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[bookmark: OLE_LINK13][bookmark: OLE_LINK14]Introduction
Many positioning methods have been specified in Rel-16 and Rel-17 NR positioning, to obtain position estimation with target horizontal positioning accuracies of <0.2 m (90%) for IIoT use cases and <1 m (90%) for commercial use cases. However, the performance of these positioning methods highly relies on the existence of multiple LOS (line-of-sight) paths between the target terminal and multiple TRPs (Transmission-Reception Points). In the scenarios with extremely low LOS probability, positioning accuracy would decrease dramatically, which may be not able to satisfy the high-accuracy positioning requirements stemming from new applications and industry verticals. 
The AI/ML technology has powerful abilities in feature extraction, environment awareness, complex problem modeling and processing. In recent years, applying AI/ML into air-interface has attracted great attentions from academics to industries, and a lot of meaningful exploration has been made to verify the performance gain compared to conventional non-AL/ML schemes. Related research has also verified that the AI/ML technology has the potential to significantly improve the performance of wireless communications.
Under this background, a new SI on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface has been agreed at RAN #94e[1], including three use cases to assess the applications of AI/ML in air-interface. Among them, AI/ML based positioning accuracy enhancement is included, with the target to improve the positioning accuracy for different scenarios, especially for some challenging scenarios with heavy NLOS (non-line-of-sight) conditions.
The objective of the new SI for RAN1 AI/ML based positioning includes the following:
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.
Use cases to focus on: 
1. Initial set of use cases includes: 
b. Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 


 
At the RAN1 #110 meeting, some agreements on simulation assumption, KPI and futher research directions have been reached, which are listed as follows:
	Agreement
For AI/ML-based positioning, both approaches below are studied and evaluated by RAN1:
· Direct AI/ML positioning
· AI/ML assisted positioning
Agreement
For AI/ML-based positioning, study impact from implementation imperfections.
Agreement
For evaluation of AI/ML based positioning, the model complexity is reported via the metric of “number of model parameters”. 
Agreement
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
a) Different drops
Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N>=1.
b) Clutter parameters, e.g., training dataset from one clutter parameter (e.g., {40%, 2m, 2m}), test dataset from a different clutter parameter (e.g., {60%, 6m, 2m});
c) Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;
Other aspects are not excluded.
Note: It’s up to participating companies to decide whether to evaluate one aspect at a time, or evaluate multiple aspects at the same time.
Agreement
When providing evaluation results for AI/ML based positioning, participating companies are expected to describe data labelling details, including:
· Meaning of the label (e.g., UE coordinates; binary identifier of LOS/NLOS; ToA)
· Percentage of training data without label, if incomplete labeling is considered in the evaluation
· Imperfection of the ground truth labels, if any
Agreement
For evaluation of AI/ML based positioning, study the performance impact from availability of the ground truth labels (i.e., some training data may not have ground truth labels). The learning algorithm (e.g., supervised learning, semi-supervised learning, unsupervised learning) is reported by participating companies.
Agreement
For AI/ML-based positioning, for evaluation of the potential performance benefits of model finetuning, report at least the following: 
training dataset setting (e.g., training dataset size necessary for performing model finetuning)
horizontal positioning accuracy (in meters) before and after model finetuning.
Agreement
For both direct AI/ML positioning and AI/ML assisted positioning, the following table is adopted for reporting the evaluation results.
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [with or without] model generalization, [short model description] 
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	
	
	
	
	
	
	
	
	



To report the following in table caption: 
Which side the model is deployed
Model generalization investigation, if applied
Short model description: e.g., CNN
Further info for the columns:
Model input: input type and size
Model output: output type and size
Label: meaning of ground truth label; percentage of training data set without label if data labeling issue is investigated (default = 0%)
Clutter parameter: e.g., {60%, 6m, 2m}
Dataset size, both the size of training/validation dataset and the size of test dataset
AI/ML complexity: both model complexity in terms of “number of model parameters”, and computational complexity in terms of FLOPs
Horizontal positioning accuracy: the accuracy (in meters) of the AI/ML based method
Note: To report other simulation assumptions, if any.
Offline Agreement
For evaluation of AI/ML assisted positioning, an intermediate performance metric of model output is reported.
FFS: Detailed definition of the intermediate performance metric of the model output
Offline Agreement
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
d) UE/gNB RX and TX timing error. 
The baseline non-AI/ML method may enable the Rel-17 enhancement features (e.g., UE Rx TEG, UE RxTx TEG).



At the RAN1 #110b-e meeting, some agreements on simulation assumption and reporting KPI have been reached, which are listed as follows:
	Agreement
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
(e) InF scenarios, e.g., training dataset from one InF scenario (e.g., InF-DH), test dataset from a different InF scenario (e.g., InF-HH)

Agreement
For both direct AI/ML positioning and AI/ML assisted positioning, if fine-tuning is not evaluated, the template agreed in RAN1#110 is updated to the following for reporting the evaluation results.
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [short model description] 
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	
	
	
	
	
	
	
	
	
	



Agreement
For both direct AI/ML positioning and AI/ML assisted positioning, if fine-tuning is evaluated, the template agreed in RAN1#110 is updated to the following for reporting the evaluation results.
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [short model description] 
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	
	
	
	
	
	
	
	
	
	
	
	



Agreement
For AI/ML-assisted positioning, companies report which construction is applied in their evaluation:
(a) Single-TRP construction: the input of the ML model is the channel measurement between the target UE and a single TRP, and the output of the ML model is for the same pair of UE and TRP. 
(b) Multi-TRP construction: the input of the ML model contains N sets of channel measurements between the target UE and N (N>1) TRPs, and the output of the ML model contains N sets of values, one for each of the N TRPs.
Note: For a measurement (e.g., RSTD) which is a relative value between a given TRP and a reference TRP, the TRP in “single-TRP” and “multi-TRP” refers to the given TRP only. 
Note: For single-TRP construction, companies report whether they consider same model for all TRPs or N different models for TRPs

Conclusion
For evaluation of AI/ML based positioning, suspend the discussion on intra-site (or zone-specific) variations until concepts and channel model construction not in TR38.901 (e.g., “intra-site” or “zone”) are clarified under AI 9.2.1.
· Note: An individual company can still submit evaluation results for intra-site variation.

Conclusion
For evaluation of AI/ML based positioning, the sampling period is selected by proponent companies. Each company report the sampling period used in their evaluation. 

Agreement
For evaluation of AI/ML assisted positioning, the following intermediate performance metrics are used:
· LOS classification accuracy, if the model output includes LOS/NLOS indicator of hard values, where the LOS/NLOS indicator is generated for a link between UE and TRP;
· Timing estimation accuracy (expressed in meters), if the model output includes timing estimation (e.g., ToA, RSTD).
· Angle estimation accuracy (in degrees), if the model output includes angle estimation (e.g., AoA, AoD).
· Companies provide info on how LOS classification accuracy and timing/angle estimation accuracy are estimated, if the ML output is a soft value that represents a probability distribution (e.g., probability of LOS, probability of timing, probability of angle, mean and variance of timing/angle, etc.)

Conclusion
For evaluation of AI/ML based positioning, it’s up to each company to take into account the channel estimation error in their evaluation. Companies describe the details of their simulation assumption, e.g., realistic or ideal channel estimation, error models, receiver algorithms.

Agreement
For AI/ML assisted positioning, when single-TRP construction is used for the AI/ML model, companies report at least the AI/ML complexity (Model complexity, Computation complexity) for N TRPs, which are used to determine the position of a target UE.
Table. Model complexity and computation complexity to support N TRPs for a target UE
	
	Model complexity to support N TRPs
	Computation complexity to process N TRPs

	Single-TRP, same model for N TRPs
	
When the model is at UE-side, where  is the model complexity for the same model.
FFS: if the model is at network-side
	
Where  is the computation complexity of the same model for one TRP.

	Single-TRP, N models for N TRPs
	When the model is at UE-side,

Where  is the model complexity for the i-th AI/ML model.
FFS: if the model is at network-side
	
Where  is the computation complexity for the i-th AI/ML model.

	Multi-TRP (i.e., one model for N TRPs)
	
Where  is the model complexity for the one model.
	
Where  is the computation complexity for the one model.



Agreement
For AI/ML based positioning, if an InF scenario different from InF-DH is evaluated for the model generalization capability, the selected parameters (e.g., clutter parameters) are compliant with TR 38.901 Table 7.2-4 (Evaluation parameters for InF).
· Note: In TR 38.857 Table 6.1-1 (Parameters common to InF scenarios), InF-SH scenario uses the clutter parameter {20%, 2m, 10m} which is compliant with TR 38.901.

Agreement
For the model input used in evalutions of AI/ML based positioning, if time-domain channel impulse response (CIR) or power delay profile (PDP) is used as model input in the evaluation, companies report the input dimension NTRP * Nport * Nt, where NTRP is the number of TRPs, Nport is the number of transmit/receive antenna port pairs, Nt is the number of time domain samples. 
· Note: CIR and PDP may have different dimensions. 
Note: Companies provide details on their assumption on how PDP is constructed and how (if applicable) it is mapped to Nt samples.



