algorithms, such as adaptive moment estimation (ADAM), are used to update the set of parameters of the autoencoder-like model, where mean squared error (MSE) between the original and reconstructed  matrices, is used as an example objective function to be minimized. We note that other objective functions can also be used.
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[bookmark: _Ref110324530]Figure 8: General conceptual structure of an Auto-Encoder based CSI feedback via compressing  of the precoder matrix.
	
The metrics used to evaluate the model are the NMSE and cosine-similarity (CS). 
Let us first notice that:   and  . Then,   , where  represents the orthogonal basis. Therefore,   .

We can now define the cosine-similarity, ρ, as: 
, where K =  is the reconstructed of the  spatially aggregated ports, and  is the original of the  spatially aggregated ports.

The NMSE is defined as: 
.

Model training collaborations
In RAN1 #110bis meeting, the following was agreed for Type 3 of training collaborations for 2-sided models.
	Conclusion
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following procedure is considered for the sequential training starting with NW side training (NW-first training):
· Step1: NW side trains the NW side CSI generation part (which is not used for inference) and the NW side CSI reconstruction part jointly
· Step2: After NW side training is finished, NW side shares UE side with a set of information (e.g., dataset) that is used by the UE side to be able to train the UE side CSI generation part
· Step3: UE side trains the UE side CSI generation part based on the received set of information
· Other Type 3 NW-first training approaches are not precluded and reported by companies

Conclusion
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following procedure is considered for the sequential training starting with UE side training (UE-first training):
· Step1: UE side trains the UE side CSI generation part and the UE side CSI reconstruction part (which is not used for inference) jointly
· Step2: After UE side training is finished, UE side shares NW side with a set of information (e.g., dataset) that is used by the NW side to be able to train the CSI reconstruction part
· Step3: NW side trains the NW side CSI reconstruction part based on the received set of information
· Other Type 3 UE-first training approaches are not precluded and reported by companies

Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following cases are considered for evaluations:
· Case 1 (baseline): Aligned AI/ML model structure between NW side and UE side
· Case 2: Not aligned AI/ML model structures between NW side and UE side
· Companies to report the AI/ML structures for the UE part model and the NW part model, e.g., different backbone (e.g., CNN, Transformer, etc.), or same backbone but different structure (e.g., number of layers)
· FFS different sizes of datasets between NW side and UE side
· FFS aligned/different quantization/dequantization methods between NW side and UE side
· FFS: whether/how to evaluate the case where the input/output types and/or pre/post-processing are not aligned between NW part model and UE part model



Disclaimer: Taking examples of Type 3 conclusions and agreements does not necessarily mean for Nokia to endorse Type 3 over other collaboration types. 
[bookmark: _Int_OIq4FFVY][bookmark: _Int_fk0tDaN9]First let us revisit the generic two-sided model with a specific use case in mind. One exemplary AI/ML model for CSI feedback is depicted in Figure 9: AI/ML model for CSI feedback, at which the channel eigenvector(s) is(are) used as input to AI encoder to demonstrate a specific example. First, UE measures downlink channel by making use of CSI-RS. Then these estimated channel parameters can be pre-processed before being fed into AI encoder for CSI compression. For example, in case that UE would like to use the channel directional information rather than the raw channel matrix to reduce the dimension of the input, singular value decomposition (or any equivalent operation) can be done to acquire the channel eigenvectors. This pre-processed, if any, channel information is used as input to AI encoder. The output of the AI encoder needs to be quantized to comply with the CSI feedback format (e.g., bit sequence). In Figure 9, AI encoder and quantizer have been depicted as separate blocks, but they can be tightly integrated into one block, depending on AI encoder/quantizer design. In any case, the outcome of the UE shall be in the format of bit sequence which should be well defined by 3GPP, as this information is part of UE-NW signaling information (as one of the contents of UCI).
Now let’s move over to the network side operation in Figure 9. Once the CSI feedback is received at NW side, NW is supposed to do the reverse procedure, i.e., dequantization, AI decoding, and possibly post-processing, if required. In case of joint training (Type 1), UE side model (AI encoder) backbone/structure and NW side model (AI decoder) backbone/structure need to be known at the training entity, such that the final AI encoder/decoder can be jointly trained at a single training session. In case of separate training (Type 3), in which the UE-side training and NW-side training should be done in a separate training session, NW side AI decoder training would not require the detailed model backbone/structure of the UE AI encoder for its own training. Be aware here that in Figure 9 the “target CSI” refers to the final CSI format (like precoding matrix for example), which can be readily used at NW for its subsequent operation, e.g., DL MIMO processing. In this context, the target CSI can be different from the input to AI encoder at UE side. It is envisioned that the final CSI format of the resulting target CSI, together with the CSI feedback format, can be the subject of 3GPP specification. Note here that in this specific example of the channel eigenvector compression, AI decoder output and the target CSI can be of the same format, which makes this use case attractive.


[bookmark: _Hlk118468590][bookmark: _Ref118467558]Figure 9: AI/ML model for CSI feedback
There are two main flavors of Type 3 separate training, i.e., UE-first separate training and NW-first separate training. 
In this case, one entity (UE or NW) training can take place first, then the other entity (NW or UE, respectively) training can follow, and vice versa. One assumption for this scenario is that one training entity’s training should be able to take place without knowing the details of the backbone/structure of AI module at the other entity. However, the first training entity should have a hypothetical AI model of the other entity for its own training. It should be carefully examined to see which input/output data are available at each training session with consideration of candidate arguments to the loss function. Two major sub use cases are described below.
UE-first separate training
The procedure of the UE-first separate training is illustrated in Figure 10: UE-first separate training procedure. The whole procedure can be categorized into two main phases, i.e., UE-side model training phase and NW-side model training phase.

