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Introduction
This document summarizes the discussions during RAN1#111 for the agenda item 9.2.4.1, Evaluation on AI/ML for positioning accuracy enhancement.

This discussion corresponds to the objectives related to the positioning use case described in RP-213599 (SID) below.
	RP-213599 (SID):
Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation. 
· Characterize lifecycle management of AI/ML model: e.g.,  model training, model deployment , model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

For the use cases under consideration:

1. Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.
…

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced.




(Closed) Evaluation methodology, Scenarios, Generalization  
In RAN1#110 and RAN1#111, agreements were made on evaluation methodology, simulation scenarios and generalization aspects. 
For this meeting, further discussion on generalization investigation have been submitted in the contributions. Companies also provided evaluation results to explore generalization aspects not yet formally agreed in RAN1, for example, CIR estimation error, SNR mismatch, different sampling periods.

Representative companies’ view from contributions are copied below.
	· Nokia (R1-2212331)
Observation-1: Evaluating the model performance using a wide variety of deployment types – for e.g., model trained using InF scenarios and tested using Umi, or vice versa, is not practically feasible.
Observation-2: It is unclear as to how a direct AI/ML positioning model trained using an InF scenario could be tested using Umi scenario and be expected to provide accurate UE location.
Proposal-1: RAN1 should agree to limit the Rel-18 study on AI/ML for positioning accuracy enhancements use case to only intra-site variations, as previously agreed.
Proposal-2: RAN1 to discuss and agree whether other approaches such as model update, finetuning or adapting the positioning method used, could be a better approach to handle possible variations within a particular scenario.


	· Qualcomm (R1-2212112)

Observation 1: Direct AI/ML positioning methods may be sensitive to unseen significant changes in the environment (e.g., unseen deployments with different clutter settings). 
Observation 2: Positioning enhancement gains of AI/ML model fine-tuning depends on the size of finetuning data. 
Observation 3: Site-specific AI/ML positioning models achieve excellent performance within their intended coverage area (i.e., the trained site).    
Observation 4: Model switching can help scaling the excellent performance of site-specific AI/ML positioning models across different sites. 
Proposal 1: Evaluate the model switching as a solution to enhance performance of site-specific AI/ML positioning models across different sites. 
Proposal 2: To evaluate AI/ML positioning enhancement with model switching, consider multiple sites (e.g., N sites) that have different drop values, clutter settings, and/or deployment scenario. Then conduct evaluation for the two following cases:
· No model switching case: Train a single model with L datasets from L sites among the N sites (where L<N), and test on all N sites using the trained model. 
· Model switching case: Train M models (M>1) with datasets from the N sites, and test on all N sites while switching between the M trained models and picking the right model that fits the testing site. 

Proposal 5: Study the specification impacts for enabling model switching of direct AI/ML positioning models to enable generalization across different drops (i.e., inter-site generalization).
Proposal 6: Prioritize model switching as a solution to enable generalization of direct AI/ML positioning across different drops (i.e., inter-site generalization).


	· HW/HiSi (R1-2210889)
Proposal 7 : For evaluation on the AI/ML-based positioning, the synchronization error of the transmission link between gNB and UE should also be considered.

	· Fraunhofer (R1-2212382)
Observation 1: 	The impact of different generalization levels can be tested by using a linear combination of channel data generated by two runs of the channel model with different seed of the random generators.
Proposal 4:	Test the impact of different generalization levels by combining two (or more) spatial consistent data sets. 
Proposal 5: 	For the evaluation of the performance gain and the impact of the generalization level split the evaluation in at least two areas:
- area in which traditional methods provide acceptable performance (“LOS areas”) 
- area in which traditional methods provide a low accuracy (NLOS area, bad LOS conditions)

	· Lenovo (R1-2211777)
Proposal 1: The evaluation methodology should be designed under a common generalizability framework, including additional considerations such as different UE mobility options, Tx/Rx beam configurations and DL-PRS configurations.
Proposal 2: The positioning AI/ML model evaluation methodology should support scenarios evaluating a model's robustness and adaptability, e.g., including how often an AI/ML evaluation model is updated based on a particular evaluation criterion. FFS any other relevant criteria.

	· Samsung (R1-2212040)

Proposal 1: RAN1 shall study the generalization ability for imperfect input/output data and how to model the imperfections.



