
3GPP TSG-RAN WG1 Meeting #111	  R1-2210885
Toulouse, France, November 14 – 18, 2022

Agenda Item:	9.2.2.1
Source:	Huawei, HiSilicon
Title:	Evaluation on AI/ML for CSI feedback enhancement 
Document for:	Discussion and Decision

1. [bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
In previous RAN1 meetings, evaluation methodology of AI/ML for Channel State Information (CSI) feedback enhancement has been discussed and several agreements of the evaluation methodology have been achieved. In this contribution, we will provide further discussions on the evaluations on AI/ML for CSI feedback enhancement, including evaluation methodology and simulation results.
2. Evaluation methodology
In this section, we will discuss the issues of evaluation methodology for AI/ML-based CSI feedback.
2.1 Generic evaluation methodology
SGCS calculation for rank>1
In the last RAN1 meeting [1], it has been agreed that for the rank>1 cases, Method 3 is adopted for SGCS calculation; while there is FFS on whether/which method between Method 1 and Method 2 is to be additionally selected as another metric. 
	Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if the SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’ for rank>1 cases, at least Method 3 is adopted, FFS whether additionally adopt a down-selected metric between Method 1 and Method 2.
· Method 1: Average over all layers
· Method 2: Weighted average over all layers 

where  is the jth eigenvector of the target CSI at resource unit i and K is the rank.  is the  jth output vector of the output CSI of resource unit i. N is the total number of resource units.   denotes the average operation over multiple samples.  is an eigenvalue of the channel covariance matrix corresponding to .
· Method 3: SGCS is separately calculated for each layer (e.g., for K layers, K SGCS values are derived respectively, and comparison is performed per layer)


In our understanding, Method 1 can be easily calculated from the results of Method 3 and the trend of Method 2 can also be somehow reflected by the results of Method 3.  Therefore, it is not strongly desired to introduce a second metric for SGCS calculation. 
Between Method 1 and Method 2, though Method 2 may reflect the impact of weights of singular values, it still cannot accurately simulate the real throughput which is impacted also by scheduling, MU pairing, link adaptation, etc. Actually, as the UPT is already agreed as the eventual KPI, there seems to be no strong necessity to additionally reflect the real throughput with intermediate results. Therefore, Method 1 is a simple way compared with Method 2 if it really needs an additional method.
Proposal 1: For the SGCS calculation under rank>1 cases, no additional method needs to be introduced except Method 3 (SGCS is separately calculated for each layer) as already adopted.
Other intermediate KPIs
In the last RAN1 meeting [1], the following working assumption on intermediate KPIs of AI/ML-based CSI feedback enhancement has been achieved.
	Working assumption 
In the evaluation of the AI/ML based CSI feedback enhancement, if SGCS is adopted as the intermediate KPI for the rank>1 situation, companies to ensure the correct calculation of SGCS and to avoid disorder issue of the output eigenvectors
· Note: Eventual KPI can still be used to compare the performance


During the last RAN1 meeting, in addition to SGCS/NMSE, there are also some other metrics such as Relative achievable rate (RAR) are provided by companies. The main motivation raised for this metric by some companies is that for the case rank>1, the layer index disorder problem may exist for SGCS calculation. As discussed and clarified during the meeting, however, there are several methods can be used to avoid the disorder issue, e.g., using per layer AI/ML model to each layer individually and calculate SGCS for each layer separately, or order the output eigenvectors by performing the correlation operation with the original eigenvectors of the corresponding layer. Based on the working assumption, companies should ensure the correct calculation of SGCS and to avoid disorder issue of the output eigenvectors. Therefore, the existence and handling of the layer disorder issue may not be essential.
Another motivation is to better simulate the SNR or throughput with those numerical calculations; however, as the throughput has already been taken as the eventual KPI, and the SNR/SINR is also widely adopted as metrics in simulations, directly using these eventual KPI is more accurate and realistic than the numerical values.
Therefore, it is our understanding that there is no strong motivation to introduce additional metrics other than SGCS and NMSE.
Proposal 2: For the intermediate KPI for evaluating the accuracy of the AI/ML output CSI, except for SGCS and NMSE which has been agreed as the baseline metrics, other intermediate KPIs are not considered as baseline for metrics, and can be optionally considered and reported by companies.
2.2 Specific evaluation methodology for AI/ML-based CSI prediction
2.2.1 Benchmark of CSI prediction scheme
During the last RAN1 meeting, the benchmark of CSI prediction scheme has been discussed. Since there isn’t a universally accepted and calibrated non-AI/ML-based CSI prediction scheme, it is better to use the nearest historical CSI (i.e., sample-and-hold) as the benchmark, which is easy to align. As the concern from some companies is that only using nearest historical CSI as benchmark may overestimate the gain of AI/ML-based CSI prediction scheme, on top of the sample-and-hold benchmark (which is used for calibration), an additional non-AI/ML based CSI prediction approach can be used to compare the gain of AI/ML based prediction for performance justification. 
It should also be noted that in the Rel-18 MIMO enhancement topic, the CSI prediction algorithm is not aligned in the EVM either, so it may not make a strong sense to wait for the Rel-18 topic progress for a converged non-AI/ML benchmark. In addition, as per the Rel-18 MIMO agreement shown in below, N4=1 (one predicted CSI instance without Doppler-domain compression) is also agreed as a solution, which reuses Rel-16/Rel-17 compression codebook, so it seems to be fair for companies to report whether Doppler-domain compression is adopted or not, rather than mandating the N4>1 solution as the benchmark.
	Agreement
For the Rel-18 Type-II codebook refinement for high/medium velocities, support the following codebook structure where N4 is gNB-configured via higher-layer signaling:
· For N4=1, Doppler-domain basis is the identity (no Doppler-domain compression) reusing the legacy , , and , e.g. 
· For N4>1, Doppler-domain orthogonal DFT basis commonly selected for all SD/FD bases reusing the legacy  and , e.g. 
· Only Q (denoting the number of selected DD basis vectors) >1 is allowed
· TBD (by RAN1#110bis): whether rotation is used or not
· FFS: identical or different rotation factors for different SD components
· FFS: Whether Q is RRC-configured or reported by the UE
Note: Detailed designs for SD/FD bases including the associated UCI parameters follow the legacy specification
FFS: Whether one CSI reporting instance includes multiple  and a single  and  report.


Proposal 3: If the AI/ML based CSI prediction sub use cases is to be selected as a sub use case, the nearest historical CSI as well as non-AI/ML based CSI prediction approach are both taken as baselines for the benchmark of performance comparison, and the specific non-AI/ML based CSI prediction is reported by companies.
· For non-AI/ML based CSI prediction benchmark, it is up to companies to report whether Doppler-domain compression of Rel-18 MIMO is adopted.
2.2.2 Template for collecting evaluation results
In order to better capture the evaluation results from different companies in the TR, a template collecting evaluation results is necessary. The template should contain the AI/ML model description (e.g., backbone, Input/output type, Pre-processing/Post-processing, model complexity, etc.), assumptions (e.g., Observation window, Prediction window, etc.), dataset description (e.g., training dataset size) and KPIs (e.g., SGCS, mean UPT, 5% UPT).
Proposal 4: The following initial template is considered for companies to report the evaluation results of AI/ML-based CSI prediction.
	
	
	Source 1
	…

	AI/ML model description
	AL/ML model backbone
	
	

	
	Pre-processing
	
	

	
	Post-processing
	
	

	
	FLOPs/M
	
	

	
	Parameters/M
	
	

	
	Input type
	
	

	
	Output type
	
	

	Assumption
	UE speed
	
	

	
	Observation window
	
	

	
	Prediction window
	
	

	
	Whether/how to adopt spatial consistency
	
	

	Dataset size
	Train/k
	
	

	
	Test/k
	
	

	Benchmark 1
	
	

	Gain for intermediate KPIs (Benchmark 1)
	SGCS
	
	

	
	NMSE
	
	

	
	[Others]
	
	

	Gain for eventual KPI (Benchmark 1)
	Mean UPT
	
	

	
	5% UPT
	
	

	Benchmark 2
	
	

	Gain for intermediate KPIs (Benchmark 2)
	SGCS
	
	

	
	NMSE
	
	

	Gain for eventual KPI (Benchmark 2)
	Mean UPT
	
	

	
	5% UPT
	
	

	FFS others
	
	
	


2.3 Specific evaluation methodology for AI/ML-based CSI compression 
2.3.1 The AI/ML settings for multi-layer case
During the last RAN1 meeting, AI/ML settings for multi-layer case have been discussed. The following 4 options have been discussed, where the first 2 options are rank level AI/ML models and the other 2 options are layer level AI/ML model. In particular, some companies brought up other solutions of hybrid rank specific and layer common/layer specific, which in our understanding could be categorized as two sub-options under Option 3 and Option 4.
· Rank level AI/ML models
· Option 1 (rank specific): Separated AI/ML models are trained per rank value and applied for corresponding ranks to perform individual inference.
· Option 2 (rank common): A unified AI/ML model is trained and applied for adaptive ranks to perform inference. 
· Layer level AI/ML models
· Option 3 (layer specific): Separated AI/ML models are trained per layer value and applied for corresponding layers to perform individual inference. 
· Option 3-1 (layer specific and rank common): For a specific layer, the layer specific model is applied for all rank values.
· Option 3-2 (layer specific and rank specific): For a specific layer, different layer specific models are applied for different rank values.
· Option 4 (layer common): A unified AI/ML model is trained and applied for each layer to perform individual inference. 
· Option 4-1 (layer common and rank common): For a specific layer, the unified AI/ML model is applied for all rank values.
· Option 4-2 (layer common and rank specific): For a specific layer, different layer common models are applied for different rank values.
For rank level AI/ML models, the input can be channel matrix or eigenvectors of all layers. The training of Option 1 (rank specific) is relatively easier but it needs to train and store multiple AI/ML models for different rank values. Option 2 (rank common) may require the AI/ML model to be adaptive to different input dimensions (i.e., scalability over rank values may be needed) which is relatively complex to achieve but it only needs to train and store one single AI/ML model for all rank values.
For Option 3, considering the characteristics of the eigenvectors are generally not impacted by the rank value, it seems no special need to consider the rank specific model, which would make the AI/ML application more complex and memory costly in the real network. Hence, it is suggested to study Option 3-2 with relatively lower priority. 
For Option 4, similarly, Option 4-2 can be studied with relatively lower priority. Option 4-1 is a more beneficial solution which supports one unified model over different rank values and different layers to save inference complexity and memery storage while still achieves good performance.
Companies are encouraged to report which option is adopted for AI/ML model settings with rank >=1. If there are some options not used by any company, further down selection may be helpful to make the performance comparison more clear. Option 4-1 (rank common and layer common) is adopt in our evaluation and it has shown that the layer common can work well for different layers and different ranks as a generalized solution. 
Proposal 5: For the evaluation of the AI/ML-based CSI compression sub use cases with rank >=1, companies are encouraged to report the specific option adopted for AI/ML model settings to adapt to ranks/layers. Rank common and layer common AI/ML model is adopted in our evaluation. 
[bookmark: _Ref114755062]2.3.2 CSI payload alignment
In order to do a better performance comparison and show the gain of the AI/ML-based CSI compression, it is necessary to align the calculation method of CSI payload for both Rel-16/17 Type II codebook and AI/ML-based CSI compression.
Table 6.3.2.1.2-1A and Table 6.3.2.1.2-2B of TS 38.212 shows the details about how to calculate CSI payload of each rank for Rel-16/17 Type II codebook. For example, for Rel-16 codebook, if  are all 4 and number of subband is 13, the CSI payload of the first 6 codebook parameter configurations are shown in Table 1.
[bookmark: _Ref114685046]Table 1 CSI payload for Rel-16 Type II codebook
	paramCombination
	Rank = 1
	Rank = 2
	Rank = 3
	Rank = 4

