Page 1
3GPP TSG-RAN WG1 Meeting #111														R1-2212107
Toulouse, France, November 14th – 18th, 2022

Agenda item:	9.2.1
Source: 	Qualcomm Incorporated
Title: 	General Aspects of AI/ML Framework
Document for:	Discussion/Decision

Introduction
At RAN #94, a new study on artificial intelligence/machine learning for NR air interface has been approved [1], with the main goal of exploring the benefits of augmenting the air interface with features enabling improved support of AI/ML-based algorithms for enhanced performance and/or reduced complexity/overhead.
Through studying a few carefully selected use cases, the goal is to identify a common AI/ML framework, including functional requirements of AI/ML architecture, which could be used in subsequent projects. The study should also identify areas where AI/ML could improve the performance of air-interface functions.
The study will serve to identify what is required for an adequate AI/ML model characterization and description establishing pertinent notation for discussions and subsequent evaluations. Various levels of collaboration between the gNB and UE are identified and considered.
Specification impact will be assessed in order to improve the overall understanding of what would be required to enable AI/ML techniques for the air interface.

The SI consists of studying individual use cases as well as deriving a general framework for AI/ML. Below we summarize the goal of the study as shown in [1] relevant to the general framework:
AI/ML model, terminology, and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g.,
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting separate or joint ML operations.
· Characterize lifecycle management of AI/ML model: e.g., model training, model deployment, model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference
· Identify common notation and terminology for AI/ML related functions, procedures, and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

Some progress has been made in RAN1 #109-e, RAN1 #110, and RAN1 #110-bis-e, toward achieving the SI objectives.

In this contribution, we further discuss general framework and various aspects of LCMs.

General framework for AI/ML data collection, model development, training, deployment, and delivery

In this section, we discuss, at high level, LCM stages that happen before the model is made available at the target device for inference. These stages include: (1) data collection, (2) model development and training, and (3) model deployment and delivery.

Training data collection
As the first step, training data may be initially generated at the network and UE. The initial data may be subsequently collected (sent) to one or more data collection entities. A data collection entity may be a 3gpp network or a non-3gpp entity. A non-3gpp data collection entity may be owned by a UE vendor, a chipset vendor, a network vendor, a network operator, a private network owner, a positioning service provider, or any other 3rd party. In case the data collection entity is a 3gpp network, specification for data collection may be required. In case the data collection entity is a non-3gpp entity, data collection can be left as an implementation choice and business agreements among involved parties and can be left outside the scope of 3gpp specification. For example, an API could be exposed by a UE to outside entities to allow the outside entities to collect data from the UE.

Proposal 1: RAN1 should not be concerned on how and to which entity the data is collected, but rather focus on what data should be collected, where the data originate (i.e., source), and where the data should be finally made available for model development and training (i.e., destination).

Model development and training

Once large-scale field data is collected at a data collection entity, the data should be made available to the vendor(s) responsible for model development. Model development is an offline engineering process performed by engineering teams, that should be done with access to a large-scale collected dataset from the field. That is, decisions on the model structure, device-specific optimization, and the number of models to develop (generalizable vs. specific models) depend on the large-scale field data. If the vendor owning the data collection entity is different from the vendor(s) responsible for model development, the dataset should be made available to the vendor(s) responsible for model development. This can be done either via explicit dataset sharing or via providing access (e.g., via APIs) to the collected dataset. Such process may or may not have specification impact. The dataset sharing/access is especially relevant for two-sided models, where both the gNB vendor and the UE/chipset vendor will have to be involved in the model development and training process.

Proposal 2: Regardless of how and where training data has been collected, the training data should be made available to the vendor(s) responsible for model development.

Model training may be performed as a part of the model development, or training may be performed after the model development in a (semi-)automated fashion on the developed models. Depending on the location of the dataset and where the (untrained) model resides, training may be done inside a 3gpp network or in a non-3gpp entity. A non-3gpp entity may be owned by a UE vendor, a chipset vendor, a network vendor, a network operator, a private network owner, a positioning service provider, or any other 3rd party.

It is noted that AI/ML model development is typically an iterative process of data collection, model design, training, and performance validation. AI/ML model development also requires careful implementation consideration for power consumption, hardware area, latency, and concurrency with other PHY/MAC functionalities and require extensive testing. Therefore, the model development is best to be done by the vendor who will implement the device where the AI/ML model inference runs.

Observation 1: Model development is best to be done by the vendor who will implement the device where the AI/ML model inference runs.

Based on the above two observations/proposals, we arrive at the following observation:

Proposal 3: Regardless of how and where training data has been collected, the training data should be made available to vendor(s) implementing the device(s) where the AI/ML model inference runs.

Model deployment and delivery

After a model is developed and trained, the model should be
· compiled into an executable form for the target device
· stored in a model repository
· delivered to the target device

Figure 1 illustrates potential options for the model deployment and delivery of UE-side models (and UE-part of two-sided models). Different options are based on
· Where the model is trained: (1) at a network, (2) at a non-3gpp entity
· Model delivery format: (1) MRF, (2) target-specific, pre-compiled format
· Where the model is hosted before delivery: (1) at a network, (2) at a non-3gpp entity
resulting in 8 distinct options.

[image:]
[bookmark: _Ref118102830]Figure 1: Options for AI/ML model deployment and delivery of UE-side models (and UE-part of two-sided models)

The 8 options are also summarized in Table 1.

[bookmark: _Ref118205189][bookmark: _Hlk118325688]Table 1: Model deployment and delivery options for UE-side models (and UE-part of two-sided models)
	Case
	Where the model is trained
	Model delivery format
	Where the model is hosted
	Example

	D1
	non-3gpp entity
	Target-specific pre-compiled
	non-3gpp entity
	A UE/chipset vendor trains a model, compiles it, and stores it in a proprietary repository. The model is delivered to UE via out-of-band.

	D2
	non-3gpp entity
	Target-specific pre-compiled
	3gpp network
	A UE/chipset vendor trains a model, compiles it, and stores it in a 3gpp network in a target-specific format. The stored model is delivered to UE via 3gpp signaling in a target-specific format.

	D3
	non-3gpp entity
	MRF
	non-3gpp entity
	A UE/chipset vendor trains a model and stores it in a proprietary repository in MRF. The model MRF is delivered to UE via out-of-band. UE will have to compile the model into an executable.

	D4
	non-3gpp entity
	MRF
	3gpp network
	A UE/chipset vendor trains a model and stores it in a 3gpp network in MRF. The model MRF is delivered to UE via 3gpp signaling. UE will have to compile the model into an executable.

	D5
	3gpp network
	Target-specific pre-compiled
	non-3gpp entity
	Network vendor trains a model, and UE/chipset vendor takes out the trained model and compiles it and stores it in a proprietary repository. The model is delivered to UE via out-of-band.

