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Introduction
In 3GPP RAN1 #110bis-e, some agreements on the evaluation on AI/ML based CSI feedback enhancement have been made as follows [1]. In this contribution, we present our views on various aspects, including evaluation methodology, KPI and some preliminary results on AI/ML for CSI feedback enhancement based on [1][2].
Conclusion
For the evaluation of the AI/ML based CSI feedback enhancement, if SLS is adopted, the ‘Traffic model’ in the baseline of EVM is captured as follows:
Traffic model	
At least, FTP model 1 with packet size 0.5 Mbytes is assumed
Other options are not precluded.

Agreement
In the evaluation of the AI/ML based CSI feedback enhancement, for ‘Channel estimation’, if realistic DL channel estimation is considered, regarding how to calculate the intermediate KPI of CSI accuracy, 
· Use the target CSI from ideal channel and use output CSI from the realistic channel estimation
· The target CSI from ideal channel equally applies to AI/ML based CSI feedback enhancement, and the baseline codebook
Note: there is no restriction on model training
Agreement
In the evaluation of the AI/ML based CSI feedback enhancement, for “Baseline for performance evaluation” in the EVM table, Type I Codebook (if it outperforms Type II Codebook) can be optionally considered for comparing AI/ML schemes up to companies
· Note: Type II Codebook is baseline as agreed
Conclusion
If ideal DL channel estimation is considered (which is optional) for the evaluations of CSI feedback enhancement, there is no consensus on how to use the ideal channel estimation for dataset construction, or performance evaluation/inference.
· It is up to companies to report whether/how ideal channel is used in the dataset construction as well as performance evaluation/inference.
Conclusion 
For the evaluation of Type 2 (Joint training of the two-sided model at network side and UE side, respectively), following procedure is considered as an example:
· For each FP/BP loop,
· Step 1: UE side generates the FP results (i.e., CSI feedback) based on the data sample(s), and sends the FP results to NW side
· Step 2: NW side reconstructs the CSI based on FP results, trains the CSI reconstruction part, and generates the BP information (e.g., gradients), which are then sent to UE side
· Step 3: UE side trains the CSI generation part based on the BP information from NW side
· Note: the dataset between UE side and NW side is aligned.
· Other Type 2 training approaches are not precluded and reported by companies

Conclusion
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following procedure is considered for the sequential training starting with NW side training (NW-first training):
· Step1: NW side trains the NW side CSI generation part (which is not used for inference) and the NW side CSI reconstruction part jointly
· Step2: After NW side training is finished, NW side shares UE side with a set of information (e.g., dataset) that is used by the UE side to be able to train the UE side CSI generation part
· Step3: UE side trains the UE side CSI generation part based on the received set of information
· Other Type 3 NW-first training approaches are not precluded and reported by companies
Conclusion
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following procedure is considered for the sequential training starting with UE side training (UE-first training):
· Step1: UE side trains the UE side CSI generation part and the UE side CSI reconstruction part (which is not used for inference) jointly
· Step2: After UE side training is finished, UE side shares NW side with a set of information (e.g., dataset) that is used by the NW side to be able to train the CSI reconstruction part
· Step3: NW side trains the NW side CSI reconstruction part based on the received set of information
· Other Type 3 UE-first training approaches are not precluded and reported by companies
Working assumption 
In the evaluation of the AI/ML based CSI feedback enhancement, if SGCS is adopted as the intermediate KPI for the rank>1 situation, companies to ensure the correct calculation of SGCS and to avoid disorder issue of the output eigenvectors
· Note: Eventual KPI can still be used to compare the performance
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if the SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’ for rank>1 cases, at least Method 3 is adopted, FFS whether additionally adopt a down-selected metric between Method 1 and Method 2.
· Method 1: Average over all layers
· Method 2: Weighted average over all layers 

where  is the jth eigenvector of the target CSI at resource unit i and K is the rank.  is the  jth output vector of the output CSI of resource unit i. N is the total number of resource units.   denotes the average operation over multiple samples.  is an eigenvalue of the channel covariance matrix corresponding to .
· Method 3: SGCS is separately calculated for each layer (e.g., for K layers, K SGCS values are derived respectively, and comparison is performed per layer)
Agreement
In CSI compression using two-sided model use case, evaluate and study quantization of CSI feedback, including at least the following aspects: 
· Quantization non-aware training 
· Quantization-aware training
· Quantization methods including uniform vs non-uniform quantization, scalar versus vector quantization, and associated parameters, e.g., quantization resolution, etc.
· How to use the quantization methods



Agreement
For evaluating the performance impact of ground-truth quantization in the CSI compression, study high resolution quantization methods for ground-truth CSI, e.g., including at least the following options
· High resolution scalar quantization, e.g., Float32, Float16, etc.
· FFS select one of the scalar quantization resolutions as baseline
· High resolution codebook quantization, e.g., R16 Type II-like method with new parameters
· FFS new parameters
· Other quantization methods are not precluded
Agreement
For the evaluation of the potential performance benefits of model fine-tuning of CSI feedback enhancement which is optionally considered by companies, the following case is taken 
· The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Company to report the fine-tuning dataset setting (e.g., size of dataset) and the improvement of performance
Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following cases are considered for evaluations:
· Case 1 (baseline): Aligned AI/ML model structure between NW side and UE side
· Case 2: Not aligned AI/ML model structures between NW side and UE side
· Companies to report the AI/ML structures for the UE part model and the NW part model, e.g., different backbone (e.g., CNN, Transformer, etc.), or same backbone but different structure (e.g., number of layers)
· FFS different sizes of datasets between NW side and UE side
· FFS aligned/different quantization/dequantization methods between NW side and UE side
· FFS: whether/how to evaluate the case where the input/output types and/or pre/post-processing are not aligned between NW part model and UE part model
Agreement
For the evaluation of Type 2 (Joint training of the two-sided model at network side and UE side, respectively), the following evaluation cases are considered for multi-vendors,
· Case 1 (baseline): Type 2 training between one NW part model to one UE part model
· Case 2: Type 2 training between one NW part model and M>1 separate UE part models
· Companies to report the AI/ML structures for the UE part model and the NW part model
· FFS Companies to report the dataset used at UE part models, e.g., whether the same or different dataset(s) are used among M UE part models
· Case 3: Type 2 training between one UE part model and N>1 separate NW part models
· Companies to report the AI/ML structures for the UE part model and the NW part model
· FFS Companies to report the dataset used at NW part models, e.g., whether the same or different dataset(s) are used among N NW part models
· FFS N NW part models to M UE part models
· FFS different quantization/dequantization methods between NW and UE
· FFS: whether/how to evaluate the case where the input/output types and/or pre/post-processing are not aligned between NW part model and UE part model