 
[bookmark: _Ref118468615]Figure 10: UE-first separate training procedure

1. UE-side model training phase
· UE performs DL channel measurement/estimation based on 3GPP-defined reference signals. This channel information can be pre-processed if UE’s algorithm dictates, prior to AI encoder operation.
· UE performs training of the AI encoder for CSI compression. For model training, UE should have the hypothetical dequantizer/AI decoder/post-processing model at NW-side in mind, to come up with the final target CSI. As there can (or should) be a model mismatch between UE vendor’s hypothetical NW-side model and the actual NW-side model, the outcome of the hypothetical NW-side model is denoted as “projected target CSI” in this document, to differentiate it with the corresponding outcome of the subsequent NW-side model training. For UE training, input to AI encoder, e.g., channel eigenvectors, and its corresponding hypothetical AI decoder output (projected target CSI) as labeled data can play the role as training data set. 
· On completion of UE-side model training (with its own assumption of the hypothetical NW-side model), UE can provide NW-side with the resulting training dataset, e.g., {input to AI encoder, CSI feedback}, for the subsequent NW-side model training. This can be done offline by uploading the training dataset to the server. Note here that CSI feedback will be in the format of bit sequence, to be defined by 3GPP. The mapping from the AI encoder output (latent feature vector; ze) to CSI feedback bit sequence may or may not be subject of 3GPP specification. This aspect is discussed in a separate section later in this document.  
· The details of DL channel parameter estimation and its processing are up to UE’s implementation. The details of UE side AI encoder model, including its input data and their format, do not need to be revealed to NW-side. However, it deems beneficial for AI encoder output to CSI feedback mapping to be shared between UE-vendor and NW-vendor for the sake of fast training convergence and overall performance.
2. NW-side model training phase
· NW-side can start the training of its AI decoder, together with dequantizer/post-processing operation, as needed, based on the UE-provided training dataset, e.g., {input to AI encoder, CSI feedback}. Note that training of dequantizer can be expediated and/or improved by UE providing NW with AI encoder output to CSI feedback mapping information.
· It is envisioned that the format of CSI feedback should be well-defined in 3GPP. Hence there should not be ambiguity in interpreting them.
· For NW-side model training, an appropriate loss function needs to be defined. One option is to take target CSI (outcome of the actual NW-side model) and input to AI encoder. In case that the channel eigenvector is to be compressed, target CSI at AI decoder should be close to input to AI encoder.
 
It should be noted here that there are two major sources of potential performance degradation, i.e., AI model mismatch between UE’s hypothetical AI decoder at NW-side and true AI decoder in use, and distortion coming from quantizer – CSI feedback – dequantizer operation. We believe that at least we should try to minimize possible distortion related with quantization, assuming AI model mismatch is something we should live with. 
[bookmark: _Int_DJDYeap1]When it comes to generalization of this concept across multiple UE vendors, it can be burdensome for NW vendor to manage multiple NW-side models per each UE vendor. In this sense, we need to seek for the scheme which can facilitate common NW-side model which can handle multiple proprietary UE models. Mixed training dataset collected from multiple UE vendors can be one feasible option, but its performance and feasibility need to be studied further. For this purpose, training dataset format needs to be unified across UE vendors, or better yet, to be standardized, if deems necessary.
Another item for further investigation comes from the concern that even though CSI feedback format itself can be standardized; NW vendors may not want 3GPP to dictate how to interpret this information across multiple NW vendors. One way to reduce potential ambiguity is to formulate latent variables (AI encoder output) to bit sequence (CSI feedback) mapping at UE side officially. This will alleviate the burden of CSI interpretation at NW-side for NW-side model training to some extent and reduce the risk of model mismatch between the hypothetical AI decoder model and the actual NW-side model(s) across the multiple NW-vendors.
Proposal 1: For UE-first separate training scenario, the training dataset for NW-side model training needs to be studied to determine whether it can be achieved to find a common way of interpreting provided CSI feedback across multiple NW vendors, for example by defining AI/ML encoder output to CSI feedback mapping or by other schemes.
NW-first separate training
The procedure of the NW-first separate training is illustrated in Figure 11. The whole procedure can be categorized into two main phases, i.e., NW-side model training phase and UE-side model training phase.
1. NW-side model training phase
· NW performs training of its NW-side AI decoder model. As depicted in Figure 11, NW-side should come up with a hypothetical UE-side model for the generation of UE-side projected outcome, i.e., projected CSI feedback.
· As a result of NW-side training, a training dataset of {hypothetical input to AI encoder, target CSI} can be used for its self-supervised learning. Note here that NW-side should have an UE-side hypothetical models of DL channel measurement & subsequent pre-processing, as well as AI encoder. 
· On completion of NW-side model training (with its own assumption of the hypothetical UE-side model), NW can provide UE-side with the resulting training dataset, e.g., {hypothetical input to AI encoder, projected CSI feedback}, for the subsequent UE-side model training.
2. UE-side model training phase
· UE-side can start training of its AI encoder based on the NW-provided training dataset, e.g., {hypothetical input to AI encoder, projected CSI feedback}.
· Note that NW-provided hypothetical input to AI encoder is output of the preceding hypothetical UE-side operation, i.e., DL channel measurement and pre-processing, which can be different from the actual UE-side operation (that is UE proprietary) in use.
· NW vendor(s) need to align with multiple UE vendors about certain set of DL measurement related parameters and their formats. This may not be straightforward in practice.
· For UE-side model training, the appropriate loss function needs to be defined. One option is to take CSI feedback (outcome of the actual UE-side model) and projected CSI feedback (outcome of the trained hypothetical UE-side model per NW vendor’s hypothesis at the time of NW-side model training).
· Note again that quantizer at UE-side and dequantizer at NW-side should be aligned to remove ambiguity in interpreting CSI feedback bit sequence, to facilitate proper retrieval of zq.