	D6
	3gpp network
	Target-specific pre-compiled
	3gpp network
	Network vendor trains a model, and UE/chipset vendor takes out the trained model and compiles it and stores it back to the network in a target-specific format. The stored model is delivered to UE via 3gpp signaling in a target-specific format.

	D7
	3gpp network
	MRF
	non-3gpp entity
	Network vendor trains a model, and UE/chipset vendor takes out the trained model and stores in a proprietary repository in MRF. The model MRF is delivered to UE via out-of-band. UE will have to compile the model into an executable.

	D8
	3gpp network
	MRF
	3gpp network
	Network vendor trains a model and stores it in the network in MRF. The model MRF is delivered to UE via 3gpp signaling. UE will have to compile the model into an executable.

Observation 2: The following three aspects create 2x2x2=8 distinct options for model deployment and delivery.
· Where the model is trained: (1) at a network, (2) at a non-3gpp entity
· Model delivery format: (1) MRF, (2) target-specific, pre-compiled format
· Where the model is hosted before delivery: (1) at a network, (2) at a non-3gpp entity

Proposal 4: Take the Figure 1 and Table 1 as reference for ease of RAN1 discussion on model deployment and delivery of UE-side models (and UE-part of two-sided models).

[bookmark: _Ref118366558]Model development and model delivery
From RAN1 #110bis-e, FL recommended the following aspects for further discussion regarding model delivery format.

FL recommendation 3-53d:
FL recommendation: Consider the following aspects for discussion of model delivery format options and their feasibility, pros, and cons. The list is provided as a guideline for companies to bring discussion in the next meeting.
· [bookmark: _Hlk118205413]Interoperability: does a model transferred from NW/UE side to UE/NW side work in a plug-and-pay manner?
· Device capability for compiling and running the model
· Hardware efficiency (device-specific optimization)
· Proprietary information disclosure across vendors
· Testability aspects: including how to involve testing equipment
· Offline co-engineering efforts
· Feasibility for deployment involving multiple vendors
· Flexibility for model update
· Model performance
· If AI/ML model is transferred from one node to other, which entity guarantees performance, e.g., inference latency?
· Impact on other common KPIs (e.g., over-the-air overhead, inference complexity, training complexity, LCM related complexity and storage overhead, [latency])
· Specification effort
Model delivery format options under consideration include, at least
· Vendor-specific format (e.g., device-specific run-time binary image)
· 3GPP-standardized/adopted model representation format (MRF) (e.g.,.h5, .pt, .mlmodel, ONNX, or custom 3GPP-developed MRF)
· Any other aspects
Note: The discussion is about model delivery format.
Note: For the 3GPP-standardized/adopted MRF, if adopted, the choice of format is FFS.
Note: Some aspects may belong to RAN2 discussion, in which case RAN1 can give appropriate guidance based on RAN1 understanding.
FFS: Applicability to collaboration level y and z

As discussed in the previous section and in Table 1, there are 8 different combinations of “model deployment and delivery options” that we need to consider for the full assessment. In this section, we discuss aspects listed in the FL recommendation to assess the pros, cons, and feasibility of each of the “model deployment and delivery options”.

Device-specific optimization and feasibility of plug-and-play model inference
Q) Hardware efficiency (device-specific optimization)

Just like any other modem algorithms, AI/ML models for the sub-use-cases being discussed in the current SI need to be highly optimized for the given device in terms of power consumption, latency, area, and concurrency with the rest of the model algorithms. The optimization is heavily dependent on device implementation, including its hardware, software, various memory types and sizes, CPU, DSP, and ML accelerator capabilities/structures/dimensions. Typically, an ML model structure whose operations are supported by the target device’s ML accelerator runs a lot faster than an alternative ML model whose operations are not fully supported by the ML accelerator, even when the alternative ML model has a lower FLOP count. Therefore, the architectural choice (e.g., convolutional, LSTM, transformer, etc.) for the AI/ML Model very well depends on the device’s ML accelerator capability. More often than not, the device’s hardware, software, memory, and ML accelerator are co-designed in consideration of the AI/ML models that the device needs to support. As an example, a given target device may have an ML accelerator that supports acceleration of certain types (but not all types) of neural network layers (e.g., 2D convolution of certain kernel size and activation size). What types of layers enjoy acceleration, and how much is the acceleration, is device specific. It is often the case that inference latency can be an order of magnitude different depending on whether the layers used in a deep neural network are supported by the ML accelerator or not, and also depending on whether the size of activations fit into the memory/cache size or not. For example, a chipset vendor may decide to add support for LSTM layers in the device’s ML accelerator if the chipset vendor sees enough benefit despite the added device cost and chip area due to adding such support. The chipset vendor will be more willing to add the LSTEM support to the ML accelerator if the device has more than one LSTM-based AI/ML models. Though this is an illustrative example, it is easy to see why the AI/ML model design should be device-specific.

Moreover, after an AI/ML model is developed, it needs to be compiled to be used for inference at target devices. This step may include model quantization and compression for a fixed-point inference. The fixed-point AI/ML model then go through standalone and end-to-end performance simulations for link level KPIs. The designed ML Model then may be mapped to a sequence of operations for execution targets (e.g., hardware, firmware, DSP, ML accelerator) and converted into a run-time format. This process involves various optimization for power, area, and latency, via various levels of parallelism and optimization decisions. The model compilation process is target-device specific. Finally, the run-time images are tested for correctness, and the devices with the run-time image goes through rigorous functional and performance testing to ensure good end-to-end performance and error-free operations in conjunction with the rest of the device implementation, before they can be deployed in the commercial devices. The entire process from data collection, model design, training, compile, and testing is an iterative engineering process, and key decisions are often made in the context of the overall modem design in consideration of optimization across performance, power consumption, chip area, latency, concurrency, memory efficiency, hardware reuse, etc.

The above considerations/observations practically rule out the possibility of device-agnostic one-size-fit-all AI/ML model design. Chipset/UE vendors will want to design their own proprietary models optimized for each of their devices, by tailoring the design to the device’s internal implementations/capabilities of CPU, GPU, DSP, HW accelerator, physical/virtual memory, and cache. Such a device-specific optimized model will be more competitive in terms of power consumption, latency, and area than one-size-fit-all model.

Observation 3:
· UE-side AI/ML models (and UE-part of two-sided AI/ML models) need to be designed and optimized in a device-specific manner. Running a one-size-fit-all AI/ML model in a plug-and-play style manner won’t be acceptable in practice.

Observation 4:
· Cases D1-D4 naturally allow device-specific model development and optimization.
· For Cases D5-D8 to be feasible, AI/ML models should be developed by target device vendors in a device-specific manner, before being brought to the network for training.