	1
	62
	113
	100
	111

	2
	91
	169
	156
	167

	3
	111
	207
	187
	207

	4
	168
	319
	299
	319

	5
	225
	431
	471
	511

	6
	279
	539
	527
	567


Proposal 6: For the performance comparison between AI/ML-based CSI compression and legacy TypeII codebook, use tables in section 6.3.2.1.2 of TS 38.212 to calculate CSI payload.
During the last RAN1 meeting, the following proposal on CSI payload alignment has been discussed [1]. 
	Proposal 3.9.2: For the CSI payload size calculation for AI/ML-based CSI compression as well as the legacy TypeII codebook, the following two options are considered for further down-selection
· Option 1: Payload size is calculated based on the maximum rank.
· Option 2: Payload size is calculated as the weighted average of CSI payload per rank and the distribution of ranks reported by the UE. FFS the following understandings
· Option 2a: The above-mentioned “CSI payload” is calculated as each CSI reported payload with a given rank
· Option 2b: The above-mentioned “CSI payload” is calculated as max allowed bits at the given rank


In order to better understand the difference among these options, we provide the following examples.
Example 1:  For Rel-16 Type II codebook with parameter configuration 1, a UE feeds back two CSI reports. For the first CSI report, RI = 1 and the actual PMI payload is 55 as the number of actual non-zero coefficients is smaller than the maximum number of non-zero coefficients. For the second CSI report, RI = 2 and the actual PMI payload is 113 which is equal to the max allowed bits for rank 2.
For Option 1, the payload size is 113 bits.
For Option 2a, the payload size is calculated as (55+113)/2=84 bits.
For Option 2b, the payload size is calculated as 62*50% + 113*50%=87.5 bits.
Example 2:  For Rel-16 Type II codebook with parameter configuration 1, a UE feeds back two CSI reports. For the first CSI report, RI = 1 and the PMI payload is 62. For the second CSI report, RI = 2 and the PMI payload is 113.
For Option 1, the payload size is 113 bits.
For Option 2a, the payload size is calculated as (62+113)/2=87.5 bits.
For Option 2b, the payload size is calculated as 62*50% + 113*50%=87.5 bits.
Example 3:  For AI/ML-based CSI compression, a UE feeds back two CSI reports. For the first CSI report, RI = 1 and the payload size is 60 bits. For the second CSI report, RI = 2 and the payload sizes for the 2 layers are both 60 bits.
For Option 1, the payload size is 120 bits.
For Option 2a, the payload size is calculated as (60+120)/2=90 bits.
For Option 2b, the payload size is calculated as 60*50% + 120*50%=90 bits.
Example 4:  For AI/ML-based CSI compression, a UE feeds back two CSI reports. For the first CSI report, RI = 1 and the payload size is 120 bits. For the second CSI report, RI = 2 and the payload sizes for the 2 layers are both 60 bits.
For Option 1, the payload size is 120 bits.
For Option 2a, the payload size is calculated as (120+120)/2=120 bits.
For Option 2b, the payload size is calculated as 120*50% + 120*50%=120bits.
Based on example 3/4, it can be found that Option 1 cannot reflect the CSI payloads of rank value smaller than the maximum rank for AI/ML-based CSI compression. Example 3 and 4 may differ greatly in performance but have same CSI payload, which may negatively impact the performance comparison. 
Based on example 2/3/4, it can be found that the results of Option 2a and Option 2b are same for Rel-16 Type II codebook with the case that maximum number of non-zero coefficients are reported and are also same for AI/ML-based CSI compression. But when the number of actual non-zero coefficients is smaller than the maximum number of non-zero coefficients as shown in Option 1, Option 2a and Option 2b are different.
In RAN1#109-e meeting, the following EVM has been agreed. Therefore, it is our understanding that between Option 2a and Option 2b, Option 2b matches with the agreed baseline for CSI payload size.
	Evaluation Metric
	Throughput and CSI feedback overhead as baseline metrics.
Additional metrics, e.g., ratio between throughput and CSI feedback overhead, can be used.
Maximum overhead (payload size for CSI feedback)for each rank at one feedback instance is the baseline metric for CSI feedback overhead, and companies can provide other metrics.


Proposal 7: For the CSI payload size calculation for AI/ML-based CSI compression as well as the legacy TypeII codebook, payload size is calculated as the weighted average of CSI payload per rank and the distribution of ranks reported by the UE. 
· The above-mentioned “CSI payload” is calculated as max allowed bits at the given rank.
2.3.3 Evaluation methodology for different training types
In the last meeting, some agreements about training type related EVM had been achieved. In this section, EVM related issues for training Type 2 and Type 3 are further discussed.
Type 2 (Joint training of the two-sided model at network side and UE side, respectively)
The following agreement on Type 2 had been achieved in the last meeting.
	Agreement
For the evaluation of Type 2 (Joint training of the two-sided model at network side and UE side, respectively), the following evaluation cases are considered for multi-vendors,
· Case 1 (baseline): Type 2 training between one NW part model to one UE part model
· Case 2: Type 2 training between one NW part model and M>1 separate UE part models
· Companies to report the AI/ML structures for the UE part model and the NW part model
· FFS Companies to report the dataset used at UE part models, e.g., whether the same or different dataset(s) are used among M UE part models
· Case 3: Type 2 training between one UE part model and N>1 separate NW part models
· Companies to report the AI/ML structures for the UE part model and the NW part model
· FFS Companies to report the dataset used at NW part models, e.g., whether the same or different dataset(s) are used among N NW part models
· FFS N NW part models to M UE part models
· FFS different quantization/dequantization methods between NW and UE
· FFS: whether/how to evaluate the case where the input/output types and/or pre/post-processing are not aligned between NW part model and UE part model
· FFS: companies to report the training order of UE-NW pair(s) in case of M UE part models and/or N NW part models
· FFS: whether/how to report overhead


For Type 2, the FP and BP information of the interface between the CSI generation part and the CSI reconstruction part need to be exchanged between Network and UE. The FP information is the compressed CSI and the overhead per training sample is same as the CSI feedback payload for inference. The BP information is the gradients of the interface between the CSI generation part and the CSI reconstruction part and the overhead per training batch per epoch depends on the quantization method of the gradient. Take the following assumption as an example: CSI feedback payload is 60bits, number of neurons for the interfacing layers between the CSI generation part and the CSI reconstruction part is 24 and quantized by 3 bits scalar quantization, number of training samples is 300k, batch size is 1000 and number of epochs is 500. Then the overhead of FP and BP information is 60*300k*500+ 300k/1000*24*3*500= 1.1G Bytes.
In addition, as the dataset between Network and UE has to be aligned, the dataset may also need to be shared from one side to the other, and the overhead of the dataset sharing should also be counted, as will be analyzed for Type 3, so the dataset overhead of bytes need to be additionally counted in.
	[image: ]
(a) Option 1
	[image: ]

(b) Option 2


[bookmark: _Ref117848541]Figure 1 Implementation options of Type 2 for multi-vendors scenario
Moreover, for the “FFS N NW part models to M UE part models” part, multiple Network models and multiple UE models are required to perform model training simultaneously. This is very challenging since different venders may have various milestones for product development. There are two implementation options Type 2 for multi-vendors scenario, shown as Figure 1. One is joint training for all involved Network vendors and UE vendors simultaneously (Option 1), and another is joint training for each Network-UE pair sequentially (Option 2).
For Option 1, it is very difficult to align the training time point for all involved Network vendors and UE vendors. In addition, model parameter updating for each UE vendor and Network vendor will be impacted by all other involved Network vendors and UE vendors. This will make model training procedure very complicated and harder to converge.
For Option 2, after the training of one Network-UE pair, the model at one side may need to be frozen when training the next pair to ensure the model still work for the previous pair with another vendor. E.g., after the training of first pair between UE 1 and Network 1, AI/ML model of UE 1 need to be frozen when training the next pair between UE 1 and Network 2. Therefore, the training order will impact the performance of each Network-UE pair. Intuitively, the latter Network-UE pair will achieve worse performance than the former Network-UE pair, thus the order of training will bring gap of performance and harm the fairness among vendors. In addition, as shown in Figure 1 (b), after training of the first 3 Network-UE pairs, AI/ML models of all involved Network and UE are already frozen, thus it may not be feasible for the last Network-UE pair between UE 2 and Network 1 to train their two-sided model.
Proposal 8: For the evaluation of Type 2 (Joint training of the two-sided model at network side and UE side, respectively), analyze the feasibility of the following two training orders for N Network part models to M UE part models:
· Option 1: Simultaneously train all N Network part models and M UE part models involving all vendors
· Challenges on aligning the training time point of all involved Network vendors and UE vendors
· Option 2: Sequentially train Network part models and UE part models in a pairwise manner
· Fairness harmed for later trained Network-UE pairs where only one side may be able to update parameters during the joint training
Type 3 (Separate training at Network side and UE side)
In the last RAN1 meeting [1], the procedure for Type 3 sequential training starting with NW side training (NW-first training) had been discussed and the following conclusion had been achieved.
	Conclusion
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following procedure is considered for the sequential training starting with NW side training (NW-first training):
· Step1: NW side trains the NW side CSI generation part (which is not used for inference) and the NW side CSI reconstruction part jointly
· Step2: After NW side training is finished, NW side shares UE side with a set of information (e.g., dataset) that is used by the UE side to be able to train the UE side CSI generation part
· Step3: UE side trains the UE side CSI generation part based on the received set of information
· Other Type 3 NW-first training approaches are not precluded and reported by companies


