
[bookmark: _Hlk47552872][bookmark: _GoBack]3GPP TSG RAN WG1 #111 R1-2210998
Toulouse, France, November 14th – 18th, 2022

Source:	vivo
Title:	Evaluation on AI/ML for CSI feedback enhancement
Agenda Item:	9.2.2.1
Document for:	Discussion and Decision
Introduction
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]In last meeting, the evaluation assumptions of CSI compression and CSI prediction are discussed and some agreements are shown as follow. In this contribution, we discuss the details of remaining evaluation assumptions and provide more evaluation results for the performance gain comparison with different AI methods.
	Agreement
In the evaluation of the AI/ML based CSI feedback enhancement, for ‘Channel estimation’, if realistic DL channel estimation is considered, regarding how to calculate the intermediate KPI of CSI accuracy,
· Use the target CSI from ideal channel and use output CSI from the realistic channel estimation
· The target CSI from ideal channel equally applies to AI/ML based CSI feedback enhancement, and the baseline codebook
Note: there is no restriction on model training

Agreement
In the evaluation of the AI/ML based CSI feedback enhancement, for “Baseline for performance evaluation” in the EVM table, Type I Codebook (if it outperforms Type II Codebook) can be optionally considered for comparing AI/ML schemes up to companies
Note: Type II Codebook is baseline as agreed

Working assumption
In the evaluation of the AI/ML based CSI feedback enhancement, if SGCS is adopted as the intermediate KPI for the rank>1 situation, companies to ensure the correct calculation of SGCS and to avoid disorder issue of the output eigenvectors
· Note: Eventual KPI can still be used to compare the performance

Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if the SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’ for rank>1 cases, at least Method 3 is adopted, FFS whether additionally adopt a down-selected metric between Method 1 and Method 2.
· Method 1: Average over all layers
· Method 2: Weighted average over all layers

where is the jth eigenvector of the target CSI at resource unit i and K is the rank. is the jth output vector of the output CSI of resource unit i. N is the total number of resource units. denotes the average operation over multiple samples. is an eigenvalue of the channel covariance matrix corresponding to .
· Method 3: SGCS is separately calculated for each layer (e.g., for K layers, K SGCS values are derived respectively, and comparison is performed per layer)

Agreement
In CSI compression using two-sided model use case, evaluate and study quantization of CSI feedback, including at least the following aspects:
· Quantization non-aware training
· Quantization-aware training
· Quantization methods including uniform vs non-uniform quantization, scalar versus vector quantization, and associated parameters, e.g., quantization resolution, etc.
· How to use the quantization methods

Agreement
For evaluating the performance impact of ground-truth quantization in the CSI compression, study high resolution quantization methods for ground-truth CSI, e.g., including at least the following options
· High resolution scalar quantization, e.g., Float32, Float16, etc.
· FFS select one of the scalar quantization resolutions as baseline
· High resolution codebook quantization, e.g., R16 Type II-like method with new parameters
· FFS new parameters
· Other quantization methods are not precluded

Agreement
For the evaluation of the potential performance benefits of model fine-tuning of CSI feedback enhancement which is optionally considered by companies, the following case is taken
· The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Company to report the fine-tuning dataset setting (e.g., size of dataset) and the improvement of performance

Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following cases are considered for evaluations:
· Case 1 (baseline): Aligned AI/ML model structure between NW side and UE side
· Case 2: Not aligned AI/ML model structures between NW side and UE side
· Companies to report the AI/ML structures for the UE part model and the NW part model, e.g., different backbone (e.g., CNN, Transformer, etc.), or same backbone but different structure (e.g., number of layers)
· FFS different sizes of datasets between NW side and UE side
· FFS aligned/different quantization/dequantization methods between NW side and UE side
· FFS: whether/how to evaluate the case where the input/output types and/or pre/post-processing are not aligned between NW part model and UE part model

Agreement
For the evaluation of Type 2 (Joint training of the two-sided model at network side and UE side, respectively), the following evaluation cases are considered for multi-vendors,
· Case 1 (baseline): Type 2 training between one NW part model to one UE part model
· Case 2: Type 2 training between one NW part model and M>1 separate UE part models
· Companies to report the AI/ML structures for the UE part model and the NW part model
· FFS Companies to report the dataset used at UE part models, e.g., whether the same or different dataset(s) are used among M UE part models
· Case 3: Type 2 training between one UE part model and N>1 separate NW part models
· Companies to report the AI/ML structures for the UE part model and the NW part model
· FFS Companies to report the dataset used at NW part models, e.g., whether the same or different dataset(s) are used among N NW part models
· FFS N NW part models to M UE part models
· FFS different quantization/dequantization methods between NW and UE
· FFS: whether/how to evaluate the case where the input/output types and/or pre/post-processing are not aligned between NW part model and UE part model
· FFS: companies to report the training order of UE-NW pair(s) in case of M UE part models and/or N NW part models
· FFS: whether/how to report overhead

Agreement
For the evaluation of the AI/ML based CSI compression sub use cases, at least the following types of AI/ML model input (for CSI generation part)/output (for CSI reconstruction part) are considered for evaluations
· Raw channel matrix, e.g., channel matrix with the dimensions of Tx, Rx, and frequency unit
· Companies to report the raw channel is in frequency domain or delay domain
· Precoding matrix
· Companies to report the precoding matrix is a group of eigenvector(s) or an eType II-like reporting (i.e., eigenvectors with angular-delay domain representation)
· Other input/output types are not precluded
· Companies to report the combination of input (for CSI generation part) and output (for CSI reconstruction part),
· Note: the input and output may be of different types

Agreement
In the evaluation of the AI/ML based CSI feedback enhancement, for the calculation of intermediate KPI, the following is considered as the granularity of the frequency unit for averaging operation
· For 15kHz SCS: For 10MHz bandwidth: 4 RBs; for 20MHz bandwidth: 8 RBs
· For 30kHz SCS: For 10MHz bandwidth: 2 RBs; for 20MHz bandwidth: 4 RBs
· Note: Other frequency unit granularity is not precluded and reported by companies

CSI compression
In this section, we express our views on the per-area model evaluation and the generalization of CSI compression in various scenarios and configurations respectively. On top of that, we discuss the performance of CSI compression with different training method and field data.
Evaluation on per-area model
Principle of per-area model
AI/ML is data driven. Thus, it would be natural to use a per-area model for CSI compression: training models based on data collected from a specific area, which will then be used within the corresponding area. By “specific area”, we refer to a relatively smaller region, such as one cell, one sector, or one zone. One of the most promising advantage of per-area models compared with conventional general models is potentially higher performance gain. As presented in 2.1.2 and 2.1.3, SGCS performance of per-area models is higher than that of general models over 30%~50%. Note that SGCS of general models is only 10% higher than that of legacy Rel-16 Type II codebooks. Therefore, the performance gain achieved by per-area models could reach 40-60% compared with legacy R-16 Type II codebook. The additional performance gain in per-area models comes from the fact that per-area models only need to fit data with less variety of characteristics. It should be clarified that there are no serious overfitting issues for per-area models, as the distribution of testing data (also collected from the same area as training data) is usually similar to that of training data. Our initial evaluation results offered by per-area models in the following subsections also support such observations.
[bookmark: _Ref115456088]Based on initial field test results, per-cell (region) models can provide more than 30%~50% improvement on SCGS of AI models.
Per-area models could be naturally deployed within each cell, i.e., each cell trains its own model based on data collected within the cell. However, one problem is that as a UE moves from one cell to another, CSI generation part at UE side should also be updated to adapt to the new cell. For training collaboration type 1, such procedure could be done via transferring the updated model to the target UE. For training collaboration type 2, another over-the-air training procedure is needed to update the model. For training collaboration type 3, new model input/output data will be shared from network to UE or vice versa to finish the updating of models. If the model structure of CSI generation part is simple (e.g., one-layer MLP), overhead of the model updating procedure will be very small (probably less than 100kB).
[bookmark: _Ref115456152]Further study the model update for per-cell (region) models
Training per-area models requires to enhance the data collection mechanism by some assistance information. Cell ID/sector ID or some other information that could represent the collecting area should be assigned to the corresponding data during dataset delivery. However, there could be some concerns on user privacy, UE storage, power consumption or overhead . More studies on data collection for per-area models should be considered in the future meetings.
[bookmark: _Ref115456178]Further study the data collection for per-cell (region) models.
Some initial results for spatial consistency data
Here we consider using data where the channel has spatial consistency characteristics. Each UE generates random variables with spatial consistency based on its own geographic location at the T=0, both the cluster specific random variables and the correlation distance for spatial consistency procedure a follow 38.901. The detailed parameters are provided below.
Parameters of spatial consistency data of CSI compression.
	Parameters
	Value

	Scenario
	Uma

	Channel model
	Uma 38.901 with spatial consistency

	Carrier frequency
	4GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	32 antenna ports
[Mg Ng P M N, Mp Np] = [1 1 2 8 8, 2 8]
= (0.8, 0.5) λ, +45°/-45° polarization

	UE antenna
	2 antenna ports
[Mg Ng P M N, Mp Np] = [1 1 2 1 1, 1 1]
= (0.8, 0.5) λ, 0°/+90° polarization

	BS receiver noise figure
	10

	UE receiver noise figure
	7

	UE distribution
	100% outdoor

	UE speed
	30km/h

	Mechanic tilt
	180° in GCS (pointing to the ground)

	Beam set at TRxP
	Azimuth angle φi = [0], Zenith angle θj = [102].

	UE beam set
	Azimuth angle φi = [0], Zenith angle θj = [90]

Cell specific model is considered and then different AI/ML models are used for different cells. Simple AI/ML model, which is a one layer MLP encoder, and complex transformer encoder are evaluated in this simulation. It is seen that the performance of simple AI/ML model is similar to that of complex AI/ML model. Compared with simple MLP encoder, the SGCS gain of transformer encoder is only about 3%, but the complexity of transformer encoder is about 14 times higher. Considering the performance and complexity, simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
The SGCS results of multiple AI/ML models trained by the data in each area separately.
	
	AI with a cell specific model (One layer MLP encoder) ~285kB
	AI with a cell specific model (Transformer encoder) ~4.08MB

	Cell 0
	0.8345
	0.8895

	Cell 1
	0.8815
	0.9168

	Cell 2
	0.9132
	0.9412

	Cell 3
	0.9148
	0.9439

	Cell 4
	0.8718
	0.9049

	Cell 5
	0.9076
	0.938

	Cell 6
	0.8698
	0.9072

[bookmark: _Ref118741401]From initial results for spatial consistency data, performance of simple model structure, e.g., one hidden layer full-connected encoder, can achieve good performance when per cell model is used.

Some initial results for field test
We provide some initial results for field test of CSI compression. The data is collected from actual 5G network and the collecting area is about 400m * 350m. About total outdoor 200000 samples are collected. The detailed parameters are provided below
Parameters of field test of CSI compression.
	Parameters
	Value

	Scenario
	Actual 5G network, about 400m * 350m collecting area.
About total outdoor 200000 samples.

	Carrier frequency
	3.45GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	8 antenna ports

	UE antenna
	4 antenna ports

	CSI payload
	About 150bits payload

There are 4 data collecting areas. Area A is flat ground in front of a building. Area B is the main road of the industrial park, with many tall trees and cars along the road. Area C is the road behind several buildings. Area D is the indoor scenario in a building. UE in the left part of the industrial park usually accesses to a different cell, compared with the right part of the industrial park. So, we focus on the right part of the industrial park and current areas are chosen.
[image:]

The map of data collecting areas.
The SGCS results of eType II codebook and multiple AI/ML models are provide in the following. The AI/ML models are trained by the data in each area separately, and multiple AI/ML models are used. In Table below only one hidden layer full-connected encoder is used and it is trained by the data of all 4 areas.
It is seen that the performance gaps between different AI/ML models are small. Even one hidden layer full-connected (FC) encoder can provide good performance, which is very simple and small. With much higher complexity, Transformer encoder has better performance than one hidden layer FC encoder, but the performance gain is small in Area A and Area B. Considering the performance and complexity, simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
The SGCS results of multiple AI/ML models trained by the data in each area separately.
	
	AI with an area specific model (One layer MLP encoder) ~67kB
	AI with an area specific model (small CNN encoder) ~250kB
	AI with an area specific model (Transformer encoder) ~3.6MB

	Area A
	0.936
	0.9457
	0.955

	Area B
	0.9105
	0.9218
	0.9336

	Area C
	0.936
	0.9457
	0.955

	Area D-5th floor
	0.7977
	0.7955
	0.8157

	Area D-6th floor
	0.8616
	0.8685
	0.8713

[bookmark: _Ref118741411]From initial results for field test, performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
[bookmark: _Ref115456650][bookmark: _Ref118742515]Consider to capture observations from field data test into TR.
[bookmark: _Ref118742519]Study the performance and overhead of per-cell (region) model transfer in CSI compression.