In this contribution, we present our simulation results and observations to demonstrate the performance gain of applying AI/ML technology onto positioning for various scenarios.
Evaluation scenarios and methodology
According to the SID [1],	the evaluation methodology should be based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. In TR38.901, multiple InF scenarios are defined, focusing on factory halls with varying sizes and varying levels of clutter density. The InF scenarios include:
· InF-SL	Indoor Factory with Sparse clutter and Low base station height (both Tx and Rx are below the average height of the clutter)
· InF-DL	Indoor Factory with Dense clutter and Low base station height (both Tx and Rx are below the average height of the clutter)
· InF-SH	Indoor Factory with Sparse clutter and High base station height (Tx or Rx elevated above the clutter)
· InF-DH	Indoor Factory with Dense clutter and High base station height (Tx or Rx elevated above the clutter)
· InF-HH	Indoor Factory with High Tx and High Rx (both elevated above the clutter)
Among them, the DH scenario with clutter parameter {density: 60%, height: 6m, size: 2m} have extremely low LOS probability (95% NLOS links, as shown in Figure 1) and it is challenging to achieve accurate position estimation by utilizing the conventional RAT-dependent positioning methods, such as TDoA, RTT and so on.  Due to the dramatic different distributions of LOS/NLOS path in different InF scenarios, we think an AI/ML model trained on dataset from a single InF scenario cannot guarantee its performance when the actual deployment scenario is not a perfect match of the scenario where the trained dataset coming from. Therefore, we think it’s  essential to evaluate AI/ML model performance under different settings and scenarios to test and verify its’ effective performance.
[image: ]
[bookmark: _Ref102151344]LOS probability of 4 InF scenarios (SL, DL, SH, DH)
Generalization is one of the key issues for all AI/ML applications, and AI/ML based positioning is of no exception. The generalization performance of AI/ML model is affected by the AI/ML model structure, the variety of training data set and the training strategy. It is better to keep the training loss to be an accurate approximation of the generalization loss uniformly for all hypotheses. When performing evaluation of performance related KPIs, generalization performance should be seriously considered, and different levels of generalization may need to be verified. For example, whether the performance maintains when AI model transfers from one cell to another, from one drop to another, or from one scenario to another.
Evaluation results of sub use cases
At the RAN1 #110 meeting, it was agreed that:
Agreement
For AI/ML-based positioning, both approaches below are studied and evaluated by RAN1:
· Direct AI/ML positioning
· AI/ML assisted positioning

In this section, we provide our simulation results of basic performance evaluation for two sub use cases of AI/ML based positioning. The datasets with spatial consistency, including training dataset, validation dataset and test dataset, are generated with system-level simulation platform to train, validate and test AI model, respectively. The details are reported in each sub-section below. The detailed common parameter assumptions for scenarios are provided in Appendix A, and the details about AI model training/validation and testing parameters are provided in Appendix B.
[bookmark: _Ref101516762]Direct AI/ML positioning
For direct AI/ML positioning, UE position can be directly estimated according to multiple TRPs’ Channel Impulse Response (CIR) vectors, as shown in Figure 2. Note that, AI model can be deployed at the UE side or network side.  


[bookmark: _Ref101277603]Direct AI/ML positioning with multiple TRPs’ CIRs



The InF-DH scenario with size 120m60m and clutter density {0.6, 6, 2} is adopted for evaluation. For each UE, we generate time-domain channel response data points (with the dimension of ) labeled with associated location by system level simulation platform [3]. Then, we sample by truncating the first 256 time-domain points based on the 1st Tx antenna element  and the 1st Rx antenna element from CIR. Finally, the sampled CIR is reshaped into the dimension of  as the input of AI model. Moreover, 25k samples are used to train the adopted Vision Transformer model [4], and 1k samples are used for testing. 
Performance comparison with baselines
The conventional positioning methods in previous releases are considered as baselines. From the simulation results in Table 1, it is observed that the positioning errors of baselines are larger than 20m due to the low probability of LOS path, which is not able to satisfy the requirements of high accuracy positioning in heavy NLOS scenarios. While AI technology can significantly improve positioning accuracy and reaps a conspicuous performance gain (<1m @90%). Thus, we expect that AI technology can be exploited to improve the positioning accuracy in heavy NLOS scenarios.
[bookmark: _Ref115424010]CDF of positioning accuracy (m) of different positioning methods
	Scenario
	Positioning methods
	50%
	67%
	80%
	90%

	InF-DH
{0.6,6,2}
	DL-TDOA
	8.38
	11.09
	15.95
	32.12

	
	UL-TDOA
	8.60
	11.52
	16.33
	32.81

	
	RTT
	8.32
	11.42
	15.72
	32.41

	
	AOA
	8.13
	10.36
	14.09
	20.16

	
	Machine learning
	0.35
	0.49
	0.70
	0.99



[image: ]
CDF of positioning accuracy (m) of different positioning methods
AI/ML based positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods in heavy NLOS scenarios.
Model input
[bookmark: OLE_LINK5]At the RAN1 #110b-e meeting, it was agreed that:
Agreement
For the model input used in evalutions of AI/ML based positioning, if time-domain channel impulse response (CIR) or power delay profile (PDP) is used as model input in the evaluation, companies report the input dimension NTRP * Nport * Nt, where NTRP is the number of TRPs, Nport is the number of transmit/receive antenna port pairs, Nt is the number of time domain samples. 
· Note: CIR and PDP may have different dimensions. 
Note: Companies provide details on their assumption on how PDP is constructed and how (if applicable) it is mapped to Nt samples.

Accordingly, CIR with dimension (NTRP * Nport * Nt) is adopted as model input in our simulations. Simulation comparison of different input selection for AI/ML based positioning is shown in Table 2. We can see that time domain channel CIR as the input of AI/ML model can obtain the best positioning accuracy compared to other inputs, such as power, delay and angle of the first path. The reason for this we believe is that original CIR contains richer features which may be strongly related to the target UE’s location. In this sense, AI/ML model can be regarded as a feature extractor, capturing location related features from CIR in an implicit manner, and then determining the location according to these features. 
[bookmark: _Ref115170640]Evaluation results of  different model inputs for AI/ML model deployed on UE or Network side, without model generalization, ViT
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Computational complexity
	AI/ML

	CIR
	Pos.
	0
	{0.6,6,2}
	25k
	1k
	1.65M 
	22.30M
	0.99

	Power + delay + angle of the first path
	Pos.
	0
	{0.6,6,2}
	25k
	1k
	1.65M 
	22.30M
	1.19

	Power  + delay of the first path
	Pos.
	0
	{0.6,6,2}
	25k
	1k
	1.65M 
	22.30M
	1.31

	Delay + angle of the first path
	Pos.
	0
	{0.6,6,2}
	25k
	1k
	1.65M 
	22.30M
	1.43

	Angle + power of the first path
	Pos.
	0
	{0.6,6,2}
	25k
	1k
	1.65M 
	22.30M
	1.79


[image: ]
[bookmark: _Ref115433322]CDF of positioning accuracy (m) of different measurements
Different inputs of AI model will affect the positioning performance for AI/ML based positioning. Time domain channel CIR as the input of AI model obtains the best positioning accuracy.
[bookmark: _Hlk115427450][bookmark: _Hlk101514626][bookmark: _Hlk110851015]Capture in the TR that time domain CIR as the model input for direct AI/ML positioning obtains the best performance compared to other model inputs.
Support time domain CIR as the model input at least for direct AI/ML positioning. 

AI/ML assisted positioning
At the RAN1 #110b-e meeting, it was agreed that:
Agreement
For AI/ML-assisted positioning, companies report which construction is applied in their evaluation:
(a) Single-TRP construction: the input of the ML model is the channel measurement between the target UE and a single TRP, and the output of the ML model is for the same pair of UE and TRP. 
(b) Multi-TRP construction: the input of the ML model contains N sets of channel measurements between the target UE and N (N>1) TRPs, and the output of the ML model contains N sets of values, one for each of the N TRPs.
Note: For a measurement (e.g., RSTD) which is a relative value between a given TRP and a reference TRP, the TRP in “single-TRP” and “multi-TRP” refers to the given TRP only. 
Note: For single-TRP construction, companies report whether they consider same model for all TRPs or N different models for TRPs
Agreement
For evaluation of AI/ML assisted positioning, the following intermediate performance metrics are used:
· LOS classification accuracy, if the model output includes LOS/NLOS indicator of hard values, where the LOS/NLOS indicator is generated for a link between UE and TRP;
· Timing estimation accuracy (expressed in meters), if the model output includes timing estimation (e.g., ToA, RSTD).
· Angle estimation accuracy (in degrees), if the model output includes angle estimation (e.g., AoA, AoD).
· Companies provide info on how LOS classification accuracy and timing/angle estimation accuracy are estimated, if the ML output is a soft value that represents a probability distribution (e.g., probability of LOS, probability of timing, probability of angle, mean and variance of timing/angle, etc.)

For AI/ML assisted positioning, AI/ML technology is utilized to extract some intermediate features from model input (e.g., CIR), such as TOA, LOS/NLOS identification, and so on.  Specifically, as shown in Figure 5, instead of constructing an AI model with 18 TRPs’ CIRs as input and the target UE’s location as output, we consider a more general framework with one TRP’s CIR as the input and an intermediate feature (such as TOA of that TRP at the target UE) as the output for each TRP, respectively. Based on the intermediate feature extracted from CIR of each TRP, the location of the target UE can be further derived by utilizing other positioning algorithms, including AI-based or non-AI based algorithms. In order to distinguish from aforementioned direct AI/ML positioning method based on multi-TPRs’ CIRs, we call it AI/ML assisted positioning, i.e., CIR-intermediate feature-positioning.  
[bookmark: OLE_LINK11][bookmark: OLE_LINK15]In our evaluation, we took single-TRP construction and the model of each TRP shares the same model structure but varying model parameters. Optionally, it is also possible to construct a common model trained with all TRPs’ data. The main motivation comes from our considerations about AI model generalization and practical deployment in real environment for AI based positioning. The AI model related with multiple TRPs is strongly correlated with TRPs’ distribution, and may not work well once TPRs’ distribution changes, such as the number of TPRs, the location of each TRP. Apparently, an AI model trained with multiple TRPs’ CIRs works the best in those trained scenarios with multiple TRPs, which in turn means that large number of field data needs to be collected from real deployment and computation & time-consuming model training/validation process needs to be conducted from scratch for each scenario. However, the AI/ML assisted positioning method estimating intermediate feature from single-TRP’s CIR is independent of these factors, and can be largely compatible with existing positioning protocol framework (i.e., LPP) specified in previous releases. 
In this section, we mainly focus on the evaluations of two typical schemes, AI/ML based TOA estimation and AI/ML based LOS/NLOS identification, and further analyze their pros and cons.