Proposal 5: UE-side AI/ML models (and UE-part of two-sided AI/ML models) need to be designed and optimized in a device-specific manner before deployment.

Q) Device capability for compiling and running the model

AI/ML models delivered in a target-specific pre-compiled format won’t need device’s capability for compiling the model.

Running AI/ML models delivered in MRF at the target device requires advanced device capability. As the model is delivered in a standardized format, the target device becomes responsible for converting the standardized model description into an executable form. This includes run-time compiling of the model and going through various target-specific procedures such as quantization, compression, mapping to execution targets (hardware, firmware, neural accelerator, etc.), all inside the device in run-time, which would require advanced capabilities at the target device. It is unlikely for UEs in the near future to have such capability. The compilation process is CPU intensive and requires tools that are better optimized offline.

Observation 5: UEs may not be expected to compile AI/ML models locally.

Proposal 6: A UE-side AI/ML model (or UE-part of a two-sided AI/ML model) is converted into an executable before delivery to the UE.

Observation 6:
· Cases D1, D2, D5, and D6 does not need device’s capability for compiling the model
· Cases D3, D4, D7, and D8 require device’s capability for compiling the model locally. It is unlikely for UEs in the near future to have such capability.

Q) Interoperability: does a model transferred from NW/UE side to UE/NW side work in a plug-and-pay manner?
Q) Model performance: If AI/ML model is transferred from one node to other, which entity guarantees performance, e.g., inference latency?

AI/ML models developed, compiled, and tested by the device vendor and delivered in a target-specific pre-compiled format (Cases D1 and D2) will run in a plug-and-play manner and will have performance guarantee (e.g., inference latency).

AI/ML models developed and tested by the device vendor and delivered in MRF at the target device (Cases D3 and D4) will also run in a plug-and-play manner and will have performance guarantee (e.g., inference latency), because the device vendor can ensure that the AI/ML model is compilable at the target device. This option, however, will require device’s capability of model compilation as discussed above.

On the other hand, for AI/ML models that were not pre-tested within the target device, there is no guarantee that the model is compilable at the target device. Moreover, even if the model is compilable, there will be no performance guarantee (e.g., inference latency), and quite obviously, deploying AI/ML operations without performance guarantee will be dangerous. Therefore, in case AI/ML models are developed by a party other than the target device vendor, the models should be pre-tested by the target device vendor to make sure they will meet the AI/ML use case requirements without any interoperability issues with the existing features of the device.

Observation 7: AI/ML models should be pre-tested by the target device vendor to ensure that they will meet the AI/ML use case requirements without any interoperability issues with the existing features of the device.

Observation 8:
· Models developed in Cases D1-D4 can run in a plug-and-play manner with performance guarantee.
· For Cases D5-D8 to be feasible, AI/ML models should be pre-tested by the target device vendor to make sure that the models run on the target devices without any concern.

Proposal 7: UE-side AI/ML models (and UE-part of two-sided AI/ML models) should be pre-tested by the target device vendor.

Proprietary information disclosure across vendors
Q) Proprietary information disclosure across vendors

Training UE-side AI/ML models (and UE-part of two-sided AI/ML models) in a 3gpp network will inevitably disclose UE-side proprietary model design information. Cases D5, D6, D7, and D8 fall into this category.

Storing trained UE-side AI/ML models (and UE-part of two-sided AI/ML models) in MRF in a 3gpp network may also disclose UE-side proprietary model design information. Cases D4 and D8 fall into this category.

Needless to say, preserving proprietary design is important to promote innovation and vendor differentiation.

From this perspective, Cases D1, D2, and D3 are preferrable over D4-D8.

Proposal 8: Model development, training, storage, and delivery options need to consider feasibility of disclosing proprietary model information to the other side.

Observation 9: Cases D1-D3 do not reveal proprietary model information. Cases D4-D8 reveals proprietary model information. From this perspective, Cases D1-D3 are preferable over D4-D8.

Offline co-engineering efforts
Q) Offline co-engineering efforts

Model development and training framework should be such that changes in one side (e.g., UE side) should not trigger an engineering effort on to the other side (e.g., network side).

Each year, each chipset vendor releases several new modem chips, and many different UE devices (e.g., smartphones) are newly released by UE vendors each year based on different modem chips. Each modem chip may have different HW, SW, memory, and ML accelerator capabilities, and different beam designs, different RF components and circuitry (that affects the channel characteristics), changes in channel estimation algorithm, or any other changes in the receiver signal processing path and/or pre-processing algorithms that will change the input to an AI/ML model. Furthermore, each UE may have different form factors, antenna designs, beam codebooks, etc. All of these differences mean that, for a given sub-use-case, an engineering effort is needed to collect data from the new UE device being developed, revisit any existing AI/ML design, and re-design the AI/ML model if deemed beneficial, and/or re-train an existing AI/ML model. Given this engineering effort needed to develop each UE device, it won’t be practically feasible to ask the other side (e.g., network side) to be involved in the model development and/or training for each UE device type being developed. Just to give the scale of the issue, according to this Wikipedia page, 61 new mobile phones have been released in year 2021 alone.

Take a CSI compression sub-use-case as an example. Suppose that, at some point in the future, CSI encoders and decoders have already been deployed to commercial cell sites and UE devices. Every year, new modem chips and many new UE device types will be released each year, and for each new chipset/UE, the chipset/UE vendor will want to revisit the CSI encoder design to optimize it. Now, it will be practically impossible for all the chipset/UE vendors to gather together with each infra vendor, collect new dataset from the new UE devices under development, and perform centralized Type 1 training inside the network. It will be practically impossible to ask an infra vendor to be involved in such training effort for an encoder training whenever there is a new chip/UE being developed. It will be even more impossible if each chipset/UE vendor must go through such industry-wide collaborative training in the process of developing each new chip/UE. In short, doing such Type 1 training every time for each new chipset/UE is impossible in practice due to its massive co-engineering requirement. Instead, what needs to be ensured is an engineering isolation. That is, the engineering effort needed for a new chip/UE development should be confined to the given chipset/UE vendor. In this regard, Type 3 training of the new encoder against the deployed decoder(s) is more attractive, because the needed engineering is confined to the given chipset/UE vendor.

Proposal 9: Model development and training options should strive for the principle of engineering isolation, i.e., confining engineering effort needed for a new chipset/UE development to the given chipset/UE vendor.

Observation 10:
· In Cases D1-D4, engineering needed for AI/ML model development and training is isolated to the given chipset/UE vendor.
· For Cases D5-D8 to be practically feasible, they should be done in a way to minimize co-engineering between network vendor and chipset/UE vendor for a new chip/UE development.

[bookmark: _Ref118324701]Flexibility for model update
Q) Flexibility for model update

The network-trained models delivered in MRF (Case D8) allows for flexible model update, in the sense that the network may update the model parameters and deliver the updated model to the target devices.