Generalization of various scenarios
[bookmark: _Ref111217176]Carrier frequency
For the carrier frequency, we evaluate 2.2GHz, 3.5GHz, 5.5GHz for rank 1 with entire AI model. In the simulation, the antenna configuration is [8 8 2 1 1] and for each polarization, four adjacent vertical antennas are mapped into one TXRU with fixed 105 degrees DFT beam, i.e., a fixed analogy precoder is used. The total TXRU number is 32 and only rank 1 is considered. The total subband number is 13 with 4 PRB’s per subband. The evaluation results are shown below.

The SGCS for different frequency carrier.

The gain of average SE for different frequency.
According to the evaluation result, the SGCS and spectral efficiency among cases with different carrier frequency are similar to each other. Since the carrier frequency is all below 6GHz and the UE speeds are all 3Km/h, the influence of carrier frequency to channel state is tiny. The AI model perform well in carrier frequency generalization.
[bookmark: _Ref115456289]AI model performance does not degrade when a generic model (non-optimized for a specific area/cell) trained for a frequency is applied to another frequency.
Scenarios
For generalization across different scenarios, we focus on UMi, UMa and InH. We train AI model with UMi samples and use it in UMi and UMa scenario, respectively. Also, the SGCS of eType2 is calculated for different scenarios. The evaluation results are shown below.
[bookmark: _Ref111215372]The SGCS in UMi and Uma.
	
	AI model trained based on UMi data
	eType II codebook

	UMi
	0.91
	0.831

	UMa
	0.913
	0.839

According to the evaluation result in the table above, the model trained by the UMi-based data set offers a fairly high channel SGCS in both UMi and UMa scenarios.
[bookmark: _Hlk102160675]For a generic model (non-optimized for a specific area/cell), AI model performance does not degrade when generalized from UMi to UMa.
Then, we construct a synthetic dataset with samples from UMi and InH with different ratio including entire UMi dataset and InH dataset. The total number of samples in each dataset is fixed to 300000. The SGCS of each dataset composition is shown in the table below.
[bookmark: _Ref111215383]The SGCS of AI model with different training dataset composition in InH and UMi.
	Training dataset composition
	[300000, 0]
	[225000, 75000]
	[150000, 150000]
	[75000, 225000]
	[50000, 250000]
	[25000, 275000]
	[10000, 29000]
	[0, 300000]

	InH
	0.94780
	0.94907
	0.94953
	0.94520
	0.94660
	0.93090
	0.87230
	0.68597

	UMi
	0.74548
	0.84435
	0.87930
	0.90281
	0.90528
	0.90778
	0.90879
	0.90933

According to the evaluation results, the model trained by UMi dataset independently behaves worse in InH scenario and vice versa. The models trained by dataset constructed with mixed InH-based and UMi-based data behave well for both scenarios, even not as good as with the dataset from one entire scenario. It is shown that, the increasing number of correct samples in a mixed dataset can improve the performance and the wrong samples do not influence the performance. So, the AI model can deal with different scenarios by mixing the sample from different scenarios into one dataset.
Also, In comparison between the dataset composition [225000 75000] and [50000 250000], the SGCS for InH is similar. However, the SGCS performed by the former is worse than that by the latter. It is because that the channel state of InH is simple and 50000 samples are enough. The extra InH samples cannot provide more gains. However, the channel state of UMi is much more complicated, reducing the number of UMi samples can lead to severe performance degradation.
[bookmark: _Ref111217181]For a generic model (non-optimized for a specific area/cell) AI model can generalize across different scenarios with a mixed dataset. A reasonable mixing ratio can provide better performance for each scenario.
Indoor/outdoor
For generalization between indoor users and outdoor users, we use data from different indoor/outdoor ratio to train two AI models. One is for 0.8 indoor and 0.2 outdoor and the other one is 0.2 indoor and 0.8 outdoor. Then we settle them in scenarios with different indoor/outdoor ratio, including 0.8/0.2, 0.5/0.5, and 0.2/0.8. The evaluation results are shown below. For each case, there are two ratios and the former is the indoor ratio of training data and the latter is the indoor ratio of deployment environment.

The SGCS of different indoor/outdoor scenarios
According to the evaluation results, no matter which training data set is used, the SGCS increases with the indoor ratio decreasing from 0.8 to 0.2. Since the floor of indoor user is random, it is more difficult to train the model for indoor user than that for outdoor user. So, the learning results of AI model descend when there are more indoor users. For the same deployment scenario, the AI model trained with 0.8 indoor ratio data performs better than the one trained with 0.2 indoor ratio data. It is because the AI model trained with more indoor users has learnt more complicated channel information, offering a better result.
The gap between the two AI models in case of 0.2 indoor user ratio is about 0.02-0.03 and in case of 0.8 indoor user ratio is about 0.01-0.02. The gap decreases when the deployment scenario becomes more severe i.e., there are more indoor users. It can be seen that, the SGCS calculated in more complicated deployment scenario decreases if the AI model is trained with the data collected in a simpler scenario.
Then, we set the AI model in the SLS system and the evaluation results are shown below. The tendency of each SGCS curve is similar but the gaps among all the curves are different.

The SE gain of different indoor/outdoor scenarios
According to the evaluation results of SE, it can be seen that AI model trained in complicated channel environment (more indoor users) performs better in the simple channel environment (more outdoor users) and vice versa. Nevertheless, even in the simple channel environment, the performance is slightly worse than that of AI model trained in complicated environment.
[bookmark: _Ref115456304]For a generic model (non-optimized for a specific area/cell), AI model trained in complicated channel environment (more indoor users) has good generalization ability.
[bookmark: _Ref115456307]The performance of AI model depends on the deployment environment
Antenna spacing
Since different antenna configurations mean different channel state with different beam width, the training data with different antenna configurations can lead to various spatial characters. And, since the encoder and decoder focus on learning the channel state, different antenna configuration can lead to different inference results. We consider the antenna spacing first.
In the simulation above, we use the antenna spacing [0.8 0.5] at gNB side, which means the space between two antenna elements in vertical is 0.8 wave length and in horizontal is 0.5. To verify the generalization of antenna size, two cases are compared with different antenna spaces. We use the training dataset with channel fading matrices based on 0.8 wave length antenna as baseline and compare the training dataset with channel fading matrices based on 0.5 wave length. Both cases are simulated in the environment with [0.8 0.5] antenna spacing. The evaluation results of entire AI model are shown below.

The SGCS of entire AI models based on different training dataset.

The gain of average SE of entire AI models based on different training dataset.
From the evaluation results, we can find that, in case that antenna space is 0.8 wave length, there is almost 4% average SE loss if training dataset is constructed with channel fading matrices based on 0.5 wave length antenna.
[bookmark: _Ref111217191][bookmark: _Ref115456313]For a generic model (non-optimized for a specific area/cell), there is obvious performance loss for antenna spacing mismatch of training data.
Also, we evaluate the influence of the antenna spacing to the AI models with pre-processing, i.e., the small AI models with spatial domain and frequency domain compression as discussed in 2.2.1 and the evaluation results are shown below.

The SGCS of small AI models based on different training dataset.

The gain of average SE of small AI models based on different training dataset.
According to the evaluation results, there are tiny performance loss between two cases. For the small AI model with pre-processing, since the beam and delay are restricted in pre-processing, the performance loss caused by mismatching dataset can be omitted. Therefore, the small AI may have a better generalization performance.
[bookmark: _Hlk102160699][bookmark: _Ref115456320]For a generic model (non-optimized for a specific area/cell), the influence of mismatch of training data may be reduced by pre-processing.
Antenna virtualization
Next, we consider the influence of antenna virtualization. In the simulation above, we use antenna configuration [8 8 2] with 4 successive vertical antenna elements mapping to one TXRU with a fixed 105 degrees DFT beam. We draw other two cases of antenna configuration [2 8 2] without antenna virtualization as contrast.
Case 1: AI model is trained with dataset constructed by antenna configuration [8 8 2] and used in the case of antenna configuration [8 8 2].
Case 2: AI model is trained with dataset constructed by antenna configuration [8 8 2] and used in the case of antenna configuration [2 8 2]
Case 3: AI model is trained with dataset constructed by antenna configuration [2 8 2] and used in the case of antenna configuration [2 8 2]
The SGCS’s of the three cases and Rel-16 Type II codebook with antenna configuration [8 8 2] and [2 8 2] are shown below.

The SGCS of three cases and Rel-16 Type II codebook
According to the evaluation results, firstly, the SGCSs of the three AI cases are at least 0.07 higher than that of Rel-16 Type II codebook. From the comparison between the Rel-16 Type II codebook with these two antenna configurations, the channel state is easier to learn for antenna configuration [2 8 2], while more difficult to learn for antenna configuration [8 8 2].
The AI model trained with antenna configuration [8 8 2] has similar SGCS performance in both antenna configurations [8 8 2] and [2 8 2]. It seems that, when antenna configuration changes from [8 8 2] to [2 8 2], the original AI model trained with antenna configuration [8 8 2] can still work properly. However, considering the transmission ability, antenna configuration [8 8 2] can provide more spatial information than antenna configuration [2 8 2]. The SE may decrease if the same AI model is directed used in the case of antenna configuration [2 8 2].
The AI model trained with antenna configuration [2 8 2] performance better in antenna configurations [2 8 2]. So, in the case of antenna configuration [2 8 2], the AI model trained with antenna configuration [2 8 2] may achieve similar SE performance as the AI model trained with antenna configuration [8 8 2] in the case of antenna configuration [8 8 2].
[bookmark: _Ref115456327]For a generic model (non-optimized for a specific area/cell), SGCS performance of AI model may degrade slightly from 128 antennas with virtualization to 32 antennas without virtualization. While the SE performance may degrade heavily due to the less antennas.
[bookmark: _Ref115456332] For a generic model (non-optimized for a specific area/cell), in the case of 32 antennas, AI model trained with 32 antennas may have similar SE performance compared with AI model trained with 128 antennas and settled in the case of 128 antennas, which is needed to be further studied.
As a consequence, the generalization performance of various scenarios is shown below.
	Generalization Parameter
	Comments

	Carrier Frequency
	AI model performance does not degrade when a generic model (non-optimized for a specific area/cell) trained for a frequency applied to another frequency.

	Channel Scenario
	For a generic model (non-optimized for a specific area/cell) AI model can generalize across different scenarios with a mixed dataset. A reasonable mixing ratio can provide better performance for each scenario.

	Indoor/outdoor
	For a generic model (non-optimized for a specific area/cell), AI model trained in complicated channel environment (more indoor users) has good generalization ability of simple channel environment (more outdoor users)

	Antenna Spacing
	For a generic model (non-optimized for a specific area/cell), there is obvious performance loss for antenna spacing mismatch of training data.

	Antenna virtualization
	For a generic model (non-optimized for a specific area/cell), SGCS performance may degrade slightly and SE performance may degrade heavily for large number antennas with virtualization applied to small number antennas with virtualization.