[bookmark: _Ref114653653]The framework of AI/ML assisted positioning method
AI/ML based TOA estimation


We evaluate the performance of AI/ML based TOA estimation where TOA from a TRP to a target UE is taken as the intermediate feature. The specific procedures are presented as follows. Firstly, we obtain the input of the AI model with the dimension of  in a similar manner as described in the section 3.1. Note that full CIR points are taken without truncation, and truncated CIR is also optional. It is further divided into 18 vectors each with dimension of as the input of single-TRP’s model. Based on the relative location of UEs and each TRP, AI models for TOA label associated with straight-line (LOS) distance can be trained. Then, TOA associated with each TRP can be estimated according to the trained AI/ML models with UE’s CIR as the input. To estimate UE’s location according to TOAs of multiple TRPs, we adopt a non-AI algorithm by combining Least Square algorithm with Taylor algorithm. Specifically, we firstly select four TOA estimations with the highest accuracy from multiple TOA estimations when assuming that TOA errors can be obtained. Moreover, conventional TRP selection algorithms can also be used to select the TOAs with minimal errors, such as Receive Autonomous Integrity Monitoring algorithm. Utilizing the selected TOAs and prior locations of TRPs, Least Square algorithm is used to estimate a rough location as the starting point of Taylor algorithm. Then, this rough location is fed into the Taylor algorithm,  and the final location can be estimated finely after several iterations,.
As shown in Table 3, it is observed that the AI/ML based TOA estimation positioning method (0.60m@90%) achieves remarkable performance gain compared to direct AI/ML positioning method (0.99m@90%). Besides, the AI/ML based TOA estimation is less sensitive to the environmental change compared to the direct AI/ML positioning. Even if the model trained with dataset of a fixed drop is tested with a new drop without any modification, the performance of AI/ML based TOA estimation positioning method can still be maintained, which is significantly better than that of the direct AI/ML positioning method. Therefore, AI/ML based TOA estimation enjoys better generalization capability as compared to direct AI/ML positioning. We can conclude that AI/ML based TOA estimation has great advantages in positioning performance, deployment flexibility, compatibility with existing positioning protocol framework, and generalization capability.
[bookmark: _Ref115170908]Evaluation results for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	Drop1
	Drop1
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	TOA
	0
	Drop1
	Drop1
	25k
	1k
	44M *18
	1.45G*18
	0.60

	CIR
	Pos.
	0
	Drop1
	Drop2
	25k
	1k
	1.65M
	22.30M
	6.00

	CIR
	TOA
	0
	Drop1
	Drop2
	25k
	1k
	44M *18
	1.45G*18
	2.51



[bookmark: _Ref115439918]CDF of estimation accuracy of intermediate feature TOA  (meter)
	Scenario
	Methods
	50%
	67%
	80%
	90%

	InF-DH
{0.6,6,2}
	AI/ML based TOA est. (CIR-TOA) 
	0.43
	0.86
	1.69
	3.74






[bookmark: OLE_LINK2][bookmark: OLE_LINK3]According to the above agreement, the intermediate performance of single-TRP TOA estimation is also presented in Table 4. For convenience, the unit of TOA is set to meter (), where and denote time of arrival and time of departure of the target signal when assuming that LOS path is exist, respectively. It is observed that at least fifty percent of users have a TOA error of 0.45 meters or less for each TRP. Particularly, @90% CDF is not our concern since only 4 TOAs are required for TOA based positioning but not all TRPs’ TOAs. In other words, the probability of TOA error less than 0.43m is 50% for each TRP, and the probability that at least 4 TOA errors are less than 0.45m among 18 TRPs is calculated as follows:

	
Therefore, it is confirmed that there always exists at least 4 TRPs with TOA error less than 0.45m for scenarios with 18 TRPs for AI/ML based TOA estimation, and in this way, TOA based positioning performance can be significantly ensured.

[image: ]
[bookmark: OLE_LINK8][bookmark: OLE_LINK12]CDF of positioning accuracy of different positioning methods
AI/ML based TOA estimation for positioning has great advantages in positioning performance, deployment flexibility, compatibility with existing positioning protocol framework, and generalization capability.
AI/ML based LOS/NLOS identification
Apart from the above mentioned AI/ML based TOA estimation method (CIR-TOA-position), AI/ML based LOS/NLOS identification is another popular positioning scheme with the advantages of great comparability with legacy protocols. In such case, AI/ML technology can be regarded as an enhancement to conventional non-AI LOS/NLOS methods since AI/ML can achieve a more accurate LOS/NLOS identification attached with a confidence metric. Importantly, there is no obvious performance degradation when the AI/ML model associated with a specific TRP is transferred to another TRP, and thus it also enjoys great generalization capability across TRPs. However, compared to the AI/ML based TOA estimation in which AI/ML model is used to estimate TOA directly, its performance still relies on the existence of LOS paths between UE and TRPs for AI/ML based LOS/NLOS identification and may be out of work in heavy NLOS scenarios. Moreover, how to obtain LOS/NLOS labels is a challenging task for data collection.
Considering limited LOS paths in InF-DH scenarios with clutter parameter {0.6, 6, 2}, we evaluate the positioning performance of AI/ML based LOS/NLOS identification positioning method in InF-DH scenarios with clutter parameter {0.4, 2, 2} where about half of channels are with LOS path. The specific simulation method can refer to the procedure in Figure 8. As shown in Table 5, it is observed that the AI/ML model with CIR as input can achieve more accurate LOS/NLOS identification with comparison to the legacy R17 method, since more potential features of CIR are captured to establish a connection with LOS/NLOS characteristic, such as delay spread (a channel with NLOS path usually has larger delay spread). As shown in Table 6, compared to AI/ML based LOS/NLOS identification, the AI/ML based TOA estimation method still has significant performance gain thanks to the powerful capability of AI/ML in TOA feature extraction.
[bookmark: _Ref115337206]Evaluation results of LOS/NLOS identification accuracy for AI/ML model deployed on UE or Network side, without model generalization, full-connection network 
	Model input
	Model output
	Label
	Clutter param
	Dataset size & type
	AI/ML complexity
	Accuracy of LOS/NLOS identification

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR
	LOS/NLOS
	0
	{0.4, 2, 2}
	25k 
	1k
	3.62M*18
	7.24M*18
	>99%

	R17 [9]
	{0.4, 2, 2}
	/
	93%



[bookmark: _Ref115170924]Evaluation results for AI/ML model deployed on UE or Network side, without model generalization, full-connection network
	Model input
	Model output
	Label
	Clutter param
	Dataset size & type
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	[bookmark: _Hlk115339209]CIR
	LOS/NLOS
	0
	{0.4, 2, 2}
	25k 
	1k
	3.62M*18
	7.24M*18
	1.10

	CIR
	TOA
	0
	{0.4, 2, 2}
	25k 
	1k
	44M*18
	1.45G*18
	0.39
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 CDF of positioning accuracy of different AI/ML assisted positioning methods

 
[bookmark: _Ref111028629] AI/ML based LOS/NLOS identification for positioning

[bookmark: _Hlk115427597] AI/ML based LOS/NLOS identification for positioning has the following advantages:
· More accurate LOS/NLOS identification along with a confidence metric 
· Better compatibility with existing positioning protocol framework. 
· Great generalization capability.
and disadvantages: 
· Positioning performance could suffer from severe degradation in heavy-NLOS scenarios.
· Obtain LOS/NLOS labels is a challenging task for data collection.
Capture in the TR the benefits of AI/ML assisted positioning in terms of positioning accuracy and AI model generalization.

Generalization performance evaluation
As we discussed in section 2, AI/ML model generalization performance is greatly important for actual model deployment.  In this section,  model generalization is evaluated when considering varying settings/scenarios and implementation imperfections.
[bookmark: _Ref115425542]AI/ML model generalization performance
At the RAN1#110 meeting, it was agreed that：
Agreement
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
a) Different drops
Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N>=1.
b) Clutter parameters, e.g., training dataset from one clutter parameter (e.g., {40%, 2m, 2m}), test dataset from a different clutter parameter (e.g., {60%, 6m, 2m});
c) Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;
Other aspects are not excluded.
Note: It’s up to participating companies to decide whether to evaluate one aspect at a time, or evaluate multiple aspects at the same time.
In RAN1#110b-e meeting, it was agreed that:
Agreement
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
(e) InF scenarios, e.g., training dataset from one InF scenario (e.g., InF-DH), test dataset from a different InF scenario (e.g., InF-HH)
Following the above agreements, we further conducted performance evaluations under different settings/scenarios to show their impact to AI/ML model performance.  
Different drops in the same scenario
We perform some simulations to evaluate the generalization capability of direct AI/ML positioning with multi-TRPs’ CIRs as input. As shown in Table 7, while the AI/ML model trained with dataset of drop 1 performs well with test dataset of drop 1, the performance will deteriorate severely when the model (without any modification on parameters) is tested on dataset from other drops. It is indicated that AI/ML model suffers from poor generalization capability across different drops for direct AI/ML positioning. Here, the concept ‘different drops’ means different distributions of large-scale parameters in system level simulation, and these large-scale parameters contain absolute time of arrival, angle of arrival, angle of departure, power of LOS/NLOS paths, initial phase of LOS/NLOS paths, delay of LOS/NLOS paths, and so on. For the case of InF scenario, different drops can be intuitively viewed as different factories with different interiors.
[bookmark: _Ref118103941]Evaluation results of  different drops for AI/ML model deployed on UE or Network side, with model generalization, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	Drop1
	Drop1
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	Drop1
	Drop2
	25k
	1k
	1.65M
	22.30M
	6.00

	CIR
	Pos.
	0
	Drop1
	Drop3
	25k
	1k
	1.65M
	22.30M
	5.81



[image: ]
CDF of positioning accuracy when AI model is tested on other drops
Positioning performance of AI/ML based positioning degrades when the model trained with dataset of one drop is tested with dataset of other drops.
Different clutter parameters
[bookmark: OLE_LINK4][bookmark: OLE_LINK7]We further evaluate the model generalization performance under clutter parameters {0.6, 6, 2} and {0.4, 2, 2}. As shown in Table 8, AI/ML model performs well when the training dataset and test dataset are generated with the same clutter parameter. However, the positioning performance can drop dramatically when the training dataset and test dataset are generated with different clutter parameters, indicating that AI/ML model suffers from poor generalization capability across different clutter parameters. Moreover, training AI/ML model with a mixed dataset is an effective way to improve generalization performance. It is noted that the mixed dataset has twice the amount  of samples as dataset of {0.6, 6, 2} and {0.4, 2, 2}.
[bookmark: _Ref115425185]Evaluation results of  different clutter parameters for AI/ML model deployed on UE or Network side, with model generalization, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	{0.6, 6, 2}
	{0.6, 6, 2}
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	{0.6, 6, 2}
	{0.4, 2, 2}
	25k
	1k
	1.65M
	22.30M
	8.67

	CIR
	Pos.
	0
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	1k
	1.65M
	22.30M
	1.06