In most conceivable practical scenarios, however, model update needs due to mobility and configuration changes can be addressed by pre-developing multiple models. For example, if different deployment scenarios/configurations/sites merit different models, then multiple models having scenario-/configuration/site-specific parameters can be pre-trained and stored, and appropriate model can be selected for the given inference scenario via model selection/switching, thereby avoiding the need of model update. Also, any slow-time-scale model update need, such as propagation environment changes over time, can be addressed by re-training the model or re-developing a new model offline. In this regard, the benefit of the flexible model update provided by Case D8 is unclear in practice.

In addition, the model update in Case D8 may have test coverage issues and resulting performance issues as discussed in Section 3.5. Therefore, it’s preferable to fully develop/train models offline and go through rigorous testing before deploying the models.

Observation 11:
· Although Case D8 allows for flexible model update, the practical benefit of such model update compared to model switching among pre-trained models is unclear.

[bookmark: _Ref118324703]Testability aspects
Q) Testability aspects: including how to involve testing equipment
Q) Model performance: If AI/ML model is transferred from one node to other, which entity guarantees performance, e.g., inference latency?

Models developed by the target vendor (Cases D1-D4) can go through extensive testing with the rest of the device implementation during the development time. For models trained at the 3gpp network (Cases D5-D8), one can only test model structure but not the full model with parameters. Parameter updates on an existing structure also needs testing, given that the model compiling process involves quantization and other operations that may alter the model performance. It is a lot safer to go through end-to-end device performance testing with fully developed and compiled models during the model development, in order to ensure performance requirements and interoperability with other existing features in the target device.

Observation 12:
· Models developed in Cases D1-D4 can be fully tested.
· Models developed in Cases D5-D8 lacks performance guarantee, unless the models are pre-tested by the device vendor and the model parameters are never updated. Without such testing, models developed in Cases D5-D8 may fail to meet the performance requirements of the AI/ML use case.

Specification impact
Delivery of models in MRF requires standardization of a model description format for interoperability.
If MRF were to be used, to minimize specification impact, 3gpp could adopt an openly available format, such as ONNX, as opposed to defining 3gpp-developed MRF. However, this is outside the scope of RAN1 discussion.

Observation 13: If MRF were to be used, open format such as ONNX is favored over 3gpp-developed MRF. However, the choice of the MRF format is outside the scope of RAN1 discussion.

Summary
From the above discussions, it seems clear that Cases D1 and D2 are the most attractive options for UE-side models (and UE-part of two-sided models).

	Case
	Where the model is trained
	Model delivery format
	Where the model is hosted
	Example

	D1
	non-3gpp entity
	Target-specific pre-compiled
	non-3gpp entity
	A UE/chipset vendor trains a model, compiles it, and stores it in a proprietary repository. The model is delivered to UE via out-of-band.

	D2
	non-3gpp entity
	Target-specific pre-compiled
	3gpp network
	A UE/chipset vendor trains a model, compiles it, and stores it in a 3gpp network in a target-specific format. The stored model is delivered to UE via 3gpp signaling in a target-specific format.

Proposal 10: For the UE-side models (and UE-part of two-sided models), RAN1 should assume that the model (or UE-part) is developed, trained, pre-compiled, and fully tested at non-3gpp entities (such as a UE/chipset vendor’s proprietary server), before being delivered to UE. The model in a target-specific pre-compiled format may be delivered either in out-of-band manner (if stored at non-3gpp entity) or via 3gpp signaling (if stored at 3gpp entity).

As a corollary, it is concluded that:

Proposal 11: For UE-side models, input to the model does not need to be specified.

[bookmark: _Ref118366563]Two-sided model development and training

RAN1 has agreed on the following types of training of two-sided models.
· Type 1: Joint training of the two-sided model at a single side/entity, e.g., UE-sided or Network-sided.
· Type 2: Joint training of the two-sided model at network side and UE side, repectively.
· Type 3: Separate training at network side and UE side, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE side and network side, respectively.
· Note: Joint training means the generation model and reconstruction model should be trained in the same loop for forward propagation and backward propagation. Joint training could be done both at single node or across multiple nodes (e.g., through gradient exchange between nodes).
· Note: Separate training includes sequential training starting with UE side training, or sequential training starting with NW side training [, or parallel training] at UE and NW
· Other collaboration types are not excluded.

In this section, we discuss feasibility of the training types.

In Type 2 and Type 3 training, the CSI encoders are developed and trained by each device vendor. In contract, in Type 1 training done at the network side, the CSI encoders are trained at the network side, and therefore comes with concerns and limitations as was elaborated in the previous section. Based in the observations made in the previous section, we summarize the conditions that the Type 1 training at the network side should meet for it to be considered feasible in practice.

Observation 14: Type 1 training at the network side should meet at least the following conditions to be considered practically feasible.
· To allow for device-specific optimization, CSI encoders should be developed by target device vendors in a device-specific manner.
· The developed CSI encoders should be pre-tested by the target device vendor to make sure that the CSI encoders run on the target devices without any concern.
· Considering that UEs may not be able to compile AI/ML models locally, the trained CSI encoders at the end of the Type 1 training should be compiled offline (as in Cases 5 and 6) in a target-specific manner before being delivered to the UE.
· The trained CSI encoders at the end of the Type 1 training should be pre-tested by the target device vendor.

Even with all the above conditions, Type 1 training at the network forces UE/chipset vendors to reveal their proprietary model design information of their CSI encoders.

Observation 15: Type 1 training at the network side has a critical drawback in that UE/chipset vendors have to reveal proprietary model information.

Furthermore, Type 1 training at the network side is not even applicable to new UE-side chipsets and devices. Suppose that, at some point in the future, CSI encoders and decoders have already been deployed to commercial cell sites and UE devices. Every year, new modem chips and many new UE device types will be released each year, and the chipset/UE vendors will want to revisit the CSI encoder design to optimize it for each chipset/UE. It wouldn’t be advisable to modify the CSI decoders and CSI encoders that are already deployed at the network and UEs, whenever a new modem chipset or UE is being developed. Remember that 61 new mobile phones were released in year 2021 alone! Therefore, for most of the new UEs and modem chipsets, the new encoders will have to be trained based on Type 3 training against deployed CSI decoders, where the scope of the CSI encoder development/training is to account for device-specific changes and optimizations.

As another example, suppose that, at some point in the future, CSI encoders and decoders have already been deployed to some commercial cell sites and UE devices. Now, to further deploy CSI decoders to additional cell sites, the NW-side vendor will want to see if the existing CSI decoder will work on the new cell site, and if needed, develop a new CSI decoder a re-train an existing CSI decoder. If the NW-side vendor wants the new CSI decoder to be immediately operational, the NW-side vendor will want the new CSI decoder to be inter-operable with deployed CSI encoders at UE sides, meaning that it will be Type 3 training against deployed CSI encoders.