· FFS: companies to report the training order of UE-NW pair(s) in case of M UE part models and/or N NW part models
· FFS: whether/how to report overhead
Agreement
In the evaluation of the AI/ML based CSI feedback enhancement, for the calculation of intermediate KPI, the following is considered as the granularity of the frequency unit for averaging operation 
· For 15kHz SCS: For 10MHz bandwidth: 4 RBs; for 20MHz bandwidth: 8 RBs
· For 30kHz SCS: For 10MHz bandwidth: 2 RBs; for 20MHz bandwidth: 4 RBs
· Note: Other frequency unit granularity is not precluded and reported by companies



Discussion on CSI compression
Intermediate KPI
As discussed in RAN1 #110bis-e, most companies prefer use SGCS as the intermediate KPI. Besides GCS/SGCS, multiple kinds of other intermediate KPIs are also proposed in RAN1 #110bit-e for discussion. However, from our opinion, the intermediate KPI is only utilized for AI/ML model performance calibration, instead of for drawing the conclusion. Therefore, too diverse intermediate KPIs are not helpful for calibration between companies. We suggest using a unified intermediate KPI should be agreed for performance calibration between companies. 
For rank > 1 condition, if SGCS is only an intermediate KPI to evaluate the CSI recovery accuracy, at least Method 3 with ‘separately calculated for each layer’ is adopted. Then both of the average over all layers (Method 1) and weighted average over all layers (Method 2) can be directly calculated based on the results from Method 3. From our understanding, the intermediate KPI is only used for AI/ML model performance calibration, hence a simple way with Method 3 is enough for this purpose, and whether Method 1 or Method 2 is reported is up to companies. 
Proposal 1: For intermediate KPI, use SGCS as the evaluation metric for calibration
· For rank>1, Method 3 is selected for calibration, whether Method 1 or Method 2 is used is up to companies
· Other intermediate KPIs are not suggested
Quantization issue
As agreed in RAN 1#110bis-e, the quantization issue of CSI feedback for CSI compression sub use case should be studied. From our understanding, a basic principle is the quantization/dequantization method should be aligned between UE and NW. Specifically, at least two factors need to be addressed. One is whether the quantitative function is involved in the model training process, e.g. 
· Case 1: no quantization/dequantization module involved in the CSI model training process.
· Case 2: quantization/dequantization module is involved in the CSI model training process, but the quantization/dequantization module itself does not need training and updating.
· Case 3: quantization/dequantization module is involved in the CSI model training process, and the quantization/dequantization module itself also needs training and updating during the CSI model training process.
From our understanding, both Case 1 and Case 2 are quantization non-aware training, Case 3 is quantization aware training. Case 1 is a basic solution in which the quantization/dequantization module can be added after the training procedure. For Case 2, e.g. a fixed scalar quantization/dequantization scheme is utilized, the advantage is that the impact of quantization has been considered when training a CSI encoder and a corresponding decoder, so that better CSI compression and recovery performance can be expected from the training results. For Case 3, e.g. a trainable vector quantization scheme is embedded into the CSI model, it can make the quantization scheme better match the CSI data to be quantified and the CSI model to be used.
The other is the impact of different training types on the use of quantization schemes. For training type 1, it is quantization non-aware and the alignment of quantization modules can be solved through implementation. For training type 2 and type 3, they are quantization aware training, especially when quantization modules are involved in the CSI model training process, it may be necessary to specify the quantization methods to ensure the encoder and encoder to be well trained and could work together. 
Proposal 2: Regarding the quantization/dequantization in CSI compression using two-sided model use case, the following cases can be evaluated
· Case 1: no quantization/dequantization module involved in the CSI model training process.
· Case 2: quantization/dequantization module is involved in the CSI model training process, but the quantization/dequantization module itself does not need training and updating.
· Case 3: quantization/dequantization module is involved in the CSI model training process, and the quantization/dequantization module itself also needs training and updating during the CSI model training process.
Proposal 3: For training collaborative Type2 and Type3, whether/how to align the quantization and dequantization method between UE and NW
Generalization
As for generalization issue, the input/output CSI dimension keeps the same with different configuration(s)/scenario(s) for both training and inference stages. Therefore, the AI/ML model trained on one dataset with Scenario#A/Configuration#A or mixing dataset from multiple scenarios/configuraions can be directly inferenced/tested on dataset from Scenario#A/Configuration#B or Scenario#B/Configuraion#B. 
Firstly, the generalization performance on different scenarios, such as various deployment scenarios (e.g., UMa, UMi, InH), various outdoor/indoor UE distributions for UMa/UMi (e.g. 10:0, 8:2, 5:5, 2:8, 0:10), various carrier frequencies (e.g. 2GHz, 3.5GHz) and other aspects (e.g. antenna spacing, antenna virtualization, ISDs, UE speeds, etc.) can be evaluated. 
Secondly, the generalization performance on different configurations, such as various bandwidths (e.g. 10MHz, 20MHz), various antenna port layouts, e.g., (N1/N2/P), other aspects of configurations (e.g. various numerologies, various rank numbers/layers, etc.) which have no effect on the input/output dimension of AI/ML model, can be evaluated. 
However, although the baseline SLS EVM has been agreed to construct the dataset, there are still multiple kinds of combinations of scenarios and configurations to generate different mixing datasets for generalization evaluation. From our opinion, in the initial stage, companies are encouraged to provide generalization performance results on various kinds of datasets as diverse as possible to get more insights about AI-based CSI compression. In the second stage, it would be better to construct one or several typical dataset(s) with aligned mixed configuration(s)/scenario(s) to draw the conclusion on generalization performance in this SI. 
Scalability
For scalability issue, different input/output dimensions for various configurations with one AI/ML model should be studied, including various frequency granularities (e.g. size of sub-band), various size of CSI feedback payloads, various antenna port numbers (e.g. 32ports, 16ports) and other aspects of configurations which lead to different input/output CSI dimensions. 
In current stage, since the scalability issue has not been well studied, companies are encouraged to provide the details of methodologies to achieve the scalability of AI/ML model, including the pre-processing on the input and post-processing on the output of the AI/ML model, and the advanced training method to obtain the AI/ML model with good scalability. 