	CIR
	Pos.
	0
	{0.4, 2, 2}
	{0.6, 6, 2}
	25k
	1k
	1.65M
	22.30M
	4.77

	CIR
	Pos.
	0
	Mix of {0.6, 6, 2} and {0.4, 2, 2}
	{0.6, 6, 2}
	25k  & 25k
	1k
	1.65M
	22.30M
	0.87

	CIR
	Pos.
	0
	Mix of {0.6, 6, 2} and {0.4, 2, 2}
	{0.4, 2, 2}
	25k  & 25k
	1k
	1.65M
	22.30M
	0.94



[image: ]
CDF of positioning accuracy of clutter parameters {0.6, 6, 2} and {0.4, 4, 2}
Positioning performance of AI/ML based positioning degrades when the training and testing datasets are of different clutter parameters in an InF-DH scenario.
Training AI/ML model with a mixed dataset is an effective way to improve model generalization performance.
 Capture in the TR the benefits of training dataset with mixed/different configurations for AI/ML based positioning in terms of AI model generalization capability.
Different scenarios
At the RAN1 #110b-e meeting, it was also agreed that:
Agreement
For AI/ML based positioning, if an InF scenario different from InF-DH is evaluated for the model generalization capability, the selected parameters (e.g., clutter parameters) are compliant with TR 38.901 Table 7.2-4 (Evaluation parameters for InF).
· [bookmark: OLE_LINK9][bookmark: OLE_LINK10]Note: In TR 38.857 Table 6.1-1 (Parameters common to InF scenarios), InF-SH scenario uses the clutter parameter {20%, 2m, 10m} which is compliant with TR 38.901.
We further evaluate the generalization capability of AI/ML model across different scenarios. From simulation results listed in Table 9, we can observe that AI technology can achieve high-accuracy positioning when training dataset and test dataset are consistent (generated in the same scenario). When the model trained with dataset of an InF-DH scenario is directly transferred to other scenarios, such as InF-HH (100% LOS) and InF-SH scenarios with clutter parameter {20%, 2m, 10m}, different dataset distribution with training dataset will severely deteriorate the positioning accuracy, which indicates that the generalization ability of AI/ML model across scenarios is very limited for direct AI/ML positioning. As we can see, high positioning accuracy (<1m @90%) could be achieved when training dataset and test dataset are sampled from the same scenario. Otherwise, the performance will deteriorate severely (>10m @90%). 
[bookmark: _Ref115425482]Evaluation results of  different scenarios for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	DH
	DH
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	HH
	HH
	25k
	1k
	1.65M
	22.30M
	0.63

	CIR
	Pos.
	0
	SH
	SH
	25k
	1k
	1.65M
	22.30M
	0.87

	CIR
	Pos.
	0
	DH
	HH
	25k
	1k
	1.65M
	22.30M
	>10

	CIR
	Pos.
	0
	DH
	SH
	25k
	1k
	1.65M
	22.30M
	>10



[image: ]
CDF of positioning accuracy when training dataset and test dataset are not matched
The positioning accuracy of AI/ML based positioning trained with dataset from one InF scenario is seriously degraded when tested on dataset from a different InF scenario.

The impact of implementation imperfections
At the RAN1#110 meeting, it was agreed that：
Agreement
For AI/ML-based positioning, study impact from implementation imperfections.
In section 4.1, we have evaluated the generalization capability of AI/ML model from a high-level perspective, including the generalization of AI/ML model in different drops, different clutters and different scenarios. In practice, other factors stemming from implementation imperfections, such as CIR estimation error, synchronization error, and labeling error, can also impair the positioning accuracy of AI/ML model even if the deployed AI/ML model is well-trained offline in advance. Indeed, these imperfect factors are unavoidable and difficult to eliminate by regular manners. In this section, in order to assess the unknown risks from implementations, we specifically evaluate the impact of these implementation imperfections on positioning performance for AI/ML based positioning, and propose a potential solution to mitigate its impart as much as possible. 
CIR estimation error
At the RAN1 #110b-e meeting, we have reached the following conclusion:
Conclusion
For evaluation of AI/ML based positioning, it’s up to each company to take into account the channel estimation error in their evaluation. Companies describe the details of their simulation assumption, e.g., realistic or ideal channel estimation, error models, receiver algorithms.
It has been observed that adopting CIR as the input to AI/ML model reaps the best inference accuracy for both direct AI/ML positioning and AI/ML assisted positioning frameworks due to the rich information contained, such as first-path feature, and fingerprint feature. The existing schemes are all evaluated under the assumption that ideal CIRs used for model training and inference can be obtained while ignoring the implementation imperfections. In practice, CIR estimation error is always existed and it is impossible to obtain the ideal CIR by measurement. Here, we focus on the evaluation of impact of CIR estimation error on positioning performance for direct AI/ML positioning.


[bookmark: _Ref117690455] A procedure of modeling CIR estimation error [10]

The performance of channel estimation is mainly affected by interference and noise. As shown in Figure 12, we use a procedure of adding channel estimation error to time-domain CIR with reference to [10], in which the additional estimation error obeying a zero-mean Complex Gaussian distribution is generated according to the received SINR. Without loss of generality, the compensation factor  is set to 9dB in our simulation setting. To estimate the dynamic range of SINR for the considered InF-DH scenario, we further calculate the distributions of SINR when assuming there exists different number of interfering TRPs:
· Without interference, i.e., all TRPs will not interference with each other:

	
· With N interfering TRPs：

	



where  denotes the RSRP between UE and i-th TRP, and is a set containing all interfering TRPs (excluding the target ). The noise is calculated as follows:

	
[image: ]
[bookmark: _Ref115426008] Dynamic range of SINR for the InF-DH scenario
The distributions of SINR with 0, 1, 4, 8 interfering TRPs are shown in Figure 13. By the way, the interfering TRPs are selected ramdomly from other 17 TRPs. Clearly, when there is no interference, SINR is ranging from 20dB to 60dB. However, SINR will dramatically decrease even when there is only one interfering TRP since interference dominates SINR as compared to noise. Considering that poor SINR condition can severely deteriorate channel estimation quality and cause unknown channel estimation error, we strongly believe evaluating the impact of CIR estimation error on positioning performance is very necessary at least when CIR or PDP is adopted as model input. 
In practice, the SINR condition of training dataset and test dataset may not remain the same due to the dynamic wireless environment. In this regard, we further evaluate the positioning performance when training dataset and test dataset are sampled from different SINR conditions. Considering that some dedicated reference signals can be configured for high-quality data collection, we assume that training dataset comes from a high-SINR condition without interference and test datasets suffer from the interference from various number of TRPs. As shown in Table 10, it is observed that the impact of noise is negligible while the interference from other TRPs can severely deteriorate the positioning accuracy. The reason behind is that the additional channel estimation error caused by interference impairs the spatial consistency, making partial mismatch between training dataset and test dataset, while fingerprint feature is of great importance for direct AI/ML positioning. 
[bookmark: _Ref115426247]Evaluation results for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	Without interference
	0 interfering TRP (Without interference)
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	
	1 interfering TRP
	25k
	1k
	1.65M
	22.30M
	8.35

	CIR
	Pos.
	0
	
	4 interfering TRPs
	25k
	1k
	1.65M
	22.30M
	10.22

	CIR
	Pos.
	0
	
	8 interfering TRPs
	25k
	1k
	1.65M
	22.30M
	13.14



 [image: ]
Evaluation of the impact of CIR estimation error on positioning accuracy
The interference from TPRs can dramatically impair the positioning performance of AI/ML model.
 Further study the impact and potential solution of CIR estimation error on AI/ML based positioning performance.

Synchronization error
At the RAN1#110 meeting, it was agreed that:
Agreement
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;
Synchronization error caused by hardware imperfection is another imperfect factor affecting the generalization performance of AI/ML model. As we analyzed earlier, AI/ML model performs positioning inference with reference to three features of CIR, including first-path information due to the existence of absolute time of arrival, fingerprint information due to the existence of spatial consistency, and correlation of CIRs for fixed TRPs’ topology. Intuitively, synchronization error can directly impair the feature of first-path delay. Then, it can partally impair the spatial consistency, resulting in the dissimilarity of CIRs for users in close proximity to each other. Finally, it can impair the correlation of CIRs for fixed TRPs’ topology since synchronization errors may be different across TRPs. Moreover, synchronization error is unavoidable and difficult to eliminate completely, and thus it is necessary to evaluate its impact on positioning performance for AI/ML based positioning.
Assume that training dataset is sampled with perfect synchronization and test dataset is sampled with 2ns, 10ns and 50ns synchronization errors. This assumption is reasonable since synchronization error can be mitigated very well in the process of data collection, such as dedicated RS configuration and data post-processing, but it is difficult to estimate real-time and accurate synchronization error in the deployed scenario. 
As shown in Table 11, it is noticeable that synchronization error can dramatically deteriorate the positioning performance of AI/ML model. Meanwhile, the positioning accuracy significantly degrades with the increase of synchronization error. Therefore, the impact of synchronization error on positioning performance can not be ignored.
[bookmark: _Ref115426361]Evaluation results for AI/ML model deployed on UE or Network side, with model generalization, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	0ns
	0ns
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	0ns
	2ns
	25k
	1k
	1.65M
	22.30M
	1.64

	CIR
	Pos.
	0
	0ns
	10ns
	25k
	1k
	1.65M
	22.30M
	4.56

	CIR
	Pos.
	0
	0ns
	50ns
	25k
	1k
	1.65M
	22.30M
	10.18



[image: ]
 Evaluation of the impact of synchronization error on positioning accuracy
Regarding the serious impairment on positioning performance, it is meaningful to study the solution to mitigate the impact of synchronization error. From the perspective of AI/ML technology, we propose an efficient solution by mix-training. Specifically, in addition to training data with perfect synchronization, some samples with synchronization error are additionally included into the training dataset. These samples with synchronization error can be collected from the real environment or obtained through data augmentation of existing data. As shown in Table 12, when only 2k samples with synchronization error 50ns are added into the training dataset, the positioning accuracy of AI/ML model is significantly improved from 10.18m@90% to 1.52m@90%, proving that mix-training can deal with synchronization error efficiently. The reason is that AI/ML model can learn the difference in training data with various synchronization errors via mix-training. 
[bookmark: _Ref115426509]Evaluation results for AI/ML model deployed on UE or Network side, with model generalization, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	0ns
	10ns
	25k
	1k
	1.65M
	22.30M
	4.56

	CIR
	Pos.
	0
	Mix 0ns+10ns
	10ns
	25k+2k
	1k
	1.65M
	22.30M
	1.16

	CIR
	Pos.
	0
	0ns
	50ns
	25k
	1k
	1.65M
	22.30M
	10.18

	CIR
	Pos.
	0
	Mix 0ns+50ns
	50ns
	25k+2k
	1k
	1.65M
	22.30M
	1.52



[image: ]
 Evaluation of the impact of synchronization error on positioning accuracy
The positioning accuracy of AI/ML based positioning significantly degrades with the increase of network synchronization error.
The positioning accuracy of AI/ML model is significantly improved from 10.18m@90% to 1.52m@90% by mix-training with sampels of synchronization error.
Further study the impact and potential solution of network synchronization error on AI/ML based positioning performance.