[bookmark: _Ref115456746]For a generic model (non-optimized for a specific area/cell), AI models perform well in generalization of carrier frequency, channel scenario, indoor/outdoor ratio.
[bookmark: _Ref115456750]For a generic model (non-optimized for a specific area/cell), AI models perform bad in antenna spacing and antenna virtualization, which can be further studied.
Generalization of various configurations
Frequency granularity and ports number
The input dimension of AI model is corresponding to the input precoder matrices, i.e., the subband number and port number for each single layer. Different frequency granularity or different ports number can cause different input dimension of AI model. The AI models for different input dimensions need to be trained independently, which may lead to difficulty in generalizing AI models.
In case that the training input dimension of AI model is larger than the inferring input dimension of AI model, the inferring input can expand to the same dimension with zero-padding. On the other side, when inferring input dimension is larger, it can be truncated to the training input dimension.
Also, the input dimension of AI model can be fixed to a given level with pre-processing like angle-delay compression in eType II codebook. With the fixed number of beam and path selected, the dimension of input is certain for different frequency granularity and different ports number. Also, the size of AI model can be reduced because the information to study is decreasing. For AI model, since the compression and quantification are managed together, the restriction of NZC is not needed. So, compared with the eType II codebook, the beta is 1 for AI model and the payload of UCI is influenced by the length of encoder output.
In the simulation, we evaluate the lower boundary with generalization case 2. The AI/ML model is trained based on training dataset from configuration A (13 subbands and 32 ports). Then the AI/ML model is tested on a dataset from configuration B with different subband number of port number as below.
Case 1: (baseline) a different drop with 13 subbands and 32 ports
Case 2: (smaller subbands number and the same ports number) a drop with 10 subbands and 32 ports
Case 3: (the same subbands number and smaller ports number) a drop with 13 subbands and 16 ports
Case 4: (smaller subbands number and smaller ports number) a drop with 10 subbands and 16 ports
For each case, we test the normal AI/ML model and the preprocessing AI/ML model. For the normal AI model, the input is 13 subbands and 32 ports and zero-padding is used for less input dimension. For the preprocessing AI/ML model, angle-delay compression is used for preprocessing and 4 top strong beams on each polarization and 4 top strong paths are selected, which means the input dimension is 8 * 4 complex coefficients.
The payload of the normal AI/ML model is fixed to 180 bits and the pre-processing AI/ML model is fixed to 154 bits. With the different payload to report the angle and delay information, the final payload for pre-processing AI/ML model of the four cases are different but all about 180 bits.
The SGCS of AI/ML model with different subband number and port number
	
	Normal AI/ML model
	Pre-processing AI/ML model

	Case 1 (13 subbands and 32 ports)
	0.879
	0.83

	Case 2 (10 subbands and 32 ports)
	0.839
	0.847

	Case 3 (13 subbands and 16 ports)
	0.727
	0.872

	Case 4 (10 subbands and 16 ports)
	0.707
	0.89

According to the evaluation results, for normal AI/ML models, the performance declines with the increasing difference between training data set and testing data set. For case 2 (the ports number is the same and the subbands number is different), the SGCS is still in a feasible level while for the case 3 and 4 (the ports number is different) the SGCS is severely influenced. It means that the zero-padding is kind of useful for subband number generalization but useless for port number generalization.
[bookmark: _Ref118741480]Zero-padding is feasible for subband number generalization while its performance degrades dramatically in port number generalization.
On contrast, the pre-processing AI/ML model performs even better when the inferring data sets are different. It is because that the dataset in case 2-4 is less complex than case 1. For the pre-processing AI/ML model, even the new data in case 2-4 is unaware, the coefficients projected on some angle-delay pairs are familiar and well trained. Therefore, from case 1 to case 4, the channel matrices are simpler and the subband number is less, which disadvantages in normal AI/ML model due to the unknown of the new data but advantages to pre-processing AI/ML model due to the simplification of channel environment.
[bookmark: _Ref118741579]Pre-processing performs well for both subband number generalization and port number generalization.
Also, we evaluate the SE of the four cases and the results are shown below. For the baseline case, there are 2.63% gain loss between pre-processing AI/ML model and normal AI/ML model, which is also seen in SGCS. It is because that some information is lost in the angle-delay compression. So, without zero-padding, the normal AI/ML model performs better when the training data and the inferring data have the same dimensions.
The gain of pre-processing AI/ML model compared with the normal AI/ML model (180bits)
	
	Payload
	SE gain (%)

	Case 1 (13 subbands and 32 ports)
	175
	-2.63%

	Case 2 (10 subbands and 32 ports)
	173
	~0%

	Case 3 (13 subbands and 16 ports)
	171
	21.46%

	Case 4 (10 subbands and 16 ports)
	169
	49.45%

When subband number is different between training and inferring, the SE gains of these two methods are almost the same. The loss from the zero-padding in subband is equal to the loss from angle-delay compression. However, when port number is different between training and inferring, the SE gains is obvious.
In the simulation above, the training data set and inferring data set are independent, which means no information about the inferring data set can be observed in the training stage. It may cause the pre-processing AI/ML model superior because the normal AI/ML model can improve the zero-padding performance with fine-tuning based on data set from case 2-4 or even training with mixed data set. However, for each subband number, or even for each combination of subband number and port number, the corresponding data set is needed in training stage. It is neither effective nor feasible. Instead, the pre-processing AI/ML has no such problem and the performance can be improved further with more angle-delay bases selected.
Besides, some other methods can also be considered like grouping. Zero-padding focuses on the cases where the dimension of training data is larger than the inferring data. In turn, grouping can be used to deal with the cases where the dimension of training data is smaller than the inferring data. For example, an AI/ML model is trained with the data set from 16 ports and in the case of 32 ports, the 32 ports are divided into 2 groups with 16 ports in each group. The data in each group can be compressed independently by a 16-port AI/ML model and report together. In such a case, the performance of the AI/ML model is guaranteed while the overhead may increase. The further study is necessary.
[bookmark: _Ref118742553]Study the following three methods for generalization of input dimension
· Option 1: use large dimension AI/ML model in small dimension cases: zero-padding
· Option 2: use small dimension AI/ML model in large dimension cases: grouping
· Option 3: use pre-processing to fix the input dimension: angle-delay domain compression
CSI payload
Similar to input dimension, AI models with different output dimensions also need to be trained independently. To generalize different payload without training a new AI model, we use payload truncation for different payload so the length of encoder output can be fixed. As shown below, the output of the encoder is cut out from the beginning to the specific payload length. After truncation, the truncated output is sent to the decoder.
[image:]
[bookmark: _Ref111214771]The schematic of payload truncation.
When the AI model is trained, the loss function is set to include the correlation of all decoder output. We give a weight for each decoder and accumulate the correlation of each decoder output with the weight as a total correlation. The weight is trained with the decoder. We choose four different payload and use the dedicated model for each payload as baseline. We train the joint encoder with different combination of payloads. For each payload combination, only the decoder corresponding to the given payload is used. The SGCS of each joint encoder is shown below.
Baseline: four dedicated models of which the payloads are 223, 199,176 and 132 bits.
Case 1: one joint encoder and two decoders of which the input sizes are 223 and 176 respectively.
Case 2: one joint encoder and three decoders of which the input sizes are 223,199, and 176 respectively.
Case 3: one joint encoder and three decoders of which the input sizes are 223, 176 and 132 respectively.
The SGCS of different payload truncation methods.
	
	223
	199
	176
	132

	Baseline
	0.922
	0.913
	0.902
	0.871

	Case 1
	0.915
	
	0.901
	

	Case 2
	0.911
	0.908
	0.9
	

	Case 3
	0.898
	
	0.887
	0.867

Compared with the case 1 and case 2, for the same span of decoder input size, more decoders may not influence SGCS. Compared with the case 2 and case 3, the span of decoder input size may influence the performance and the SGCS decreases obviously with increasing span. Compared with the baseline and case 1, the performance loss is tiny in reasonable span of decoder input size. Therefore, in a reasonable span of decoder input size, one common encoder can be utilized and corresponds to serval decoders based on payload truncation to save the overhead of AI model transmission and switching complexity.
[bookmark: _Ref111217187]Payload truncation, as a starting point, performs well in UCI payload size generalization.
In the above evaluation, CSI truncation with fixed bit number is trained. For CSI truncation with more flexible bit number, AI models need to know the bit number in training stage to optimize the performance theoretically. If a new bit number is used in inferring stage (for example, 223, 199 ,176 and 132 are used in training stage and 211 is used in inferring stage), the performance of AI model may decrease and more evaluations are needed to verify the influence.
[bookmark: _Ref118742555]Study CSI payload truncation for the generalization of UCI payload.
· FFS the flexible truncation strategy and training parameters for more different payload.
Rank
The input of AI model can be raw channel matrix or eigenvector and the output of AI model can be fixed to eigenvector. If the input is raw channel matrix and the output is eigenvector, the SVD procedure is also completed by AI model. In our opinion, this is much difficult for AI model training. So, we consider the input and the output of AI model are both eigenvectors.
In case that rank number is larger than 1, we evaluate the per-rank model and per-layer model. The per-rank model means, for each rank, an independent AI model is trained. UE can use the corresponding AI model to infer the precoder of a given rank number. The per-layer AI model means an independent AI model is trained for each layer, especially, the AI model for each layer is the same. For each rank, UE can infer each layer with the single AI model, i.e., the generalization of rank number.
[image:]
Two scheme of high rank AI model, per-ranks and per-layer AI models.
In the simulation, we use the same per-layer model for each layer and train the model with the dataset including all layers and only rank 2 is evaluated. For the per-rank models, one model is trained with rank 1 dataset and the other model is trained with rank 2 dataset. The former is for rank 1 CSI compression and the latter is for rank 2 CSI compression. For the per-layer model, the single model is trained with dataset from all layers. This single model can be applied for different layers and ranks.
The model sizes of the single per-layer model and each of the per-rank models are almost the same, while two models are trained for per-rank models and only one model is trained for per-layer model with the same dataset. So, the per-rank models are double size of the per-layer model.
The SGCS of per-rank models and per-layer model for rank 2.
	
	Layer 0
	Layer 1
	Average number

	Per-rank model
	0.91
	0.874
	0.892

	Common model across different layers Per-layer model
	0.924
	0.863
	0.893

According to the evaluation result, per-rank model and per-layer model can achieve similar SGCS, while the total size of per-rank AI model is double of per-layer model. Also considering the flexibility of layer selection, the per-layer model is better.
[bookmark: _Ref115456412]Rank generalization with per-layer model can achieve similar SGCS with half model size compared with per-rank model.
Also, we evaluate the SE of AI model compared with Rel-16 Type II codebook, the SE of FTP1 model is shown below. In the simulation UE report rank-2 CSI only without CSI adaption. We assume UE has the decoder and calculate the rank-2 CQI with recorded PMI. For the six AI model combination, we use specific AI model per layer and the AI models are corresponding to different payload. The combination includes [95-95], [159-95], [159-159], [207-95], [159-159], [207-159], [207-207]. The former of each combination is the payload of layer 0 and the latter is the payload of layer 1. No matter layer 0 or 1, same AI model is used for fixed payload.

The SE gain of AI models in the case of FTP1 model and rank 2
According to the evaluation results, AI model can provide about 12% SE gain than Rel-16 Type II codebook. The SE gain of rank-2 case is lightly more than rank-1 case and still have improvement space compared with the ideal SVD feedback.
[bookmark: _Ref115456418]In the case of rank-2, AI model can provide about 12% SE gain compared with Rel-16 Type II codebook.
For rank > 1 cases, study option4 (layer common): A unified AI/ML model is trained and applied for each layer to perform individual inference.
· FFS how to choose the layers for training data set
As a consequence, the generalization can be summarized in the table as follows.
	Generalization Parameter
	Comments

	Frequency granularity and ports number
	Pre-processing with delay domain and spatial domain compression can solve different input dimensions caused by various frequency granularities and port numbers.

	Payload
	Payload truncation can be used to release payload generalization of AI models.

	Rank
	Rank generalization with per-layer model can achieve 12% SE gain compared with Rel-16 Type II codebook.

Evaluations on ground-truth quantization
Ground-truth CSI reporting is an essential procedure in data collection for CSI compression. In last meeting, FL proposed to study high resolution scalar or codebook quantization methods for ground-truth CSI, and several schemes have been mentioned in the agreement. To this end, we consider CSI quantized via Float32 as our baseline scheme, and train different models based on Float16, high resolution R16 Type-II codebook, and regular resolution R16 Type-II codebook quantized CSI data. All models trained on quantized CSI are tested on Float32 format data to see the performance, and our results towards different methods in table below.
Results of different methods for ground-truth CSI quantization.
	
	Model trained on float32 format quantized data (baseline)
	Model trained on float16 format quantized data (baseline)
	Model trained on Legacy codebook quantized data (L=12, M=6, beta=1.0)
	Model trained on Legacy codebook quantized data (L=4, M=4, beta=0.75)

	SGCS results tested on float32 format data
	0.8710
	0.8661
	0.8549
	0.8192

From the table, we could observe that there is only a slight performance loss between ground-truth quantized in float32 and float16, and high-resolution legacy codebook also provide a satisfying performance in quantizing ground-truth CSI. However, when the parameters reduce to a conventional setting (i.e., from L=12, M=6, beta=1.0 to L=4, M=4, beta=0.75), the performance loss is obvious. Considering that the overhead of quantizing ground-truth via high resolution codebook is much lower than that of quantization via float16 (hundreds of bits versus thousands of bits), we believe that high resolution codebook is a promising solution to ground-truth CSI quantization and reporting in CSI compression.
[bookmark: _Ref118741596]High resolution R16-eType II codebook with large L, M, beta (for example, L=12, M=6, beta = 1.0) performs well for ground-truth CSI quantization.