Figure 1: Zero-padding pre-processing on the input CSI of the encoder: (a) zero-padding on antenna port dimension; (b) zero-padding on sub-band dimension
Specifically, the zero-padding pre-processing on the input CSI of the encoder at the UE side can be utilized. For example, as shown in Figure 1 (a), the AI/ML model trained on dataset from Configuration#A with 32 port can be inferenced/tested on dataset from Configuration#B with 16 port and zero-padding on the antenna port domain. Similarly, as shown in Figure 2 (a), the AI/ML model trained on dataset from Configuration#A with 13 sub-band can be inferenced/tested on dataset from Configuration#B with 8 sub-band and zero-padding on the sub-band domain. 
Meanwhile, the clipping post-processing on the output CSI of the decoder at the NW side should be utilized correspondingly. For example, for Figure 1 (a), the output CSI on the first 16 port should be reserved with real CSI input and another part of output CSI on the latter 16 port should be clipped with zero-padding input. For Figure 1 (b), the output CSI on first 8 sub-band should be reserved with real CSI input and another part of output CSI on the latter 5 sub-band should be clipped with zero-padding input.
For different CSI feedback payloads, referred to as the output of encoder and the input of decoder, the bitstream truncation operation can be considered. Specifically, we have two kinds of datasets from Configuration#A with CSI feedback payload  bits and Configuration#B with CSI feedback payload  bits with . When the AI/ML model trained on Configuration#A is adopted on Configuration#B, the first  bits can be reserved, and the latter  bits can be truncated during the interface feedback. Then, the truncated   bits can be regarded as default 0 or 1 for the decoder input.
For the scalability evaluation, we also suggest that companies to report the details of methods and configurations in current stage. Next, it would be better to construct one or several typical dataset(s) with aligned different configurations to draw the conclusion on scalability performance in this SI. 
Based on the above discussions, we have the following proposals:
Proposal 4: Suggest to study generalization issue and scalability issue separately.
· Focus on the same input and output CSI dimension with different configuration(s)/scenario(s) for generalization performance evaluation
· Focus on different input and output CSI dimensions with different configuration(s) for scalability performance evaluation
· E.g., different numbers of antenna ports, different number of sub-bands and different CSI feedback payloads
Proposal 5: Suggest to construct some typical datasets with aligned scenarios/configuration(s) to draw the conclusion on generalization performance.
· Companies to report the details of utilized scenarios/configurations in the current stage
Proposal 6: Suggest to construct some typical datasets with aligned configuration(s) to draw the conclusion on scalability performance
· Companies to report the details of utilized methods and configurations in the current stage
Proposal 7: For scalability evaluation, zero-padding, clipping and truncation can be considered for pre-processing and post-processing.
Fine-tuning
For generalization evaluation, Case 1, Case 2 and Case 3 have been agreed in RAN1 #110bis-e to evaluate the generalization performance of AI/ML based CSI feedback. Whether Case 2A with fine-tuning belongs to the generalization verification is still controversial, and the potential performance benefits of fine-tuning for CSI feedback can be optionally considered by companies. However, we think some important points about fine-tuning should be studied before performance evaluation and drawing conclusions.
First of all, the EVM for fine-tuning should be defined. In Case 2A, the AI/ML model is trained on dataset from Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g. Scenario#B/Configuration#B, Scenario#A/Configuration#B. Here, we denote the dataset from Scenario#A/Configuration#A as original dataset, and the dataset different than Scenario#A/Configuration#A used for AI/ML model updating as fine-tuning dataset. The following aspects should be considered:
· Size of fine-tuning dataset: different size of fine-tuning dataset may lead to different performance. For example, using 2k samples may achieves better fine-tuning performance than using 200 samples. Generally, the fine-tuning performance may improve with more samples in fine-tuning dataset for AI/ML model update. Therefore, the size of fine-tuning dataset should be considered in EVM.
· Sampling distribution of fine-tuning dataset: the sampling distribution is also very critical. Since the size of fine-tuning dataset is relatively smaller, when the limited samples are badly selected, e.g. non-uniformly selected from limited drops or biased UE distributions, the AI/ML may be overfitted on the limited samples in fine-tuning dataset, and the fine-tuning performance may even degrade compared to the performance without fine-tuning.
· Diversity between fine-tuning dataset and original dataset: the diversity between fine-tuning dataset and original dataset also affects the fine-tuning performance. If there is large difference between fine-tuning dataset and original dataset, the AI/ML model trained on original dataset may be not a good starting point for updating on fine-tuning dataset. Therefore, given a fine-tuning dataset, a proper original dataset should be selected for better fine-tuning performance.
· Fine-tuning delay: from our understanding, fine-tuning is more likely to be performed in online training. Therefore, the time cost for fine-tuning, defined as fine-tuning delay should also be considered.
Moreover, to evaluate the performance of fine-tuning, direct training on fine-tuning dataset from random initialization of AI/ML model without Scenario#A/Configuration#A as the original dataset and inference on the testing dataset, e,g. from Scenario#A/Configuration#B, Scenario#B/Configuration#B should also be considered as a baseline besides the Rel-16 eType II baseline. Therefore, based on the above discussions, we have the following proposals:
Proposal 8: Regarding the EVM for fine-tuning, the following factors should be considered at least:
· Size of fine-tuning dataset
· Sampling distribution of fine-tuning dataset
· Diversity between fine-tuning dataset and original dataset
· Fine-tuning delay
· Performance gain
· Other aspects related to fine-tuning
Proposal 9: For the baseline of fine-tuning evaluation, direct training on fine-tuning dataset from random initialization and inference on the testing dataset should be considered as a baseline.