Labeling error
At the RAN1#110 meeting, it was agreed that:
Agreement
When providing evaluation results for AI/ML based positioning, participating companies are expected to describe data labelling details, including:
· Imperfection of the ground truth labels, if any

Regarding the measurement error, 100 percent correct ground truth label is not always available and labeling error may exist. To some extent, training AI/ML model with these noisy labels may severely impair the positioning performance due to the existence of wrong prior knowledge in training dataset. Therefore,  it is meaningful to evaluate the impact of labeling error on positioning performance for AI/ML based positioning.
The method of adding labeling error to ground truth label is specified as follows：

	




where  denotes the coordinate in the horizontal direction,  denotes the labeling error obeying Gaussian distribution , and  denotes the noisy label with labeling error.


As shown in Table 13, the positioning accuracy gradually degrades with the increase of labeling error, but is still acceptable until standard deviation  is 1 m (2.17m@90%). It is observed that AI/ML based positioning is robust to label noise to some extent. For example, when the standard deviationof labeling error is 4m, the theoretical error of positioning accuracy is about 8.50m@90%, which is larger than that of AI/ML based positioning 5.13m@90%. Therefore, AI/ML model can also act as a filter, filtering out the noise of training data to find the true pattern partially.
[bookmark: _Ref115426586]Evaluation results for AI/ML model deployed on UE or Network side, with model generalization, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	Std = 0
	0
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	Std = 0.5
	0
	25k
	1k
	1.65M
	22.30M
	1.51

	CIR
	Pos.
	0
	Std = 1
	0
	25k
	1k
	1.65M
	22.30M
	2.17

	CIR
	Pos.
	0
	Std = 2
	0
	25k
	1k
	1.65M
	22.30M
	3.55



[image: ]
 Evaluation of the impact of labeling error on positioning accuracy

The positioning accuracy gradually degrades with the increase of labeling error, but is still acceptable until standard deviation  is 1 m (2.17m@90%). 
AI/ML based positioning is robust to label noise to some extent.
Further study the impact and potential solution of labeling error on AI/ML based positioning performance.
[bookmark: _Ref115426883]Model fine-tuning for generalization enhancement
At the RAN1#110 meeting, it was agreed that：
Agreement
For AI/ML-based positioning, for evaluation of the potential performance benefits of model finetuning, report at least the following: 
training dataset setting (e.g., training dataset size necessary for performing model finetuning)
horizontal positioning accuracy (in meters) before and after model finetuning.
When AI model trained offline is transferred to a new scenario, performance degradation may be inevitable due to the mismatch between training data and field data as shown in the above sections. In general, there are two solutions to deal with this generalization problem: 
The first is to ensure training data and field data are sampled from the same scenario. In this way, the network entity or UE needs to collect large amounts of data for model training and validation, and considerable computational and time resource are also required to train these scenario-specific models from scratch.
The second is fine-tuning. Specifically, AI model is pre-trained by training data which may be from simulation data, field data collected by other drops, or both. When the pre-trained model is transferred to a real environment, a retraining process, named fine-tuning, should be triggered to fine-tune the pre-trained model with field data collected from the real environment. In this way, a scenario-specific model can be obtained with a small amount of field data and computation & time resource consumption. 
The first solution is obvious and intuitive, which can achieve good performance at the cost of heavy data collection and model retraining. In this section, we mainly focus on the second solution utilizing fine-tuning to enhance the model generalization performance. In general, fine-tuning procedure consists of two steps. The first step is to pre-train a model based on some offline-collected data. The second step is to fine-tune the pre-trained model based on the collected field data. 
Before applying fine-tuning acturally, at least the following issues should be identified and resolved firstly, including：
What scenarios or tasks are model fine-tuning applied to? Both original domain and target domain should be identified.
 How many field samples are required to conduct fine-tuning? Some guidelines on sample size should be considered.
To answer the above questions, we perform the following simulation evaluation and analysis, and some interesting and meaningful observations are presented.
Model fine-tuning for direct AI/ML positioning
From the observations in Section 4, we have concluded that direct AI/ML positioning suffers from poor generalization performance for different drops, clutter parameters, scenarios and synchronization errors. Here, we will evaluate whether model fine-tuning can improve the generalization performance for direct AI/ML positioning.
Model fine-tuning across clutter parameters
When the offline-trained AI/ML model is deployed in a scenario with a different clutter parameter, positioning performance degradation is unavoidable. Fortunately, fine-tuning can be a useful techinique to mitigate the impact of these environmental changes. As shown in Table 14, we can observe that fine-tuning the model with a small amount of field data can significantly improve the positioning accuracy in the new scenario with clutter parameter {0.4, 2, 2}. Moreover, the positioning accuracy continues to improve as the increased size of the field data used for model fine-tuning.
[bookmark: _Ref117514233]Evaluation results for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0%
	{0.6, 6, 2}
	/
	{0.4, 2, 2}
	25k
	0
	1k
	1.65M
	22.30M
	8.67

	CIR
	Pos.
	0%
	{0.4, 2, 2}
	/
	{0.6, 6, 2}
	25k
	0
	1k
	1.65M
	22.30M
	4.77

	CIR
	Pos.
	0%
	{0.6, 6, 2}
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	0.5k
	1k
	1.65M
	22.30M
	5.22

	CIR
	Pos.
	0%
	{0.4, 2, 2}
	{0.6, 6, 2}
	{0.6, 6, 2}
	25k
	0.5k
	1k
	1.65M
	22.30M
	3.89

	CIR
	Pos.
	0%
	{0.6, 6, 2}
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	1k
	1k
	1.65M
	22.30M
	4.40

	CIR
	Pos.
	0%
	{0.4, 2, 2}
	{0.6, 6, 2}
	{0.6, 6, 2}
	25k
	1k
	1k
	1.65M
	22.30M
	3.23

	CIR
	Pos.
	0%
	{0.6, 6, 2}
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	2k
	1k
	1.65M
	22.30M
	3.50

	CIR
	Pos.
	0%
	{0.4, 2, 2}
	{0.6, 6, 2}
	{0.6, 6, 2}
	25k
	2k
	1k
	1.65M
	22.30M
	2.56

	CIR
	Pos.
	0%
	{0.6, 6, 2}
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	3k
	1k
	1.65M
	22.30M
	3.16

	CIR
	Pos.
	0%
	{0.4, 2, 2}
	{0.6, 6, 2}
	{0.6, 6, 2}
	25k
	3k
	1k
	1.65M
	22.30M
	2.40


[image: ]
[bookmark: _Ref117516567] Evaluation of model fine-tuning for different clutter parameters (train with {0.4, 2, 2}, fine-tuning and testing with {0.6, 6, 2})
[image: ]
 Evaluation of model fine-tuning for different clutter parameters (train with {0.6, 6, 2}, fine-tuning and testing with {0.4, 2, 2})
Fine-tuning the model with small amounts of samples from an unseen scenario can achieve significantly positioning accuracy improvement when the pre-trained model is transferred to a new scenario with a different clutter parameter for direct AI/ML positioning.
Model fine-tuning across drops
When the AI/ML model offline trained with Drop1 is deployed in Drop2, obvious positioning performance degradation has been observed. As shown in Table 15, we can observe that fine-tuning the model with a small amount of the field data can significantly improve the positioning accuracy in the new drop. Moreover, the positioning accuracy continues to improve as the increased size of the field data used for model fine-tuning.
[bookmark: _Ref117515560]Evaluation results for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0%
	Drop1
	/
	Drop2
	25k
	0
	1k
	1.65M
	22.30M
	6.00

	CIR
	Pos.
	0%
	Drop1
	Drop2
	Drop2
	25k
	0.5k
	1k
	1.65M
	22.30M
	4.69

	CIR
	Pos.
	0%
	Drop1
	Drop2
	Drop2
	25k
	1k
	1k
	1.65M
	22.30M
	3.97

	CIR
	Pos.
	0%
	Drop1
	Drop2
	Drop2
	25k
	2k
	1k
	1.65M
	22.30M
	3.37

	CIR
	Pos.
	0%
	Drop1
	Drop2
	Drop2
	25k
	3k
	1k
	1.65M
	22.30M
	2.90



[image: ]
Evaluation of model fine-tuning for different drops

Fine-tuning the model with small amounts of samples from an unseen scenario can achieve significantly positioning accuracy improvement when the pre-trained model is transferred to a new drop for direct AI/ML positioning.
Model fine-tuning across scenarios
When the offline-trained AI/ML model is deployed in a different scenario, positioning performance degradation is inevitable. As shown in Table 16, fine-tuning the model with a small amount of the field data can significantly improve the positioning accuracy in the new scenario. Moreover, the positioning accuracy continues to improve as the increase of the field data used for model fine-tuning.
[bookmark: _Ref117515654]Evaluation results for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0%
	DH
	/
	HH
	25k
	0
	1k
	1.65M
	22.30M
	>10

	CIR
	Pos.
	0%
	DH
	HH
	HH
	25k
	0.5k
	1k
	1.65M
	22.30M
	10.50

	CIR
	Pos.
	0%
	DH
	HH
	HH
	25k
	1k
	1k
	1.65M
	22.30M
	8.78

	CIR
	Pos.
	0%
	DH
	HH
	HH
	25k
	2k
	1k
	1.65M
	22.30M
	5.84

	CIR
	Pos.
	0%
	DH
	HH
	HH
	25k
	3k
	1k
	1.65M
	22.30M
	4.66



[image: ]
Evaluation of model fine-tuning for different scenarios
Fine-tuning the model with small amounts of samples from an unseen scenario can achieve significantly positioning accuracy improvement when the pre-trained model is transferred to a new scenario for direct AI/ML positioning.