At the very initial training in the absence of any prior deployment of CSI encoders/decoders, and for any subsequent industrywide collaboration to upgrade the CSI encoders/decoders, co-engineering amongst NW-side and UE-side vendors will be inevitable. However, even in such a scenario, it will be practically impossible to gather all the UE/chipset vendors and all the UE device types to do Type 1 joint training. The scale of massive collaboration, and its impact to the development schedule for each UE, will make it practically impossible. Practically, the training will have to be based on selected/representative UE device types, and the rest of the UE device types will have to rely on Type 3 training against trained CSI decoders.

Moreover, even if Type 1 training is done, the use of the resulting CSI encoder is NOT even enforceable. That is, each chipset/UE vendor is free to ignore the CSI encoder coming out of the Type 1 training and instead train its own proprietary CSI encoder against the trained CSI decoder. Then, this is not Type 1 traying anymore but is essentially a Type 3 sequential training.

All these considerations means that Type1 training alone is infeasible/inapplicable.

Observation 16: Type 1 training alone is infeasible/inapplicable, and the use of the resulting CSI encoder is not even enforceable.

An overall framework for training two-sided model training
In the above, we discussed that Type 1 training alone is infeasible/inapplicable for various reasons. However, the overall framework for training two-sided models need not be restricted to one of the training types. The framework may need to accommodate various aspects such as new vendors, new device types, new cell-sites, and the need for backward compatibility of the model to already deployed models on the other side. Taking these into consideration, and based on considering all the aspects, pros/cons, limitations, and concerns discussed in Section 3 and Section 4, we have the following proposal for the two-sided model development/training framework:

Proposal 12: Two-sided model development/training framework
· For development/training of encoders/decoders that do not need backward compatibility to existing encoder/decoder deployment:
· Step 1: Training of “decoders + nominal encoders” based on dataset collected from UEs/networks.
· The nominal encoders are only for the purpose of decoder training, and their use at the UE-side is not mandated.
· As the encoders are only nominal, input used in the training process is only a nominal input. The actual input to the CSI encoders may be different and of proprietary choice.
· The encoder/decoder training in Step 1 may be performed via Type 1, Type 2, or Type 3 manner.
· Step 2: If needed, UE-side vendor trains its own proprietary encoders based on the trained decoders from Step 1.
· Infra vendor should make the trained decoders available (via either run-time images or an API for training) for the encoder training.
· For development/training of encoders to be interoperable with deployed decoders (e.g., encoders for new UEs or updating encoders for existing UEs):
· UE-side vendor trains new encoders based on the deployed decoders.
· Infra vendor should make the deployed decoders available (via either a run-time image or an API for training) for the encoder training.
· For development/training of decoders to be interoperable with deployed encoders (e.g., decoders for new cell sites or updating decoders for existing cell sites):
· Network-side vendor trains new decoders based on the deployed encoders.
· FFS: Need for encoder availability for decoder training

We want to emphasize that “Step 1” is what RAN1 has discussed so far, except that the encoder is only nominal. “Step 1” itself may be done via Type 1, Type 2, or Type 3 training. “Step 2” is an additional optional step that UE-side vendor can take. The encoder training in “Step 2” with a trained decoder from “Step 1” can be viewed as a Type 3 training. So, the entire steps 1-2 can be viewed as a hybrid of Type 1/2/3 followed by Type 3.

As a corollary, it is concluded that:

Proposal 13: For the UE part of the two-sided models, input to the UE part does not need to be specified. RAN1 can still have specification discussion on the nominal input for the nominal encoder training.

ML model Life Cycle Management
It is observed that various LCM aspects can be categorized to two groups:
(1) aspects that are related to the AI/ML model (i.e., common across all UEs sharing the AI/ML model)
(2) aspects that are specific to each UE
From the general framework study point of view, it will be good to categorize LCM aspects into these two groups.

Proposal 14: Consider the following two LCM granularities for AI/ML framework development.
· Model-level LCM (common for a group of UEs): data collection for training, model development, training, compiling, registration, monitoring (at a model level)
· UE-level LCM: model delivery, inference, activation, deactivation, switching, selection, fallback, monitoring (at a UE level)

Data collection
[bookmark: _Ref118376580]Data collection for model development and training
One of the decisions that should be made during model development is how many models to develop. That is, will one global model work across scenarios/configurations/sites? Do we need to develop scenario-/configuration-/site-specific models? How do we define scenarios and configurations? How do we group sites? How many models do we need to develop and in what scenarios/configurations/sites is each model applicable? One wouldn’t know the answers to those questions until one looks at the large-scale data collection and go through data analysis and experiment with model training. Toward this, RAN1 made the following agreement in RAN1 #110bis-e:
Agreement
Study potential specification impact needed to enable the development of a set of specific models, e.g., scenario-/configuration-specific and site-specific models, as compared to unified models.
Note: User data privacy needs to be preserved. The provision of assistance information may need to consider feasibility of disclosing proprietary information to the other side.

It is envisioned that various meta information associated with data will be helpful in aiding such model development decisions. For example, for CSI compression use case, the main data is CSI-RS that originates from the UE side. It will be beneficial for the CSI-RS data to be properly tagged with various meta information. For instance, different device types across UE/chipset vendors and within UE/chipset vendors may require different AI/ML designs, and therefore CSI-RS data could be tagged with vendor ID and device type information. Similarly, network-side information, such as cell IDs, number of antennas and antenna ports, antenna and beam patterns, deployment characteristic, antenna height, etc., will be very useful in model development decisions. It will be beneficial to collect the various meta information when collecting data for training. It is noted that some of the data and associated meta information originate from the network side and some others originate from the UE side. Overall, the data that should be collected into a data collection entity may look like:
{ CSI-RS, device type, cell ID, antenna and beam info, time stamp, assistance information, other auxiliary information, …}
based on which engineering decisions can be made during model development regarding
· Whether to develop one generalizable model across deployments or specific models for specific deployments
· Whether to develop one generalizable model across antenna and beam patterns or specific models for specific antenna and beam patterns
· Whether to develop one generalizable model across device types or specific models for specific device types
It is noted that it would be hard to make such decisions upfront without looking at the large-scale field data and go through data engineering, model development, and offline training. Therefore, sufficient variety of meta information should be provisioned during data collection. Once model development decisions are made and it is decided that multiple modes are needed, the meta information can be used to partition collected data into multiple datasets, one for each model.

Proposal 15: During data collection, data should be tagged with sufficient meta information in order to allow exploring various model development decisions, such as developing a set of specific models. Meta information may come from both NW side and UE side.

Proposal 16: For UE-side models and two-sided models, appropriate meta information (such as zone ID, scenario ID, and configuration ID) should be provisioned to the UE side to enable data tagging and model development/training.