Evaluation on CSI feedback quantization
There is one agreement in RAN #110b-e to further study quantization of CSI feedback, including different quantization/dequantization methods and the corresponding training approaches. Besides, the FL’s plan for RAN #111 meeting also mentioned some issues on quantization/dequantization for training collaboration type 2/3. Therefore, we would like to discuss the quantization issue for CSI compression systematically in this subsection. Quantization in CSI compression refers to the mapping from float-format CSI generation output to bit-format UCI payload, often placed on the tail of CSI generation part; Dequantization in CSI compression refers to the reverse procedure on the beginning of CSI reconstruction part, i.e., mapping from bit-format UCI payload to float-format decoder input.
There are usually two categories of quantization/dequantization methods, i.e., scalar quantization and vector quantization. In scalar quantization, each number in the float-format sequence will be mapped to several bits. In vector quantization, each sub-sequence of float-format sequence will be mapped to several bits. It could be seen that scalar quantization is a specific case of vector quantization. The averaged quantization bit can be used to describe the quantization effect of a specific quantization method, which is defined as the averaged bit to quantize a float number. For example, if 180bits are used to quantize a sequence of 80 float variables, the averaged quantization bit is 180bit/80float=2.25bits/float.
To define a specific scalar quantization rule, we can directly define the number of bits assigned to each float. For example, we can use a vector [2, 2, …, 2, 3, …, 3, …, 4] to express a scalar quantization method, which assigns 2 bits to the first several float number, 3 bits to the next several float number, and 4 bits to the last several float number. The most trivial scalar quantization method is to uniformly assign K bits for all float numbers in a sequence. The definition of a vector quantization method will be a little more complicated. The whole sequence to be quantized will usually be partitioned into several segments, as it is difficult to directly quantize the whole sequence. Otherwise, there will an extremely large quantization codebook of size. For example, 80 float variables can be partitioned into 16 sub-sequences, each of which is of size 5. Correspondingly, we can set 16 quantization codebooks, each of which will be used to quantize one segment. It is also quite common to assign a uniform codebook for all sub-sequences to save the storage space. Each column in the codebook, i.e., a codeword will be a quantization candidate for the input. The quantization procedure is to select one codeword in the codebook that most represents the input, and the most common criteria is to select the one with the least MSE distance to the input.
For quantization non-aware training, quantization effect will not be considered during training stage, and the float-format variables will be directly passed from CSI generation part to CSI reconstruction part without any loss. After the model is trained, quantization module will be added to quantize and recover the intermediate result (CSI generation output). For quantization-aware training, CSI compression model will be trained under the consideration of the quantization loss of CSI generation output. In addition, the quantization codebook for scalar or vector quantization can be set fixed or optimized during training of CSI compression model. We will compare the performance of current quantization/dequantization methods as well as different training approaches in the following.

Inference performance of quantization non-aware training

In figure above, inference performance of quantization non-aware training is presented, where the length of CSI generation output is set 80. After the model is firstly trained without considering quantization, various amounts of bits are considered to quantize the CSI generation output during inference stage. When the CSI generation output is quantized by 320 bits, the performance is quite close to ideal one, while when the quantization bits decrease to 240, the SGCS result reduces by 5% in absolute value. However, for the case of quantizing by 180bits and 80bits, the model is almost not workable due to the very low SGCS performance.
[bookmark: _Ref118741907]Quantization non-aware training only achieves good performance when the averaged quantization bit is large (e.g., >= 4bits/float). When the averaged quantization bit is small (e.g., <= 2bits/float), the performance loss is significant.

Comparisons of different quantization methods (all models consider using 180bits to quantize 80 float-format variables).

In figure above we compare different quantization methods, where all models consider using 180bits to quantize 80 float-format variables. We can see that vector quantization with optimized codebook achieves the best SGCS performance among all candidates, while scalar quantization with fixed codebook ranks second with ~0.9% loss in SGCS. Interestingly, vector quantization with random initialized and fixed codebook is slightly inferior to scalar quantization. Last but not least, quantization non-aware training with the same setting demonstrates a much lower performance, which may suggest it is not a good choice.
[bookmark: _Ref118741909]Vector quantization with optimized codebook can achieve slightly better performance (e.g., by about 0.009 in SGCS in our considered configurations) than scalar quantization with fixed codebook.
[bookmark: _Ref118741911]Performance of vector quantization with randomly initialization and fixed codebook can be slightly inferior to that of scalar quantization with fixed codebook (e.g., by about 0.0065 in SGCS in our considered configurations).
[bookmark: _Ref118741912]Performance of quantization non-aware training could be significantly lower than that of quantization aware training (more than 0.1 in SGCS in our considered configurations).

To our understanding, quantization method at UE side and dequantization method at NW side should be aligned anyhow for training collaboration type2 and 3. For training collaboration type2, if quantization/dequantization methods are not aligned at training stage, we find it difficult for the model to learn anything from the data, i.e., the performance stays in a randomly initialized level. Furthermore, if the length for the floating output is not aligned, the gradients cannot properly back propagate to the CSI generation part. For training collaboration type3, we also find that the model cannot even converge to a reasonable performance (loss in SGCS >= 0.1 compared with the case of aligned quantization/dequantization) if quantization/dequantization methods are not aligned. Therefore, we have the following proposal:
[bookmark: _Ref118741913]Quantization method at UE side and dequantization method at NW side should be aligned for training collaboration type2 and 3 to achieve a satisfying performance.

Evaluations on Type 2: Joint training
The interaction approach of training collaboration type 2 is to exchange necessary training information over the air to enable the training procedure. More precisely, the whole procedure contains three main steps: 1) UE computes the forward-propagation result on CSI generation model based on collected data, and sends the (last layer) forward-propagation result together with the input data to gNB; 2) gNB completes the remaining forward-propagation computation based on the received forward-propagation result, computes loss function based on the received data, and back propagates through CSI reconstruction part to acquire the gradients on the first layer of CSI reconstruction model. The backward propagation results, i.e., the gradients on the first layer of CSI reconstruction model, will be then sent back to the corresponding UE. UE completes the remaining back propagation procedure for CSI generation part based on the received gradients. 3) UE and gNB update CSI generation/reconstruction part based on the exchanged information. The above procedure will be repeated each batch, until the whole training procedure ends.
In training collaboration type 2, it is not necessary for UE and gNB to fully align their model structure. Namely, it is feasible for the training procedure to converge to a reasonable (usually not optimal) performance with CSI generation part and CSI reconstruction part having totally different model structure, e.g., MLP and CNN for CSI generation part while Transformer for CSI reconstruction part. But from our view, it is necessary to align the quantization method at CSI generation model and dequantization method at CSI reconstruction model. Otherwise, the trained model could not be properly validated, and there would a risk in training failure.
It is proposed to study the combinatorial problem of models in CSI compression in RAN #110, i.e., if dedicated models (CSI generation part and CSI reconstruction part) are made for specific scenarios/configurations, the number of required models for various conditions could be prohibitively high, which makes model management complicated. Basically, Combinatorial problem occurs in all generalization issues. However, given the fact that evaluation methodology for generalization is still under discussion, proposal in last meeting picked out one specific combinatorial issue, i.e., the support of one common CSI reconstruction part to multiple CSI generation parts of different UEs (and vice versa) to study in future meeting. In the following, we would like to report our results towards the above issue.
[image:]
[bookmark: _Ref115450702]Training procedure of common CSI reconstruction part to multiple CSI generation parts of different UEs
We start with support of one common CSI reconstruction part to multiple CSI generation parts of different UEs. The basic procedure of the above method is: 1) the involved UEs compute their local forward-propagation results based on their local collected data (there could be some problems here, which will be discussed later.) and report them to gNB. The reported content contains not only the result of forward propagation but also the labels for loss function computation, which is paired with the forward-propagation results in reporting. 2) gNB computes the loss function as well as the gradients for back-propagation for each UE respectively and transmits the gradients to each UE. Note that different UEs’ gradients are computed based on their reported information, which are generally different for different UEs. 3) Each part of models completes the back-propagation procedure and updates the weights according to their gradients. Note that the gradients for CSI reconstruction part would take loss function for all UEs into account, thus achieving a common reconstruction part for multiple generation parts. For two-sided models, the ideal performance of joint training at a single entity and joint training at Network and UE side are almost the same. By “ideal”, we mean that the training data, training policy, training hyperparameters, optimizer, etc. are perfectly aligned for CSI generation and reconstruction part.
When UEs report their forward-propagation result to gNB, it could be challenging to strictly align the data from all UEs, as the amount of training data for different UEs is highly likely to be different. Such issue could bring some inconvenience to the joint training procedure. One way to relieve this problem is to broadcast training data in advance to all UEs, which is illustrated in step0 in Figure 16.
Then we introduce our simulation settings: joint training for one common CSI reconstruction part to two/three CSI generation parts of different UEs is considered, where the basic model structures for CSI generation parts are Transformer, CNN, and MLP, while a Transformer CSI reconstruction part is adopted. Each involved UE generates its forward-propagation results based on datasets with the same configurations (i.e., the same number of subbands, antenna ports, antenna configurations, etc.). We optimize all involved CSI generation parts equally by using the average SGCS as the loss function. However, the optimizer and learning rate scheduling policy for different CSI generation parts are different, as UEs are considered to have their own training implementations. Joint training of one to one CSI reconstruction and generation part serves as the baseline. Results are presented in the following table.
[bookmark: _Ref115453605]Performance of one common CSI reconstruction part to two/three CSI generation parts of different UEs
	[bookmark: _Hlk114146280]
	Transformer CSI Generation part
	CNN CSI Generation part
	MLP CSI Generation part

	Baseline of Rel-16 Type II
	0.7950

	Baseline one-to-one model
	~0.87
	/
	/

	Transformer CSI reconstruction part to Transformer and MLP CSI generation part
	0.8601
	/
	0.8137

	Transformer CSI reconstruction part to Transformer and CNN CSI generation part
	0.8599
	0.8485
	/

	Transformer CSI reconstruction part to Transformer, CNN, and MLP CSI generation part
	0.8475
	0.8364
	0.8125

From Table 12, it could be observed that there are certain level performance degradations for one common CSI reconstruction part to two/three CSI generation parts of different UEs. As the number of CSI generation parts increases, the performance degradation also enlarges. Considering one common CSI reconstruction part matching three CSI generation parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.052, i.e., losing about 30% performance gain. Besides, performance of CSI generation part with MLP structure is lower than those of CSI generation part with CNN and Transformer structure, indicating that certain structures are more suitable for CSI compression.
[bookmark: _Ref115456428]One common CSI reconstruction part could be trained to match multiple CSI generation parts of different UEs in training collaboration type 2 at the cost of some performance loss.
[bookmark: _Ref115456437]Considering one common CSI reconstruction part matching three CSI generation parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduces from 0.075 to 0.052, i.e., losing about 30% performance gain.

[image:]
Training procedure of one common CSI generation part to multiple CSI reconstruction parts of different networks.
Next, we move on to the case of one common CSI generation part to multiple CSI reconstruction parts of different networks. We believe that such case is a little bit simpler than the other one, since the training data is naturally aligned among all involved CSI reconstruction parts. The basic procedure is similar: 1) UE computes the forward-propagation result based on the local data, which will be transmitted to all involved networks. 2) Involved networks compute the loss and the back-propagation results based on the reported information. Back-propagation results are then sent to UE. Note that the sent back-propagation results should be kept in the same order with forward-propagation results. 3) Finally, involved CSI reconstruction/generation parts update their own weights according to the computed gradients. Although technically feasible, we find the joint training of one common CSI generation part to multiple CSI reconstruction parts difficult to be implemented online, as one UE could not connect to multiple networks simultaneously.
We consider one common CSI generation part to two/three CSI reconstruction parts in our experiments. The basic model structures for CSI reconstruction parts are Transformer, CNN, and MLP, while a Transformer CSI generation part is adopted. All involved CSI reconstruction parts equally by using the average SGCS as the loss function. The optimizer and learning rate scheduling policy for different CSI reconstruction parts are also different, as networks are considered to have their own training implementations.
[bookmark: _Ref115453643]Performance of one common CSI generation part to two/three CSI reconstruction parts of different networks
	
	Transformer CSI reconstruction part
	CNN CSI reconstruction part
	MLP CSI reconstruction part

	Baseline of Rel-16 Type II
	0.7950

	Baseline one-to-one model
	~0.87
	/
	/

	Transformer CSI generation part to Transformer and MLP CSI reconstruction part
	0.8526
	/
	0.8350

	Transformer CSI generation part to Transformer and CNN CSI reconstruction part
	0.8633
	0.8582
	/

	Transformer CSI generation part to Transformer, CNN, and MLP CSI reconstruction part
	0.8563
	0.8525
	0.8434