For Step2, after Network side training is finished, Network side shares UE side with a set of information (e.g., dataset) that is used by the UE side to be able to train the UE side CSI generation part. The information shared by Network side can be different according to different situations. Take 2 UEs and 1 Network as an example, Network collects the original CSI from both UE 1 (dataset#1) and UE 2 (dataset#2) to generate a mixed dataset (dataset#1 + dataset#2) for training the Network side CSI generation part and the Network side CSI reconstruction part. Then the Network can generate the outputs (CSI feedback) of the Network side CSI generation part corresponding to dataset#1 and dataset#2, respectively, namely output#1 and output#2. For a specific UE, e.g., UE 1, it can have two choices:
· Option 1: If UE 1 only wants to use its own CSI (dataset1) to train the UE side CSI generation part which is locally at UE 1, the Network only needs to share the output#1 of the Network side CSI generation part corresponding to dataset#1 to the UE 1, and UE 1 can perform the training based on its own dataset#1 (as input) and Network shared output#1 (as label). 
· Option 2: If UE 1 wants to use the same dataset (mixed dataset of dataset#1 + dataset#2) as the Network to train the UE side CSI generation part, the Network needs to share the full set of input (dataset#1 + dataset#2) and the output (output#1 + output#2) of the Network side CSI generation part to UE 1.
Proposal 9: Two options can be studied for Step2 of the training Type 3 procedure, e.g., for the NW-first training:
· Step2: After Network side training is finished, Network side shares UE side with a set of information (e.g., dataset) that is used by the UE side to be able to train the UE side CSI generation part
· Option 1: The set of information includes the input (original CSI) and output (CSI feedback) of the Network side CSI generation part
· Option 2: The set of information includes the output (CSI feedback) of the Network side CSI generation part only
The following proposal for Type 3 had also been discussed in the last meeting [1].
	Proposal 3.9.1: For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following evaluation cases are considered for multi-vendors
· Case 1 (baseline): Type 3 training between one NW part model to one UE part model
· Case 2: For UE-first training, Type 3 training between one NW part model and M>1 separate UE part models
· Companies to report the AI/ML structures for the UE part models and the NW part model, and the size of quantization input/de-quantization output.
· FFS Companies to report the dataset used at UE part models, e.g., whether the same or different dataset(s) are used among M UE part models
· FFS: different quantization methods among UE sides
· Note: the NW-first training can naturally support one NW side to Multi-UE sides
· Case 3: For NW-first training, Type 3 training between one UE part model and N>1 separate NW part models
· Companies to report the AI/ML structures for the UE part model and the NW part models, and the size of quantization input/de-quantization output.
· FFS Companies to report the dataset used at NW part models, e.g., whether the same or different dataset(s) are used among N NW part models
· FFS: different dequantization methods among NW sides
· Note: the UE-first training can naturally support one UE side to Multi-NW sides
· FFS: whether/how to report overhead


Since NW-first training can naturally support one Network side to Multi-UE sides, the multi-vendor situation of N Network part models to M UE part models is equivalent to case 3 (training between one UE part model and N>1 separate Network part models) for NW-first training. Similarly, the multi-vendor situation of N Network part models to M UE part models is equivalent to case 2 (training between one Network part model and M>1 separate UE part models) for UE-first training.
A comment was raised for the proposal during the last meeting that the dimension of quantization input/de-quantization output may be different if different dequantization methods are used among UE sides for case 2 and among Network sides for case 3. The background of this addition is the realistic case where for the same CSI payload (e.g., 100 bits), the floating vectors can be different over different UEs (e.g., some UE is 30 length vector, other is 20 length-vector). Then Network may need to consider whether/how a single AI/ML model can adapt to these different UEs; the same logic for the UE side to adapt to different Networks in the other way around.
In our understanding, from evaluation perspective, this issue is similar as the generalization/scalability over various CSI feedback payload sizes. Companies can report whether same for different quantization methods are used and how to achieve generalization/scalability over various sizes of quantization input/de-quantization output if different quantization methods are used. From implementation perspective, it is also feasible to align the quantization methods or at least the sizes of quantization input/de-quantization output before model training for multi-vendor scenario, which can be studied in 9.2.2.2.
Observation 1: For Type 3 (Separate training at NW side and UE side) under multi-vendors situation, the different dimensions of quantization input/de-quantization output can be considered as a generalization/scalability issue.
Proposal 10: For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following evaluation cases are considered for multi-vendors:
· Case 1 (baseline): Type 3 training between one NW part model to one UE part model
· Case 2: For UE-first training, Type 3 training between one NW part model and M>1 separate UE part models
· Companies to report the AI/ML structures for the UE part models and the NW part model, and the size of quantization input/de-quantization output.
· FFS Companies to report the dataset used at UE part models, e.g., whether the same or different dataset(s) are used among M UE part models
· FFS: different quantization methods among UE sides
· Note: the NW-first training can naturally support one NW side to Multi-UE sides
· Case 3: For NW-first training, Type 3 training between one UE part model and N>1 separate NW part models
· Companies to report the AI/ML structures for the UE part model and the NW part models, and the size of quantization input/de-quantization output.
· FFS Companies to report the dataset used at NW part models, e.g., whether the same or different dataset(s) are used among N NW part models
· FFS: different dequantization methods among NW sides
· Note: the UE-first training can naturally support one UE side to Multi-NW sides
· FFS: whether/how to report overhead
2.3.4 High resolution quantization methods for ground-truth CSI
From the analysis for Type 2 and Type 3, the overhead of dataset delivery is large if the AI/ML model is trained from scratch. However, for the model fine-tuning with much smaller dataset, e.g., thousands of samples, the needed overhead can be greatly reduced proportionally. Moreover, as the retraining/fine-tuning period is not frequently triggered in the realistic network, e.g., the model updating period may be days/weeks/months, the overhead is not a big issue on average. As analyzed in our companion contribution [2], the average overhead per hour for Float32 compression is only 5.9 MB if data collection period is 1 week, and it can be reduced to 238 KB if training dataset is quantized by Rel-16 TypeII CB with new parameters. 
In the last RAN1 meeting, the following agreement for high resolution quantization methods for ground-truth CSI has been achieved. Note that, besides Type 2/3, training dataset transmission for Type 1 may also be required if the dataset is collected from the real network. E.g., the Network needs the UE to feedback the quantized ground-truth CSI samples to construct the dataset at Network side via air-interface. Therefore, it is worth to study how to exchange the measured ground-truth CSI to evaluate the overhead, e.g., compression method or quantization method. 
	Agreement
For evaluating the performance impact of ground-truth quantization in the CSI compression, study high resolution quantization methods for ground-truth CSI, e.g., including at least the following options
· High resolution scalar quantization, e.g., Float32, Float16, etc.
· FFS select one of the scalar quantization resolutions as baseline
· High resolution codebook quantization, e.g., R16 Type II-like method with new parameters
· FFS new parameters
· Other quantization methods are not precluded


The overhead of collecting the training dataset over air-interface for different quantization methods is shown as Table 2, where it can be seen that the overhead of high resolution scalar quantization is much higher than the codebook quantization. Thus, it can be considered to adopt Rel-16 TypeII-like CB for quantizing the ground-truth CSI if the overhead for ground-truth CSI transmission is a concern.
From the evaluation perspective, the Float32 can be considered as the baseline, as in the simulation, it is typical to use Float32 to generate the channel model and save the estimated channel, thus this can be regarded as the ideal ground-truth CSI, i.e., upper bound. Other scalar quantization methods with lower resolution and Rel-16 TypeII-like quantization methods can be evaluated to observe the potential performance loss compared to this ideal ground-truth CSI. 
For the FFS new parameters, some examples of new parameters of Rel-16 TypeII-like quantization method are provided in Table 3. The corresponding SGCS between quantized CSI and ground-true CSI are also provided. The tradeoff between the overhead and the performance of high resolution quantization methods for ground-truth CSI should be carefully considered.  
[bookmark: _Ref118293450]Table 2 Total overhead of training dataset transmission for different quantization methods
	Quantization method
	Size per input, bytes
	Total overhead for 300K dataset size, bytes

	Float32
	3.3K
	992M

	Float16
	1.67K
	499M

	8bits scalar quantization
	0.83K
	250M

	Rel-16 TypeII CB with paramCombination=6
	35
	13M

	Rel-16 TypeII CB with new parameters: L=10, p=0.9, beta=0.31, amplitude: 4 bits, phase: 6 bits
	127
	40M


[bookmark: _Ref118311874]Table 3 Example of new parameters of Rel-16 TypeII-like quantization method
	
	
	
	Reference amplitude
	Amplitude
	Phase
	Size per input, bytes
	SGCS between quantized CSI and ground-true CSI

	6
	0.5
	0.5
	4
	3
	4
	51
	0.9012

	8
	0.5
	0.5
	4
	3
	4
	67
	0.9124

	10
	0.5
	0.5
	4
	3
	4
	83
	0.9187

	10
	0.5
	0.5
	8
	4
	4
	92
	0.9376

	10
	0.5
	0.5
	8
	4
	6
	109
	0.9456

	10
	0.75
	0.5
	8
	4
	6
	154
	0.967

	10
	0.25
	0.75
	8
	4
	6
	89
	0.9008

	10
	0.9
	0.31
	8
	4
	6
	127
	0.9626


Proposal 11: For evaluating the performance of ground-truth CSI quantization methods in the CSI compression, 
· Float32 can be regarded as the baseline.
· For codebook quantization, the following new parameters of Rel-16 TypeII-like quantization method can be considered as a starting point
·  , Reference amplitude = 8 bits, Amplitude = 4 bits, Phase = 6 bits
2.3.5 Template for collecting evaluation results
In order to better capture the evaluation results from different companies in the TR, a template collecting evaluation results is necessary. The template should contain the AI/ML model description (e.g., backbone, Input/output type, Pre-processing/Post-processing, model complexity), dataset description (e.g., training dataset size) and KPIs (e.g., SGCS, mean UPT, 5% UPT). In addition, this template is applicable to the basic cases without considering the perspective of generalization and training types, while different training types and generalization cases can be captured with additional information. An example of capturing our evaluation results in the following template is shown in Table A.1 of the Appendix.
Proposal 12: The following initial template is considered for companies to report the evaluation results of AI/ML-based CSI compression.
	