1st round discussion
The agreed generalization aspects to study are copied below.
Agreement
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
1. Different drops
0. Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N>=1.
1. Clutter parameters, e.g., training dataset from one clutter parameter (e.g., {40%, 2m, 2m}), test dataset from a different clutter parameter (e.g., {60%, 6m, 2m});
1. Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;
· Other aspects are not excluded.
Note: It’s up to participating companies to decide whether to evaluate one aspect at a time, or evaluate multiple aspects at the same time.

Agreement
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
(d) UE/gNB RX and TX timing error. 
· The baseline non-AI/ML method may enable the Rel-17 enhancement features (e.g., UE Rx TEG, UE RxTx TEG).
Agreement
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
(e) InF scenarios, e.g., training dataset from one InF scenario (e.g., InF-DH), test dataset from a different InF scenario (e.g., InF-HH)

Based on companies’ input to this meeting, companies are invited to provide views on whether RAN1 need to study more generalization/robustness aspects, and if yes, what to study. 
Moderator’s understanding of the potential generalization aspects to investigate are summarized in the table below. Note that Samsung (R1-2212040) proposed to study imperfect input/output data. This is not included explicitly since imperfect input is reflected by (1) CIR estimation error and (2) SNR mismatch, while imperfect output is reflected by the study of imperfect ground truth label (labelling error or unavailable label).
	Generalization/robustness issues with evaluation results already provided by companies
	(1). CIR estimation error (vivo (R1-2211002))
(2). [bookmark: OLE_LINK27]SNR mismatch (Ericsson (R1-2210854))
(3). Different sampling periods (MediaTek (R1-2212230))

	Generalization/robustness issues proposed by companies, but no evaluation results yet
	(i) Synchronization error of the transmission link between gNB and UE (HW/HiSi (R1-2210889))
(ii) Linear combination of two (or more) spatial consistent data sets (Fraunhofer (R1-2212382))
(iii) Different UE mobility options (Lenovo (R1-2211777))
(iv) Tx/Rx beam configuration (Lenovo (R1-2211777)) 
(v) DL-PRS configurations (Lenovo (R1-2211777))



For (1)-(3) that have evaluation results already, it seems quite useful to investigate these issues.
Proposal 2.1-1
For AI/ML based positioning, study the impact of CIR estimation error on the positioning accuracy, if CIR is used as model input. 
	
	Company

	Support
	Nokia/NSB

	Not support
	[HW/HISI – needs some clarification], CATT



	Company
	Comments

	ZTE
	Generally fine with the motivation. The relationship between model generalization and estimation error should be clarified. For example, we have agreed to study model generalization over different network synchronization errors, Rx/Tx timing errors, which can also be understood by estimation error. Our suggestion is that estimation error for model input and output(or training label) should be a special case of model generalization.

	HW/HiSi
	Could it be clarified if this proposal really means the estimation error or does it mean the quantization error and how many samples are used to represent the CIR?
If it is the estimation error, it would be a natural result of other non-idealities, like the channel estimation error we already discussed last meeting and which can be reported by companies. In that case, we think that the CIR estimation error can be handled in a similar way as the channel estimation error.
In general we think that the current framework allows companies that they can report results in addition to what already is agreed. But we do not need an explicit up-front agreement for that.

	OPPO
	We had lengthy discussion and made the following conclusion in the last meeting. No new discussion is needed. 
Conclusion
For evaluation of AI/ML based positioning, it’s up to each company to take into account the channel estimation error in their evaluation. Companies describe the details of their simulation assumption, e.g., realistic or ideal channel estimation, error models, receiver algorithms.


	Apple
	There will be a need to decide how the error is modeled e.g. based on actual channel estimation error or based on an agreed on model

	Nokia/NSB
	We are fine with studying such topics further.

	CMCC
	We agree with OPPO that channel estimation error has already been discussed last meeting and can be reported by companies.

	MediaTek
	CIR is often used to calculate PDP, we think if this proposal is to investigate the impact of channel estimation error over positioning accuracy, some wording change could be made like:

For AI/ML based positioning, study the impact of CIR estimation error channel estimation on the positioning accuracy, if CIR is used as model input. 


	CATT
	We don’t support this proposal. It is unclear to align the CIR estimation error evaluations between different companies, and it is difficult to compare the AI/ML model performance based on the real CIR estimation with different assumptions. CIR estimation error for AI/ML model can be optional and interesting companies can provide the simulation results considering CIR estimation error.



Proposal 2.1-2
For AI/ML based positioning, study the impact of SNR mismatch on the positioning accuracy, where SNR mismatch refers to the case where the model is trained with dataset of one SNR setting, and tested with dataset of a different SNR setting.
	