Data collection for model monitoring, switching, and selection
In RAN1 #110bis-e, it was agreed:
Conclusion
Data collection may be performed for different purposes in LCM, e.g., model training, model inference, model monitoring, model selection, model update, etc. each may be done with different requirements and potential specification impact.
FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)

Agreement
Study performance monitoring approaches, considering the following model monitoring KPIs as general guidance
· Accuracy and relevance (i.e., how well does the given monitoring metric/methods reflect the model and system performance)
· Overhead (e.g., signaling overhead associated with model monitoring)
· Complexity (e.g., computation and memory cost for model monitoring)
· Latency (i.e., timeliness of monitoring result, from model failure to action, given the purpose of model monitoring)
· FFS: Power consumption
· Other KPIs are not precluded.
Note: Relevant KPIs may vary across different model monitoring approaches.
FFS: Discussion of KPIs for other LCM procedures

Data collection for real-time operations such as real-time model monitoring, switching, and selection may incur significant signaling overhead. On the other hand, infrequent data collection to reduce signaling overhead incurs latency for real-time model monitoring, switching, and selection. Therefore, methods without data collection, if feasible, should be favored.

Proposal 17: Data collection need for real-time model monitoring, switching, and selection should be evaluated and justified first by each use case, taking OTA overhead into account. Methods without data collection should be favored.

Model registration and ID-based LCM
In RAN1 #110bis-e, it was agreed:
Agreement
Study LCM procedure on the basis that an AI/ML model has a model ID with associated information and/or model functionality at least for some AI/ML operations when network needs to be aware of UE AI/ML models
FFS: Detailed discussion of model ID with associated information and/or model functionality.
FFS: usage of model ID with associated information and/or model functionality based LCM procedure
FFS: whether support of model ID
FFS: the detailed applicable AI/ML operations

In addition, RAN2 agreed the following:
Agreement
R2 assumes that a model is identified by a model ID. Its usage is FFS.

It is observed that model-functionality-based LCM procedure can also be achieved based on model ID, by trivially assigning a single model ID to the functionality. To simplify the discussion in RAN1 and RAN2, and also taking RAN2 agreement into account, we propose to unify the LCM procedure into the one based on model ID.

Proposal 18: Study LCM procedure on the basis that an AI/ML model has a model ID with associated information. Model functionality based LCM can be considered as a special case where only one model ID is assigned to the functionality.

In RAN1 #110bis-e, the FL made the following recommendations for further study of model registration.

FL recommendation 3-26c:
FL recommendation: FL encourages companies to bring their views on the following aspects for discussion of model registration in the next RAN1 meeting.
· What is the mechanism by which the network becomes aware of the existence of a new AI/ML model?
· What is the mechanism by which the UE becomes aware of the existence of a new AI/ML model?
· What is the mechanism, when required, by which the network and the UE refer to the same AI/ML model unambiguously during AI/ML collaboration and LCM?
· What is the mechanism by which the network knows whether the UE has a given AI/ML model and/or if the UE is capable of running inference with a given AI/ML model or functionality?
· What is the model registration for and what additional role may the model registration play in LCM, what is the relationship with UE capability report?
· In what scenarios may the model registration be needed, and what will be scenario specific considerations? Below are some guiding examples of scenarios to consider for discussion:
· Network-side models, UE-side models, two-sided models
· Collaboration levels y, level z
· Proprietary model format, standardized model description format
· Other scenarios are not precluded
· What information regarding the description of the model may need to be provided during model registration? Below are some guiding examples for discussion:
· Model functionality
· Vendor identification
· Model applicability scenarios, configurations, and/or regions
· Information on pairing between UE-side part and network-side part of two-sided models
· Information on model input
· Information on model output
· Information on assistance information
· Other information regarding model description that can help LCM
· Other aspects are not precluded.
· Specification impact of the above discussions, if any
· Considering the above, what should be the terminology definition of model registration?
Note: Some of the above discussions may have no specification impact. This proposal is intended for companies to bring discussion so that discussion can progress in the next meeting.

Q) What is the mechanism by which the network becomes aware of the existence of a new AI/ML model?

Model registration is a process of informing the existence of an AI/ML model to the network with an identification, along with sufficient information of the AI/ML model for the network to enable LCM. It is important to know that model registration may not involve UE at all. That is, although a model may be developed intending to be used at certain target UEs, the registration process itself is an offline process of registering a model existence to the network and therefore does not involve any particular UE identity.

Q) What is the mechanism by which the UE becomes aware of the existence of a new AI/ML model?

As discussed earlier, UE-side models (and UE-part of two-sided models) will have to be developed, trained, compiled, and tested by the UE/chipset vendor. After the model is fully developed, trained, compiled, and tested, the model can be registered to the network. At the same time, the UE/chipset vendor can apply any necessary procedures (such as FOTA) to their UEs where the model is intended to be used and has been tested.

Q) What is the mechanism, when required, by which the network and the UE refer to the same AI/ML model unambiguously during AI/ML collaboration and LCM?
Q) What is the model registration for and what additional role may the model registration play in LCM, what is the relationship with UE capability report?

Note that once a model is registered with a model ID, and target UEs are correspondingly updated, the identity can be used for various purposes. During the UE capability, UE can indicate the IDs of the supported model to the network, the network can configure UEs using the model IDs, UE can download the model using the model ID information, the network can initiate switching, activation, deactivation, and fallback using the model IDs, etc.

Proposal 19: Model ID is used at least during the following procedures
· UE capabilities; for uniquely identifying supported models at the UE per feature
· Configuration; network configures a model or a set of models per feature using model IDs
· Model switching, activation, and deactivation during inference operation using model ID

Model generalization, switching, and update
In RAN1 #110bis-e, the following agreement was made as potential approaches to achieve good performance across different scenarios/configurations/sites.
Agreement
Study various approaches for achieving good performance across different scenarios/configurations/sites, including
· Model generalization, i.e., using one model that is generalizable to different scenarios/configurations/sites
· Model switching, i.e., switching among a group of models where each model is for a particular scenario/configuration/site
· [Models in a group of models may have varying model structures, share a common model structure, or partially share a common sub-structure. Models in a group of models may have different input/output format and/or different pre-/post-processing.]
· Model update, i.e., using one model whose parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. Fine-tuning is one example.

Ideally, it will be the best if one model can generalize across different scenarios/configurations/sites. However, this may not always be possible for certain use cases, and even if generalization can be achievable, it may come with higher model complexity.

An alternative approach to achieving good performance across different scenarios/configurations/sites is to rely on model switching among a group of models where each model is developed/trained for a particular scenario/configuration/site.