	
	Source 1
	…

	CSI generation part
	AL/ML model backbone
	
	

	
	Pre-processing
	
	

	
	Post-processing
	
	

	
	FLOPs/M
	
	

	
	Parameters/M
	
	

	CSI reconstruction part
	AL/ML model backbone
	
	

	
	Pre-processing
	
	

	
	Post-processing
	
	

	
	FLOPs/M
	
	

	
	Parameters/M
	
	

	Common description
	Input type
	
	

	
	Output type
	
	

	
	Quantization /dequantization method
	
	

	Dataset description
	Train/k
	
	

	
	Test/k
	
	

	
	Ground-truth CSI quantization method
	
	

	Benchmark
	
	

	Gain for intermediate KPI, layer 1
	SGCS, CSI payload X
	
	

	
	SGCS, CSI payload Y
	
	

	
	SGCS, CSI payload Z
	
	

	Gain for intermediate KPI, layer 2
	SGCS, CSI payload X
	
	

	
	SGCS, CSI payload Y
	
	

	
	SGCS, CSI payload Z
	
	

	…
	
	
	

	Gain for eventual KPI, rank 1
	Mean UPT, CSI payload X
	
	

	
	Mean UPT, CSI payload Y
	
	

	
	Mean UPT, CSI payload Z
	
	

	
	5% UPT, CSI payload X
	
	

	
	5% UPT, CSI payload Y
	
	

	
	5% UPT, CSI payload Z
	
	

	Gain for eventual KPI, rank 2
	Mean UPT, CSI payload X
	
	

	
	Mean UPT, CSI payload Y
	
	

	
	Mean UPT, CSI payload Z
	
	

	
	5% UPT, CSI payload X
	
	

	
	5% UPT, CSI payload Y
	
	

	
	5% UPT, CSI payload Z
	
	

	…
	
	
	

	FFS others
	
	
	


2.3.6 Scalability over different payloads
To achieve the scalability over different CSI payload sizes, there may be 2 potential solutions, shown as Figure 2. 
The first solution is using truncation and padding to adjust the dimension of CSI generation output and CSI reconstruction input as illustrated in Figure 2 (a), where the output dimension of the encoder is set as up to the maximum supported payload, while the encoder output is truncated from the tail to generate the CSI feedback if the actually configured payload size of the CSI feedback is smaller than the maximum payload; zeroes are padded at the CSI reconstruction part accordingly so that the input to the decoder is aligned over CSI payload sizes. 
The second solution is using additional adaptation layer in the AI/ML models of the encoder and the decoder to adjust the dimension of CSI generation output and CSI reconstruction input as illustrated in Figure 2 (b), where different adaptation layers correspond to separate output/input dimensions consistent with the CSI payload sizes. 
In our understanding, both solutions are workable, and it is up to companies to choose and report the specific solution to enable a cross check and provide insights on their performances.
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(a) Truncation and padding
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(b) Additional adaptation layer
[bookmark: _Ref117870002]Figure 2 Potential solutions to achieve the scalability over different CSI payload sizes
There are also three alternatives for the number of CSI generation parts and CSI reconstruction parts shown as following. In our understanding, Alt.3 should be the baseline to reflect the configuration of the realistic network.
· Alt.1: One CSI generation part with scalable output dimensions to M separate CSI reconstruction parts each with fixed input dimensions
· Alt.2: M separate CSI generation parts with fixed output dimensions to one CSI reconstruction part each with scalable input dimensions
· Alt.3: A unified pair of CSI generation part with scalable output dimensions and CSI reconstruction part with scalable input dimensions
Proposal 13: For evaluating the generalization/scalability over various CSI payload sizes for CSI compression, 
· Companies to report the solution to achieve the scalability over different input/output dimensions, e.g., truncation/padding or adaptation layer
· Companies to report whether/how to achieve one unified CSI generation parts with scalable dimensions and/or one unified CSI reconstruction parts with scalable dimensions
3. Evaluations for CSI compression
In this section, evaluations for spatial-frequency domain CSI compression will be discussed, including AI/ML model description, evaluation methodology for different training types and evaluation results.
3.1 AI/ML model description
3.1.1 CSI compression with current CSI as input
The CSI generation part including an encoder and a quantizer are deployed at the UE side for CSI compression, while the CSI reconstruction part including a decoder and a de-quantizer are deployed at the Network side for CSI recovery. The quantizer is used to quantize the output of the encoder which is a floating-point vector to fit the bit width for CSI feedback, while the de-quantizer is used to recover the floating-point vector as the input to the decoder. The AI/ML-based CSI feedback considering both spatial and frequency domain channel correlation is named as AI/ML-based spatial-frequency compression (AI-SF), which is depicted in Figure 3 (a). In our simulation, Transformer shown as Figure 3 (b) is used as the backbone of both encoder and decoder unless state otherwise.
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(a)
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 (b)
[bookmark: _Ref100693627][bookmark: _Ref109490264]Figure 3  The structure of AI/ML based CSI compression with current CSI only as input
· Encoder: The encoder takes the original eigenvectors as the input, and outputs the compressed CSI with smaller size than the original eigenvectors. Specifically, the input of the encoder includes eigenvectors for N subbands, which are formulated as , where  denotes the eigenvector for the n-th subband. Then, the encoder can use multiple Transformer layers to process the eigenvector matrix , and obtains the compressed CSI as a floating-point vector as a result. The compressed CSI can be formulated as , where  represents the function of the encoder. The SVD decomposition is applied as the pre-processing prior to the encoder to derive the original eigenvectors.
· [bookmark: _Hlk100320974]Quantizer: The quantizer at the UE side maps the compressed CSI of a floating-point vector to a quantized bit sequence to fit the bit width for CSI feedback. Various methods of quantization may be adopted, such as scalar quantization, vector quantization (quantizing a vector utilizing its probability density functions), and etc. The quantized CSI feedback can be formulated as , where  represents the function of the quantizer. In our simulation, vector quantization is used. To avoid the huge dimension of the quantization dictionary, we divide the quantization dictionary into several sub-dictionaries and divide the compressed CSI into several parts. Each part of compressed CSI is quantized by a sub-dictionary.
· De-quantizer: The de-quantizer recovers the compressed CSI from the feedback CSI bit sequence and sends it as the input to the decoder. The de-quantized CSI can be formulated as  where represents the function of the de-quantizer.
· Decoder：The decoder recovers the eigenvectors. Specifically, the decoder can use multiple Transformer layers for CSI reconstruction, which is in alignment with the structure of the encoder. The recovered eigenvectors can be formulated as , where  represents the function of the decoder. 
3.1.2 CSI compression with additional past CSI as input
The AI/ML-based spatial-frequency domain CSI compression can also learn the temporal domain correlation of channels on top of spatial-frequency domain compression, namely AI-SFT, which is depicted in Figure 4. In our simulation, LSTM is chained on top of a Transformer backbone for both the CSI generation part and the CSI reconstruction part to take the past/historical CSI into account of the AI/ML model input.
As shown in Figure 4, the AI/ML model can store past/historical information from previous slots and use this information to compress/recover the CSI of the current slot. The past/historical information from previous slots can be regarded as accumulated CSI information and thus the CSI feedback payload for the current slot can be regarded as delta CSI information on top of the accumulated CSI information. Therefore, compared to AI-SF, the overhead of the CSI feedback under AI-SFT can be further reduced to achieve the same CSI feedback accuracy due to the stored accumulated CSI information. Note that, for each slot, only the eigenvectors of the current slot are the input to the AI/ML model.
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[bookmark: _Ref118149725]Figure 4 The procedure of AI/ML based CSI compression with additional past CSI as input
· Encoder: Similar to AI-SF, the input of the encoder includes eigenvectors for N subbands. Different from AI-SF, the encoder for AI-SFT can store and utilize the accumulated CSI information at encoder for further CSI compression due to the LSTM layers. Specifically, the compressed CSI can be formulated as , where  represents the function of the encoder.  represents the accumulated CSI information at encoder of time t-1 (t = 1,2,3,…), which are already stored by the encoder .
· Quantizer: The quantizer at the UE side maps the compressed CSI of a floating-point vector to a quantized bit sequence. Scalar quantization, vector quantization, etc., can be adopted. In our simulation, vector quantization is used. The quantized CSI feedback can be formulated as  .
· De-Quantizer: The de-quantizer recovers the compressed CSI from the feedback CSI bit sequence and sends it as the input to the decoder. The de-quantized CSI can be formulated as  .
· Decoder: The decoder recovers the eigenvectors for N subbands. Different from AI-SF, the decoder for AI-SFT can store and utilize accumulated CSI information at decoder for CSI reconstruction, where the accumulated CSI information is mostly synchronized with the encoder part. By considering a long observation window, occasionally missing CSI feedbacks (e.g., due to UCI missing) would not impact the whole performance seriously, although the performance of the nearest occasion will be inferior to AI-SF. Specifically, the recovered eigenvectors can be formulated as , where  represents the function of the decoder.  denotes the accumulated CSI information at decoder of time t-1, which are stored by the decoder . Note that, for each slot, only the de-quantized CSI of the current slot () is needed for compression.
3.2 Evaluation results for Type 1/2 (joint training)
This section provides the evaluation results of the CSI compression at spatial-frequency domain based on joint training (e.g., Type1/2) with ideal quantization of dataset and gradients. In the simulation of this section, 800K training samples are used and the SGCS is caculated in the system level simulation with the same dataset as the throughput evaluation. Both rank=1 with fixed rank and rank=2 with rank adaptation are considered, where for rank=2, Option 4-1 (layer common and rank common AI/ML model) in Section 2.3.1 is applied for inference of each layer separately to derive the compressed CSI per layer.
3.2.1 CSI compression with current CSI as input
As mentioned previously, weighted average CSI payload of each rank by rank distribution are used as the final CSI payload for rank>2 cases. For Rel-16 Type II codebook, the first 6 codebook parameter configurations are evaluated and the CSI payload for each rank is shown as Table 1. For AI-SF, separate AI/ML models with CSI payload 60, 120, 168 and 240 bits are evaluated. Layer 1 and layer 2 use the same AI/ML model for per CSI payload size and thus the maximum CSI payloads for rank 2 are 120, 240, 336 and 480 bits. The rank distribution {rank 1, rank 2} for different schemes varies from {62%, 38%} to {46%, 54%}. Therefore, the weighted average CSI payloads for Rel-16 Type II codebook are 81, 122, 154, 242, 328 and 414 bits, while the weighted average CSI payloads for AI-SF are 86, 179, 254 and 370 bits.
Figure 5 illustrates the comparison of SGCS between AI-SF and Rel-16 Type II codebook under the rank=1 case and the rank=2 case. It can be seen that, AI-SF outperforms Rel-16 Type II codebook in terms of SGCS for each rank, indicating higher accuracy of CSI recovery by AI-SF. In addition, the accuracy of the 1st rank outperforms the accuracy of the 2nd rank for both AI-SF and Rel-16 Type II since the eigenvectors of the 1st rank is sparser than the 2nd rank, so the SGCS performance is higher. As the AI-SF can better learn the characteristics of the eigenvectors especially for the less sparse enviroment, i.e. the 2nd layer, the AI-SF can achieve more performance gain over the Rel-16 Type II codebook on the 2nd layer than on the 1st layer. For example, with 80 bits CSI payload, AI-SF can provide 0.06 SGCS gain over Rel-16 Type II codebook on the 1st layer and 0.08 SGCS gain on the 2nd layer.
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[bookmark: _Ref100694303]Figure 5  SGCS between AI/ML-based output CSI and the target CSI
The system level simulation results of the average throughput for AI-SF using full buffer traffic are illustrated in Figure 6 and Figure 7. It is illustrated that, with the same overhead of CSI feedback, AI-SF has a performance gain of 7%-10.73% over Rel-16 Type II codebook in terms of the throughput under rank=1, while it has a performance gain of 8.9%-14.8% over Rel-16 Type II codebook under rank=2. On the other hand, Figure 7 shows that, for achieving the same throughput, AI-SF requires less feedback overhead, with an overhead reduction of about 45% for rank = 1 and 50% for rank = 2. 
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[bookmark: _Ref100694317]Figure 6  Throughput gain over Rel-16 Type II codebook for full buffer traffic
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[bookmark: _Ref100694336]Figure 7  Overhead reduction over Rel-16 codebook for full buffer traffic
Observation 2: With the same overhead of CSI feedback and in terms of cell average throughput, AI/ML-based CSI compression with spatial-frequency domain CSI as input can outperform Rel-16 Type II codebook with 
· 7%-10.3% gain on rank 1 under full buffer traffic.
· 8.9%-14.8% gain on rank 2 under full buffer traffic.
Observation 3: For the rank=2 case, the 1st layer achieves higher SGCS than that of the 2nd layer as the eigenvectors of the 2nd layer are more sparse, and AI/ML-based CSI compression with spatial-frequency domain CSI as input can achieve more gains over the Rel-16 Type II on the 2nd layer than on the 1st layer.
The system level simulation results of mean UPT and 5% UPT using FTP traffic are illustrated in Figure 8 and Figure 9, respectively. It is illustrated that, AI-SF can achieve higher gain for higher RU compared to low RU; this may because the network benefits more from the accurate CSI for MU pairing under heavy traffic load. In addition, AI-SF can achieve higher gain for 5% UPT compared to average UPT; this may because the UE with lower SINR can benefit more on the improvement of the accurate CSI and the accurate DL precoding accordingly, as opposed to the cell center UEs which already have high MCS with limited margin to further improvement. In terms of the mean UPT, AI-SF has a performance gain of 4.8%-8.8% over Rel-16 Type II codebook under rank=1 and RU=80%, while it has a performance gain of 7.5%-14.5% over Rel-16 Type II codebook under rank=2 and RU=80%. In terms of the 5% UPT, AI-SF has a performance gain of 7.1%-16.3% over Rel-16 Type II codebook under rank=1 and RU=80%, while it has a performance gain of 9.1%-23.7% over Rel-16 Type II codebook under rank=2 and RU=80%.
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[bookmark: _Ref114757871]Figure 8 Mean UPT gain over Rel-16 Type II codebook for FTP traffic (left: rank=1; right: rank=2)
	[image: ]
	[image: ]