	Company

	Support
	

	Not support
	Nokia/NSB, CATT



	Company
	Comments

	HW/HiSi
	Ok to study as one aspect of generalization
In general we think that the current framework allows companies that they can report results in addition to what already is agreed. But we do not need an explicit up-front agreement for that.

	OPPO
	Better to clarify before we make decision: 
1. Is this study focus on AI/ML model to estimate the UE positions (direct AI/ML positioning) or intermediate KPIs (AI/ML assisted positioning) from UL SRS?
2. How to model the SNR or SINR for the typical cases? The interference may be from the positioning related RS or the data transmission. 

	Apple
	Given that the current evaluation methodology is based on a system level simulation that models a wide variety of SNRs based on the UE geometry, it is not clear to us how we model the SNR setting with the current EVM. In the case of UE-based NN, do we change the Tx power of each TRP for each UE to ensure that there is a 20 dB difference in SNR ?

	Nokia/NSB
	We think that these discussions could be part of dataset related discussions. Our understanding of the issue is that perhaps there is difference in terms of the distribution of UEs for model training and inference, which could be an aspect considered as part of the dataset consideration.

	MediaTek
	From our undsertanding of Ericsson’s work (R1-2210854), the SNR mismatch comes from different UEs having different maximum TX power. If we undertanded it correctly, it is just another potential aspect of generalization in terms of the UE’s capability and it’s only applied to uplink power, i.e., it only affects NG-RAN node positioning.

	CATT
	Similar to CIR estimation error, generalization evaluations of AI/ML model with SNR mismatch is optional and companies can report the simulation results related to it.



Proposal 2.1-3
For AI/ML based positioning, study the impact of different sampling periods on the positioning accuracy, where the model is trained with dataset of one sampling period, and tested with dataset of a different sampling period.

	
	Company

	Support
	[MediaTek]

	Not support
	HW/HiSI, Nokia/NSB, CATT



	Company
	Comments

	Hw/HiSi
	The entity performing the positioning should have full control over its sampling period. We don’t see why this would change between training and inference. 

	OPPO
	The motivation should be justified as the first step. Why will the entity use a different sampling period? What are the typical use cases and the associated benefits?

	Nokia/NSB
	We are not entirely clear as to the benefits of such studies.

	Qualcomm
	We do not see a strong need to investigate this because sampling period is an implementation issue.

	CMCC
	We also think the motivation of different sampling periods is unclear.

	MediaTek
	Sampling period is directly related to the channel bandwidth at least from the implementation view at UE-side. Conventional methods struggle when applying to a small bandwidth. Unless all of us are sure about the channel bandwidth is fixed to 100MHz@FR1 and 400MHz@FR2 and no other values should be used even in real deployment, it should be a factor to consider when it comes to the evaluation. However, for its generalization, we are not sure and maybe this could be a topic in the future.

	CATT
	Similar to CIR estimation error, we prefer different sampling periods as optional.



Question 2.1-4
Please provide your view whether the potential generalization aspects that don’t have evaluation results yet should be included in the list of issues that RAN1 studies generalization/robustness property. 
· ‘Yes’ means: RAN1 will investigate as a group. 
· ‘No’ means: No need to make explicit agreement. Interested companies can submit evaluation results. 

	Generalization/robustness issues
	
	Company

	(i) Synchronization error between gNB and UE
	Yes
	

	
	No
	Nokia/NSB, CATT

	(ii) Linear combination of two (or more) spatial consistent data sets
	Yes
	

	
	No
	Nokia/NSB, CATT

	[bookmark: OLE_LINK32](iii) UE mobility
	Yes
	

	
	No
	Nokia/NSB, [MediaTek], CATT

	(iv) Tx/Rx beam configuration
	Yes
	

	
	No
	Nokia/NSB, CATT

	[bookmark: _Hlk119413677](v) DL-PRS configurations
	Yes
	

	
	No
	Nokia/NSB, CATT

	Other (please describe)
	(vi) Time varying changes (due to mobility of clutter objects) [Qualcomm]

	
	



	Company
	Comments

	Fujitsu
	We believe these options can be left for companies’ decisions, they can evaluate what they regard as necessary.