There can be a mismatch between NW-side's hypothetical UE-side model and the actual UE-model, not only in AI encoder model but also in its input (pre-processed DL measurement information). In this sense, there is a higher degree of model ambiguity of the hypothetical “other entity” model (and related arguments), compared with the UE-first separate training case.
Proposal 2: For NW-first separate training scenario, training dataset for UE-side model training needs to be studied to determine how to acquire a common format of data (input to a hypothetical UE model) across multiple UE vendors. 
· This investigation needs to be done with generalization of this concept over multiple NW vendors in mind.


  
[bookmark: _Ref118470336]Figure 11: NW-first separate training procedure
Some thoughts on Quantizer/Dequantizer operation
As briefly stated in the previous section, quantizer/dequantizer operation can play an important role, as quantization error cannot be ignored for end-to-end system performance evaluation. High level description of quantizer operation is provided below, to lay the foundation for future discussion. Note that examples below are based on joint training scenario to focus on quantization topic. The selected use case for illustration is channel eigenvector compression, but it can be generalized to other types of AI encoder input.
Quantization-aware training
Quantization-aware training assumes an integrated quantization training when performing encoder-decoder training. In this case, the quantizer is seen as trainable layer. The challenge here is how to make the quantization operation differentiable (such that it should be trained with backpropagation of gradients). One obvious advantage of this scheme is that once trained, the quantizer operation should be well aligned to serve the overall KPI for end-to-end training, e.g., SGCS between input to AI encoder (channel eigenvector, for example) and output of AI decoder (target CSI). As training outputs, we can acquire final codebook or quantization function (or rule) as well as trained encoder & decoder parameters. When it comes to quantization, either scalar quantization or vector quantization can be adopted. 


Figure 12: Quantization-aware training example
Quantization-unaware training
Quantization-unaware training assumes separate encoder/decoder training and quantizer formulation. One advantage of this scheme is that we can decouple AI encoder/decoder training and quantizer formulation, at the cost of possible end-to-end performance degradation. This allows trials of various quantization schemes without having to re-train the whole chain every time. This scheme consists of 3 major steps.
· [Step1] AI encoder/decoder is trained without any intermediate quantization procedure in the middle. The latent feature vector is directly fed into the AI decoder for training. As training outputs, quantization training data set of the latent feature vector samples at the final epoch can be provided for subsequent quantization formulation, as well as trained AI encoder/decoder parameters.
· [Step2] Quantization procedure is formulated. Either scalar quantization or vector quantization can be adopted. For this operation, a certain distance metric should be used to measure distance between input scalar/vector and output quantized value/codeword. Note that it can be very challenging (if not impossible) to find the distance metric which can lead to the solution minimizing loss at Step1. However, it remains to be seen if we can still achieve acceptable performance by making use of statistics of AI encoder output (ze) for quantization operation.
· [Step3] The formulated quantizer can be plugged into the overall AI encoder/decoder to check end-to-end performance. Optionally, the AI encoder/decoder can be fine-tuned with Quantizer being in the chain to calibrate AI encoder/decoder parameters. Here, the quantizer operation is considered to be frozen (not a subject of update).


Figure 13: Quantization-unaware training example
On Quantization operation options
Quantization can be categorized into two groups, i.e., scalar quantization and vector quantization. Scalar quantization takes each latent feature vector element and quantizes it one by one. Vector quantization takes either the whole latent vector or segmentized subset of it and to quantize it to map it to pre-defined codeword at a time. In case the length of the latent vector is large, it can be practically difficult to acquire codebook in case of using training-based algorithms like Lloyd VQ scheme. In this sense, segment of the whole vector with a manageable size LS, can be fed into vector quantizer [6]. This procedure is repeated to cover the whole latent vector, and the whole latent vector can be represented by  codewords of size LS, where Lz is the length of the latent feature vector ze.
Scalar quantization can provide a flexibility. It can be a viable option, when input to quantizer {ze} has a bounded value. In this case, each element can be represented with a few numbers of bits only. Either uniform or non-uniform (based on statistics of ze) scheme can be used.
Proposal 3: Regarding quantization scheme for CSI feedback, scalar quantization scheme with a limited bit size needs to be studied especially for bounded input to the AI encoder use case, e.g., channel eigenvector compression. 
Vector quantization scheme mandates a codebook which can be rule-based or derived from statistics of training dataset. In case of the latter case, the resulting codebook depends on statistics of input data {ze}, which is output of the AI encoder. Hence it might be the case that we end up with multiple codebooks (one per UE-vendor) in case of Type 2 or Type 3 collaboration scenarios. This is applicable to statistics-based scalar quantization scheme, but vector quantization scheme requires larger memory footprint for saving of the codebook(s).
It is desirable to have a synchronized operation between segmentizer at UE-side and combiner at NW-side for vector quantization scheme. In case of Type 2 or Type 3 collaboration scenarios, this alignment between UE-vendor and NW-vendor should be done, preferably within 3GPP framework.
Proposal 4: Regarding vector quantization scheme for CSI feedback for Type 2 or Type 3 two-sided model training collaboration scenarios, the degree of required alignment between quantizer/dequantizer at UE-side/NW-side respectively needs to be studied, e.g., the length of codeword, the size of codebook, and the distance metric (or quantization rule) in use.