[bookmark: _Ref114757880]Figure 9 5% UPT gain over Rel-16 Type II codebook for FTP traffic (left: rank=1; right: rank=2)
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Figure 10 Overhead reduction over Rel-16 codebook for FTP traffic (left: rank=1; right: rank=2)
Observation 4: With the same overhead of CSI feedback and in terms of mean UPT, AI/ML-based CSI compression with spatial-frequency domain CSI as input can outperform Rel-16 Type II codebook with
· 2.2%-2.5% gain on rank 1 under FTP traffic and 50% RU.
· 3.2%-7.8% gain on rank 1 under FTP traffic and 70% RU.
· 4.8%-8.8% gain on rank 1 under FTP traffic and 80% RU. 
· 5.4%-10.1% gain on rank 2 under FTP traffic and 50% RU.
· 7.2%-14.4% gain on rank 2 under FTP traffic and 70% RU.
· 7.5%-14.5% gain on rank 2 under FTP traffic and 80% RU. 
Observation 5: With the same overhead of CSI feedback and in terms of 5% UPT, AI/ML-based CSI compression with spatial-frequency domain CSI as input can outperform Rel-16 Type II codebook with
· 2.2%-7% gain on rank 1 under FTP traffic and 50% RU.
· 6.4%-14.6% gain on rank 1 under FTP traffic and 70% RU.
· 7.1%-16.3% gain on rank 1 under FTP traffic and 80% RU. 
· 4.3%-13.3% gain on rank 2 under FTP traffic and 50% RU.
· 8.1%-18% gain on rank 2 under FTP traffic and 70% RU.
· 9.1%-23.7% gain on rank 2 under FTP traffic and 80% RU. 
Observation 6: AI/ML-based CSI compression with spatial-frequency domain CSI as input can achieve more obvious gains over the Rel-16 Type II codebook on high RU than low RU.
Observation 7: AI/ML-based CSI compression with spatial-frequency domain CSI as input can achieve more obvious gains over the Rel-16 Type II codebook for cell edge UPT than average UPT.
3.2.2 CSI compression with additional past CSI as input
The following part provides the evaluation results of the AI-SFT compression scheme, where rank=1 and rank=2 with rank adaptation is considered. Figure 11 illustrates the SGCS of AI-SFT with feedback overhead of 60bits, 120bits and 240bits. It can be seen that AI-SFT has improved SGCS over Rel-16 Type II codebook. Figure 12 illustrates that AI-SFT can provide 18.3%-25.4% gain for rank=1 and 23.3%-30.2% gain for rank=2 over Rel-16 Type II codebook in terms of throughput under full buffer traffic. Figure 13 illustrates that AI-SFT can provide 7.7%-14.9% gain for rank=1 and 16.6%-28.6% gain for rank=2 over Rel-16 Type II codebook in terms of mean UPT under FTP traffic. Figure 14 illustrates that AI-SFT can provide 10%-28.4% gain for rank=1 and 17%-39.2% gain for rank=2 over Rel-16 Type II codebook in terms of 5% UPT under FTP traffic. 
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[bookmark: _Ref118360516]Figure 11  SGCS between AI/ML-based output CSI and the target CSI
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[bookmark: _Ref118360540]Figure 12  Throughput gain over Rel-16 Type II codebook for full buffer traffic
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[bookmark: _Ref118360552]Figure 13 Mean UPT gain over Rel-16 Type II codebook for FTP traffic at 80% RU
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[bookmark: _Ref118360579]Figure 14 5% UPT gain over Rel-16 Type II codebook for FTP traffic at 80% RU
Observation 8: With the same overhead of CSI feedback and in terms of cell average throughput, AI/ML-based CSI compression with additional past CSI as input can outperform Rel-16 Type II codebook with 
· 18.3%-25.4% gain on rank 1 under full buffer traffic.
· 23.3%-30.2% gain on rank 2 under full buffer traffic.
Observation 9: With the same overhead of CSI feedback and in terms of mean UPT, AI/ML-based CSI compression on spatial-frequency domain with additional past CSI as input can outperform Rel-16 Type II codebook with
· 7.7%-14.9% gain on rank 1 under FTP traffic and 80% RU. 
· 16.6%-28.6% gain on rank 2 under FTP traffic and 80% RU. 
Observation 10: With the same overhead of CSI feedback and in terms of 5% UPT, AI/ML-based CSI compression on spatial-frequency domain with additional past CSI as input can outperform Rel-16 Type II codebook with
· 10%-28.4% gain on rank 1 under FTP traffic and 80% RU.
· 17%-39.2% gain on rank 2 under FTP traffic and 80% RU.
3.3 Evaluation results for Type 3 (separate training)
This section provides the evaluation results of Type 3 (separate training scheme) for CSI compression at spatial-frequency domain. The detailed procedure of separate training scheme is elaborated in our companion contribution [2]. We assume the separate training starts with Network side training as this direction is considered to be more realistic for Network vendors in our understanding [2]. In the simulations of this section, 300K training samples and 20K testing samples are used.
Support of one Network part model to M>1 UE part models
One common CSI reconstruction part to multiple CSI generation parts of different UEs is natural supported for the sequential training starting with Network side training, since the dataset generated by one Network side CSI reconstruction part can be delivered to multiple UE sides to train multiple CSI generation parts independently. From evaluation perspective, there is nothing different between the cases of one CSI reconstruction part to one CSI generation part and one common CSI reconstruction part to multiple CSI generation parts. 
Observation 11: One common Network part model to M>1 UE part models is naturally supported for the NW-first training, as the dataset generated by one Network side CSI reconstruction part can be delivered to multiple UEs to train multiple CSI generation parts independently.
Considering the Network and UE may not be aware of the AI/ML model design for each other, the CSI generation part at UE side may be the same or different from the Network side. Therefore, in the following we simulate the case of one Network part model to M=4 different UE part models as shown in Case 2~5 (UE A~UE D) and Case 7~10 (UE A’~UE D’), where the UE part models in Case 2/7 adopt the same structure with the Network part model, and the UE part models in Case 3~5/8~10 adopt a different backbone/structure from the Network part model. Case 1 and Case 6 are assumed as the joint training with the same structure between the Network and UE as a reference.
The UEs use the same dataset as the Network to train the UE side CSI generation part for Case 2~4 and Case 7~9, which means Network share both the input (original CSI) and output (CSI feedback) of the Network side CSI generation part (Option 1 in Proposal 9). For Case 6 and Case 10, the UE only uses its own CSI as inputs (which is a subset of the input CSI for Network side) and the corresponding CSI feedback shared by Network as labels to train the UE side CSI generation part, i.e., Network shares only the output of the Network side CSI generation part (Option 2 in Proposal 9) to the UE.
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Figure 15 SGCS of separated training with Transformer as backbone of Network part
Table 4 Case description of separated training with Transformer as backbone of Network part
	Case
	Training type
	Dataset used at UE
	CSI generation part at UE
	CSI generation/reconstruction part at Network

	1
	Joint training
	300K
	Transformer
	Transformer

	2
(UE A)
	Separate training
	Same as Case 1 (Option 2)
	Transformer, same structure as Case 1
	Transformer

	3
(UE B)
	Separate training
	Same as Case 1 (Option 2)
	Transformer, transformer layers are 30% less than Case 1
	Transformer

	4
(UE C)
	Separate training
	Same as Case 1 (Option 2)
	Transformer, attention heads are 50% less than Case 1
	Transformer

	5
(UE D)
	Separate training
	100K (Option 1)
	Transformer, same structure as Case 1
	Transformer
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Figure 16 SGCS of separated training with CNN as backbone of CSI reconstruction part
Table 5 Case description of separated training with CNN as backbone of CSI reconstruction part at Network
	Case
	Training type
	Dataset used at UE
	CSI generation part at UE
	CSI generation/reconstruction part at Network

	6
	Joint training
	300K
	CNN
	CNN

	7
(UE A’)
	Separate training
	Same as Case 1 (Option 2)
	CNN, same structure as Case 1
	CNN

	8
(UE B’)
	Separate training
	Same as Case 1 (Option 2)
	CNN, CNN layers are 6% less than Case 1 and CNN channels are 6% less than Case 1
	CNN

	9
(UE C’)
	Separate training
	Same as Case 1 (Option 2)
	Transformer
	CNN

	10
(UE D’)
	Separate training
	100K (Option 1)
	CNN, same structure as Case 1
	CNN