	HW/HiSi
	Evaluation results for (i) do exist. Here was maybe a misunderstanding. We understand that i) means the timing error between the gNB and UE.  
From R1-2210889 we have discussion below:
“While for fingerprint positioning, the synchronization error of the transmission link between gNB and UE should also be considered. Therefore, the typical standard deviation value for modelling the UE timing error should also take this into consideration.”
We think the modelling of the synchronization error of the transmission link between gNB and UE is the same as the modelling of the UE timing error. Therefore, it's just a relatively larger value is needed when evaluating on the UE timing error, like 30ns, which takes the Synchronization error between gNB and UE into account.
Observation 1 [bookmark: _Ref115430511]: When the model is trained without UE timing error but inferred with the added UE timing error randomly distributed with the standard deviation value T_1 = 10ns, the AI/ML-based fingerprint positioning model provides poor generalization performance. 
Observation 2 [bookmark: _Ref115430520]: When the model is both trained and inferred with the added UE timing error randomly distributed with T_1 = 10ns, the positioning performance is improved compared with trained without error. 
[bookmark: _Ref115430528]: When the model is both trained and inferred with the added UE timing error randomly distributed with mixed T_1 = 0&10&20&30ns, the positioning performance is improved compared to when trained without error.

	Apple
	Agree with Fujitsu

	Nokia/NSB
	We agree with Fujitsu.

	Qualcomm
	We see there is a strong need to study model robustness for time varying changes that cause changes to multipath profile between UE and TRPs (e.g., due to mobility of clutter objects). Such changes are highly expected in real deployments and validating robustness of AI/ML positioning models to such changes is quite important for RAN1 and involved companies. It is quite natural question that others will ask on whether different AI/ML positioning approaches that we consider can be robust to such changes. This Study Item is quite important as being the first one in RAN1 to involve AI/ML aspects and it won’t look good for RAN1 (and involved companies) if such essential robustness aspect is not sufficiently evaluated.

	CMCC
	Agree with Fujitsu

	MediaTek
	For (iii)UE mobility, we don’t see a strong need for it. We think there are mainly two impacts that are introduced by UE mobility: UE location change and Doppler frequency drift. From the scenario that has been agreed based on TS38.857 we can see UE location is generated using a uniform distribution. If enough data are collected, the UE location change is already implicitly included in the dataset. The Doppler frequency shift is minimum with only 3km/h, which can be absolved into the evaluation of channel estimation or UE imperfections.
There is an additional model component which is LOS to NLOS transition due to UT mobility in TS38.901 that may have some impact on the CIR generation. But we think if the UE location is uniformly generated or the generation covers almost all the area of a scenario, this impact is probably trivial.
For (v) DL-PRS configurations, just a clarification question:
Is the PRS bandwidth included in it? If yes, we think it is generally needed but the scope would be too broad at this point.

	CATT
	Agree with Fujitsu



2nd round discussion
Based on the 1st round input, moderator’s understanding is the following.
For the following issues, several companies expressed the view that these can be left for companies’ decision to provide simulation results. Note that so far evaluation results have not been provided.
(ii) Linear combination of two (or more) spatial consistent data sets (Fraunhofer (R1-2212382))
(iii) Different UE mobility options (Lenovo (R1-2211777))
(iv) Tx/Rx beam configuration (Lenovo (R1-2211777)) 
(v) DL-PRS configurations (Lenovo (R1-2211777))
For the following issue, Huawei clarified that this error can be reflected by giving a relatively larger value to the UE timing error (e.g., 30ns). Recall that in the agreed evaluation assumption (also see Table 6-1 of TR 38.857), the UE timing error (“Y ns”) is “up to the sources”. Thus (i) is already included in “(d) UE/gNB RX and TX timing error” (e.g., proponent companies can choose a larger Y (ns) value in their evaluation). There is no need to further discuss.
(i) Synchronization error of the transmission link between gNB and UE (HW/HiSi (R1-2210889))
Regarding (3) below, several companies pointed out that sampling period is up to implementation and can be fully controlled. It is not clear why a different sampling period is intentionally chosen between training and inference. Thus this study does not seem well motivated.
(3).	Different sampling periods (MediaTek (R1-2212230))
For the issues below, simulation study has been performed by companies. Interesting observations can be drawn on the model robustness when an AI/ML model deployment face these issues in real life. On the other hand, it seems hard to have a consensus for RAN1 to study as a group. Thus companies are encouraged to study, i.e., it’s an optional evaluation. Also it’s up to proponent companies to model the error sources. 
(1). CIR estimation error (vivo (R1-2211002))
(2). SNR mismatch (Ericsson (R1-2210854))
(vi)  Time varying changes (due to mobility of clutter objects) (Qualcomm (R1-2212112))
Thus the following is proposed for further discussion.