Figure 14: Quantizer types

About potential specification impact on quantization method alignment
	Agreement
In CSI compression using two-sided model use case, further study at least use cases of the following potential specification impact on quantization method alignment between CSI generation part at UE and CSI reconstruction part at gNB: 
· Alignment of the quantization/dequantization method and the feedback message size between Network and UE



As we have shown already, several quantization methods can be considered including uniform scalar quantization, non-uniform scalar quantization, and vector quantization. Thus, alignment of the considered quantization/dequantization method and its hyper parameters are necessary. In case of uniform scaler quantization, addition to the quantization type, the number of quantization bits per scalar and the value of each quantization level are shared between the UE and gNB. The feedback size is determined based on the number of quantization bits per scaler and the encoder output size. The value of quantization levels can be determined by sharing all the values or following a standardized quantization method and sharing only the considered minimum and maximum range for quantization.
In case of the non-uniform quantization approach, similar information needs to be shared between the entities. The main difference is the way of determining the value of quantization levels, which depends also on the considered non-linear function (mu-law, A-law, etc.). Thus, the alignment includes the non-linear function and its hyper parameter. In the last case, vector quantization can be used to apply quantization to the encoder output, by considering the correlation between the output’s entries. Thus, the quantization type, the number of considered bits for representing the centroid vectors, and the values of centroid vectors are necessary to be shared between the AE entities. If the centroid vectors are changed during the training, the updated values need to be communicated to the decoder entity.

Performance monitoring
[bookmark: _Hlk118347304]The measured channel data in real-world radio environments can be different than those in the training datasets. To ensure proper behaviour of the deployed models, performance monitoring is important and provide useful inputs for gNB to make decisions such as model activation/deactivation/updating/switching. The following agreement was reached in [1].
	Agreement
In CSI compression using two-sided model use case, study potential specification impact for performance monitoring including: 
· NW-side performance monitoring:  NW monitors the performance and make decisions of model activation/ deactivation/updating/switching    
· UE-side performance monitoring: UE monitors the performance and reports to Network, NW makes decisions of model activation/ deactivation/updating/switching   

Agreement
In CSI compression using two-sided model use case, further study potential specification impact related to potential co-existence and fallback mechanisms between AI/ML-based CSI feedback mode and legacy non-AI/ML-based CSI feedback mode.



Both NW- and UE-side performance monitoring need to be studied to help gNB make proper decisions. 
	Agreement
In CSI compression using two-sided model use case, further study at least the following options for performance monitoring metrics/methods:
· Intermediate KPIs as monitoring metrics (e.g., SGCS)
· Eventual KPIs (e.g., Throughput, hypothetical BLER, BLER, NACK/ACK).
· Legacy CSI based monitoring: schemes using additional legacy CSI reporting
· Other monitoring solutions, at least including the following option:
· Input or Output data based monitoring: such as data drift between training dataset and observed dataset and out-of-distribution detection

Agreement
In CSI compression using two-sided model use case, further study potential specification impact related to assistance signaling and procedure for model performance monitoring. 




In CSI compression using two-sided model use case, the SGCS is calculated based on the target (ground-truth) CSI and the NW-reconstructed CSI. If the SGCS is monitored at the UE side, the UE need to know the NW-reconstructed CSI information. With Type 1 Joint training, the UE can calculate the SGCS since it knows the specific model used on the gNB side. With Type 2 Joint training, there’s no way for UE to do so since the knowledge about the decoder is unknown at UE. With Type 3 Separate training, if UE-first approach is adopted, even though the UE still does not have the exact knowledge about the decoder, it could try to use the hypothetical decoder used in the training as the proxy to derive the NW-reconstructed CSI. If SGCS is monitored at the Network side, it requires UE to send back the ground-truth CSI for calculating SGCS. Since it would introduce large overheads, the frequency of such reports needs to be considered, possibly jointly designed with the data collection process.
Another possible way to do performance monitoring is model-based calculation of the distance between representations, where representation refers to the encoder output in general. The representation could be quantized or unquantized, and proper definitions of the distance and the corresponding metric threshold can be studied. Unlike comparing the measured channels and the training data sets which is only doable on UE side, the calculation of the distance between representations is doable at both UE and gNB ends.
Data collection aspects
The following diagram defines the notation for inputs/outputs observed at different reference points, where H is the measured channel, X is the output of some pre-processing and is the subject of compressing, Z is a quantized feedback vector representing DL CSI (CSI feedback refer in section 2.1.2), and Y is the output of the decoder (target CSI refer in section 2.1.2).
[image: ]
Figure 11: AI/ML-based CSI feedback processing chain with the associated notation.
A server at the network or operator side can be used to store data for either Type 1 joint training or Type 3 separate training, or both. In terms of data stored on such a server, there can be options like (H, Z), (X, Z), (X, Z, Y), etc. In principle, the data stored for the purpose of separate training can be used for joint training as well. For example, (X, Z) is required for separate training but it also covers the data needed for joint training. For Type 2 joint training, offline saved data at the server do not suffice due to latency considerations and data exchange over the air needs to be considered. For Type 3 separate training, as highlighted in Section 2.1.2, the data stored on a server can be (Z = CSI feedback, Y’ = projected target CSI) or (Z’ = projected CSI feedback, Y = target CSI) depending on which node perform the separate training first. 
Assume a server is used to store training data. Before initial model deployment, the agreement on data sharing on the server could be done by offline engineering among multiple vendors, at least in theory. In this case, there can be many models trained by using the shared data, e.g., models with different vendors. Also, the training data set may get updated over time or stored as a separate data set to address different deployment scenarios, configurations, and radio environments, etc. In one example, if the UE maintains different encoder models, each associated with corresponding data set, those data sets shall be uploaded to a server such that the network can have a common or separate decoder model to match the data sets. In the end, this may result in different encoder models being used by the UE (and also a matching decoder at the NW) and these models may switch depending to scenario, configurations, and other parameters. In terms of potential specification impact, a model ID is needed for the purpose of model enabling/disabling and selecting/switching, which is later used in over-the-air signaling exchanges. At this stage, data delivery can be done in a proprietary manner.
Proposal 5: For data collection for two-sided model training, RAN1 shall further discuss the necessity of a remote server storing data set(s) to facilitate joint/separate training or model updates (due to data set changes). 