Yet another alternative to achieving good performance across different scenarios/configurations/sites is via model update, i.e., using one model whose parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. However, such model update shares the same drawback as what the MRF-based model delivery suffers from:
· UEs may not be expected to compile the updated AI/ML model received from the network.
· UEs may not be expected to be capable of performing online training of AI/ML models locally.
· Updated AI/ML models after model update lack test coverage and performance guarantee.

As was already discussed in Section 3.4, in most conceivable practical scenarios, model update needs due to mobility and configuration changes can be addressed by pre-developing multiple models. For example, if different deployment scenarios/configurations/sites merit different models, then multiple models having scenario-/configuration/site-specific parameters can be pre-trained and stored, and appropriate model can be selected for the given inference scenario via model selection/switching, thereby avoiding the need of model update.

Moreover, model training is generally an expensive procedure with heavy compute and power consumption. Also, given that the same model may be trained once and used for inference across millions of devices, model training should be done at the model level, not at the per-UE level. While the exact cost analysis is not provided here, it is well envisioned that the cost of model switching (i.e., over-the-air model download) is far lower than that of model training for model update.

Therefore, for changes induced by mobility and configuration changes, a more preferred route to model update would be to avoid the need of training by pre-developing multiple models via offline training and relying on model switching.

The use of model update can be reserved for slow-timescale and infrequent changes over time, such as propagation environment changes over time or new implementation considerations. Such model update can be done via offline training.

Observation 17: For changes induced by mobility and configuration changes, model switching among pre-developed models is preferrable to model update as an approach for achieving good performance across different scenarios/configurations/sites.

Observation 18: The use of model update can be reserved for slow-timescale and infrequent changes over time, such as propagation environment changes over time or new implementation considerations. Such model update can be done via offline training.

Proposal 20: Model update should happen offline such that the updated model remains optimized for the target device and model performance for the AI/ML use case can be ensured through rigorous testing.

In RAN1 #110bis-e, the following agreement was made regarding supporting multiple AI/ML models for the same functionality:
Agreement
Study the specification impact to support multiple AI models for the same functionality, at least including the following aspects:
-	Procedure and assistance signaling for the AI model switching and/or selection
FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)

In Section 5.1.1, we discussed the need of collecting various meta information during data collection. Taking CSI compression use case as a concrete example, the various meta information will allow the model developer to categorize the collected CSI-RS observations into N different groups and help the model developer determine whether one model or a family of K<=N models may have to be developed. We refer to the offline decision process of determining how many (K) models to develop and determining the applicable scenario, configuration, or coverage area of each model as scenario discovery.

If the model developer decides to develop K>1 different models for the same functionality, then at inference time, the right model would have to be chosen during inference time that matches with the meta information at inference. During the model registration, the each registered model {1,...,K} could be registered along with model description indicating applicable meta information, so that the NW may know which of the K models to activate at the gNB and UE for the given meta information during inference. We refer to this process as scenario association.

Proposal 21: Define the following terminologies
· Scenario discovery: offline decision process of determining how many models to develop for the given functionality and determining the applicable scenario, configuration, and/or coverage area of each model
· Scenario association: process of determining which model among a group of models for the given functionality is applicable for inference

Proposal 22: Models may be registered with applicable meta information, so that the right model could be chosen for inference that matches with the meta information applicable at the inference time.

Conclusions
In this paper, we discussed general aspects for AI/ML framework for Rel-18 SI and made the following observations and proposals.
Proposal 1: RAN1 should not be concerned on how and to which entity the data is collected, but rather focus on what data should be collected, where the data originate (i.e., source), and where the data should be finally made available for model development and training (i.e., destination).

Proposal 2: Regardless of how and where training data has been collected, the training data should be made available to the vendor(s) responsible for model development.

Observation 1: Model development is best to be done by the vendor who will implement the device where the AI/ML model inference runs.

Proposal 3: Regardless of how and where training data has been collected, the training data should be made available to vendor(s) implementing the device(s) where the AI/ML model inference runs.

Observation 2: The following three aspects create 2x2x2=8 distinct options for model deployment and delivery.
· Where the model is trained: (1) at a network, (2) at a non-3gpp entity
· Model delivery format: (1) MRF, (2) target-specific, pre-compiled format
· Where the model is hosted before delivery: (1) at a network, (2) at a non-3gpp entity

Proposal 4: Take the Figure 1 and Table 1 as reference for ease of RAN1 discussion on model deployment and delivery of UE-side models (and UE-part of two-sided models).

Observation 3:
· UE-side AI/ML models (and UE-part of two-sided AI/ML models) need to be designed and optimized in a device-specific manner. Running a one-size-fit-all AI/ML model in a plug-and-play style manner won’t be acceptable in practice.

Observation 4:
· Cases D1-D4 naturally allow device-specific model development and optimization.
· For Cases D5-D8 to be feasible, AI/ML models should be developed by target device vendors in a device-specific manner, before being brought to the network for training.

Proposal 5: UE-side AI/ML models (and UE-part of two-sided AI/ML models) need to be designed and optimized in a device-specific manner before deployment.

Observation 5: UEs may not be expected to compile AI/ML models locally.

Proposal 6: A UE-side AI/ML model (or UE-part of a two-sided AI/ML model) is converted into an executable before delivery to the UE.

Observation 6:
· Cases D1, D2, D5, and D6 does not need device’s capability for compiling the model
· Cases D3, D4, D7, and D8 require device’s capability for compiling the model locally. It is unlikely for UEs in the near future to have such capability.

Observation 7: AI/ML models should be pre-tested by the target device vendor to ensure that they will meet the AI/ML use case requirements without any interoperability issues with the existing features of the device.

Observation 8:
· Models developed in Cases D1-D4 can run in a plug-and-play manner with performance guarantee.
· For Cases D5-D8 to be feasible, AI/ML models should be pre-tested by the target device vendor to make sure that the models run on the target devices without any concern.

Proposal 7: UE-side AI/ML models (and UE-part of two-sided AI/ML models) should be pre-tested by the target device vendor.

Proposal 8: Model development, training, storage, and delivery options need to consider feasibility of disclosing proprietary model information to the other side.

Observation 9: Cases D1-D3 do not reveal proprietary model information. Cases D4-D8 reveals proprietary model information. From this perspective, Cases D1-D3 are preferable over D4-D8.

Proposal 9: Model development and training options should strive for the principle of engineering isolation, i.e., confining engineering effort needed for a new chipset/UE development to the given chipset/UE vendor.

Observation 10:
· In Cases D1-D4, engineering needed for AI/ML model development and training is isolated to the given chipset/UE vendor.
· For Cases D5-D8 to be practically feasible, they should be done in a way to minimize co-engineering between network vendor and chipset/UE vendor for a new chip/UE development.

Observation 11:
· Although Case D8 allows for flexible model update, the practical benefit of such model update compared to model switching among pre-trained models is unclear.