Model fine-tuning across synchronization errors
Network synchronization error is inevitable, and can severely deteriorate the positioning accuracy of AI/ML model. In this regard, we expect to mitigate the negative impact of network synchronization error by model fine-tuning. Assuming that the initial AI/ML model is pretrained with offline-collected data without synchronization error, model fine-tuning is performed with collected field data with actual synchonrization error when the pretrained AI/ML model is transferred or deployed in a practical scenario. As shown in Table 17, Table 18 and Table 19, we evaluate the gain of model fine-tuning for scenarios with 50ns, 10ns and 2ns synchronization errors, respectively. Simulation results indicate that model fine-tuning can significantly improve the positioning accuracy of AI/ML model with a small amount of field data. In particular, fine-tuning the AI/ML model with only 3000 samples can achieve comparable positioning accuracy as compared with large-scale model training with 25k synchronization error-free data (0.99m@90%). Moreover, the positioning accuracy continues to improve with the increase of field data.
[bookmark: _Ref117516571]Evaluation results for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0%
	Sync.
0ns
	/
	50ns
	25k
	0
	1k
	1.65M
	22.30M
	10.18

	CIR
	Pos.
	0%
	0ns
	50ns
	50ns
	25k
	0.5k
	1k
	1.65M
	22.30M
	3.22

	CIR
	Pos.
	0%
	0ns
	50ns
	50ns
	25k
	1k
	1k
	1.65M
	22.30M
	2.39

	CIR
	Pos.
	0%
	0ns
	50ns
	50ns
	25k
	2k
	1k
	1.65M
	22.30M
	1.73

	CIR
	Pos.
	0%
	0ns
	50ns
	50ns
	25k
	3k
	1k
	1.65M
	22.30M
	1.47


[image: ]
Evaluation of model fine-tuning for different synchronization errors (50ns)
[bookmark: _Ref117516600]Evaluation results for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0%
	Sync.
0ns
	/
	10ns
	25k
	0
	1k
	1.65M
	22.30M
	4.56

	CIR
	Pos.
	0%
	0ns
	10ns
	10ns
	25k
	0.5k
	1k
	1.65M
	22.30M
	1.44

	CIR
	Pos.
	0%
	0ns
	10ns
	10ns
	25k
	1k
	1k
	1.65M
	22.30M
	1.28

	CIR
	Pos.
	0%
	0ns
	10ns
	10ns
	25k
	2k
	1k
	1.65M
	22.30M
	1.06

	CIR
	Pos.
	0%
	0ns
	10ns
	10ns
	25k
	3k
	1k
	1.65M
	22.30M
	0.95


[image: ]
Evaluation of model fine-tuning for different synchronization errors (10ns)
[bookmark: _Ref117516602]Evaluation results for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0%
	Sync.
0ns
	/
	2ns
	25k
	0
	1k
	1.65M
	22.30M
	1.64

	CIR
	Pos.
	0%
	0ns
	2ns
	2ns
	25k
	0.5k
	1k
	1.65M
	22.30M
	1.11

	CIR
	Pos.
	0%
	0ns
	2ns
	2ns
	25k
	1k
	1k
	1.65M
	22.30M
	1.11

	CIR
	Pos.
	0%
	0ns
	2ns
	2ns
	25k
	2k
	1k
	1.65M
	22.30M
	0.95

	CIR
	Pos.
	0%
	0ns
	2ns
	2ns
	25k
	3k
	1k
	1.65M
	22.30M
	0.90



Fine-tuning the model with small amounts of samples from an unseen scenario can achieve significantly positioning accuracy improvement when the pre-trained model is transferred to a new scenario with a different clutter synchronization error for direct AI/ML positioning.
Further study and confirm the benefits of fine-tuning in terms of model generalization enhancement for direct AI/ML positioning.

Model fine-tuning for AI/ML assisted positioning
For AI/ML assisted positioning, a meta-learning framework is adopted to pre-train a meta-model [5]. For comparison, AI/ML based TOA estimation method without model fine-tuning is adopted as the baseline. 
[bookmark: OLE_LINK6]Model fine-tuning across drops
We firstly evaluate the benefits of model fine-tuning in terms of improving model generalization capability across drops. As shown in Table 20, fine-tuning the model with only 1k samples can achieve obvious positioning accuracy enhancement when the pre-trained model trained with drop 1 is transferred to other drops compared to without fine-tuning. 
[bookmark: _Ref115426720]Evaluation results of  fine-tuning for AI/ML model deployed on UE or Network side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal TOA. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	0%
	Drop1
	/
	Drop2
	25k
	0
	1k
	44M*18
	1.45G*18
	2.76

	CIR
	TOA
	0%
	Drop1
	Drop2
	Drop2
	25k
	1k
	1k
	44M*18
	1.45G*18
	1.97



[image: ]
 CDF of positioning accuracy of fine-tuning in different drops

Fine-tuning the model with small amounts of samples from an unseen scenario can achieve significantly positioning accuracy improvement when the pre-trained model is transferred to a new drop for AI/ML assisted positioning.

Model fine-tuning across scenarios
We further evaluate the positioning performance when the pre-trained model trained with InF-DH {0.6, 6, 2} data is transferred to an InF-HH scenario. As listed in Table 21, we can observe that the AI model trained with InF-DH data will not work in an InF-HH scenario, and the positioning error is unacceptable. However, when the pre-trained model trained with InF-DH data is fine-tuned with only 1k samples of InF-HH data, we observe an obvious performance improvement. This result is even better than the first solution where training an InF-HH model with large amounts of InF-HH data as listed in Table 9. Note that an AI/ML model well-trained based on dataset from a scenario may be fine-tuned and then used for a new deployment scenario when there’s only limited training data with label (i.e. ground truth UE location) for that new scenario.
[bookmark: _Ref115426754]Evaluation results of  fine-tuning for AI/ML model deployed on UE or Network side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	0%
	DH
	/
	HH
	25k
	0
	1k
	44M *18
	1.45G*18
	>10

	CIR
	TOA
	0%
	HH
	/
	DH
	25k
	0
	1k
	44M *18
	1.45G*18
	>10

	CIR
	TOA
	0%
	DH
	HH
	HH
	25k
	1k
	1k
	44M *18
	1.45G*18
	0.28

	CIR
	TOA
	0%
	DH
	SH
	SH
	25k
	1k
	1k
	44M *18
	1.45G*18
	0.38



[image: ]
 CDF of positioning accuracy of fine-tuning in different scenarios

Fine-tuning the model with small amounts of samples from an unseen scenario can achieve significantly positioning accuracy improvement when the pre-trained model is transferred to a new scenario for AI/ML assisted positioning.
Further study and confirm the benefits of fine-tuning in terms of model generalization enhancement for AI/ML assisted positioning.
 Capture in the TR the benefits of fine-tuning for AI/ML based positioning in terms of positioning accuracy for AI model generalization capability.
Application of model fine-tuning
When coming back to the first question “what scenarios or tasks are model fine-tuning applied to?”, we can find some clues from the above simulation results. According to the existing observations, it is easy to find that: the performance gain of model fine-tuning is clearly different for different cases even if fine-tuning with the same scale of field data.  We compare the results of different cases when 1000 samples are used for model fine-tuning.  As shown in Table 22, while fine-tuning can achieve significantly performance gain, it is difficult to achieve high-accuracy positioning when there is a great difference between the source domain and the target domainl, such as differerent scenarios for direct AI/ML positioning. Moreover, when the source domain and the target domain are greatly similar, fine-tuning the AI/ML model with a small amount of field data can approach ideal positioning performance, such as different synchronization errors. Therefore, as for the application of model fine-tuning, we have the following observations:
Model fine-tuning is suitable for the following tasks:
The source domain and the target domain are greatly similar, such as with different synchronization error.
The target domain is easy to fit, such as TOA estimation for LOS path. 
[bookmark: _Ref117522650]Evaluation of model fine-tuning for different cases
	Cases
	Training
	Fine-tuning
	Testing
	Positioning accuracy @90%

	Direct AI/ML positioning
	{0.6, 6, 2} 
	{0.4, 2, 2} 
	{0.4, 2, 2} 
	4.40 

	
	{0.4, 2, 2} 
	{0.6, 6, 2} 
	{0.6, 6, 2} 
	3.23 

	
	Drop1
	Drop2
	Drop2
	3.97

	
	InF-DH
	InF-HH
	InF-HH
	8.78

	
	Sync 0ns
	50ns
	50ns
	2.39

	
	Sync 0ns
	10ns
	10ns
	1.28

	
	Sync 0ns
	2ns
	2ns
	1.11

	AI/ML assisted positioning
	Drop1
	Drop2
	Drop2
	1.97

	
	InF-DH
	InF-HH
	InF-HH
	0.28

	
	InF-DH
	InF-SH
	InF-SH 
	0.38



Model fine-tuning is suitable for the following tasks:
The source domain and the target domain are greatly similar, such as with different synchronization error.
The target domain is easy to fit, such as TOA estimation of LOS path. 