Proposal 6: For data collection for two-sided model training, RAN1 shall further investigate the data storage formats to understand the possibilities. 
· The format of the stored data set may depend on whether the joint or separate (UE-side first or network-side first) training is applied. 

Proposal 7: For data collection for two-sided model training, RAN1 shall further investigate whether generalization issues can be handled by multiple trained models with different data sets, potential specification impact when identifying such models, and how to support switching of models. 

After initial model deployment, there can be a need for further data collection. For example, some cell-specific data can be accumulated to aid model fine-tuning. For TDD mode, gNB can measure the channel and collect new data; for FDD mode, UE can report channel conditions to gNB or upload the data to the data sharing server directly. In both cases, the stored data need to have a much higher precision than what can be supported in the legacy CSI feedback mechanism, because the newly collected data are for model training. Thus, new types of CSI reports may need to be defined and have a specification impact.
There can be two on-the-fly data collection scenarios. One is for a gNB to gather enough local radio information of a specific cell that this gNB is handling. In this case, the new channel data can come from many UEs in the cell and the time period of the collection can span days, weeks, or even months. Since model updating in this case will not be very often, this can support big changes in the deployed model. On the other hand, model fine-tuning, which may only require short-term channel measurements, is also possible.
Proposal 8: For data collection for two-sided model training, RAN1 shall further investigate whether a stored data set can be updated over time, how to facilitate such data set updates such that updates are known at nodes associated with two-sided models, and model updates associated with the updated data sets. 

Other specification impacts
The CSI feedback configuration could include: number of the feedback bits; quantization information; type of the associated decoder output (output CSI); indicator for possible post-processing.
In the current standards, RI, PMI and CQI could be jointly reported to gNB according to the given configuration(s), where CQI may need more resources for feedback in the case of subband reporting. For codebook-based solutions, UE determines the CQI for reporting based on the precoding matrix indicated by the PMI and also its associated receiver. For neural network-based solutions, CSI compression feedback is accomplished by using two-sided models, where an encoder is deployed on the UE side and decoder on the gNB side. If UE has complete knowledge about the decoder, approaches similar to legacy codebook-based solutions can still be considered for RI determination, and CQI can be calculated based on the decoder output inferred on the UE side. If UE does not have the complete knowledge about the decoder, CQI could be calculated based on input to the encoder on the UE side, which, for example, can be eigenvector(s) or W2. In this case, there would be a mismatch between the calculated CQI and the real CQI, and the CQI reports could be optimistic. This is essentially another source of SINR estimation error. Practically, OLLA can alleviate the problem by adjusting the SINR offset.
Additionally, since the reconstruction capability of the decoder model heavily depend on the underlying subject of compression, it is necessary to have well-defined model outputs, which can include antenna port configurations, sub-band configurations, the type of model output, and possibly others. As indicated in previous sub-sections, the type of model output can be the raw channels, the eigenvectors, or W2-like information. Potential post-processing can include linearly combining DFT vectors if the model output type is W2-like.

CSI prediction 
Channel prediction is seen as a main enabler for more advanced use cases, which are sensitive to channel aging like MU MIMO precoding or coherent JT-CoMP as discussed for cell free massive MIMO. Furthermore, accurate channel prediction over a large prediction horizon can support high speed UEs and can be a suitable means to reduce the CSI reporting overhead over the state-of-the-art techniques like NR TYPE II. Such overhead reduction can be achieved by a reduced CSI reporting rate, which is then related to the channel prediction quality. 
We should note that channel prediction also fundamentally impacts massive MIMO overhead for reference signals in FDD systems. Without channel prediction the usage of the reported CSI is limited by the coherence time and coherence frequency bandwidth. In case of a high number of antenna elements or antenna ports the related number of CSI reference signals might become a large portion of the resource elements in this coherence area of the radio channel. Therefore, it reduces the related number of resource elements for the user data rate, i.e., the PDSCH. With channel prediction the channel evolution might be reconstructed, thereby potentially might overcome this coherence related limitations. 
Figure 15 illustrates the most basic idea for channel prediction, where the radio channel is measured over several time instances, typically for FDD systems based on regularly transmitted CSI RSs. Then the UE or the gNB input the estimated CSI, either directly or after some pre-processing, into the pre-trained ML model, which outputs the predicted CSI for one or several time steps. 