Results in Table 13 demonstrate that one common CSI generation part to multiple CSI reconstruction parts of different networks also suffer from some performance loss, which enlarges as the number of supported CSI reconstruction parts increases. Considering one common CSI generation part matching three CSI reconstruction parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.061, i.e., losing about 19% performance gain. Interestingly, the performance loss in common CSI generation part is generally lower than that in common CSI reconstruction part, which needs further study and verification.
[bookmark: _Ref115456452]One common CSI generation part could be trained to match multiple CSI reconstruction parts of different networks in training collaboration type 2 at the cost of some performance loss.
[bookmark: _Ref115456456]Considering one common CSI generation part matching three CSI reconstruction parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.061, i.e., losing about 19% performance gain.
One major concern for joint training is the huge overhead of exchanged information. According to the procedure, the forward- and backward- propagation information should be exchanged each batch. Besides, the training data should also be exchanged during training to serve as the labels. The overall overhead could be roughly computed as
Overhead ≈ # of epoch*(forward-propagation information + back-propagation information + input data)
Suppose the size of each forward- and backward-propagation sample is ~1/10 of the input (e.g., 13*32*2 floats are typically compressed into 50 floats without quantization), the total overhead could still be ten times of those for separate training and model transferring depending on the number of epochs. It is worth pointing out that there are still approaches to further reduce the overhead, but it is extremely challenging to reduce the over-the-air overhead to the similar level of separate training or model transfer.
[bookmark: _Ref115456460]Overhead in information exchange for training collaboration type 2 grows linearly with the number of iterations at training stage.
Evaluations on Type 3: Separate training
During our evaluation of training collaboration type3, we consider sequential training starting with UE side training. Meanwhile, we find the results of sequential training starting with UE side training almost the same with the those of sequential training starting with network side training. Therefore, we believe our observations will hold for both cases. Besides, we think the term “starting with UE side training” or “starting with network side training” are not very suitable to cover all cases for separate training. For example, network and UE could train their model separately in advance, and UE then share the input/output for CSI reconstruction part to network to help to finetune the model trained by network. In such case, it is difficult to say the separate training procedure strictly starting at which side. We propose to define “active” and “passive” side for separate training, where the “active” side actively shares the data for the model at “passive” side to align them. Then we can clearly categorize the interaction approaches for separate training into two types: 1) UE is active side and network is the passive side; 2) network is active side and UE is passive side. Although we propose to modify the terms, we still use “sequential training starting with UE side training” to depict our interaction approach in the remaining part of this subsection.
[image:]
[bookmark: _Ref111214830]An illustration of separate training procedure.
Detailed procedure of sequential training starting with UE side training is presented as follows: (also illustrated in Figure 18, where “Encoder” refers to CSI generation part and “Decoder” refers to CSI reconstruction part.)
Step 1: The encoder is trained firstly at UE or a server at UE side using collected dataset0. Specifically, a complete model containing both encoder and decoder is trained and then the encoder is picked out for separate training. The decoder obtained in step 1 is termed as decoder0.
Step 2: UE passes dataset1 into encoder to obtain the encoded feature1, and combines the dataset1 (encoder input) and encoded feature1 (encoder output) into the exchanging dataset, i.e., the encoder output serves as the label of encoder input.
Step 3: UE transmits the exchanging dataset to gNB.
Step 4: gNB utilizes the exchanging dataset to train the decoder via supervised learning. The decoder obtained in this step is termed as decoder1.
Step 5: Test the SGCS of joint inference of encoder and decoder based on dataset2.
Results for separate training in CSI compression.
	Samples in exchanging dataset
	Joint training with 300000 samples in step1
	600000
	300000
	100000
	50000
	25000
	10000
	5000
	2500
	1000

	Test SGCS for setting0
	0.830
	0.832
	0.827
	0.815
	0.804
	0.793
	0.776
	0.761
	0.733
	0.650

	Test SGCS in setting1
	/
	/
	0.830
	/
	/
	/
	/
	/
	/
	/

	Test SGCS in setting2
	/
	/
	0.800
	/
	/
	/
	/
	/
	/
	/

	Test SGCS in setting3
	/
	/
	0.712
	/
	/
	/
	/
	/
	/
	/

The table above presents the results and the details of each setting are given as follows:
1) Setting0: Decoder1 and decoder0 share the same model design as well as the hyperparameters in training. The dequantization method in decoder1 also matches the quantization method in encoder. Note that Setting0 is an ideal baseline as gNB could not know any information about the decoder0 which is at UE side.
2) Setting1: Decoder1 and decoder0 share the same model backbone structure, but decoder1 has more parameters than decoder0, i.e., decoder1 is an enlarged decoder0. The dequantization method in decoder1 also matches the quantization method in encoder.
3) Setting2: Decoder1’s structure is completely different from decoder0. But the dequantization method in decoder1 matches the quantization method in encoder.
4) Setting3: Decoder1’s structure is completely different from decoder0 (but the same with the decoder1 in Setting2), and the dequantization method in decoder1 does not match the quantization method in encoder.
Generally, performance of separate training could reach that of joint training if the number of exchanged data samples is large enough, i.e., similar level to the scale of training data, and some key information of encoder and decoder is aligned, such as the quantization and dequantization method. In addition, we find that it is possible to train a pair of encoder and decoder subject to different structures, e.g., an MLP encoder and a Transformer decoder, to a reasonable performance. It is not necessary to fully align the model structure of encoder at UE and decoder at network. Finally, the quantization and dequantization methods play an important role in separate training. Our simulation shows that when the quantization approach at UE and dequantization approach at network do not match, there will be an unacceptable performance loss for the model.
[bookmark: _Ref111217220]If the model structure is not aligned (e.g., dequantization method at decoder and the quantization method in encoder could not match), there will be an obvious performance loss compared with that in case where the dequantization and quantization method are matching.

[image:]
Procedure of training one common CSI reconstruction part to multiple CSI generation parts of different UEs for sequential training starting with UE side training.
It is possible for separate training collaborations to develop one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts. For sequential training starting with UE side training, it is trivial to realize one common CSI generation part to multiple CSI reconstruction parts of different networks, since it is natural for UEs to broadcast the input/output of the same CSI generation part to multiple gNBs. Supporting one common CSI reconstruction part to multiple CSI generation parts of different UEs is also not difficult. One gNB could collect paired input/output data from multiple UEs and then train one CSI reconstruction part based on a mixed dataset of all collected data. The discussion for sequential training starting with gNB side training follows the similar principle and the procedures are almost in reciprocity with those for sequential training starting with UE side training. So the detailed analysis is omitted here for brevity.
However, as the UEs tend to have different model structure for CSI generation part and it is also hard to strictly align the data for exchange among UEs, supporting one common CSI reconstruction part to multiple CSI generation parts of different UEs still takes the risk of obvious performance degradation. To this end, we try to verify the performance of the above case. Consider UE-active separate training with three UEs, each of which uses different backbone structures for their CSI generation part, i.e., Transformer, CNN, and MLP. Each UE reports 10,000, 50,000, or 300,000 data samples for separate training, and the gNB combines all reported data to train the CSI reconstruction model. In this experiment, we consider separate training with one to one CSI generation/reconstruction part (assumed to exchange 300,000 data samples between UR and gNB) to serve as the baseline. Various combinations of amounts of reported samples are simulated, and the results are presented in the table below.
[bookmark: _Ref115453922]Performance of one common CSI reconstruction part to multiple CSI generation parts of different UEs for UE-active separate training.
	
	Transformer CSI generation part
	CNN CSI generation part
	MLP CSI generation part

	SGCS for Baseline
	0.8528
	0.8424
	0.8025

	SGCS for Setting0
	0.8128
	0.8021
	0.7637

	SGCS for Setting1
	0.8358
	0.8303
	0.7942

	SGCS for Setting2
	0.8434
	0.7999
	0.7631

	SGCS for Setting3
	0.8439
	0.7957
	0.6983

	SGCS for Setting4
	0.7313
	0.8016
	0.7938

	
	Data samples from Transformer CSI generation part
	Data samples from CNN CSI generation part
	Data samples from MLP CSI generation part

	Setting0
	50,000
	50,000
	50,000

	Setting1
	300,000
	300,000
	300,000

	Setting2
	300,000
	50,000
	50,000

	Setting3
	300,000
	50,000
	10,000

	Setting4
	10,000
	50,000
	300,000

The table on top side of Table 15 presents the SGCS results for different settings, where each of the three UE shares different amount of data to gNB for separate training. Specific data amount for each setting is given in the table on bottom side of Table 15. Compared with one-to-one model, one common CSI reconstruction part to multiple CSI generation parts of different UEs demonstrates a degraded performance. Such degradation gets worse as the amount of exchanged data decreases.
[bookmark: _Ref115456511]One common CSI reconstruction/generation part could be trained to match multiple CSI reconstruction/generation parts of different UEs in training collaboration type 3 at the cost of some performance loss (e.g., considering one common CSI reconstruction part to three CSI generation part and each UE sharing 50,000 samples with NW, the performance loss in SGCS is around 0.04).
[bookmark: _Ref115456515]Performance of one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts of different networks/UEs is affected by the amount of exchanged data from each network/UE.
In addition, there was a proposal in last meeting that a more general case of M CSI generation parts to N CSI reconstruction parts could be considered for both collaboration type2 and type3. To our understanding, the implementation of M CSI generation parts to N CSI reconstruction parts can be viewed as the composition of multiple common CSI generation part to multiple CSI reconstruction parts (or multiple CSI generation parts to common CSI reconstruction part). Therefore, it can be foreseen that the performance of M CSI generation parts to N CSI reconstruction parts will further decrease compared with one-to-multiple cases, and following observations still hold for all training collaborations:
[bookmark: _Ref115456519]Performance loss in supporting common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts gets worse as the number of supported UEs/networks increases.
Evaluation methodology for Performance Monitoring
Effective monitoring methods are the essential part for life cycle management of AI/ML for CSI compression. It has been agreed that performance monitoring for CSI compression considers following options: 1) intermediate KPIs such as SGCS; 2) Eventual KPIs such as throughput, BLER; 3) legacy CSI based monitoring; 4) Other monitoring solutions at least including input/output data-based monitoring. Intermediate KPIs such as SGCS could best reflect whether the model active for inference is suitable for the current environments/configurations, while there are potential concerns on the effectiveness/accuracy/relevance of other monitoring methods such as monitoring based on input data distribution or system level KPIs. Therefore, we propose to discuss and develop an evaluation methodology for performance monitoring approaches in CSI compression, which takes accuracy/relevance, overhead, complexity, and latency into consideration.
Among the above factors, we believe the evaluation of accuracy/relevance for performance monitoring approaches is the main challenge. To our understanding, following options can be taken as a starting point:
[bookmark: _Hlk118733261]1) linking metrics/results for specific monitoring methods to intermediate KPI result to see their relevance;
2) modeling an environment changing procedure where models may be outdated and measuring the accuracy for different monitoring methods via system KPIs (e.g., throughput).
Take the input data distribution-based performance monitoring as an example. For the first option, we can record the intermediate KPIs for models and the performance monitoring results to see: i) whether the undergoing model indeed suffers from an obvious performance degradation when a drifting has been detected in input data distribution or a model selection has been suggested; or ii) whether the performance monitor reports a performance degradation or triggers a model selection when the actual intermediate KPIs do degrade significantly. For the second option, we can simulate a procedure where UEs move from a typical indoor scenario to an outdoor scenario which dramatically changes the input data distribution. The considered performance monitoring methods are utilized to suggest whether a model selection/switching will be triggered, and the corresponding system level KPIs such as throughput or BLER are recorded. If the system KPIs can be maintained to a satisfying level, it is likely that the accuracy for current monitoring methods is ok.
To our understanding, issues to be discussed for option 1 include at least:
1) deciding the KPIs to reflect the relevance between monitoring results (metrics) and intermediate KPIs;
2) threshold to judge whether the accuracy for a performance monitoring method is good or not.
Issues to be discussed for option 2 include at least:
1) how to model the procedure where performance degradations could potentially happen;
2) threshold to judge whether the accuracy for a performance monitoring method is good or not.

[bookmark: _Ref118741624]Discuss and develop an evaluation methodology for performance monitoring approaches. Following options can be considered as a starting point:
· linking metrics/results for specific monitoring methods to intermediate KPI results to see their relevance;
· modeling an environment changing procedure where models may be outdated and measuring the accuracy for different monitoring methods via system KPIs (e.g., throughput).
CSI prediction
Basic SLS assumptions for CSI prediction
In the AI-based CSI prediction design, the AI model is designed to derive the prediction of CSIs as the output of model when using the historical CSIs as the input. The block diagram of AI-based CSI prediction is illustrated in Figure 20.

[bookmark: _Ref111237779]The block diagram of AI-based CSI prediction.
For CSI prediction, the data for training is derived from the SLS platform. If not specifically stated, the simulation parameters are set according to [2] and [3].