AI/ML model
In this contribution, we use the encoder at UE side and decoder at NW side with Transformer backbone. The complexity with FLOPs and model size with trainable parameters are listed in Table 1. 
Table 1 FLOPs and trainable parameters
	AI/ML model
	FLOPs
	Trainable parameters

	Encoder
	~21.4M
	~10.7M

	Decoder
	~21.4M
	~10.7M

	Total
	~42.8M
	~21.4M


We used a model named EVCsiNet-T (as shown in Figure 2), in which each vector of sub-band in the input CSI matrix is firstly processed by an embedding layer and then 6 self-attention based blocks are sequentially introduced before a mixed 3bits/2bits quantization layer. As for the decoder part, after dequantization layer, a dense layer with 64 nodes is employed, followed by 6 self-attention based blocks as well. Finally, a reshape layer is implemented to obtain the output with the shape of the original CSI. The SGCS loss function is used to train the EVCsiNet-T. 


Figure 2: Illustration of EVCsiNet-T model for CSI feedback compression
From our opinion, in the initial stage of this SI, companies are encouraged to open their utilized dataset(s) and/or reference model(s), which would be very helpful for crosscheck between companies.  Furthermore, common dataset(s) and/or reference model(s) would be more efficient for performance calibration and drawing final conclusions. The reference model in our simulations for AI/ML based CSI feedback enhancement can be find in https://wireless-intelligence.com/#/download. However, how to establish common dataset(s) and/or reference model(s) in 3GPP frame remains further study.
Proposal 10: Companies are encouraged to disclose their utilized dataset(s) and reference model(s)
· FFS: to establish common dataset(s) and/or reference model(s) for performance calibration and drawing final conclusions.

Performance evaluation
SLS throughput
In this section, we give some performance evaluation results with 32Tx4Rx antenna configuration. The SGCS for rank 1 and rank 2 on sub-band level for different CSI feedback overhead are provided in Figure 3 and Figure 4, where the R16 eType II is used as the comparable baseline. For rank 1, the CSI feedback overhead is (67, 92, 120, 174, 231, 250, 285, 335) bit for EVCsiNet-T-layer 1 and eType II. For rank 2, the CSI feedback overhead is (67, 92, 120, 174, 231, 250, 285, 335) bit for both EVCsiNet-T-layer 1 and EVCsiNet-T-layer 2, where the AI/ML model is trained on dataset for layer 1 and dataset for layer 2 with the same architecture EVCsiNet-T, respectively.  And the SGCS for rank 2 is calculated by the average of SGCS of layer 1 and layer 2. The training and testing dataset for each layer is 600k and 5k, respectively. 
Please note that “rank2” refers to the dynamic transmission of single-layer and 2-layer MIMO scheduled by NW in the evaluation of SLS throughput. 

Figure 3. Comparison of SGCS between AI based CSI feedback and R16 eType II baseline (rank 1)

Figure 4. Comparison of SGCS between AI based CSI feedback and eType II baseline (rank 2)
Observed from Figure 3 and Figure 4 AI based CSI feedback with EVCsiNet-T can achieve higher SGCS performance compared with R16 eType II baseline for both rank 1 (5%~8%) and rank 2 (8%~16%), especially with lower feedback payload. Meanwhile, compared with rank 1, the AI based CSI feedback has larger performance gain in rank 2. 



Figure 5: Comparisons of SLS throughput between AI based CSI feedback and R16 eType II baseline with ideal channel estimation