[image: ]
[bookmark: _Ref118709124][bookmark: _Hlk118709292]Figure 15: Basic concept of channel prediction, where the radio channel is observed over a period of time and measured by CSI RSs and predicted into the future.

Most useful is it to predict as CSI the explicit radio channel evolution in the time and/or the frequency domain as this will enable any type of precoding, will support any type of MU MIMO user grouping and scheduling and therefore is the basis for more advanced future concepts like extensive massive MIMO, or cell free massive MIMO. Alternatively, the CSI prediction might be close to current Type II CSI reporting and predicting parameters like PMI, RI, CQI, etc. Note that the possible inference and reporting options for channel prediction are closely related to the options as discussed in Section 2 for channel compression. Therefore, the channel prediction can be either for the explicit CSI, for the strongest eigenvectors, or, for W2 while W1 is fixed for a certain number of prediction steps. 
For optimum channel estimation and channel prediction the CSI RSs should cover the full RF bandwidth as it is well known from theory that the observed frequency bandwidth affects the theoretical Cramer Rao Bound of the unbiased channel estimator. The Cramer Rao Bound itself is defined by the Fisher information contained in a certain signal used for the estimation of certain signal parameters like the delay, amplitude, or phase of a multipath component. This Fisher information is then increasing for an increasing number of CSI RSs and increasing RF bandwidth. This can be illustrated, for example, by assuming a single multipath component. The delay of such a multipath component is then related to a phase slope in the frequency domain and obviously the estimation of such a phase slope will be easier in case of a larger frequency bandwidth. When applying autoregressive filters as being used for Kalman filters we often observe even a degradation for increasing frequency bandwidth. This can be explained by the overall structure with parallel instances of the same state space model on parallel frequency bands. The performance degrades if the size of the frequency band is larger than the coherence bandwidth. 
Often, neural network implementations based on long-short term memory (LSTM) lead to similar structures as the Kalman filter and might similarly ignore the frequency domain information, which leads to corresponding performance loss. Contrary, with optimized neural network structures the frequency domain channel information can be beneficially exploited to improve the channel prediction performance.    
Helpful for optimum precoding is then to predict the evolution over time of the radio channel instead of the radio channel just for a single prediction time, or sequence of time instances. This provides full scheduling flexibility and the highest precoding performance, which might be especially relevant for larger prediction horizons. 
The expected performance gain is for low to moderate UE speeds the reduced effect of channel aging, which can be evaluated by comparing the UE throughput or spectral efficiency with and without channel prediction. Without channel prediction then one has to use the outdated CSI from the time instance of the latest channel observation, which is typically denoted as zero order hold (ZOH).
In alignment with the latest agreements, so far, the focus is on the simplest channel prediction scheme, where the UE infers the channel prediction based on regular persistent, semi-persistent or aperiodic CSI RSs. Then the UE calculates for the predefined or agreed prediction time the conventional Type II CSI message like the matrices ,  and  in case of NR Release 16. That way, the ML related standardization impact is minimized and mainly requires the control messages for setting up and/or agreeing between UE and gNB on the best fitting prediction time. 
For more advanced schemes, it might be worth to evaluate, compare, and include the options as discussed in Section 2.1 for the enhanced CSI feedback compression also for the case of channel prediction. This can be either for the one-sided case and Level x collaboration, i.e., just for the inference process of the Type II CSI at the UE side, which might then result in different overhead performance trade-offs. Alternatively, for two-sided methods the Type II CSI reporting might be adapted, for example, similarly to section 2.1, where we have either channel compression of explicit CSI, of strongest eigenvectors, or, of a fixed  and a channel prediction inference and reporting limited to, e.g., . The following conclusion was taken in the last meeting [1]:
	Agreement
In CSI compression using two-sided model use case, further study at least use cases of the following potential specification impact on quantization method alignment between CSI generation part at UE and CSI reconstruction part at gNB: 
· Alignment of the quantization/dequantization method and the feedback message size between Network and UE



which allows to further investigate CSI prediction using one-sided and two-sided modes.
gNB sided prediction requires ideally accurate explicit CSI for at least two, or few time instances, which might be reported as a batch of compressed space, time, and frequency signals. This explicit CSI is typically needed only in the beginning to setup the channel prediction model. Afterwards, the UE might report further CSI information relative to this channel prediction model, which can then end in an overall reduced CSI reporting overhead.    

There are other proposals related to prediction in 3GPP. One proposed as a use case is the temporal-spatial-frequency compression of CSI. This is essentially adding a time-domain prediction component to the CSI compression we have already agreed upon. CSI prediction as a standalone topic is simpler than the above proposal and allows separate evaluation of the ability to predict CSI over time using AI/ML. In fact, compressing and reporting multiple CSIs corresponding to different time slots is only justified if these CSIs provide a better representation of future channel evolution or they allow the gNB to obtain such future CSIs. Therefore, time-domain compression requires the ability to predict the channel or CSI at either UE or gNB side, or both. CSI prediction using AI/ML is a natural step forward from the MIMO work item standard algorithm approach to CSI prediction and can leverage that work. Thus, it would make sense to study AI/ML-aided prediction for CSI but not for temporal-spatial-frequency compression of CSI or other alternatives.