Based on the results of Case 1~5, it can be found that the SGCS margin between separate training and joint training is less than 0.003 when the UE-side CSI generation part and the Network side CSI generation part have a same backbone but same or different structures. 
Based on the results of Case 6~10, it can be found that the SGCS margin between separate training and joint training is less than 0.005 even when the UE-side CSI generation part and the Network side CSI generation part have different backbones.
Based on the results of Case 1 and Case 5, or Case 6 and Case 10, it can be found that the SGCS margin between separate training and joint training is less than 0.005 even when the dataset of UE side is only a subset of the dataset of the Network side.
In general, regardless of whether the Network and UE have the same structure or backbone on the CSI generation part, the performance margin between the separate training and the joint training is <0.5%, which is minor gap. 
Comparing Case 1 with Case 6, Transformer has better performance than CNN which is because the representation ability of Transformer is more excellent than CNN. For the same reason, Transformer-based CSI generation part at UE side trained by the dataset generated by CNN-based CSI generation part at Network side (i.e., Case 9) can achieve even better performance than the joint training baseline of both CNN models (i.e., Case 6), but not the other way around. 
Observation 12: For AI/ML-based CSI compression, there is only minor margin (<0.5%) between the SGCS of the separate training and the SGCS of the joint training even when the UE-side CSI generation part has a different structure or backbone with the Network-side CSI generation part.
· This observation applies regardless when the input dataset for the UE side is only a subset of or equal to the input dataset for the Network side
Support of one UE part model and N>1 separate Network part models
The evaluation cases for N>1 CSI reconstruction parts to one common CSI generation part at UE are given in the following table, and the corresponding results are shown in Figure 17. In this evaluation, UE uses a mix of N=2 datasets generated by two different Networks to train a common CSI generation part. 
For Case 1 and Case 2, joint training is applied to UE and Network with the same structure, while the Network part model in Case 1 and the Network part model in Case 2 are subject to different Transformer structures, denoted by Transformer A and Transformer B. For Case 3 and Case 4, one UE part model matches with two Network part models with Transformer A and Transformer B, respectively, and the common CSI generation part at UE is also Transformer-based but with different from neither Transformer A nor Transformer B.
For Case 5/7 and Case 6/8, the CSI generation parts and CSI reconstruction parts of the two Networks are MLP-based and CNN-based, respectively, and the common CSI generation part at UE is Transformer-based. Since the data distributions of the outputs over different CSI generation parts are different even under same input dataset, to better match with the two different CSI reconstruction parts, adaptation layers are applied for the common CSI generation part at UE for different Networks, which similar to the design as described in Section 2.3.6.
Table 6 Case description of N=2 Network part models to one common UE part model
	Case
	Training type
	CSI generation part at UE
	CSI reconstruction part at Network

	1
	Joint training, 
one CSI reconstruction part to one CSI generation part
	Transformer A
	Transformer A

	2
	Joint training, 
one CSI reconstruction part to one CSI generation part
	Transformer B, transformer layers are 30% less than Case 1
	Transformer B

	3
	Separate training, 
2 reconstruction parts of different Networks to one common CSI generation part
	Transformer C, attention heads are 50% less than Case 1
	Transformer A, same as Case 1

	4
	
	
	Transformer B, same as Case 2

	5
	Joint training, 
one CSI reconstruction part to one CSI generation part
	MLP
	MLP

	6
	Joint training, 
one CSI reconstruction part to one CSI generation part
	CNN
	CNN

	7
	Separate training, 
2 reconstruction parts of different Networks to one common CSI generation part
	Transformer
	MLP, same as Case 5

	8
	
	
	CNN, same as Case 6
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(a) Same backbone, different structures
 [image: ]
(b) Different backbones
[bookmark: _Ref115441658]Figure 17 SGCS for N=2 Network part models to one common UE part model
Based on the results, it can be found that the SGCS margin between separate training for multiple CSI reconstruction parts to one common CSI generation part and joint training is less than 0.005.
Observation 13: For AI/ML-based CSI compression, there is only minor margin (<0.5%) between the SGCS of the separate training and the SGCS of the joint training when the separate training considers N>1 Network part models to one common UE part model with a different backbone or a different structure from any of the N Network part models.
3.4 Evaluation results for generalization performance
This section provides the evaluation results of the generalization over scenarios for CSI compression with spatial-frequency domain CSI as input. The CSI feedback payload is 240 bits in this section.
Generalization over channel models
Table 7 shows the generalization performances on various channel models, and the generalization is verified from the perspective of the dataset composition (Case 1/2/3) and fine-tuning. For Case 1 and Case 2, the training dataset size for UMa, UMi and InH cases is 300K for each. For Case 3, the mixed dataset contains sub-datasets of UMa, UMi and InH, each of which is of 100K samples. For fine-tuning, the initial AI/ML model is trained based on an InH dataset of 300K samples, and the fine-tuning is performed based on an UMa dataset of 25K samples. The size of the testing dataset is 60K samples for each of UMa/UMi/InH for Case 1/2/3/fine-tuning. 
The results show that the characteristics of UMa and UMi are similar, and the AI/ML model trained by UMa/UMi dataset can be used for each other with generalized performance; the AI/ML model trained by UMa/UMi dataset can also be applied for testing at InH scenario with minor loss. On the other hand, the AI/ML model trained by InH dataset provides good performance for the InH scenario but poor performance for the UMa/UMi scenario (i.e., Case 2), since the channel characteristics under InH are less diverse than UMa/UMi, so that the characteristic of the UMa/UMi are not well learnt for the AI/ML model trained by InH. The AI/ML model trained by the mixed datasets (i.e., Case 3) shows moderate performance on each of the UMa/UMi/InH testing dataset, but compared with the overfitting dataset (i.e., Case 1), there is still a gap. 
The AI/ML model trained by the dataset of InH shows poor performance if it is directly applied for the testing dataset of UMa. However, after fine-tuned by a dataset of UMa channel, the performance can be improved obviously. This demonstrates the benefit of fine-tuning.
[bookmark: _Ref109657093]Table 7 Generalization performances on channel models
	Testing
	Training

	
	UMa
	UMi
	InH
	Mixed
	InH, fine-tuned with UMa

	UMa
	0.916
(Case 1)
	0.911
(Case 2)
	0.855
(Case 2)
	0.909
(Case 3)
	0.889
(fine-tuning)

	UMi
	0.91
(Case 2)
	0.909
(Case 1)
	0.859
(Case 2)
	0.895
(Case 3)
	\

	InH
	0.962
(Case 2)
	0.96
(Case 2)
	0.968
(Case 1)
	0.965
(Case 3)
	\


Observation 14: For an AI/ML model of CSI compression trained under Scenario#A (e.g., InH) dataset but applied to Scenario#B (e.g., UMa/UMi) for inference (i.e., generalization Case 2), its performance may be degraded compared to inference under Scenario#A (i.e., generalization Case 1), but mixing the dataset over the three scenarios for AI/ML model training (i.e., generalization Case 3) is helpful to improve the generalization.
Observation 15: For an AI/ML model of CSI compression trained under Scenario#A (e.g., InH) dataset but applied to Scenario#B (e.g., UMa) for inference, its performance can be improved by applying fine-tuning using a relatively small dataset from Scenario#B.
Generalization over indoor/outdoor UEs
Table 8 shows the generalization performances on various indoor/outdoor UE distributions. The size of each training dataset is 300K, and the size of the testing dataset is 60K for each of indoor/outdoor. The results show that AI/ML models trained by any indoor/outdoor UE distribution performs similarly on outdoor testing dataset. On the other hand, with the decrease of the ratio of indoor UEs (i.e., O2I channel samples) in the training dataset, the performance on indoor testing dataset (wherein all UEs are subject to indoor UEs) becomes worse. This is because the characteristics of O2I channels are more diverse for learning due to penetration, scattering, etc., than outdoor only.
[bookmark: _Ref109659533]Table 8 Generalization performances on indoor/outdoor UE distribution
	Testing
	Training, Indoor/outdoor ratio

	
	10:0
	8:2
	5:5
	2:8
	0:10

	Indoor (O2I)
	0.916
(Case 1)
	0.914
(Case 3)
	0.914
(Case 3)
	0.909
(Case 3)
	0.892
(Case 2)

	Outdoor
	0.949
(Case 2)
	0.948
(Case 3)
	0.949
(Case 3)
	0.949
(Case 3)
	0.948
(Case 1)


Observation 16: For generalization of AI/ML-based CSI compression over indoor/outdoor UE distribution ratios, 
· AI/ML model trained by any indoor/outdoor UE distribution ratio shows similar performance on the outdoor testing dataset. 
· With the decrease of the indoor channel ratio for the training dataset, the trained AI/ML model brings decreased performance on the indoor testing dataset.
Generalization over TxRU mappings
Table 9 shows the generalization performances on various TxRU mappings. The size of each training dataset is 300K, and the size of the testing dataset is 60K for each of TxRU mapping scenario. The results show that AI/ML models trained by TxRU mapping scenario (8,8,2,1,1,2,8) can provide good performance on both (8,8,2,1,1,2,8) and (2,8,2,1,1,2,8). On the other hand, AI/ML models trained by TxRU mapping scenario (2,8,2,1,1,2,8) can provide excellent performance on same scenario but relatively poorer performance on (8,8,2,1,1,2,8). This is because the more antenna elements leads to more complicated channel characteristics. The AI/ML model trained by the mixed datasets shows moderate performance on each of the TxRU mapping scenarios. 
[bookmark: _Ref114818208]Table 9 Generalization performances on TxRU mapping
	Testing
	Training

	
	 (8,8,2,1,1,2,8)
	 (2,8,2,1,1,2,8)
	Mixed

	(8,8,2,1,1,2,8)
	0.916
(Case 1)
	0.89
(Case 2)
	0.913
(Case 3)

	(2,8,2,1,1,2,8)
	0.914
(Case 2)
	0.922
(Case 1)
	0.92
(Case 3)


Observation 17: For generalization of AI/ML-based CSI compression over various TxRU mapping methods including (8,8,2,1,1,2,8) and (2,8,2,1,1,2,8), the AI/ML model trained by the mixed datasets show moderate performance on each of the TxRU mapping methods.
3.5 Evaluation results for scalability over different payloads
Table 10 shows the scalability performance over different payloads as described in Section 2.3.6. In the simulations of this section, 300K training samples and 20K testing samples are used. One CSI generation part with scalable output dimensions to M (M=2, 4) separate CSI reconstruction parts each with fixed input dimensions are used to achieve the scalability over different payloads. Different adaptation layers are used for different payload sizes, respectively, to achieve scalable output dimensions of the CSI generation part.
[bookmark: _Ref118317459]Table 10 Scalability performance over different payloads
	
	60 bits
	120 bits
	168 bits
	240bit

	Payload-specific models
	0.7428
	0.853
	0.8871
	0.9144

	Unified model for 2 different payloads
	N/A
	N/A
	0.8802 (-0.7%)
	0.9105 (-0.4%)

	Unified model for 4 different payloads
	0.7427 (-0%)
	0.8424 (-1%)
	0.877 (-1%)
	0.8955 (-1.8%)