Figure 6: Comparisons of SLS throughput between AI based CSI feedback and R16 eType II baseline with realistic channel estimation 
Observed from Figure 5 and Figure 6, AI based CSI feedback can achieve higher SLS throughput for all conditions, such as rank 1/2, FTP/Full buffer and ideal/realistic channel estimation, especially with lower CSI feedback overhead. Specifically, for rank 1 with realistic channel estimation, full buffer model can provide about 3%~6% and FTP model can provide about 1%~3% performance gain. Similar to SGCS comparison results, the performance gain is also larger for rank 2 configuration, about 4%~10% performance gain with FTP model. Based on the above evaluation results, we have the following observations:
Observation 1: Compared to rank 1 achieving 5%~8% SGCS gain and 1%~3% SLS throughput gain, AI based CSI feedback achieves 8%~16% SGCS gain and 4%~10% SLS throughput gain for rank 2.
Observation 2: Compared to higher feedback overhead achieving 1% for rank 1 and 4% for rank 2 SLS throughput gain, AI based CSI feedback achieves larger SLS throughput gain with lower feedback overhead, about 3% for rank 1 and 10% for rank 2.
Observation 3: Compared to FTP model achieving 1%~3% SLS throughput gain for rank 1, AI based CSI feedback achieves larger SLS throughput gain for full buffer model about 3%~6%.
In our simulations, only rank 1 and rank 2 configurations are evaluated on both intermediate KPI and SLS throughput considering MU-MIMO limitation. In the initial stage of this SI, the performance calibration for rank 1 and rank 2 should be firstly considered. While in the second stage, the performance for rank 3 and rank 4 on both intermediate KPI and SLS throughput using SU-MIMO should also be evaluated.
Proposal 11: For SLS evaluation and calibration:
· Evaluate and calibrate rank 1 and rank 2 with MU-MIMO in the first stage
· Evaluate and calibrate rank 3 and rank 4 with SU-MIMO in the second stage
Generalization evaluation
The generalization performance is presented in this part. As shown in Table 2, the intermediate KPI with SGCS trained on UMa/UMi/mixing datasets and inferenced on UMa/UMi with 67/174bit CSI feedback payload is given. Each training data consists of 600k samples, and each testing set includes 5k samples. For the mixing dataset, it includes 300k UMa samples and 300k UMi samples.
Table 2 Generalization performance evaluation
	Training set
	Testing set: payload

	
	UMa:67bit
	UMi:67bit
	UMa:174bit
	UMi:174bit

	UMa#600k
	0.786
	0.752
	0.878
	0.850

	UMi#600k
	0.772
	0.774
	0.844
	0.860

	UMa#300k + UMi#300k
	0.781
	0.765
	0.875
	0.857


Obviously, the SGCS of the AI/ML model trained on UMa degrades slightly when testing on UMi and vice versa. Meanwhile, the AI/ML model trained on mixing dataset can achieve relatively higher SGCS compared with the condition when training set and testing set are mismatching. Therefore, based on the results above, we have the following observations:
Observation 4: For different scenarios, the SGCS degradation is slight (about 1%~3%) when training set and testing set are mismatching.
Observation 5: For different scenarios, training on mixing dataset can improve the generalization performance of AI/ML model.
Scalability evaluation
The scalability performance is presented in this part, where the CDL-C channels with 300ns delay spread are utilized. Here, three kinds of configurations, including 32port#67bit, 16port#67bit and 16port#49bit are considered. Each dataset includes 100k samples, where 95k for training and 5k for testing. The intermediate KPI with SGCS for different training sets and testing sets are listed in Table 3.


Table 3 Scalability performance evaluation 
	Training set
	Testing set

	
	32 port#67bit
	16 port#67bit
	16 port#49bit

	32 port#67bit
	0.855
	0.693
	/

	16 port#67bit
	/
	0.886
	0.734

	16 port#49bit
	/
	/
	0.861

	32 port#67bit + 16 port#67bit
	0.853
	0.898
	/

	32 port#67bit + 16 port#49bit
	0.834
	/
	0.821



Here, when AI/ML model trained on 32-port dataset and tested on 16-port dataset, or trained on mixing datasets with 32 port and 16 port, the zero-padding pre-processing and clipping post-processing is utilized for 16-port dataset. When AI/ML model trained on 67bit and tested on 49bit, or trained on mixing datasets with 67bit and 49bit, the bitstream truncation and default 0 is utilized for 49bit dataset. 
Obviously, for the scalability on various antenna port, the AI/ML model only trained on 32 port performs terrible on 16 port, while the AI/ML model trained on mixing datasets with 32 port and 16 port can improve the SGCS significantly when testing on 16 port. Meanwhile, for the scalability on various CSI feedback payloads, the AI/ML model only trained on 67bit performs terrible on 49bit, while the AI/ML model trained on mixing datasets with 32 port#67bit and 16 port#49bit can improve the SGCS when testing on 49bit. Therefore, the scalability performance of AI/ML model can be improved by trained on mixing datasets including various configurations. Based on the results above, we have the following observations:
Observation 6: The scalability performance of AI/ML model for various antenna ports and CSI feedback payloads can be improved by trained on mixing datasets.

Multi-encoder evaluation
We simulate the performance with 1 common decoder at NW and 2 UE-specific encoders at different UE sides with different configurations. Specifically, 32 port#67bit is configured for UE 1 and 16 port#49bit is configured for UE 2. The same encoder structure with EVCsiNet-T is utilized for both two UEs, and the aligned decoder structure with EVCsiNet-T is utilized for NW. The AI/ML model is trained on the mixing datasets with 32 port#67bit and 16 port#49bit, Table 4 shows the testing results for both two configurations.
Table 4 Multi-encoder performance
	Training set
	Encoder 1, 32 port#67bit
	Encoder 2, 16 port#49bit

	32 port#67bit + 16 port#49bit
	0.835
	0.858



As given in Table 4, AI/ML model with common decoder and multi-encoder at different UE sides with different configurations can achieve good performance for both two UEs. Furthermore, training on the mixing datasets with UE-specific encoder can achieve 0.858 for UE 2, which is larger than 0.821 with common encoder in Table 3.
Observation 7: Using common decoder with UE-specific encoder achieves higher SGCS than using common decoder with common encoder.
Multi-decoder evaluation
Similarly, we also simulate the performance with 1 common encoder at UE side and 2 gNB-specific decoders at NW side with different configurations. Specifically, 32 port#67bit is configured for gNB 1 and 16 port#49bit is configured for gNB 2. The same decoder structure with EVCsiNet-T is utilized for both two gNBs, and the aligned encoder structure with EVCsiNet-T is utilized for UE. The AI/ML model is trained on the mixing datasets with 32 port#67bit and 16 port#49bit, Table 5 shows the testing results for both two configurations.
Table 5 Multi-decoder performance
	Training set
	Decoder 1, 32 port#67bit
	Decoder 2, 16 port#49bit