Proposal 9: Support CSI prediction as a second sub-use case.
Proposal 10: Compare channel prediction over broad bandwidth versus based on Type II CSI per sub-band. 
AI/ML model, terminology and description
In the following, some possible ML based channel prediction implementations will be given and compared to rule based Kalman filters as predictors. The model training, validation, and testing will be discussed exemplary for a most simple RNN consisting of LSTM neural networks (LSTM NNs). The possible inference operation using ML, rule based, or, ML enabled networks will be provided, together with the possible collaboration modes between UE and gNB. Then we shortly discuss version control and lifecycle management of the predictor models, and finally suggest a baseline reference mode of operation.
Model generation (training/validation/testing)
For channel prediction, we consider Kalman filter as PHY layer algorithm baseline while LSTM NNs might serve as the AI/ML baseline. Recurrent neural networks, LSTMs, and gated recurrent units (GRUs) are AI/ML models often used for applications where the data has some time dependency, e.g., speech recognition, natural language processing, and time forecast. Therefore, it is a reasonable idea to use LSTM as the AI/ML CSI prediction baseline. The LSTM learns the time evolution of the channel coefficients by means of supervised learning with the mean squared error (MSE) as typical loss function. The loss value guides the gradient descent optimization, which uses the backpropagation through time (BPTT) algorithm. 
A low MSE is typically aligned with a high generalized cosine similarity (GCS) or squared GSC (SGCS) as defined in the latest EVM agreement so that the trained neural network should perform well for the reporting of Type II CSI. Nonetheless, there might be benefits by training the neural networks directly with the GCS or SGCS as cost function. This might result in either a further improved channel prediction performance, or a reduced complexity.   
Note that channel prediction based on RNNs is here given more as a possible reference, while higher performance, lower complexity, or other benefits might suggest other more advanced NN implementations in the future. For example, the dense layer structures in Figure 16 has been replaced in the latest version by convolutional layer structures as in , which reduces the overall complexity of the neural network.
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[bookmark: _Ref118366347]Figure 16: Generic structure of a LSTM NN that receives as input channel coefficients of N past time instances and outputs the next N+p channel coefficients in the frequency domain for a subcarriers f1.
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[bookmark: _Ref118366546]Figure 17: Convolutional LSTM NN for CSI prediction, where N is the number of past channels (data samples) at the predictor’s input and p is the channel prediction window. The use of convolutional layers instead of dense layers reduces the overall number of trainable parameters. For this design, the number of trainable parameters is independent of the number of PRBs (NPRB).

A LSTM neural network (NN) is designed to perform channel prediction of p subframes ahead based on knowledge of N past subframes, see Figure 17. For a SISO channel represented in the frequency domain, a few channel coefficients  serve as input to the convolutional LSTM NN which is trained to output the channel coefficient in the next subframe , or subframes ahead. . Prediction of multiple time steps ahead is also possible, but often limited to the number of time steps at the input of the LSTM NN. Nonetheless, as the prediction horizon increases, the complexity of the AI/ML predictor may also increase in order to maintain a good performance. This is expected due to the reduction of the time correlation between the channel time samples.
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[bookmark: _Ref100232517][bookmark: _Ref100522173][bookmark: _Ref118709433]Figure 18: Configuration for SISO-OFDM channel prediction.

During training of the LSTM NN, the channel measurements should be inputted to the model in a sequential way, i.e., the dataset (input and labels pairs) should not be shuffled. This is needed for the LSTM NN to learn the change dependencies among the time-frequency channel coefficients. For instance, the table in Figure 18 shows the order to provide the channel coefficients for the LSTM NN during training. After training the model parameters, the LSTM NN takes any sequence of three coefficients and outputs the next channel coefficient, regardless of where they happen. However, note that there are no performance guarantees if the trained LSTM model is used for predicting channel coefficients under different conditions, e.g., different Doppler frequency. For a somehow different scenario than that considered during training, an AI/ML CSI predictor may need to fine-tune its weights in order to maintain a good prediction performance. 

Inference operation
Figure 19 considers the basic UE sided inference operation based on a channel prediction model (CP model). It uses n CSI RSs for observing the radio channel and infers from these n CSI estimates, the predicted CSI for the time instance tpredict. The inference of the predicted radio channel can similarly be implemented for pure PHY layer rule-based models, for pure ML models, and for ML enabled models combining specific PHY and ML blocks. Such PHY plus ML-based inference might have benefits with respect to the overall achievable performance, minimized latency, and moderate complexity.
In the latest agreement the EVM has been defined, which includes a scheduling delay  of 4ms. In addition, we have to assume a CSI RS repetition rate like one CSI every 5ms. The time instance  falls together with the latest time instance of the CSI RS. Then, the UE will need some inference time  of at least 1ms. With these variables we can define the minimum prediction time , which will overcome any CSI outdating:
.
With the above given assumptions, the optimum prediction time will be . This is twice the time of the CSI RS repetition rate and is probably still optimistic as for more advanced neural networks an inference time of just 1ms is probably challenging. Helpful would be a higher CSI RS repetition rate, but this is obviously at the cost of higher overhead for CSI RSs. Otherwise, assuming cell specific CSI RSs for, e.g., 32 antenna ports transmitted with a periodicity of 5ms, the related overhead is typically acceptable with 3.8 percent.
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[bookmark: _Ref118709483]Figure 19: possible implementations of the channel prediction with a CP model at the UE side, either as pure PHY based method, as ML neural network or as a combined PHY/ML model.