2D fully connected networks (FCN) is used as the backbone of AI-based CSI prediction model, which is illustrated in Figure 21. In detail, the CSI prediction model is composed of 3 layers of 2D FCN where the first two layers are with ReLU activation function. Each basic block (the dotted box in Figure 21) conducts the operation of where is the right multiplication matrix, is the left multiplication matrix, and is the bias matrix. The bias matrix of first two blocks are with the dimension of , and the size of hidden layer is defined as . The dimension of the last bias matrix is decided by the dimension of predicted channel. Dimension of and can be calculated from the dimension of and .

[bookmark: _Ref115451071]The structure of 2D FCN.

Results for CSI prediction
For the legacy CSI feedback procedure, the CSI measurement, CSI feedback and DL transmission utilizing the CSI feedback for precoding are conducted at different time (slots). If the CSI feedback from a previous time is directly used to generate DL precoding, the spectral efficiency will degrade due to the channel aging (especially in high mobility scenarios). To this regard, in addition to AI-based CSI compression mechanism AI-based CSI prediction is an inevitable way to solve such an issue. In the following simulations, it is shown that AI-based CSI prediction outperforms the non-prediction case and non-AI based CSI prediction. Furthermore, the AI-based CSI prediction is also an approach to reduce the RS overhead and feedback frequency. Finally, CSI prediction is a one-sided model while CSI compression is a two-sided model, whose monitoring, updating and finetuning processes are different (from the viewpoint of studying the life cycle management). Therefore, we propose to study the sub use case of AI/ML for CSI prediction with high priority. Our concrete simulation results, provided in what follows, support our proposals.
The necessity of AI-based CSI prediction
In this subsection, the necessity of AI-based prediction is strengthened by comparing the spectral efficiency (SE) of the AI-based CSI compression without scheduling delay, the AI-based CSI compression with scheduling delay and the sequential processing of CSI prediction (both AI-based and non-AI-based) and AI-based CSI compression with scheduling delay. These three schemes are illustrated in the following Figure 22. As for the non-AI CSI prediction, we adopt auto-regression (AR) based method whose details are provided in appendix I.
[image:]
a) AI-based CSI compression without scheduling delay
[image:]
b) AI-based CSI compression with 4ms scheduling delay
[image:]
c) Sequential processing of CSI prediction (both AI-based and non-AI-based) and AI-based CSI compression with scheduling delay.
[bookmark: _Ref111214877]The illustration of schemes for pointing out the necessity of AI-based CSI compression

The SE of above-mentioned schemes are provided. Simulation parameters are given below:
· UE speed: 30 km/h;
· Carrier frequency: 4GHz;
· Scheduling delay: 4ms
· Period of CSI: 5ms;
· Input of AI model for CSI prediction: 15 raw historic channels in PRB;
· Output of AI model for CSI prediction: the raw channel in PRB;
· AI-based CSI compression model: Transformer model with 200 bits payload
· Bandwidth parameters: 52PRBs and 13 sub-bands are used for transmission while the AI-based CSI prediction is conducted with the PRB-based granularity.
· Spatial consistency is not considered.
· Channel type: NLOS Uma

[bookmark: _Ref111215458]The spectral efficiency comparison of AI-based compression and AI-based prediction
	Scheme
	Predicting time
	UE Average SE (bps/Hz)
	SE loss percentage

	AI-based CSI compression without scheduling delay
	
	0.447
	

	AI-based CSI compression with 4ms scheduling delay
	
	0.298
	33.3%

	Chained AI models with scheduling delay (first AI-based CSI prediction and then AI-based CSI compression).
	+4ms
	0.372
	16.8%

	
	+5ms
	0.386
	13.6%

	
	+6ms
	0.388
	13.2%

	Sequential processing of non-AI CSI prediction and AI-based CSI compression with scheduling delay
	+5ms
	0.354
	20.8%

It is shown that the scheduling delay will lead to significant degradation of SE when only using AI-based CSI compression, due to the mismatch between the scheduling channel and measurement channel, which is also known as the channel aging phenomenon. By adding the AI-based CSI prediction, this mismatch can be relieved so as to improve the SE significantly. Specifically, the SE gain of the chained AI models over the pure AI-based CSI compression is up to 20%. The AI-based CSI prediction also outperforms the non-AI based one. Furthermore, AI-based CSI prediction can predict CSIs of any future time while the predicting time of AR-based method is limited to the periodic future time slot.

[bookmark: _Ref115456532]Without CSI prediction, using AI/ML based CSI compression, there exist significant spectral efficiency loss at least for moderate and high-speed scenarios.
[bookmark: _Ref111218901]The AI-based CSI prediction can make up the spectral efficiency loss caused by channel aging.
[bookmark: _Ref115456538]The AI-based CSI prediction outperforms the non-AI based one.
[bookmark: _Ref111219003]To ensure the enhancement of CSI at both low and high-speed scenarios, study AI/ML for time domain CSI prediction with high priority.
The prediction accuracy of AI and non-AI CSI prediction
The NMSE of AI-based CSI prediction and non-AI CSI prediction for NLOS and LOS UMA channel is compared in this subsubsection. In the simulation, the spatial consistency procedure A with 50m decorrelation distance from 38.901 is used.
The corresponding simulation parameters are given below:
· UE speed: 30 km/h;
· Carrier frequency: 2GHz;
· Period of CSI: 4ms;
· Input of AI model: 8 raw historic channels in PRB;
· Output of AI model: the raw channel of future 1-10 ms in PRB;
· For the spatial consistency procedure A, the channel updating periodicity is assumed to be 40 ms (considering the travelling speed of UE, the 1-meter limitation and the duration of SSB).
· The AI-based CSI prediction is conducted with the PRB-based granularity.

When considering the spatial consistency procedure A, the relative location of historical window and prediction window with the channel variation point between two neighboring channel updating duration should be discussed. Just for example, we concluded following 3 cases with the illustration in the following Figure 21. Here, we assume the CSI periodicity is 4ms, and 8 historical CSIs are used to predict future CSIs at +4ms and +8ms. For case 1, both the observation window and prediction window are constrained to be within one channel updating duration of spatial consistency procedure A; for case 2, the observation window and prediction window are in different channel updating duration; for case 3, the observation window includes CSI from multiple channel updating durations. The time varying characteristic of these 3 cases are different (It is noted that if the channel updating duration is much shorter or longer, or using different prediction pattern (input and output), there may also exist other cases).

[bookmark: _Ref118731002]The relative location of historical window and prediction window with the channel variation point
 At first, we evaluate the CSI prediction performance of case 1, i.e., the easiest case. The corresponding NMSE result for NLOS can LOS channel are provided in Figure 22 and Figure 23.

[image:]
[bookmark: _Ref118732572]The NMSE of AI-based and non-AI CSI prediction for NLOS Uma channel
[image:]
The NMSE of AI-based and non-AI CSI prediction for LOS Uma channel
It is shown that the NMSE of AI-based CSI prediction is lower than that of the case without CSI prediction and the non-AI CSI prediction (AR). In other words, to achieve the same prediction accuracy, the AI-based CSI prediction requires lower CSI-RS and feedback overhead. Besides, the AI-based CSI prediction can predict arbitrary future slots while the AR-based CSI prediction can only predict the future slots with the same spacing of CSI period. Comparing the result for LOS and NLOS channel, it can be concluded that the gain of AI-based prediction over non-AI scheme is more significant in NLOS scenario. The prediction of LOS channel seems to be an easy task, and AR-based prediction can also achieve good performance.
For the above simulation, only case 1 is considered which seems to be not practical enough. In the following, we then evaluate the CSI prediction accuracy in a dataset in which data from case 1, case 2 and case 3 are mixed. For AI based CSI prediction, one common mode is trained from a training dataset with mixed cases. Corresponding simulation results are given in the following:
[image:]
The NMSE of AI-based and non-AI CSI prediction for NLOS Uma channel
It is shown that, compared with the case 1 only evaluation, the performance of all schemes degrade and AR-based CSI prediction become very poor while the AI-based prediction still achieves NMSE lower than 0dB. Therefore, the AI-based CSI prediction is more promising when considering the update of channel in spatial consistency procedure A.
At last, in the case of hardware with discontinuous phases, AI has the potential to extract the phase variation law from the historical CSIs and compensate for it to achieve prediction with high accuracy, which is hard to be solved by non-AI approaches.
[bookmark: _Ref118742395]The advantages of AI prediction over AR-based non-AI prediction:
a) Higher accuracy;
b) Less CSI-RS and feedback overhead;
c) Fewer historical CSIs, i.e., shorter measurement window;
d) Flexibility of predicting time;
e) More promising to combat with the update of channel (such as the channel update in spatial consistency procedure other than only Doppler-based variation)
[bookmark: _Ref118742579]For AI/ML for time domain CSI prediction, nearest historical CSI (sample-hold without prediction) and other non-AI CSI prediction method (e.g., auto-regression) can be used as the baseline.

[bookmark: _Ref118742470]When considering the spatial consistency procedure, the length of channel updating duration has significant impact on the design and evaluation of CSI prediction.
[bookmark: _Ref118742586]The length of channel updating duration for spatial consistency procedure A should be aligned among companies. Or the principle of determining the length of channel updating duration should be defined.

The generalization of AI-based prediction over different PRBs
The generalization describes the adaptability of an AI model to fresh data, which is one of the key capabilities for evaluating the performance of an AI model. In this subsubsection, the generalization of AI-based CSI prediction over different PRBs is evaluated. Firstly, the AI model is trained using the data only collected from 1-st PRB. Then, the trained model is directly inferred on the 10-th, 20-th, 30-th, 40-th and 50-th PRB to evaluate the generalization performance. In this simulation, the period of CSI is 4 ms, and the prediction is with 15 historical CSIs as the input. For the bandwidth, 52 PRBs are considered while the AI-based CSI prediction is conducted with the PRB-based granularity. The UE is travelling at the speed of 30km/h in the NLOS scenario. The carrier frequency is 3GHz. It is noted that spatial consistency is not considered in this simulation. The corresponding performance is provided below
[bookmark: _Ref111215676]The generalization performance of AI-based CSI prediction over different PRBs
	Inferred PRB
	1st PRB (trained)
	10th PRB
	20th PRB
	30th PRB
	40th PRB
	50th PRB

	NMSE (dB)
	-20.205
	-20.379
	-20.188
	-20.271
	-20.445
	-20.111

It is shown that the single PRB CSI prediction model trained from one specific PRB achieves almost the same performance on other PRBs, i.e., the generalization of AI-based CSI prediction with respect to PRBs is good. Therefore, it is preferable to train and save only one single PRB AI model and derive prediction of all PRBs in parallel way, just as shown in Figure 24.

[image:]
[bookmark: _Ref111214987] The process of deriving CSI prediction of all PRBs using one common single-PRB model
[bookmark: _Ref111218935]The generalization of AI-based CSI prediction with respect to PRBs is good
[bookmark: _Ref111219029]The generalization of AI-based CSI prediction across frequency domain should be studied.
The generalization of AI-based prediction over different speeds
In this subsubsection, the generalization of AI-based CSI prediction over different speeds is evaluated. The corresponding simulation parameters are given below:
· Carrier frequency: 2GHz;
· Period of CSI: 4ms;
· Input of AI model: 15 raw historic channels in PRB;
· Output of AI model: the raw channel of +4 ms in PRB;
· The spatial consistency procedure A with 50m decorrelation distance from 38.901 is used where the channel updating periodicity is assumed to be 40 ms (considering the travelling speed of UE, the 1-meter limit and the duration of SSB).
· The AI-based CSI prediction is conducted with the PRB-based granularity.
· Channel type: NLOS Uma

Firstly, the AI model is trained using the data with the one specific UE speed. Then, the trained model is directly inferred on the validation data with the UE speed of 20, 30 and 60 km/h and 120km/h to evaluate the generalization performance.
The NMSE of speed specific AI-based CSI prediction model over different speeds
	Inference speed(km/h)
Scheme
	20
	30
	60
	120

	NMSE (dB) of using model trained at 30 km/h
	-22.84
	-20.38
	16.38
	17.41

	NMSE (dB) of using model trained at 60 km/h
	-12.18
	-11.28
	-6.7
	-0.45

It is shown that the model trained at 30 km/h performs quite well at 20 and 30 km/h but very poor at 60 km/h and 120 km/h. And the model trained at 60 km/h performs well at 60 km/h but experience a significant performance loss at 20 and 30 km/h.
To improve the generalization of AI-based prediction over different speeds, we consider two approaches, i.e., 1) the mixed dataset-based training and 2) preprocessing based model scaling.
For the mixed dataset-based training, we mix the data with multiple UE speeds (20, 30, 60 and 120 km/h) while remaining the size of training dataset with the previous simulation. The corresponding NMSE performance for CSI-prediction is provided in the following Table 19.
[bookmark: _Ref118626807]The NMSE of mixed-speed AI-based CSI prediction model over different speeds
	Inference speed (km/h)
	20
	30
	60
	120

	NMSE (dB)
	-20.76
	-17.70
	-4.99
	-0.77

It is shown that the CSI prediction performance of all speeds can be eclectically guaranteed when compared to the performance of model trained from one specific speed.