	32 port#67bit + 16 port#49bit
	0.848
	0.867



As given in Table 5, AI/ML model with common encoder and multi-decoder at different NW sides with different configurations can achieve good performance for both two configurations. Furthermore, training on the mixing datasets with gNB-specific decoder can achieve 0.858/0.867 for UE 1/2, which is larger than 0.834/0.821 with common decoder in Table 3.
Observation 8: Using common encoder with gNB-specific decoder achieves higher SGCS than using common encoder with common decoder.
Discussion on CSI prediction
In 3GPP RAN1 #110bis-e, some conclusions about CSI prediction are also achieved as follows.
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, for the outdoor UEs, add O2I car penetration loss per TS 38.901 if the simulation assumes UEs inside vehicles.
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, no explicit trajectory modeling is considered for evaluation
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, and if the AI/ML model outputs multiple predicted instances, the intermediate KPI is calculated for each prediction instance
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, both of the following types of AI/ML model input are considered for evaluations:
· Raw channel matrixes
· Eigenvector(s)
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, for the evaluation of CSI prediction:
· Companies are encouraged to report the assumptions on the observation window, including number/time distance of historic CSI/channel measurements as the input of the AI/ML model, and
· Companies to report the assumptions on the prediction window, including number/time distance of predicted CSI/channel as the output of the AI/ML model
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, for SLS, spatial consistency procedure A with 50m decorrelation distance from 38.901 is used (if not used, company should state this in their simulation assumptions)
· UE velocity vector is assumed as fixed over time in Procedure A modeling


Evaluation methodology 
As for CSI prediction for time domain, if it is selected as one sub use case, the EVM used for CSI compression sub use case should be the baseline for simplicity. Then, other specific parameters for CSI prediction (e.g. UE speed, outdoor/indoor UE distribution, CSI feedback periodicity) should be further considered. 
Firstly, as concluded in RAN1 #110bis-e, both raw channel matrixes and eigenvectors can be used as the AI/ML model input. For raw channel prediction, the input/output of AI/ML model would be the channel matrix , where  are the numbers of Tx port, Rx port and subcarrier. For eigenvector prediction, the input/output of AI/ML model would be the eigenvector , where  is the number of sub-band.  Generally, selecting raw channel as the input/output may lead to a much huger dataset with massive storage space compared to eigenvector, which is inconvenient for dataset construction and AI/ML model training. Moreover, as for the intermediate KPI, normalized mean square error (NMSE) and SGCS can be used for raw channel and eigenvector, respectively. But using eigenvector for CSI prediction and SGCS as the intermediate KPI would be more intuitive since it has been widely used in CSI compression sub use case. Therefore, eigenvector is used as the AI/ML model input and output in our evaluation.


Figure 7 CSI prediction assumption (Case 1)
Secondly, two cases of CSI prediction assumptions can be considered. For Case 1 shown in Figure 7, the input of CSI model includes K historic eigenvectors  from K CSI-RS measurement (in red color). The output of CSI prediction model includes 4 future eigenvectors  on the next 4 interval slots (in yellow color). Then the observation window is K and the prediction window is 4. For the interval slots in prediction window, the predicted CSI eigenvectors from AI/ML model output can be used for transmission. This case is considered to deal with the impact of scheduling delay on the use of CSI information, the CSI accuracy on the interval slots can be improved using AI/ML model by compensating the difference of CSI resulted from the scheduling delay. Similarly, different UE speeds (e.g. 30km/h, 60km/h, 90km/h and 120km/h) and CSI-RS periods (e.g. 5ms, 10ms and 20ms) can be considered with various lengths of observation window and prediction window.


(a)