The results show that the SGCS margin between payload-specific models and a unified model for 2 different payloads (168 bits and 240 bits) is small, while the SGCS margin between payload-specific models and unified model for 4 different payloads (60 bits, 120 bits, 168 bits and 240 bits) is a little lager. This is because the scalability over more payloads is more challenging.
[bookmark: OLE_LINK8][bookmark: OLE_LINK9]Observation 18: For scalability over different payloads, there is only minor margin (<0.7%) between the SGCS of the payload-specific models and unified model supporting 2 different payload sizes. The SGCS degradation is larger (<1.8%) for a unified model supporting 4 different payload sizes.
3.6 Evaluation results for quantized ground-truth CSI
Section 2.3.4 shows that the overhead of ground-truth CSI in the training dataset can be reduced significantly by using some quantization methods such as Rel-16 TypeII-like codebook generation method but with larger than legacy parameters to achieve higher resolution. In this section, evaluation results for the two quantization methods for the ground-truth CSI are provided.
Table 11 SGCS for quantized channel information as training dataset
	Quantization method
	Float32
	Float16
	8 bits scalar quantization
	Rel-16 TypeII CB with new parameters: L=10, p=0.9, beta=0.31, amplitude: 4 bits, phase: 6 bits

	Size per input, bytes
	3.3K
	1.67K
	0.83K
	127

	Total overhead, bytes
	992M
	499M (-50%)
	250M (-75%)
	40M (-96%)

	SGCS
	60 bits
	0.7428
	0.7415 (-0.1%)
	0.741 (-0.2%)
	0.7391(-0.5%)

	
	120 bits
	0.853
	0.8447 (-0.8%)
	0.8438 (-0.9%)
	0.8471(-0.6%)

	
	240 bits
	0.9144
	0.9112 (-0.3%)
	0.91 (-0.4%)
	0.9096(-0.5%)


The results show that compared with the training dataset quantized by Float32 format, the training dataset quantized by Rel-16 TypeII CB with new parameters can provide only minor performance margin (<0.7%) but reduces 96% overhead for training dataset delivery.
Observation 19: For AI/ML-based CSI compression, compared with the training dataset quantized by Float32 format, other high resolution ground-truth CSI quantization methods with lower overhead show minor SGCS loss with remarkable overhead reduction
· Training dataset quantized by 8 bits scalar quantization has <0.9% SGCS loss but reduces 75% overhead of training dataset delivery.
· Training dataset quantized by Rel-16 TypeII CB with new parameters has <0.7% SGCS loss but reduces 96% overhead of training dataset delivery.
4. Evaluations for CSI prediction
In this section, evaluations for CSI prediction will be discussed, including AI/ML model description and evaluation results. 
4.1 AI/ML model description
The AI/ML-based CSI prediction is used to predict future CSI based on historic CSI. As shown in Figure 18, the input of the CSI predictor includes k historic eigenvectors which are obtained from the k historic CSI-RS, respectively. The output of the CSI predictor is the predicted eigenvector at moment of the nearest future CSI-RS. In our simulation, k is set to 4 and a fully-connected network is used. Therefore, the observation window is the latest k=4 observation instances with 5 slots distance to each other, while the prediction window is 1 future slot.
[image: ]
[bookmark: _Ref109492202]Figure 18 The structure of AI/ML-based CSI prediction
4.2 Evaluation results
[bookmark: _Toc100742785]This section provides the evaluation results of CSI prediction. In this simulation, the interval of CSI-RS is 5ms and the UE speed is 30km/h. Table 12 shows that the AI/ML-based CSI prediction can outperform the case without CSI prediction, where the latest non-predicted CSI is used as baseline. For AI/ML-based CSI prediction, SGCS is calculated with the output of the AI/ML model (i.e., predicted CSI for the target future slot) and the corresponding ground-truth label of the same target future slot. For baseline, SGCS is calculated with the latest non-predicted CSI and the corresponding ground-truth label of the target future slot. From the preliminary results, the CSI prediction provides better SGCS performance in contrast to the baseline without prediction.
It is also worth noting that, for AI/ML-based CSI prediction, the SGCS reflects the accuracy of the predicted CSI and the ground-truth CSI on the predicted slot, but the throughput performance relies also on the scheduling algorithm, e.g., if the scheduled DL slot is close to the target future slot of prediction, the throughput will be consistent with the SGCS, while if the scheduled DL slot is far from the target future slot, the throughput will be harmed.
[bookmark: _Ref110936191]Table 12 SGCS performance of AI/ML-based CSI prediction and no prediction
	
	Without CSI prediction
	AI/ML-based CSI prediction

	SGCS
	0.799
	0.882


Observation 20: From the preliminary results, AI/ML-based CSI prediction outperforms the baseline without CSI prediction in terms of SGCS.
5. Conclusions
According to the discussion, following proposals and observations are provided:
Proposal 1: For the SGCS calculation under rank>1 cases, no additional method needs to be introduced except Method 3 (SGCS is separately calculated for each layer) as already adopted.
Proposal 2: For the intermediate KPI for evaluating the accuracy of the AI/ML output CSI, except for SGCS and NMSE which has been agreed as the baseline metrics, other intermediate KPIs are not considered as baseline for metrics, and can be optionally considered and reported by companies.
Proposal 3: If the AI/ML based CSI prediction sub use cases is to be selected as a sub use case, the nearest historical CSI as well as non-AI/ML based CSI prediction approach are both taken as baselines for the benchmark of performance comparison, and the specific non-AI/ML based CSI prediction is reported by companies.
· For non-AI/ML based CSI prediction benchmark, it is up to companies to report whether Doppler-domain compression of Rel-18 MIMO is adopted.
Proposal 4: The following initial template is considered for companies to report the evaluation results of AI/ML-based CSI prediction.
	
	
	Source 1
	…

	AI/ML model description
	AL/ML model backbone
	
	

	
	Pre-processing
	
	

	
	Post-processing
	
	

	
	FLOPs/M
	
	

	
	Parameters/M
	
	

	
	Input type
	
	

	
	Output type
	
	

	Assumption
	UE speed
	
	

	
	Observation window
	
	

	
	Prediction window
	
	

	
	Whether/how to adopt spatial consistency
	
	

	Dataset size
	Train/k
	
	

	
	Test/k
	
	

	Benchmark 1
	
	

	Gain for intermediate KPIs (Benchmark 1)
	SGCS
	
	

	
	NMSE
	
	

	
	[Others]
	
	

	Gain for eventual KPI (Benchmark 1)
	Mean UPT
	
	

	
	5% UPT
	
	

	Benchmark 2
	
	

	Gain for intermediate KPIs (Benchmark 2)
	SGCS
	
	

	
	NMSE
	
	

	Gain for eventual KPI (Benchmark 2)
	Mean UPT
	
	

	
	5% UPT
	
	

	FFS others
	
	
	


Proposal 5: For the evaluation of the AI/ML-based CSI compression sub use cases with rank >=1, companies are encouraged to report the specific option adopted for AI/ML model settings to adapt to ranks/layers. Rank common and layer common AI/ML model is adopted in our evaluation. 
Proposal 6: For the performance comparison between AI/ML-based CSI compression and legacy TypeII codebook, use tables in section 6.3.2.1.2 of TS 38.212 to calculate CSI payload.
Proposal 7: For the CSI payload size calculation for AI/ML-based CSI compression as well as the legacy TypeII codebook, payload size is calculated as the weighted average of CSI payload per rank and the distribution of ranks reported by the UE. 
· The above-mentioned “CSI payload” is calculated as max allowed bits at the given rank.
Proposal 8: For the evaluation of Type 2 (Joint training of the two-sided model at network side and UE side, respectively), analyze the feasibility of the following two training orders for N Network part models to M UE part models:
· Option 1: Simultaneously train all N Network part models and M UE part models involving all vendors
· Challenges on aligning the training time point of all involved Network vendors and UE vendors
· Option 2: Sequentially train Network part models and UE part models in a pairwise manner
· Fairness harmed for later trained Network-UE pairs where only one side may be able to update parameters during the joint training
Proposal 9: Two options can be studied for Step2 of the training Type 3 procedure, e.g., for the NW-first training:
· Step2: After Network side training is finished, Network side shares UE side with a set of information (e.g., dataset) that is used by the UE side to be able to train the UE side CSI generation part
· Option 1: The set of information includes the input (original CSI) and output (CSI feedback) of the Network side CSI generation part
· Option 2: The set of information includes the output (CSI feedback) of the Network side CSI generation part only
Proposal 10: For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following evaluation cases are considered for multi-vendors:
· Case 1 (baseline): Type 3 training between one NW part model to one UE part model
· Case 2: For UE-first training, Type 3 training between one NW part model and M>1 separate UE part models
· Companies to report the AI/ML structures for the UE part models and the NW part model, and the size of quantization input/de-quantization output.
· FFS Companies to report the dataset used at UE part models, e.g., whether the same or different dataset(s) are used among M UE part models
· FFS: different quantization methods among UE sides
· Note: the NW-first training can naturally support one NW side to Multi-UE sides
· Case 3: For NW-first training, Type 3 training between one UE part model and N>1 separate NW part models
· Companies to report the AI/ML structures for the UE part model and the NW part models, and the size of quantization input/de-quantization output.
· FFS Companies to report the dataset used at NW part models, e.g., whether the same or different dataset(s) are used among N NW part models
· FFS: different dequantization methods among NW sides
· Note: the UE-first training can naturally support one UE side to Multi-NW sides
· FFS: whether/how to report overhead
Proposal 11: For evaluating the performance of ground-truth CSI quantization methods in the CSI compression, 
· Float32 can be regarded as the baseline.
· For codebook quantization, the following new parameters of Rel-16 TypeII-like quantization method can be considered as a starting point
·  , Reference amplitude = 8 bits, Amplitude = 4 bits, Phase = 6 bits
Proposal 12: The following initial template is considered for companies to report the evaluation results of AI/ML-based CSI compression.
	