For the preprocessing based model scaling, we train a base model using the data with speed where the CSI periodicity in historical CSI is and the predicted Future CSI is at . Then, for the scenario with the speed of , we compute the corresponding CSI periodicity in historical CSI () and the predicted Future CSI () using the following rule:

For example, the base model is trained with the UE speed of 30km/h where CSI periodicity in historical CSI is 5ms and the predicted Future CSI is at +5ms. If we want to inference at 15km/h, then the CSI periodicity in historical CSI should turn to 10ms and the predicted Future CSI should be at +10ms; If we want to inference at 60km/h, then the CSI periodicity in historical CSI should turn to 2.5ms and the predicted Future CSI should be at +2.5ms.

The key issue for preprocessing based model scaling is to derive the input CSI of model with the periodicity of . We consider two options:

1) modify the CSI-RS periodicity to ;

2) construct the input CSIs with the periodicity of from the CSIs with the periodicity of . If , we just need to extract corresponding CSIs. If , CSI interpolation is needed to derive denser CSIs.

[bookmark: _Ref115456819]The generalization of AI-based CSI prediction across speeds should be studied.

The impact of CSI-RS periodicity

It is well known that the maximum Doppler shift is given by , where is the speed of UE, is the speed of light, is the carrier frequency. By considering the coherence time of channel, we think the CSI-RS periodicity should satisfy to derive a good CSI prediction performance. We calculated some typical value of maximum CSI-RS periodicity, which is provided in the following table. Furthermore, in Figure 25 and Figure 26, we have evaluated the performance of AI-based CSI prediction with respect to different carrier frequency and CSI-RS periodicity. It is noted that spatial consistency is not considered in this simulation.
[bookmark: _Ref115187862]The maximum CSI period to ensure CSI prediction performance
	Carrier frequency
	Speed
	Maximum CSI-RS periodicity

	4GHz
	30km/h
	4.5ms

	4GHz
	20km/h
	6.7ms

	4GHz
	10km/h
	13.5ms

	3GHz
	30km/h
	6ms

	3GHz
	20km/h
	9ms

	3GHz
	10km/h
	18ms

[image:]
[bookmark: _Ref115189228]The NMSE performance of AI-based CSI prediction where carrier frequency is 4GHz and UE speed is 30km/h

[image:]
[bookmark: _Ref115189233]The NMSE performance of AI-based CSI prediction where carrier frequency is 3GHz and UE speed is 30km/h
It is shown that the performance of AI-based CSI prediction is highly related with the CSI-RS periodicity. When the CSI-RS periodicity is too large, the prediction accuracy will be unacceptable. For our point of view, 5ms CSI feedback periodicity (chosen as baseline in #110) is too large for the case of 4GHz carrier frequency and 30km/h speed.

[bookmark: _Ref115456844]The choice of CSI-RS periodicity (especially the baseline parameters) should depend on the speed and carrier frequency.

Conclusions
1. Based on initial field test results, per-cell (region) models can provide more than 30%~50% improvement on SCGS of AI models
.
Further study the model update for per-cell (region) models
Further study the data collection for per-cell (region) models.
From initial results for spatial consistency data, performance of simple model structure, e.g., one hidden layer full-connected encoder, can achieve good performance when per cell model is used.
From initial results for field test, performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
AI model performance does not degrade when a generic model (non-optimized for a specific area/cell) trained for a frequency is applied to another frequency.
For a generic model (non-optimized for a specific area/cell), AI model performance does not degrade when generalized from UMi to UMa.
For a generic model (non-optimized for a specific area/cell) AI model can generalize across different scenarios with a mixed dataset. A reasonable mixing ratio can provide better performance for each scenario.
For a generic model (non-optimized for a specific area/cell), AI model trained in complicated channel environment (more indoor users) has good generalization ability.
The performance of AI model depends on the deployment environment
For a generic model (non-optimized for a specific area/cell), there is obvious performance loss for antenna spacing mismatch of training data.
For a generic model (non-optimized for a specific area/cell), the influence of mismatch of training data may be reduced by pre-processing.
For a generic model (non-optimized for a specific area/cell), SGCS performance of AI model may degrade slightly from 128 antennas with virtualization to 32 antennas without virtualization. While the SE performance may degrade heavily due to the less antennas.
For a generic model (non-optimized for a specific area/cell), in the case of 32 antennas, AI model trained with 32 antennas may have similar SE performance compared with AI model trained with 128 antennas and settled in the case of 128 antennas, which is needed to be further studied.
Zero-padding is feasible for subband number generalization while its performance degrades dramatically in port number generalization.
Pre-processing performs well for both subband number generalization and port number generalization.
Payload truncation, as a starting point, performs well in UCI payload size generalization.
Rank generalization with per-layer model can achieve similar SGCS with half model size compared with per-rank model.
In the case of rank-2, AI model can provide about 12% SE gain compared with Rel-16 Type II codebook.
High resolution R16-eType II codebook with large L, M, beta (for example, L=12, M=6, beta = 1.0) performs well for ground-truth CSI quantization.
Quantization non-aware training only achieves good performance when the averaged quantization bit is large (e.g., >= 4bits/float). When the averaged quantization bit is small (e.g., <= 2bits/float), the performance loss is significant.
Vector quantization with optimized codebook can achieve slightly better performance (e.g., by about 0.009 in SGCS in our considered configurations) than scalar quantization with fixed codebook.
Performance of vector quantization with randomly initialization and fixed codebook can be slightly inferior to that of scalar quantization with fixed codebook (e.g., by about 0.0065 in SGCS in our considered configurations).
Performance of quantization non-aware training could be significantly lower than that of quantization aware training (more than 0.1 in SGCS in our considered configurations).
Quantization method at UE side and dequantization method at NW side should be aligned for training collaboration type2 and 3 to achieve a satisfying performance.
One common CSI reconstruction part could be trained to match multiple CSI generation parts of different UEs in training collaboration type 2 at the cost of some performance loss.
Considering one common CSI reconstruction part matching three CSI generation parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduces from 0.075 to 0.052, i.e., losing about 30% performance gain.
One common CSI generation part could be trained to match multiple CSI reconstruction parts of different networks in training collaboration type 2 at the cost of some performance loss.
Considering one common CSI generation part matching three CSI reconstruction parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.061, i.e., losing about 19% performance gain.
If the model structure is not aligned (e.g., dequantization method at decoder and the quantization method in encoder could not match), there will be an obvious performance loss compared with that in case where the dequantization and quantization method are matching.
One common CSI reconstruction/generation part could be trained to match multiple CSI reconstruction/generation parts of different UEs in training collaboration type 3 at the cost of some performance loss (e.g., considering one common CSI reconstruction part to three CSI generation part and each UE sharing 50,000 samples with NW, the performance loss in SGCS is around 0.04).
Performance of one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts of different networks/UEs is affected by the amount of exchanged data from each network/UE.
Performance loss in supporting common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts gets worse as the number of supported UEs/networks increases.
Without CSI prediction, using AI/ML based CSI compression, there exist significant spectral efficiency loss at least for moderate and high-speed scenarios.
The AI-based CSI prediction can make up the spectral efficiency loss caused by channel aging.
The AI-based CSI prediction outperforms the non-AI based one.
The advantages of AI prediction over AR-based non-AI prediction:
When considering the spatial consistency procedure, the length of channel updating duration has significant impact on the design and evaluation of CSI prediction.
The generalization of AI-based CSI prediction with respect to PRBs is good

1. Consider to capture observations from field data test into TR.
Study the performance and overhead of per-cell (region) model transfer in CSI compression.
For a generic model (non-optimized for a specific area/cell), AI models perform well in generalization of carrier frequency, channel scenario, indoor/outdoor ratio.
For a generic model (non-optimized for a specific area/cell), AI models perform bad in antenna spacing and antenna virtualization, which can be further studied.
Study the following three methods for generalization of input dimension
· Option 1: use large dimension AI/ML model in small dimension cases: zero-padding
· Option 2: use small dimension AI/ML model in large dimension cases: grouping
· Option 3: use pre-processing to fix the input dimension: angle-delay domain compression
Study CSI payload truncation for the generalization of UCI payload.
· FFS the flexible truncation strategy and training parameters for more different payload.
For rank > 1 cases, study option4 (layer common): A unified AI/ML model is trained and applied for each layer to perform individual inference.
· FFS how to choose the layers for training data set

Discuss and develop an evaluation methodology for performance monitoring approaches. Following options can be considered as a starting point:
· linking metrics/results for specific monitoring methods to intermediate KPI results to see their relevance;
· modeling an environment changing procedure where models may be outdated and measuring the accuracy for different monitoring methods via system KPIs (e.g., throughput).
To ensure the enhancement of CSI at both low and high-speed scenarios, study AI/ML for time domain CSI prediction with high priority.
For AI/ML for time domain CSI prediction, nearest historical CSI (sample-hold without prediction) and other non-AI CSI prediction method (e.g., auto-regression) can be used as the baseline.
The length of channel updating duration for spatial consistency procedure A should be aligned among companies. Or the principle of determining the length of channel updating duration should be defined.
The generalization of AI-based CSI prediction across frequency domain should be studied.
The generalization of AI-based CSI prediction across speeds should be studied.
The choice of CSI-RS periodicity (especially the baseline parameters) should depend on the speed and carrier frequency.
References
[1] A. Alkhateeb, “DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications,” in Proc. of The Information Theory and Applications Workshop (ITA), San Diego, CA, Feb. 2019. Codes and instructions available @ https://deepmimo.net/
[2] Chair's notes RAN1#109-e v19, 2022.5The generalization performance across speeds should be studied.
[3] Chair's notes RAN1#110 v21, 2022.9

Appendix I: the non-AI CSI prediction based on AR
In statistics and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it is used to describe certain time-varying processes. The autoregressive model specifies that the output variable depends linearly on its own previous values and on a stochastic term (an imperfectly predictable term).
An AR model is described as

	,	

where is the sample at time, the are the parameters of the model, and is white noise. For CSI prediction, is the CSI at time .The parameters can be directly derived from some samples using least square estimation. However, this estimation will be impacted by the noise. Another solution is to estimate the parameters based on the Yule-Walker equations.
There is a direct correspondence between these parameters and the covariance function of the process, and this correspondence can be inverted to determine the parameters from the autocorrelation function (which is itself obtained from the covariances). This is done using the Yule-Walker equations. The Yule-Walker equations is given by

		

where, yielding equations. Here is the autocovariance function of , is the standard deviation of the input noise process, and is the Kronecker delta function. Because the last part of an individual equation, i.e., , is non-zero only if, the set of equations can be solved by representing the equations for in matrix form, thus getting the equation

		

which can be solved for all Then the parameters of AR model can be estimated by

 	

The average cosine similarity

5.5GHz	85	95	111	127	159	175	191	207	223	0.82399999999999995	0.84399999999999997	0.85499999999999998	0.86399999999999999	0.873	0.88500000000000001	0.89500000000000002	0.89400000000000002	0.91200000000000003	3.5GHz	85	95	111	127	159	175	191	207	223	0.82299999999999995	0.84299999999999997	0.85699999999999998	0.86399999999999999	0.872	0.88300000000000001	0.89700000000000002	0.89700000000000002	0.91	2.2GHz	85	95	111	127	159	175	191	207	223	0.82199999999999995	0.84399999999999997	0.85899999999999999	0.86099999999999999	0.874	0.88100000000000001	0.89800000000000002	0.89700000000000002	0.91100000000000003	payload (bits)

The average cosine similarity

The gain of average SE

5.5GHz	85	95	111	127	159	175	191	207	223	0.15797788309637895	1.1058451816745531	2.6066350710900394	2.9225908372827689	4.4233807266982552	4.9763033175355389	6.3191153238546747	6.0821484992101205	6.9510268562401336	3.5GHZ	85	95	111	127	159	175	191	207	223	0.23696682464454	1.3428120063191216	2.5276461295418642	2.9225908372827689	4.186413902053701	5.0552922590837426	6.3191153238546747	6.3191153238546747	7.3459715639810526	2.2GHZ	85	95	111	127	159	175	191	207	223	0	1.2638230647709321	2.5276461295418642	2.9225908372827689	4.186413902053701	4.9763033175355389	6.240126382306471	6.5560821484992147	7.0300157977883089	payload (bits)

The gain of average SE (%)