(b)
Figure 8 CSI prediction assumption (Case 2)
For Case 2 shown in Figure 8, it is proposed to reduce the CSI-RS overhead. In Figure 8 (a), the K historic eigenvectors CSI-RS with long periodicity (e.g. 40ms/80ms/160ms) can be used as the input of CSI prediction model (in red color). In Figure 8 (c), the input of CSI prediction model consists of K historic eigenvectors  from K CSI-RS measurement (in red color). For both (a) and (b) configuration, the output of CSI prediction model includes T future eigenvectors  on T CSI-RS transmission instances (in yellow color). Then the observation window is K and the prediction window is T. For the interval slots in prediction window, the nearest predicted CSI eigenvector is directly utilized for transmission. For this case, the CSI-RSs in prediction window are not required, and the CSI-RS overhead can be reduced with proportion of . For different UE speeds (e.g. 30km/h, 60km/h, 90km/h and 120km/h) and CSI-RS periods (e.g. 5ms, 10ms and 20ms), we can select different lengths of observation window and prediction window, therefore obtain different CSI-RS overhead reduction proportions using AI/ML based CSI prediction in time domain.
Actually, both two cases for CSI prediction can be studied for different purposes. Furthermore, in the training stage of Case 1, the CSI eigenvectors for every slot should be stored, which increases the complexity and storage load of dataset construction. As comparison, for Case 2, only eigenvectors on CSI-RS instances are required as the input and label, the CSI eigenvectors for interval slots are not required, which decreases the complexity and storage load of dataset construction. Therefore, in the first stage of evaluation, we select Case 2 to verify the performance of AI/ML based CSI prediction. 
Based on above discussions, we have the following proposals:
Proposal 12: Two cases for CSI prediction should be considered 
· Case 1: CSI prediction to deal with the impact of scheduling delay on the use of CSI information
· Case 2: CSI prediction to avoid redundant CSI-RS overhead
Proposal 13: Regarding the EVM on CSI prediction, evaluate the performance with different numbers of observation window K and prediction window T according to CSI-RS period 
To better evaluate the performance of AI/ML based CSI prediction, a proper non-AI baseline should be selected for comparison to AI/ML based CSI prediction. Firstly, the sample-and-hold method can be used as the baseline in the initial stage. However, for CSI compression, we can obtain the relative performance gain over R16 Type II baseline. For CSI prediction, it is also helpful for performance evaluation if companies can propose some non-AI CSI prediction algorithm baselines (e.g. Kalman filtering, MMSE filtering, etc.).
Proposal 14: Regarding the CSI prediction baseline
· Sample-and-hold can be considered as the initial baseline for calibration
· Companies can propose some non-AI CSI prediction algorithms (e.g. Kalman filtering, MMSE filtering, etc.) as the baseline
UE-side/NW-side model
As discussed in RAN1 #110 and #110bis-e, the AI/ML model used for CSI prediction can be deployed at UE side or NW side, which may result to different types of input and output. 
· UE-side model: The input of AI/ML model can be the estimated raw channel(s) or eigenvector(s) in the observation window. The output of AI/ML model should be the predicted raw channel(s) or eigenvector(s) in the prediction window. Then, during CSI feedback phase, the codebook based eType II (with possible enhancement) and AI based CSI feedback can be used to report the eigenvector(s) in prediction window.  However, for raw channel(s) feedback, it seems conventional codebook based algorithms cannot be used currently. Therefore, only AI based raw channel compression and feedback is workable, or the post-processing by calculating the eigenvector(s) from the predicted raw channel(s) is required for CSI feedback. For UE-side model training, similar to the CSI compression sub use case, the ideal channel estimation can be used to construct training dataset and the ideal CSI can also be used as the target CSI for training. Then the ideal channel estimation can be used for CSI prediction performance calibration with intermediate KPI, and the realistic channel estimation should be used for SLS throughput evaluation for drawing the conclusions. Moreover, in SLS evaluation, the CSI compression and recovery error in prediction window should be considered as well.
· NW-side model: The input of AI/ML model can be the raw channel(s) or eigenvector(s), which is obtained from the CSI feedback on the CSI-RS instances in the observation window. Specifically, for eigenvector(s) in observation window, it can be obtained through conventional codebook based eType II (with possible enhancement) and AI based CSI feedback. While for raw channel(s) input, the conventional codebook based algorithms cannot be used currently and only AI based raw channel compression and feedback is workable. Furthermore, for both raw channel and eigenvector input, the CSI compression and reconstruction error should be considered in the AI/ML model input. Therefore, for NW-side model training, the CSI feedback error should be considered to construct the training dataset, while the ideal CSI can also be used as the target CSI for training. 
Based on the discussions above, we have the following proposal:
Proposal 15: Regarding the deployment side for CSI prediction model:
· For UE-side model
· Ideal channel estimation for training stage and intermediate KPI calibration
· Realistic channel estimation together with CSI feedback error should be considered for SLS performance evaluation
· For NW-side model
· CSI feedback error in observation window should be considered for both training stage and inference stage 
· For both UE-side and NW-side model, eType II (with possible enhancement) and AI based CSI feedback can be used for eigenvector CSI feedback 
· FFS: how to perform raw channel feedback in observation and prediction window
AI/ML model
In this contribution, we use the MLP-Mixer backbone for CSI prediction model. The AI/ML structure with ~46.02M FLOPs and model size with ~23.07M trainable parameters are illustrated in Figure 9. 


Figure 9 illustration of MLP-Mixer model for CSI prediction
The MLP-Mixer model is composed of dimensional transform block, 10 blocks of mixer layer and a fully-connected layer. The output dimension of the full-connected layer can be adjusted according to the different lengths of prediction window.
Performance evaluation
We give some performance evaluation results for CSI prediction Case 2 (b) in Table 6 to evaluate the availability of AI/ML based CSI prediction. The UE-side model with eigenvector as the input and the output is adopted. The observation window is set as K=4, the prediction window is set as T=1,2,3,4. The intermediate KPI with SGCS of the AI based CSI prediction is compared with the sample-and-hold non-AI baseline. The dataset includes 5 drops CSI eigenvector samples, where each drop includes 570 UE and each UE includes 397 slots with CSI-RS interval 5ms. For each drop, the first 90% UE and 90% slots are utilized for training. For testing set, we have Set1 and Set2, respectively. For Set1, the 10% UE of each drop is used for testing. For Set2, the 10% UE of each UE of each drop is used for testing.
	SGCS
	+5ms (T=1)
	+10ms (T=2)
	+15ms (T=3)
	+20ms (T=4)