Collaboration between UE and gNB
The channel predictor can be an ML model located either at the UE or at the gNB. In the first case, the UE reports the predicted CSI - instead of the conventional instant NR Type II CSI feedback. Beneficial in one aspect might be an implementation at the gNB, as the gNB can be expected to have higher processing capabilities as well as can predict the CSI to any time instant of interest, or, might even predict the channel evolution over time. 
A channel predictor at UE side has potential benefits with respect to the direct access to the channel knowledge, while the gNB has to rely on the quantized and compressed reported CSI information. In addition, the ML based standardization impact can be minimized by using the collaboration level x in combination with a one-sided model assumption, i.e., no collaboration and a vendor specific neural network implementation. This is fine, when the UE calculates the conventional Type II CSI for the predicted time instance  instead of the latest observation time .
Note that the evolution of the radio channel is partly deterministic like the smooth evolution of multipath component delays over time for moving UEs. This can be exploited, e.g., by tracking solutions with overall reduced feedback overhead. This might lead to new methods compared to simple UE sided Type II feedback, potentially including then type y and/or type z cooperation levels.
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Figure 20: possible channel prediction with UE sided inference of the CSI for a predefined time t_predict. UE reports then at time t_observe the predicted CSI as well as the prediction time t_predict. Based on this information the gNB can make – possibly after some signal post processing - a prediction for the time instance t_predict.

[image: ]
Figure 21: possible channel prediction with gNB sided inference of the CSI for a predefined time t_predict. UE reports then at time t_observe n compressed CSI estimates as well as the related time stamps. Based on this information the gNB can infer a prediction for the time instance t_predict.

Proposal 11: Consider UE sided as well as gNB sided channel prediction, as well as potentially include combined prediction between UE and gNB.

Lifecycle management of AI/ML model
Lifecycle management of AI/ML models depends on the operation mode, i.e., UE-sided, gNB-sided or combined mode. In case of UE sided prediction, the UE vendor might have to ensure up to date and verified neural network model usage. Similarly, in case the prediction is done at gNB side, then the gNB vendor or MNO might be responsible to keep models up to date. This includes then more or less all aspects as discussed in [1], and copied below, for data collection, model training, model deployment, model inference, model monitoring, model update and model transfer, and for two sided models includes also the UE capability exchange.
In more advanced implementations, the ML and potentially the PHY layer models might be adapted to the general radio channel conditions. Eventually, this might include online training for fine-tuning of pre-trained ML models. 
In the case of parallel models running on the UE and gNB side with an explicit exchange of model parameters, then a very detailed model selection, model verification, model training description will be needed.

Baseline Scheme(s)
As baseline scheme for ML based channel prediction, we see the UE based channel prediction, where the CP model is realized mainly by an LSTM neural network potentially enhanced by some CNN layers. Here, the gNB transmits n CSI RSs and the UE feeds the related n CSI estimates into the CP model. 
We assume an OFDM signal with a regular grid of CSI RS in time and frequency and potentially enhanced by a first stage NN for noise reduction of the channel estimates. Typically, the neural network will directly use as input signal the normalized LMMSE estimates of the complex channel transfer functions, which are then split into the real and imaginary parts. The output signal is the predicted channel transfer function for a predefined prediction time .
In case the channel prediction is done at the gNB side, then the UE has to report the n CSI estimates on the PUCCH to the gNB. Then it might be beneficial as part of the CSI compression to transform the CSI from frequency into time domain. Furthermore, some channel prediction methods include as part of the data preprocessing such a frequency to time domain signal transformation. gNB sided channel prediction might allow for more complex and more advanced channel prediction methods, potentially, leading to an improved channel prediction horizon.
Conclusion
In this contribution, we have discussed the details of two CSI sub-use cases. Our proposals are:	

Proposal 1: For UE-first separate training scenario, the training dataset for NW-side model training needs to be studied to determine whether it can be achieved to find a common way of interpreting provided CSI feedback across multiple NW vendors, for example by defining AI/ML encoder output to CSI feedback mapping or by other schemes.
Proposal 2: For NW-first separate training scenario, training dataset for UE-side model training needs to be studied to determine how to acquire a common format of data (input to a hypothetical UE model) across multiple UE vendors. 
· This investigation needs to be done with generalization of this concept over multiple NW vendors in mind.

Proposal 3: Regarding quantization scheme for CSI feedback, scalar quantization scheme with a limited bit size needs to be studied especially for bounded input to the AI encoder use case, e.g., channel eigenvector compression.

Proposal 4: Regarding vector quantization scheme for CSI feedback for Type 2 or Type 3 two-sided model training collaboration scenarios, the degree of required alignment between quantizer/dequantizer at UE-side/NW-side respectively needs to be studied, e.g., the length of codeword, the size of codebook, and the distance metric (or quantization rule) in use.
Proposal 5: For data collection for two-sided model training, RAN1 shall further discuss the necessity of a remote server storing data set(s) to facilitate joint/separate training or model updates (due to data set changes). 

Proposal 6: For data collection for two-sided model training, RAN1 shall further investigate the data storage formats to understand the possibilities. 
· The format of the stored data set may depend on whether the joint or separate (UE-side first or network-side first) training is applied. 

Proposal 7: For data collection for two-sided model training, RAN1 shall further investigate whether generalization issues can be handled by multiple trained models with different data sets, potential specification impact when identifying such models, and how to support switching of models. 

Proposal 8: For data collection for two-sided model training, RAN1 shall further investigate whether a stored data set can be updated over time, how to facilitate such data set updates such that updates are known at nodes associated with two-sided models, and model updates associated with the updated data sets. 

Proposal 9: Support CSI prediction as a second sub-use case.

Proposal 10: Compare channel prediction over broad bandwidth versus based on Type II CSI per sub-band. 

Proposal 11: Consider UE sided as well as gNB sided channel prediction, as well as potentially include combined prediction between UE and gNB.
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