The SGCS of different indoor/outdoor scenarios

training_0.8_inferring_0.8	78	95	111	127	143	159	180	207	223	0.78400000000000003	0.81399999999999995	0.83199999999999996	0.83699999999999997	0.85099999999999998	0.86299999999999999	0.879	0.89200000000000002	0.89800000000000002	training_0.8_inferring_0.5	78	95	111	127	143	159	180	207	223	0.82299999999999995	0.84699999999999998	0.86199999999999999	0.86599999999999999	0.878	0.88800000000000001	0.90100000000000002	0.91100000000000003	0.91700000000000004	training_0.8_inferring_0.2	78	95	111	127	143	159	180	207	223	0.86599999999999999	0.88300000000000001	0.89500000000000002	0.89900000000000002	0.90700000000000003	0.91500000000000004	0.92400000000000004	0.93100000000000005	0.93500000000000005	training_0.2_inferring_0.8	111	127	143	159	180	207	223	0.80500000000000005	0.81599999999999995	0.82399999999999995	0.84599999999999997	0.85299999999999998	0.86199999999999999	0.875	training_0.2_inferring_0.5	111	127	143	159	180	207	223	0.84199999999999997	0.85099999999999998	0.85799999999999998	0.875	0.88100000000000001	0.88800000000000001	0.89800000000000002	training_0.2_inferring_0.2	111	127	143	159	180	207	223	0.88200000000000001	0.88900000000000001	0.89400000000000002	0.90700000000000003	0.91100000000000003	0.91500000000000004	0.92300000000000004	payload (bits)

SGCS

The SE gain of different indoor/outdoor scenarios compared with eType II parameter combination 1

training_0.8_inferring_0.8	78	95	111	127	143	159	180	207	223	7.1965979718678454	8.7994766110566047	9.5191364082433836	9.7154072620215999	10.336931632319278	11.089303238469085	11.874386653581936	12.463199214916585	12.626758259731758	training_0.8_inferring_0.5	78	95	111	127	143	159	180	207	223	9.1920183186130231	10.238796205430162	10.762185148838739	10.925744193653912	11.514556754988533	11.743539417729806	12.266928361138369	12.528622832842657	12.757605495583917	training_0.8_inferring_0.2	78	95	111	127	143	159	180	207	223	10.893032384	690883	11.187438665358201	11.383709519136403	11.579980372914633	11.90709846254498	11.90709846254498	12.168792934249268	12.23421655217534	12.365063788027484	training_0.2_inferring_0.8	111	127	143	159	180	207	223	7.9489695780176532	8.5050703303892732	9.224730127576052	10.107948969578032	10.500490677134451	10.893032384690883	11.579980372914633	training_0.2_inferring_0.5	111	127	143	159	180	207	223	9.8462544978737299	10.206084396467134	10.631337912986609	11.22015047432123	11.449133137062489	11.743539417729806	12.103369316323182	training_0.2_inferring_0.2	111	127	143	159	180	207	223	11.154726856395158	11.350997710173388	11.612692181877662	11.808963035655879	11.776251226692835	12.005233889434081	11.939810271508009	payload (bits)

SE gain (%)

The SGCS of different antenna sapces

0.8λ antenna space for training	85	95	111	127	159	175	191	207	223	0.82299999999999995	0.84299999999999997	0.85699999999999998	0.86399999999999999	0.872	0.88300000000000001	0.89700000000000002	0.89700000000000002	0.91	0.5λ antenna space for training	85	95	111	127	159	175	191	207	223	0.80800000000000005	0.82399999999999995	0.83699999999999997	0.85199999999999998	0.873	0.88	0.88700000000000001	0.89500000000000002	0.89900000000000002	payload (bits)

SGCS

The gain of average SE compared with
85 bits baseline AI model

0.8λ antenna space for training	85	95	111	127	159	175	191	207	223	0	1.1041009463722276	2.3659305993690936	2.7602523659305831	4.0220820189274491	4.8107255	520504708	6.1514195583596347	6.1514195583596347	7.1766561514195644	0.5λ antenna space for training	85	95	111	127	159	175	191	207	223	-2.9968454258675052	-1.5772870662460576	-0.47318611987381587	0.55205047318611378	2.3659305993690936	3.0757097791798174	3.5488958990536332	4.4164037854889528	4.8107255520504708	payload (bits)

The gain of average SE (%)

The SGCS of small AI models

0.8λ antenna space for training	87	117	147	177	207	237	267	297	327	0.78300000000000003	0.81599999999999995	0.83499999999999996	0.84499999999999997	0.85099999999999998	0.85499999999999998	0.85699999999999998	0.85799999999999998	0.85799999999999998	0.5λ antenna space for training	87	117	147	177	207	237	267	297	327	0.78900000000000003	0.82099999999999995	0.83899999999999997	0.84799999999999998	0.85399999999999998	0.85699999999999998	0.85899999999999999	0.86	0.86	payload (bits)

SGCS

The gain of average SE of small AI models compared with
87 bits baseline AI model

0.8λ antenna space for training	87	117	147	177	207	237	267	297	327	0	3.0176026823135089	4.6940486169320934	5.6160938809723291	6.4543168482816355	6.8734283319362959	7.1248952221290835	7.292539815590942	7.292539815590942	0.5λ antenna space for training	87	117	147	177	207	237	267	297	327	0.58675607711651878	3.5205364626990701	5.1131601005867537	6.2028499580888479	6.621961441743494	6.8734283319362959	7.2087175188600128	7.4601844090528004	7.5440067057837297	payload (bits)

The gain of average SE (%)

The SGCS of Rel-16 Type II codebook and AI model

Rel-16 Type II with [2 8 2]	64	96	116	180	244	302	0.69099999999999995	0.73899999999999999	0.77400000000000002	0.82699999999999996	0.84099999999999997	0.86599999999999999	AI Case 2	78	95	111	127	143	159	180	207	223	0.79	0.81799999999999995	0.83699999999999997	0.84499999999999997	0.86499999999999999	0.86899999999999999	0.88500000000000001	0.89800000000000002	0.90400000000000003	Rel-16 Type II with [8 8 2]	64	96	116	180	244	302	0.68500000000000005	0.72799999999999998	0.76500000000000001	0.81200000000000006	0.82399999999999995	0.84499999999999997	AI Case 1	78	95	111	127	143	159	180	207	223	0.79500000000000004	0.82199999999999995	0.84	0.84499999999999997	0.85699999999999998	0.871	0.88600000000000001	0.89700000000000002	0.90300000000000002	AI Case 3	85	95	111	127	159	175	191	207	223	0.82299999999999995	0.84299999999999997	0.85699999999999998	0.86399999999999999	0.872	0.88300000000000001	0.89700000000000002	0.89700000000000002	0.91	feedback bits

SGCS

The gain of average SE compared with
113 bits Rel-16 Type II codebook

Rel-16 Type II	113	169	207	319	431	539	0	7.3875553484036089	16.522955022139342	24.679561873689096	26.707061291074339	29.620135166627819	AI	190	254	302	318	366	414	28.408296434397556	31.088324399906753	33.418783500349548	34.980191097646241	36.984385924027009	38.755534840363538	SVD	113	169	207	319	431	539	51.526450710790016	51.526450710790016	51.526450710790016	51.526450710790016	51.526450710790016	51.526450710790016	feedback bits

The gain of average SE (%)

SGCS	
Quantization non-aware training (80 floats)	Quantize by 320bits for inference	Quantize by 240bits for inference	Quantize by 180bits for inference	Quantize by 80bits for inference	0.90449999999999997	0.89161999999999997	0.85045000000000004	0.73597999999999997	0.51866000000000001	

SGCS (all models consider using 180bits to quantize 80 float-format variables)

SGCS	
Vector quantization with optimized codebook	Vector quantization with fixed codebook	Scalar quantization with fixed codebook	Quantization non-aware training	0.87168000000000001	0.85553000000000001	0.86258000000000001	0.73597999999999997	

image44.wmf
1

p

titit

i

XX

je

-

=

=+

å

oleObject31.bin

image45.wmf
t

X

oleObject32.bin

image46.wmf
t

oleObject33.bin

image47.wmf
1

,,

p

jj

¼

oleObject34.bin

image48.wmf
t

e

oleObject35.bin

image1.png

oleObject36.bin

image49.wmf
t

oleObject37.bin

oleObject38.bin

image50.wmf
2

,0

1

,

p

mkmkm

k

e

gjgsd

-

=

=+

å

oleObject39.bin

image51.wmf
0,,

mp

=¼

oleObject40.bin

image52.wmf
1

p

+

oleObject41.bin

image53.wmf
ttm

m

XX

g

-

=

oleObject42.bin

image54.wmf
t

X

oleObject43.bin

image55.wmf
e

s

oleObject44.bin

image56.wmf
,0

m

d

oleObject45.bin

image57.wmf
2

,0

m

e

sd

oleObject46.bin

image58.wmf
0

m

=

oleObject47.bin

image59.wmf
0

m

>

oleObject48.bin

image60.wmf
{

{

10121

21012

32103

123

ppppp

ggggj

ggggj

ggggj

ggggj

--

-

éùéùéù

êúêúêú

êúêúêú

êúêúêú

=

êúêúêú

êúêúêú

êúêúêú

ëûëûëû

r

φ

R

L

L

L

MMMMOM

L

14444244443

oleObject49.bin

image61.wmf
{;1,2,,}.

m

mp

j

=¼

oleObject50.bin

image62.wmf
1

-

=

φ

Rr

oleObject51.bin

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.emf
CSI prediction modelCSI t0CSI t-1CSI t-KMeasurement of multiple historical CSIs...CSI tNCSI tN+1CSI tN+M...Prediction of multiple future CSIs

Microsoft_Visio_Drawing.vsdx
CSI prediction model
CSI t0
CSI t-1
CSI t-K
Measurement of multiple historical CSIs
...
CSI tN
CSI tN+1
CSI tN+M
...
Prediction of multiple future CSIs

image9.wmf
,

LiiRii

WXWB

+

oleObject1.bin

image10.wmf
Ri

W

oleObject2.bin

image11.wmf
Li

W

oleObject3.bin

image12.wmf
i

B

oleObject4.bin

image13.wmf
NN

´

oleObject5.bin

image14.wmf
N

oleObject6.bin

oleObject7.bin

oleObject8.bin

image15.wmf
i

X

oleObject9.bin

oleObject10.bin

image16.emf
WL1X1WR1+B1ReLUWL2X2WR2+B2ReLUWL3X3WR3+B3InputOutputX1X2X3

Microsoft_Visio_Drawing2.vsdx
WL1X1WR1

+
B1
ReLU
WL2X2WR2
+
B2
ReLU
WL3X3WR3
+
B3
Input
Output
X1
X2
X3

image17.emf
Start of schedulingAI compression

image18.emf
Start of schedulingAI compression

image19.emf
Start of scheduling...AI compressionPrediction

image20.emf
The 1st updating durationThe 2nd updating durationCSI in observation window (number is the slot index)CSI in prediction window (number is the slot index)Case 1Case 2Case 3.........

Microsoft_Visio_Drawing3.vsdx
The 1st updating duration
The 2nd updating duration
CSI in observation window (number is the slot index)
CSI in prediction window (number is the slot index)
Case 1
Case 2
Case 3
...
...
...

image21.png

image22.png

image23.png

image24.emf
Common modelCommon modelCommon modelCommon modelCommon modelCommon model......Common model1-st RB2-nd RB3-rd RB4-th RB51-th RB52-th RB1-st RB2-nd RB3-rd RB4-th RB51-th RB52-th RB

image25.wmf
1

v

oleObject11.bin

image26.wmf
,1

input

T

oleObject12.bin

image27.wmf
,1

output

T

+

oleObject13.bin

image28.wmf
2

v

oleObject14.bin

image29.wmf
,2

input

T

oleObject15.bin

image30.wmf
,2

output

T

+

oleObject16.bin

image31.wmf
1

,2,1

2

,

inputinput

v

TT

v

=

oleObject17.bin

image32.wmf
1

,2,1

2

.

outputoutput

v

TT

v

=

oleObject18.bin

oleObject19.bin

oleObject20.bin

oleObject21.bin

image33.wmf
,1

input

T

oleObject22.bin

image34.wmf
,2,1

inputinput

TT

>

oleObject23.bin

image35.wmf
,2,1

inputinput

TT

<

oleObject24.bin

image36.wmf
_max

dopplercarrier

v

ff

c

=

oleObject25.bin

image37.wmf
v

oleObject26.bin

image38.wmf
c

oleObject27.bin

image39.wmf
carrier

f

oleObject28.bin

image40.wmf
CSI

T

oleObject29.bin

image41.wmf
_max

1

22

CSI

dopplercarrier

c

T

fvf

£=

oleObject30.bin

image42.png

image43.png