Observation 12:
· Models developed in Cases D1-D4 can be fully tested.
· Models developed in Cases D5-D8 lacks performance guarantee, unless the models are pre-tested by the device vendor and the model parameters are never updated. Without such testing, models developed in Cases D5-D8 may fail to meet the performance requirements of the AI/ML use case.

Observation 13: If MRF were to be used, open format such as ONNX is favored over 3gpp-developed MRF. However, the choice of the MRF format is outside the scope of RAN1 discussion.

Proposal 10: For the UE-side models (and UE-part of two-sided models), RAN1 should assume that the model (or UE-part) is developed, trained, pre-compiled, and fully tested at non-3gpp entities (such as a UE/chipset vendor’s proprietary server), before being delivered to UE. The model in a target-specific pre-compiled format may be delivered either in out-of-band manner (if stored at non-3gpp entity) or via 3gpp signaling (if stored at 3gpp entity).

Proposal 11: For UE-side models, input to the model does not need to be specified.

Observation 14: Type 1 training at the network side should meet at least the following conditions to be considered practically feasible.
· To allow for device-specific optimization, CSI encoders should be developed by target device vendors in a device-specific manner.
· The developed CSI encoders should be pre-tested by the target device vendor to make sure that the CSI encoders run on the target devices without any concern.
· Considering that UEs may not be able to compile AI/ML models locally, the trained CSI encoders at the end of the Type 1 training should be compiled offline (as in Cases 5 and 6) in a target-specific manner before being delivered to the UE.
· The trained CSI encoders at the end of the Type 1 training should be pre-tested by the target device vendor.

Observation 15: Type 1 training at the network side has a critical drawback in that UE/chipset vendors have to reveal proprietary model information.

Observation 16: Type 1 training alone is infeasible/inapplicable, and the use of the resulting CSI encoder is not even enforceable.

Proposal 12: Two-sided model development/training framework
· For development/training of encoders/decoders that do not need backward compatibility to existing encoder/decoder deployment:
· Step 1: Training of “decoders + nominal encoders” based on dataset collected from UEs/networks.
· The nominal encoders are only for the purpose of decoder training, and their use at the UE-side is not mandated.
· As the encoders are only nominal, input used in the training process is only a nominal input. The actual input to the CSI encoders may be different and of proprietary choice.
· The encoder/decoder training in Step 1 may be performed via Type 1, Type 2, or Type 3 manner.
· Step 2: If needed, UE-side vendor trains its own proprietary encoders based on the trained decoders from Step 1.
· Infra vendor should make the trained decoders available (via either run-time images or an API for training) for the encoder training.
· For development/training of encoders to be interoperable with deployed decoders (e.g., encoders for new UEs or updating encoders for existing UEs):
· UE-side vendor trains new encoders based on the deployed decoders.
· Infra vendor should make the deployed decoders available (via either a run-time image or an API for training) for the encoder training.
· For development/training of decoders to be interoperable with deployed encoders (e.g., decoders for new cell sites or updating decoders for existing cell sites):
· Network-side vendor trains new decoders based on the deployed encoders.
· FFS: Need for encoder availability for decoder training

Proposal 13: For the UE part of the two-sided models, input to the UE part does not need to be specified. RAN1 can still have specification discussion on the nominal input for the nominal encoder training.

Proposal 14: Consider the following two LCM granularities for AI/ML framework development.
· Model-level LCM (common for a group of UEs): data collection for training, model development, training, compiling, registration, monitoring (at a model level)
· UE-level LCM: model delivery, inference, activation, deactivation, switching, selection, fallback, monitoring (at a UE level)

Proposal 15: During data collection, data should be tagged with sufficient meta information in order to allow exploring various model development decisions, such as developing a set of specific models. Meta information may come from both NW side and UE side.
Proposal 16: For UE-side models and two-sided models, appropriate meta information (such as zone ID, scenario ID, and configuration ID) should be provisioned to the UE side to enable data tagging and model development/training.

Proposal 17: Data collection need for real-time model monitoring, switching, and selection should be evaluated and justified first by each use case, taking OTA overhead into account. Methods without data collection should be favored.

Proposal 18: Study LCM procedure on the basis that an AI/ML model has a model ID with associated information. Model functionality based LCM can be considered as a special case where only one model ID is assigned to the functionality.

Proposal 19: Model ID is used at least during the following procedures
· UE capabilities; for uniquely identifying supported models at the UE per feature
· Configuration; network configures a model or a set of models per feature using model IDs
· Model switching, activation, and deactivation during inference operation using model ID

Observation 17: For changes induced by mobility and configuration changes, model switching among pre-developed models is preferrable to model update as an approach for achieving good performance across different scenarios/configurations/sites.

Observation 18: The use of model update can be reserved for slow-timescale and infrequent changes over time, such as propagation environment changes over time or new implementation considerations. Such model update can be done via offline training.

Proposal 20: Model update should happen offline such that the updated model remains optimized for the target device and model performance for the AI/ML use case can be ensured through rigorous testing.

Proposal 21: Define the following terminologies
· Scenario discovery: offline decision process of determining how many models to develop for the given functionality and determining the applicable scenario, configuration, and/or coverage area of each model
· Scenario association: process of determining which model among a group of models for the given functionality is applicable for inference

Proposal 22: Models may be registered with applicable meta information, so that the right model could be chosen for inference that matches with the meta information applicable at the inference time.

References
[1] [bookmark: _Ref101451885]RP-213599, “New SI: Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface”, 3GPP RAN Plenary
[2] [bookmark: _Ref101453495]3GPP TR 37.817, Technical Specification Group RAN; Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Study on enhancement for Data Collection for NR and EN-DC (Release 17)
[3] R1-2205023, “General Aspects of AI/ML Framework”, Qualcomm, 3GPP TSG RAN WG1 #109-e
[4] R1-2207223, “General Aspects of AI/ML Framework”, Qualcomm, 3GPP TSG RAN WG1 Meeting #110
[5] R1-2209975, “General Aspects of AI/ML Framework”, Qualcomm, 3GPP TSG RAN WG1 Meeting #110-Bis-e
[6] R1-2210708, Summary#1 of General Aspects of AI/ML Framework, Moderator (Qualcomm), 3GPP TSG RAN WG1 Meeting #110-Bis-e

2/9
image1.png
Training @ NW Training @ non-3gpp entity

Trained modelin MRF
Trained modelin

Compile @ non-3gpp entity

Model MRF Model stored @ NW Model stored @ -3gpp entity Model MRF stored
stored @ NW in target-specific format in target-specific format @ non-3gpp entity

3 Model delivery
outside 3gpp

Model delivery
outside 3gpp

target-specific
formatfrom NW

Modeldelivery in
MRF from NW
Inference @

Compile @ UE UE

Compile @ UE