	
	Set1
	Set2
	Set1
	Set2
	Set1
	Set2
	Set1
	Set2

	Non-AI
	0.870
	0.871
	0.805
	0.793
	0.730
	0.720
	0.675
	0.667

	AI
	0.922
	0.930
	0.843
	0.839
	0.767
	0.764
	0.709
	0.706

	Gain
	0.052
	0.059
	0.038
	0.046
	0.037
	0.044
	0.034
	0.039


For all T=1,2,3,4 and both Set1 and Set2, AI based CSI prediction can achieve higher SGCS compared with non-AI solution. The performance gain decreases with farther prediction instances. Compared with Set1 where UEs are different with training set, the performance gain is larger for Set2 with the same UEs but different slots. Therefore, we have the following observation and proposals:
Observation 9: AI based CSI prediction achieves higher SGCS compared with sample-and-hold baseline
· The performance gain decreases with farther prediction instances
· The performance gain is higher for the same UE but different slots, compared to that of different UEs
Proposal 16: suggest to evaluate the CSI prediction performance with the following two kinds of testing sets
· Different UEs with training set
· The same UEs but different slots with training set
Conclusion
In this contribution, we provide some discussions and preliminary results about the evaluation on AI/ML for CSI feedback enhancement. Based on the discussions and evaluations, we have following observations and proposals:
Observation 1: Compared to rank 1 achieving 5%~8% SGCS gain and 1%~3% SLS throughput gain, AI based CSI feedback achieves 8%~16% SGCS gain and 4%~10% SLS throughput gain for rank 2.
Observation 2: Compared to higher feedback overhead achieving 1% for rank 1 and 4% for rank 2 SLS throughput gain, AI based CSI feedback achieves larger SLS throughput gain with lower feedback overhead, about 3% for rank 1 and 10% for rank 2.
Observation 3: Compared to FTP model achieving 1%~3% SLS throughput gain for rank 1, AI based CSI feedback achieves larger SLS throughput gain for full buffer model about 3%~6%.
Observation 4: For different scenarios, the SGCS degradation is slight (about 1%~3%) when training set and testing set are mismatching.
Observation 5: For different scenarios, training on mixing dataset can improve the generalization performance of AI/ML model.
Observation 6: The scalability performance of AI/ML model for various antenna ports and CSI feedback payloads can be improved by trained on mixing datasets.
Observation 7: Using common decoder with UE-specific encoder achieves higher SGCS than using common decoder with common encoder.
Observation 8: Using common encoder with gNB-specific decoder achieves higher SGCS than using common encoder with common decoder.
Observation 9: AI based CSI prediction achieves higher SGCS compared with sample-and-hold baseline
· The performance gain decreases with farther prediction instances
· The performance gain is higher for the same UE but different slots, compared to that of different UEs

Proposal 1: For intermediate KPI, use SGCS as the evaluation metric for calibration
· For rank>1, Method 3 is selected for calibration, whether Method 1 or Method 2 is used is up to companies
· Other intermediate KPIs are not suggested
Proposal 2: Regarding the quantization/dequantization in CSI compression using two-sided model use case, the following cases can be evaluated
· Case 1: no quantization/dequantization module involved in the CSI model training process.
· Case 2: quantization/dequantization module is involved in the CSI model training process, but the quantization/dequantization module itself does not need training and updating.
· Case 3: quantization/dequantization module is involved in the CSI model training process, and the quantization/dequantization module itself also needs training and updating during the CSI model training process.
Proposal 3: For training collaborative Type2 and Type3, whether/how to align the quantization and dequantization method between UE and NW
Proposal 4: Suggest to study generalization issue and scalability issue separately.
· Focus on the same input and output CSI dimension with different configuration(s)/scenario(s) for generalization performance evaluation
· Focus on different input and output CSI dimensions with different configuration(s) for scalability performance evaluation
· E.g., different numbers of antenna ports, different number of sub-bands and different CSI feedback payloads
Proposal 5: Suggest to construct some typical datasets with aligned scenarios/configuration(s) to draw the conclusion on generalization performance.
· Companies to report the details of utilized scenarios/configurations in the current stage
Proposal 6: Suggest to construct some typical datasets with aligned configuration(s) to draw the conclusion on scalability performance
· Companies to report the details of utilized methods and configurations in the current stage
Proposal 7: For scalability evaluation, zero-padding, clipping and truncation can be considered for pre-processing and post-processing.
Proposal 8: Regarding the EVM for fine-tuning, the following factors should be considered at least:
· Size of fine-tuning dataset
· Sampling distribution of fine-tuning dataset
· Diversity between fine-tuning dataset and original dataset
· Fine-tuning delay
· Performance gain
· Other aspects related to fine-tuning
Proposal 9: For the baseline of fine-tuning evaluation, direct training on fine-tuning dataset from random initialization and inference on the testing dataset should be considered as a baseline.
Proposal 10: Companies are encouraged to disclose their utilized dataset(s) and reference model(s)
· FFS: to establish common dataset(s) and/or reference model(s) for performance calibration and drawing final conclusions.
Proposal 11: For SLS evaluation and calibration:
· Evaluate and calibrate rank 1 and rank 2 with MU-MIMO in the first stage
· Evaluate and calibrate rank 3 and rank 4 with SU-MIMO in the second stage
Proposal 12: Two cases for CSI prediction should be considered 
· Case 1: CSI prediction to deal with the impact of scheduling delay on the use of CSI information
· Case 2: CSI prediction to avoid redundant CSI-RS overhead
Proposal 13: Regarding the EVM on CSI prediction, evaluate the performance with different numbers of observation window K and prediction window T according to CSI-RS period 
Proposal 14: Regarding the CSI prediction baseline
· Sample-and-hold can be considered as the initial baseline for calibration
· Companies can propose some non-AI CSI prediction algorithms (e.g. Kalman filtering, MMSE filtering, etc.) as the baseline
Proposal 15: Regarding the deployment side for CSI prediction model:
· For UE-side model
· Ideal channel estimation for training stage and intermediate KPI calibration
· Realistic channel estimation together with CSI feedback error should be considered for SLS performance evaluation
· For NW-side model
· CSI feedback error in observation window should be considered for both training stage and inference stage 
· For both UE-side and NW-side model, eType II (with possible enhancement) and AI based CSI feedback can be used for eigenvector CSI feedback 
· FFS: how to perform raw channel feedback in observation and prediction window
Proposal 16: suggest to evaluate the CSI prediction performance with the following two kinds of testing sets
· Different UEs with training set
· [bookmark: _GoBack]The same UEs but different slots with training set
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