Sample size for model fine-tuning
From the above simulation results, we find that the positioning accuracy of  AI/ML model continues to improve as the increase of the field data used for model fine-tuning. Thus, it is better to collect more field data for model fine-tuning when the cost of data collection is not considered and the field data is always avaliable. However, for a data-restricted scenario,  how many field samples are required to conduct model fine-tuning?  In order to answer this question, we further evaluate a key indicator called data efficiency, which means @90% positioning accuracy improvement per N additional field data. The motivation of this definition comes from the observation: with the increase of field data, the 90% positioning accuracy is improving more and more slowly and gradually tending to saturate, which means the field data becomes progressively less efficient.  As shown in Table 23, we present the data efficiency for different ranges of sample size (N = 100) . 
[bookmark: _Ref117525985]Fine-tuning data sample efficiency for different cases
	Cases
	Range of sample size
	Data efficiency (@90% per 100 additional samples)
	Positioning accuracy with sample size N1 for sample range N1~N2(@90%)

	Train: {0.6, 6, 2}
Fine-tuning: {0.4, 2, 2}
Testing: {0.4, 2, 2}
	0-500
	0.69
	8.67 (0 samples)

	
	500-1000
	0.16
	5.22 (500 samples)

	
	1000-2000
	0.09
	4.40 (1000 samples)

	
	2000-3000
	0.03
	3.50 (2000 samples)

	Train: {0.4, 2, 2}
Fine-tuning: {0.6, 6, 2}
Testing: {0.6, 6, 2}
	0-500
	0.17
	4.77

	
	500-1000
	0.13
	3.89 

	
	1000-2000
	0.06
	3.23

	
	2000-3000
	0.01
	2.56

	Train: Drop1
Fine-tuning: Drop2
Testing: Drop2
	0-500
	0.26
	6.00

	
	500-1000
	0.14
	4.69 

	
	1000-2000
	0.06
	3.97 

	
	2000-3000
	0.04
	3.37 

	Train: DH
Fine-tuning: HH
Testing: HH
	0-500
	14.98
	>>10

	
	500-1000
	0.34
	10.50 

	
	1000-2000
	0.29
	8.78 

	
	2000-3000
	0.12
	5.84 

	Train: Sync. Error 0ns
Fine-tuning: 50ns
Testing: 50ns
	0-500
	1.39
	10.18

	
	500-1000
	0.16
	3.22 

	
	1000-2000
	0.06
	2.39 

	
	2000-3000
	0.02
	1.73 

	Train: Sync. Error 0ns
Fine-tuning: 10ns
Testing: 10ns
	0-500
	0.62
	4.56

	
	500-1000
	0.03
	1.44 

	
	1000-2000
	0.02
	1.28 

	
	2000-3000
	0.01
	1.06 

	Train: Sync. Error 0ns
Fine-tuning: 2ns
Testing: 2ns
	0-500
	0.10
	1.64

	
	500-1000
	0.001
	1.11 

	
	1000-2000
	0.01
	1.11 

	
	2000-3000
	0.005
	0.95 



In this regard, data efficiency can be considered as a metric to determine the sample size for model fine-tuning. Figure 26 presents a curve of positioning error reduction with increasing number of sample size (per 100 additional samples). We can observe that data efficiency is very high for the first 1000 samples, and then gradually degrades with the increase of sample size. Therefore, for a data-restricted scenario, at least two methods can be exploited to determine the sample size for model fine-tuning:
· With reference to a pre-defined threshold of data efficiency, such as 0.2m/100samples (red circle);
· With reference to the saturation point of data efficiency, such as 1500 samples (black line).
[image: ]
[bookmark: _Ref117530516][bookmark: _Ref118102921]The curve of positioning error reduction with increasing number of sample size (data efficiency)
While for a data-rich scenario, the sample size used to fine-tune the model should depend on the target positioning performance which is positively correlated with sample size used for model fine-tuning. 

Both data efficiency and target performance could be considered as reference to determine the sample size for model fine-tuning

Model training framework with fewer labeled data
At the RAN1#110 meeting, it was agreed that：
Agreement
For evaluation of AI/ML based positioning, study the performance impact from availability of the ground truth labels (i.e., some training data may not have ground truth labels). The learning algorithm (e.g., supervised learning, semi-supervised learning, unsupervised learning) is reported by participating companies.
For supervised learning, large-scale and high-quality training data is of great importance for model performance. However, it may be difficult to collect large-scale training data for AI/ML based positioning, especially accurate location labels. There are three possible solutions to train an AI/ML model with fewer labeled data, including fine-tuning, semi-supervised learning, and multiple antenna ports. Specifically, 
Fine-tuning can achieve very good positioning accuracy while requiring a well-trained AI model in advance, and how to obtain this model is also an open issue. 
Semi-supervised learning can improve positioning accuracy with the assistance of some extra unlabeled data, where the unlabeled data is relatively easy to collect. 
Multi-port data can also be utilized to improve the positioning accuracy, while more ports resource may be required to support data collection and measurement.
[image: ]
 Three possible solutions to train an AI/ML model with limited labeled data.
Model fine-tuning with limited filed data
As presented in section 5, we mainly evaluate and analyze the performance of model fine-tuning from the perspective of model generalization. Moreover, model fine-tuning is also an effective way to train  a scenario-specific AI model quickly with less field data requirement for a new scenario. From the simulation results in Table 20 and Table 21, we observe that fine-tuning the pretrained model with only 1k collected field samples yields significant performance gain. Meanwhile, fewer computation and storage resources are required to train such a new model as compared to large-scale model training from scratch. In this sense, both of filed data collection and model fine-tuning can also be conducted at UE side as well. However, the performance of model fine-tuning relies on a well-pretrained model, and how to obtain this model is still an open issue.
Semi-supervised learning with limited labeled data
AI/ML is data-driven, and the excellent performance benefits from a large number of available training data. In practice, some labeled data can be collected by Positioning Reference Unit (PRUs) deployed in a network. However, it is difficult to collect enough labeled data to enable large-scale model training for the use case of AI/ML based positioning accuracy enhancement, which motivates us to investigate the AI/ML technologies with low labeled data dependence. Fortunately, the unlabeled data containing CIR only is relatively easy to obtain.  For example, one way to collect unlabeled data at network side is that UEs report CIRs estimated from PRS measurement. Given that we have large amounts of data without location labels but relatively small amounts of data with location labels, we hope to train a high-accuracy AI/ML model with these data. Semi-supervised learning may be also an effective way to tackle this challenging task. 
In essence, AI/ML model inference mainly utilizes three features of CIR, including first path information due to the existence of absolute time of arrival, fingerprint information due to the existence of spatial consistency, and correlation of CIRs for fixed TRPs’ topology. Among them, we observe that the positioning accuracy of spatial consistency settings is greatly better than that of non-spatial consistency settings, and thus the fingerprint information is significantly important for positioning. Moreover, for traditional supervised learning, the fingerprint information can be captured by AI/ML models only when there are large amounts of labeled training data. In other words, when there are only small amounts of labeled data, the fingerprint information can not be completely extracted and utilized by AI/ML models. In this context, we resort to semi-supervised learning to capture the fingerprint information from both labeled data and unlabeled data. Specifically, we propose an iterative semi-supervised learning framework by integrating the advantages of channel charting, fine-tuning and contrastive learning. 
Channel charting [6]: map the high-dimension CSI to a low-dimension manifold space following neighbor reservation.  
Fine-tuning [7]: adjust the model with labeled field data. 
Contrastive learning [8]: a kind of self-supervised learning, that is, learning differences from dissimilar samples and learning similarities from similar samples without reliance on labeled data. 
The simulation results are listed in Table 24. We can observe that semi-supervised learning can significantly improve positioning accuracy by utilizing limited labeled data and a large number of unlabeled data.
[bookmark: _Ref115427105]Evaluation results of  semi-supervised learning for AI/ML model deployed on UE or Network side, without model generalization, ViT
	Model input
	Model output
	Label
	Clutter param
	Dataset size & type
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR
	Pos.
	96%
	{0.6, 6, 2}
	1k labeled &
25k unlabeled
	1k
	1.65M 
	22.30M
	5.05

	CIR
	Pos.
	99%
	{0.6, 6, 2}
	0.3k labeled &
25k unlabeled
	1k
	1.65M 
	22.30M
	8.78

	CIR
	Pos.
	0
	{0.6, 6, 2}
	1k
	1k
	1.65M 
	22.30M
	12.06

	CIR
	Pos.
	0
	{0.6, 6, 2}
	2k
	1k
	1.65M 
	22.30M
	9.03

	CIR
	Pos.
	0
	{0.6, 6, 2}
	2k
	1k
	1.65M 
	22.30M
	5.53



[image: ]
 Positioning accuracy comparison of semi-supervised learning and supervised learning with different numbers of labeled samples
 Semi-supervised learning can achieve a more accurate position estimation as compared to supervised learning with less amount of labeled data.
Capture in the TR the benefits of semi-supervised learning for AI/ML based positioning in terms of less data collection for training and more positioning accuracy.
Positioning with multiple ports data
There are two types of errors for AI/ML inference, i.e., bias and variance.  Bias is caused by the model’s inability to represent current data distribution, such as an AI/ML model trained with data distribution A but tested with data distribution B, which can be solved by transfer learning–like methods and retraining. Variance is caused by the imperfection of the model and data. Specifically, overfitting is everywhere, resulting in that the AI/ML model can only find a ‘local’ law but never find the ‘global’ law due to limited training data sampled from the physical world. Moreover, data measurement may be subject to fluctuations. For example, even at the same location, the channels measured at different times by different terminals can be different. In this sense, this imperfection may result in the fluctuation of predicted results of the AI/ML model around the true labels. 


A scenario of multi-port positioning.









In this context, we try to resort to multiple port data to reduce the variance of AI/ML model inference, and further the positioning accuracy can be improved. Specifically, assuming that there are  PRS ports at each TRP and 1 PRS port at UE, we can divide  training samples with shape  into training samples with shape .  In this way, the scale of training dataset is increased, and AI/ML model can be trained with this scaled dataset. At each model inference, the CIRs from ports are separatively estimated and then fed into the AI/ML model.  Then, AI/ML model will output  positioning results corresponding to  ports’ input. Finally, a more accurate position estimation can be obtained by fusing positioning results, especially when some prior knowledge about each port is known, such as channel quality and testing error of each port. When the prior testing error of each port is available, a possible fusion method is described as follows. 

	

where  denotes the prior testing error of i-th port. Moreover, a simple linear average method can also be adopted when there is no prior knowledge of each port.

	


 A positioning framework with multi-port data.