	
	Source 1
	…

	CSI generation part
	AL/ML model backbone
	
	

	
	Pre-processing
	
	

	
	Post-processing
	
	

	
	FLOPs/M
	
	

	
	Parameters/M
	
	

	CSI reconstruction part
	AL/ML model backbone
	
	

	
	Pre-processing
	
	

	
	Post-processing
	
	

	
	FLOPs/M
	
	

	
	Parameters/M
	
	

	Common description
	Input type
	
	

	
	Output type
	
	

	
	Quantization /dequantization method
	
	

	Dataset description
	Train/k
	
	

	
	Test/k
	
	

	
	Ground-truth CSI quantization method
	
	

	Benchmark
	
	

	Gain for intermediate KPI, layer 1
	SGCS, CSI payload X
	
	

	
	SGCS, CSI payload Y
	
	

	
	SGCS, CSI payload Z
	
	

	Gain for intermediate KPI, layer 2
	SGCS, CSI payload X
	
	

	
	SGCS, CSI payload Y
	
	

	
	SGCS, CSI payload Z
	
	

	…
	
	
	

	Gain for eventual KPI, rank 1
	Mean UPT, CSI payload X
	
	

	
	Mean UPT, CSI payload Y
	
	

	
	Mean UPT, CSI payload Z
	
	

	
	5% UPT, CSI payload X
	
	

	
	5% UPT, CSI payload Y
	
	

	
	5% UPT, CSI payload Z
	
	

	Gain for eventual KPI, rank 2
	Mean UPT, CSI payload X
	
	

	
	Mean UPT, CSI payload Y
	
	

	
	Mean UPT, CSI payload Z
	
	

	
	5% UPT, CSI payload X
	
	

	
	5% UPT, CSI payload Y
	
	

	
	5% UPT, CSI payload Z
	
	

	…
	
	
	

	FFS others
	
	
	


Proposal 13: For evaluating the generalization/scalability over various CSI payload sizes for CSI compression, 
· Companies to report the solution to achieve the scalability over different input/output dimensions, e.g., truncation/padding or adaptation layer
· Companies to report whether/how to achieve one unified CSI generation parts with scalable dimensions and/or one unified CSI reconstruction parts with scalable dimensions

Observation 1: For Type 3 (Separate training at NW side and UE side) under multi-vendors situation, the different dimensions of quantization input/de-quantization output can be considered as a generalization/scalability issue.
Observation 2: With the same overhead of CSI feedback and in terms of cell average throughput, AI/ML-based CSI compression with spatial-frequency domain CSI as input can outperform Rel-16 Type II codebook with 
· 7%-10.3% gain on rank 1 under full buffer traffic.
· 8.9%-14.8% gain on rank 2 under full buffer traffic.
Observation 3: For the rank=2 case, the 1st layer achieves higher SGCS than that of the 2nd layer as the eigenvectors of the 2nd layer are more sparse, and AI/ML-based CSI compression with spatial-frequency domain CSI as input can achieve more gains over the Rel-16 Type II on the 2nd layer than on the 1st layer.
Observation 4: With the same overhead of CSI feedback and in terms of mean UPT, AI/ML-based CSI compression with spatial-frequency domain CSI as input can outperform Rel-16 Type II codebook with
· 2.2%-2.5% gain on rank 1 under FTP traffic and 50% RU.
· 3.2%-7.8% gain on rank 1 under FTP traffic and 70% RU.
· 4.8%-8.8% gain on rank 1 under FTP traffic and 80% RU. 
· 5.4%-10.1% gain on rank 2 under FTP traffic and 50% RU.
· 7.2%-14.4% gain on rank 2 under FTP traffic and 70% RU.
· 7.5%-14.5% gain on rank 2 under FTP traffic and 80% RU. 
Observation 5: With the same overhead of CSI feedback and in terms of 5% UPT, AI/ML-based CSI compression with spatial-frequency domain CSI as input can outperform Rel-16 Type II codebook with
· 2.2%-7% gain on rank 1 under FTP traffic and 50% RU.
· 6.4%-14.6% gain on rank 1 under FTP traffic and 70% RU.
· 7.1%-16.3% gain on rank 1 under FTP traffic and 80% RU. 
· 4.3%-13.3% gain on rank 2 under FTP traffic and 50% RU.
· 8.1%-18% gain on rank 2 under FTP traffic and 70% RU.
· 9.1%-23.7% gain on rank 2 under FTP traffic and 80% RU. 
Observation 6: AI/ML-based CSI compression with spatial-frequency domain CSI as input can achieve more obvious gains over the Rel-16 Type II codebook on high RU than low RU.
Observation 7: AI/ML-based CSI compression with spatial-frequency domain CSI as input can achieve more obvious gains over the Rel-16 Type II codebook for cell edge UPT than average UPT.
Observation 8: With the same overhead of CSI feedback and in terms of cell average throughput, AI/ML-based CSI compression with additional past CSI as input can outperform Rel-16 Type II codebook with 
· 18.3%-25.4% gain on rank 1 under full buffer traffic.
· 23.3%-30.2% gain on rank 2 under full buffer traffic.
Observation 9: With the same overhead of CSI feedback and in terms of mean UPT, AI/ML-based CSI compression on spatial-frequency domain with additional past CSI as input can outperform Rel-16 Type II codebook with
· 7.7%-14.9% gain on rank 1 under FTP traffic and 80% RU. 
· 16.6%-28.6% gain on rank 2 under FTP traffic and 80% RU. 
Observation 10: With the same overhead of CSI feedback and in terms of 5% UPT, AI/ML-based CSI compression on spatial-frequency domain with additional past CSI as input can outperform Rel-16 Type II codebook with
· 10%-28.4% gain on rank 1 under FTP traffic and 80% RU.
· 17%-39.2% gain on rank 2 under FTP traffic and 80% RU.
Observation 11: One common Network part model to M>1 UE part models is naturally supported for the NW-first training, as the dataset generated by one Network side CSI reconstruction part can be delivered to multiple UEs to train multiple CSI generation parts independently.
Observation 12: For AI/ML-based CSI compression, there is only minor margin (<0.5%) between the SGCS of the separate training and the SGCS of the joint training even when the UE-side CSI generation part has a different structure or backbone with the Network-side CSI generation part.
· This observation applies regardless when the input dataset for the UE side is only a subset of or equal to the input dataset for the Network side
Observation 13: For AI/ML-based CSI compression, there is only minor margin (<0.5%) between the SGCS of the separate training and the SGCS of the joint training when the separate training considers N>1 Network part models to one common UE part model with a different backbone or a different structure from any of the N Network part models.
Observation 14: For an AI/ML model of CSI compression trained under Scenario#A (e.g., InH) dataset but applied to Scenario#B (e.g., UMa/UMi) for inference (i.e., generalization Case 2), its performance may be degraded compared to inference under Scenario#A (i.e., generalization Case 1), but mixing the dataset over the three scenarios for AI/ML model training (i.e., generalization Case 3) is helpful to improve the generalization.
Observation 15: For an AI/ML model of CSI compression trained under Scenario#A (e.g., InH) dataset but applied to Scenario#B (e.g., UMa) for inference, its performance can be improved by applying fine-tuning using a relatively small dataset from Scenario#B.
Observation 16: For generalization of AI/ML-based CSI compression over indoor/outdoor UE distribution ratios, 
· AI/ML model trained by any indoor/outdoor UE distribution ratio shows similar performance on the outdoor testing dataset. 
· With the decrease of the indoor channel ratio for the training dataset, the trained AI/ML model brings decreased performance on the indoor testing dataset.
Observation 17: For generalization of AI/ML-based CSI compression over various TxRU mapping methods including (8,8,2,1,1,2,8) and (2,8,2,1,1,2,8), the AI/ML model trained by the mixed datasets show moderate performance on each of the TxRU mapping methods.
Observation 18: For scalability over different payloads, there is only minor margin (<0.7%) between the SGCS of the payload-specific models and unified model supporting 2 different payload sizes. The SGCS degradation is larger (<1.8%) for a unified model supporting 4 different payload sizes.
Observation 19: For AI/ML-based CSI compression, compared with the training dataset quantized by Float32 format, other high resolution ground-truth CSI quantization methods with lower overhead show minor SGCS loss with remarkable overhead reduction
· Training dataset quantized by 8 bits scalar quantization has <0.9% SGCS loss but reduces 75% overhead of training dataset delivery.
· [bookmark: _GoBack]Training dataset quantized by Rel-16 TypeII CB with new parameters has <0.7% SGCS loss but reduces 96% overhead of training dataset delivery.
Observation 20: From the preliminary results, AI/ML-based CSI prediction outperforms the baseline without CSI prediction in terms of SGCS.
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Appendix: Simulation Assumptions
Table A.1 Model description and Evaluation results of CSI compression 
	
	
	Huawei, HiSilicon 1
	Huawei, HiSilicon 2

	CSI generation part
	AL/ML model backbone
	Transformer
	Transformer, LSTM

	
	Pre-processing
	/
	/

	
	Post-processing
	/
	/

	
	FLOPs/M
	800
	600

	
	Parameters/M
	13
	6

	CSI reconstruction part
	AL/ML model backbone
	Transformer
	Transformer

	
	Pre-processing
	/
	/

	
	Post-processing
	/
	/

	
	FLOPs/M
	1100
	600

	
	Parameters/M
	13
	6

	Common description
	Input type
	Eigenvector of current CSI
	Eigenvector with additional past CSI as input

	
	Output type
	Eigenvector
	Eigenvector

	
	Quantization /dequantization method
	Vector quantization
	Vector quantization

	Benchmark
	Rel-16 TypeII CB
	Rel-16 TypeII CB

	Dataset description
	Train/k
	800K
	350K

	
	Test/k
	60K
	150K

	
	Ground-truth CSI quantization method
	Float32
	Float32

	Gain for intermediate KPI, Layer 1
	SGCS, CSI payload < 100 bits
	0.06
	0.14

	
	SGCS, CSI payload 100~200 bits
	0.04
	0.08

	
	SGCS, CSI payload >200 bits
	0.06
	0.09

	Gain for intermediate KPI, Layer 2
	SGCS, CSI payload < 100 bits
	0.08
	0.21

	
	SGCS, CSI payload 100~200 bits
	0.05
	0.12

	
	SGCS, CSI payload >200 bits
	0.07
	0.14

	Gain for eventual KPI, Rank 1
	Mean UPT, CSI payload < 100 bits
	RU=80%: 8.8%
	RU=80%: 14.9%

	
	Mean UPT, CSI payload 100~200 bits
	RU=80%: 4.8%
	RU=80%: 8.3%

	
	Mean UPT, CSI payload >200 bits
	RU=80%: 6.4%
	RU=80%: 7.7%

	
	5% UPT, CSI payload < 100 bits
	RU=80%: 16.3%
	RU=80%: 28.4%

	
	5% UPT, CSI payload 100~200 bits
	RU=80%: 7.1%
	RU=80%: 11.9%

	
	5% UPT, CSI payload >200 bits
	RU=80%: 8.4%
	RU=80%: 10%

	Gain for eventual KPI, Rank 2
	Mean UPT, CSI payload < 120 bits
	RU=80%: 14.5%
	RU=80%: 28.6%

	
	Mean UPT, CSI payload 120~250 bits
	RU=80%: 7.5%
	RU=80%: 16.6%

	
	Mean UPT, CSI payload >250 bits
	RU=80%: 11.4%
	RU=80%: 17.4%

	
	5% UPT, CSI payload < 120 bits
	RU=80%: 23.7%
	RU=80%: 39.2%

	
	5% UPT, CSI payload 120~250 bits
	RU=80%: 9.1%
	RU=80%: 22.7%

	
	5% UPT, CSI payload > 250 bits
	RU=80%: 12.1%
	RU=80%: 17%



Table A.2 Simulation assumptions for training inputs of AI/ML-based CSI prediction
	Parameters
	Value

	Number of drops
	10

	UEs per drop
	210

	TTI interval between neighboring samples
	5ms

	TTI samples for per UE
	400 samples per UE

	Training set size
	400K

	Testing set size
	1K

	Training input
	Eigenvector(s) of the channel

	Batch size
	200

	Number of epochs
	500

	Flops
	112M

	Number of parameters
	139K
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