Another possible method is to train AI/ML model with multi-port data directly without division, i.e., CIR with shape  as the input, but this model can work only when n-port CIR is always available.
We assume that there are 8 ports at each TRP and 1 port at UE and 3k samples are used to train the AI/ML model. As shown in Table 25, the simulation results indicate that multi-port positioning can achieve higher positioning accuracy as compared to single-port positioning at the cost of more resource requirements for PRS transmission and measurement. Note that each training sample corresponds to a UE.
[bookmark: _Ref115427212]Evaluation results of multiple ports for AI/ML model deployed on UE or Network side, without model generalization, ViT
	Model input
	Model output
	Label
	Clutter param
	Dataset size & type
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR
	Pos.
	0
	{0.6, 6, 2}
	3k &
8 ports
	1k &
8 ports
	1.65M 
	22.30M
	3.14

	CIR
	Pos.
	0
	{0.6, 6, 2}
	3k &
1 port
	1k &
1 ports
	1.65M 
	22.30M
	5.53



[image: ]
CDF of positioning accuracy of multi-port positioning and single-port positioning.
Positioning with multi-port data can achieve a more accurate position estimation as compared to single-port positioning.
 Capture in the TR the benefits of multi-port positioning for AI/ML based positioning in terms of positioning accuracy.
Cost evaluation
In the previous sections, we mainly evaluate the positioning accuracy performance and generalization capability for AI/ML based positioning, and observe that AI technology has great potential to improve positioning accuracy. On the other hand, power consumption, computational complexity, parameter quantity, training data requirements and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme are essential for practical deployment of AI based positioning. Here, we mainly focus on computational complexity, parameter quantity, training data requirements in this section.
Model assumption
In light of “All models are wrong, but some models are useful, George Box”, we think the selection of AI/ML model may be strongly related to specific tasks, and a suitable model can facilitate better evaluation of performance gain for AI/ML based positioning.
We adopt two different AI models, vision transformer and convolutional neural network (CNN), to evaluate the positioning performance of multi-TRPs and single-TRP based positioning methods, respectively. Basically, CNN has become the most popular AI model in computer vision due to its inherent properties, including inductive biases, translation equivariance and locality. These inherent properties are suitable for most of computer vision tasks since there is a strong correlation between adjacent pixels. Vision transformer lacks these properties inherent to CNN, while utilizing self-attention to build the global correlation every two pixels. With the same amount of training data (23k samples), we observe that vision transformer performs better than CNN for multi-TRPs based positioning method, but in turn, CNN performs better for single-TRP based positioning method. In our view, vision transformer may performs better when training dataset has great fingerprint feature, such as in the case that the dataset size is relatively large, while CNN may outperform vision transformer when the fingerprint feature in training dataset is not very obvious, such as the case that the dataset size is relatively small or AI/ML based TOA estimation.
Cost related KPIs
Agreement
For evaluation of AI/ML based positioning, the model complexity is reported via the metric of “number of model parameters”. 

The cost related KPIs of these two models are listed in Appendix B.
Cost evaluation of AI models
	AI models
	CNN
	Vision Transformer

	Computational complexity
	1.45G FLOPs*18
	22.30M FLOPs

	Number of Parameters
	44M*18
	1.65M


The computational complexity and parameter quantity can be further reduced by model optimization, and some other models may get better performance with lower cost. 

Conclusions
In this contribution, we discuss AI/ML based positioning accuracy enhancement with the following observations and proposals.
1. AI/ML based positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods in heavy NLOS scenarios.
 Different inputs of AI model will affect the positioning performance for AI/ML based positioning. Time domain channel CIR as the input of AI model obtains the best positioning accuracy.
AI/ML based TOA estimation for positioning has great advantages in positioning performance, deployment flexibility, compatibility with existing positioning protocol framework, and generalization capability.
AI/ML based LOS/NLOS identification for positioning has the following advantages:
· More accurate LOS/NLOS identification along with a confidence metric 
· Better compatibility with existing positioning protocol framework. 
· Great generalization capability.
and disadvantages: 
· Positioning performance could suffer from severe degradation in heavy-NLOS scenarios.
· Obtain LOS/NLOS labels is a challenging task for data collection.
Positioning performance of AI/ML based positioning degrades when the model trained with dataset of one drop is tested with dataset of other drops.
Positioning performance of AI/ML based positioning degrades when the training and testing datasets are of different clutter parameters in an InF-DH scenario.
 Training AI/ML model with a mixed dataset is an effective way to improve model generalization performance.
The positioning accuracy of AI/ML based positioning trained with dataset from one InF scenario is seriously degraded when tested on dataset from a different InF scenario.
The interference from TPRs can dramatically impair the positioning performance of AI/ML model.
 The positioning accuracy of AI/ML based positioning significantly degrades with the increase of network synchronization error.
 The positioning accuracy of AI/ML model is significantly improved from 10.18m@90% to 1.52m@90% by mix-training with sampels of synchronization error.

 The positioning accuracy gradually degrades with the increase of labeling error, but is still acceptable until standard deviation  is 1 m (2.17m@90%). 
 AI/ML based positioning is robust to label noise to some extent.
 Fine-tuning the model with small amounts of samples from an unseen scenario can achieve significantly positioning accuracy improvement when the pre-trained model is transferred to a new scenario with a different clutter parameter for direct AI/ML positioning.
 Fine-tuning the model with small amounts of samples from an unseen scenario can achieve significantly positioning accuracy improvement when the pre-trained model is transferred to a new drop for direct AI/ML positioning.
 Fine-tuning the model with small amounts of samples from an unseen scenario can achieve significantly positioning accuracy improvement when the pre-trained model is transferred to a new scenario for direct AI/ML positioning.
 Fine-tuning the model with small amounts of samples from an unseen scenario can achieve significantly positioning accuracy improvement when the pre-trained model is transferred to a new scenario with a different clutter synchronization error for direct AI/ML positioning.
 Fine-tuning the model with small amounts of samples from an unseen scenario can achieve significantly positioning accuracy improvement when the pre-trained model is transferred to a new drop for AI/ML assisted positioning.
 Fine-tuning the model with small amounts of samples from an unseen scenario can achieve significantly positioning accuracy improvement when the pre-trained model is transferred to a new scenario for AI/ML assisted positioning.
 Model fine-tuning is suitable for the following tasks:
The source domain and the target domain are greatly similar, such as with different synchronization error.
The target domain is easy to fit, such as TOA estimation of LOS path. 
 Semi-supervised learning can achieve a more accurate position estimation as compared to supervised learning with less amount of labeled data.
 Positioning with multi-port data can achieve a more accurate position estimation as compared to single-port positioning.

1. Capture in the TR that time domain CIR as the model input for direct AI/ML positioning obtains the best performance compared to other model inputs.
Support time domain CIR as the model input at least for direct AI/ML positioning.
Capture in the TR the benefits of AI/ML assisted positioning in terms of positioning accuracy and AI model generalization.
Capture in the TR the benefits of training dataset with mixed/different configurations for AI/ML based positioning in terms of AI model generalization capability.
Further study the impact and potential solution of CIR estimation error on AI/ML based positioning performance.
Further study the impact and potential solution of network synchronization error on AI/ML based positioning performance.
Further study the impact and potential solution of labeling error on AI/ML based positioning performance.
Further study and confirm the benefits of fine-tuning in terms of model generalization enhancement for direct AI/ML positioning.
Further study and confirm the benefits of fine-tuning in terms of model generalization enhancement for AI/ML assisted positioning.
 Capture in the TR the benefits of fine-tuning for AI/ML based positioning in terms of positioning accuracy for AI model generalization capability.
Both data efficiency and target performance could be considered as reference to determine the sample size for model fine-tuning
Capture in the TR the benefits of semi-supervised learning for AI/ML based positioning in terms of less data collection for training and more positioning accuracy.
Capture in the TR the benefits of multi-port positioning for AI/ML based positioning in terms of positioning accuracy.
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Appendix A
The common simulation parameters of scenarios can be found in Table A.1.
Table A.1 Parameters of InF scenario(s)
	[bookmark: OLE_LINK1]Parameter
	Values

	Scenario
	InF-HH (High Tx, High Rx),
InF-SL (Sparse-clutter, Low BS),
InF-DL (Dense-clutter, Low BS),
InF-SH (Sparse-clutter, High BS),
InF-DH (Dense-clutter, High BS) – Note 1

	Hall size
	InF-HH: 300x150 m
InF-SL: 120x60 m
InF-DL: 300x150 m
InF-SH: 300x150 m
InF-DH: 120x60 m

	Room height
	10 m

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ for FR1.

	UE antenna configuration
	(M, N, P, Mg, Ng) = (1, 2, 2, 1, 1). dH=0.5λ for FR1.

	Penetration loss
	0dB

	Number of floors
	1

	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy. The evaluation area should be at least the convex hull of the horizontal BS deployment. It can also be the whole hall area if the CDF values for positioning accuracy is obtained from whole hall area.

	BS deployment
	18 BSs on a square lattice with spacing D, located D/2 from the walls.
· for the small hall (L=120m x W=60m): D=20m
· for the big hall (L=300m x W=150m): D=50m[image: ]

	UE distribution 
	uniform dropping for indoor with minimum 2D distance of 0 m


	UE antenna height
	1.5m

	gNB antenna height
	BS height = 1.5 m for InF-SL and InF-DL
BS height = 8 m for for InF-SH, InF-DH and InF-HH

	Carrier frequency
	3.5G Hz

	Bandwidth
	100M Hz

	Clutter density: 
	Low clutter density: 20%
High clutter density: 60%

	Clutter height: 
	Low clutter density: 2 m
High clutter density: 6 m

	Clutter size: 
	Low clutter density: 10 m
High clutter density: 2 m

	Note 1:	According to Table A.2.1-7 in 3GPP TR 38.802





Appendix B
The simulation parameters related to AI model training can be found in Table B.1.

Table B.1 Parameters of AI model training
	Parameter
	Model 1
	Model 2

	methods
	One-step positioning
	Two-step positioning

	AI model 
	Vision Transformer
	CNN

	BS number
	18
	18

	CIR length
	256
	4096

	Input
	CIR 256x1x18
	CIR 4096x1

	Output
	Location (x, y)
	TOA

	Synchronization
	Ideal
	Ideal

	Channel estimation
	Ideal
	Ideal

	Learning rate
	0.002
	0.002

	Batch size
	100
	100

	Epoch
	1k
	1k

	Loss function
	Mean absolute error
	Mean absolute error

	Opimizer
	Adam
	Adam

	Training dataset
	25k
	25k

	Validation dataset
	1k
	1k

	Test dataset
	1k
	1k

	Framework for finetuning
	/
	Model agnostic meta learning



The CNN is mainly made up by two blocks stacked alternately, including Inception block and Squeeze-and-Extraction block. Specifically, Inception block is used to extract features of different scales, and the following Squeeze-and-Extraction block is used to add attention in the Channel dimension.  The Vision Transformer evolves from typical Transformer model widely used in natural language processing, and consists of an encoder of typical Transformer model and an additional Embedding block.  
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