Proposal 2.2-1
Companies are encouraged to evaluate the impact of the following issues on the positioning accuracy of the AI/ML model. It is up to companies to report the simulation assumptions for these issues.
· CIR estimation error, if CIR is used as model input
· SNR mismatch
· Time varying changes (e.g., mobility of clutter objects in the environment)

	
	Company

	Support
	

	Not support
	CATT



	Company
	Comments

	CATT
	We think in the last meeting, we already concluded that for evaluation of AI/ML based positioning, it’s up to each company to take into account the channel estimation error in their evaluation. We perfer to align the wording of last meeting agreement. Due to the redundancy, the first sub-bullet should be deleted and the main proposal is update as following:

For evaluation of AI/ML based positioning, it’s up to each company to take into account Companies are encouraged to evaluate the impact of the following issues on the positioning accuracy of the AI/ML model in their evaluation. It is up to companies to report the simulation assumptions for these issues.
· CIR estimation error, if CIR is used as model input
· SNR mismatch
· Time varying changes (e.g., mobility of clutter objects in the environment)


	Fujitsu
	Same to the potential generalization sub cases, we prefer not to explicitly give the examples such as CIR error, comapnies are free to report their simulation assumptions as they wish and the options may not be limited to the mentioned three.

	OPPO
	Some comments as below:
1. What’s the additional value for the CIR part on top of the conclusion made in the last meeting? Could FL or proponents like to elaborate a bit more?
2. For the other parts (e.g., SNR mismatch), many companies don’t know to model SNR based on the first round of discussion. If we cannot have some common assumption for the EVM methodologies, it is unlikely to achieve any consensus on the further observation. Thus, we prefer to see the detailed modeling of SNR mismatch and then decide whether it is valuable or not for the study.
3. If we don’t have this proposal, companies can still be free to submit the evaluation results just as they do in this meeting. Thus, it is not clear what the value of this proposal is.



3rd round discussion
Based on 2nd round discussion, several companies think CIR estimation error does not need to be agreed again in light of previous agreement in RAN1#110bis. Thus the proposal is updated to the following. In general, it is useful to have evaluation results on real-life issues, which improves the credibility of this study item, and help to build confidence on AI/ML deployment.

Proposal 2.3-1
For AI/ML based positioning, company optionally evaluate the impact of the following issues on the positioning accuracy of the AI/ML model. The simulation assumptions reflecting these issues are up to companies.
· SNR mismatch (i.e., SNR when training data are collected is different from SNR when model inference is performed).
· Time varying changes (e.g., mobility of clutter objects in the environment)
[bookmark: _Hlk111799030]
	
	Company

	Support
	

	Not support
	



	Company
	Comments

	
	



KPI
In the following, the remaining issues on KPI are discussed.
Intermediate performance metric of assisted AI/ML positioning 
In RAN1#110bis, the following agreement was made on the intermediate performance metrics for AI/ML assisted positioning.
Agreement
For evaluation of AI/ML assisted positioning, the following intermediate performance metrics are used:
· LOS classification accuracy, if the model output includes LOS/NLOS indicator of hard values, where the LOS/NLOS indicator is generated for a link between UE and TRP;
· Timing estimation accuracy (expressed in meters), if the model output includes timing estimation (e.g., ToA, RSTD).
· Angle estimation accuracy (in degrees), if the model output includes angle estimation (e.g., AoA, AoD).
· Companies provide info on how LOS classification accuracy and timing/angle estimation accuracy are estimated, if the ML output is a soft value that represents a probability distribution (e.g., probability of LOS, probability of timing, probability of angle, mean and variance of timing/angle, etc.)

In this meeting, some companies have submitted views on reporting intermediate performance metrics for AI/ML assisted positioning, see below. Moreover, Qualcomm have submitted suggestions on how to report the intermediate performance metrics, when the model output is a soft value that represents a probability distribution.
Moderator’s understanding is, more input from companies are needed to resolve the remaining issue. It is difficult to make progress with limited input.

	· Qualcomm (R1-2212112)
We consider the following intermediate performance metrics for AI/ML-assisted positioning:
· Soft-information approach: We consider the top-K error in ToA as the intermediate metric, computed as follows. For each link between UE and TRP, the AI/ML model outputs multiple hypotheses for the ToA along with their probabilities. We find the K most likely hypotheses of ToA and report the lowest of the K ToA errors.
· Hard decision approach: The error in the ToA derived by the AI/ML model is reported as the intermediate metric.
Proposal 7: For AI/ML-based soft information reporting approaches, the 90th percentile of the top-K error in ToA is reported as an intermediate KPI. FFS: the value of K to be reported.


	· Nokia (R1-2212331)
Proposal-3: For evaluation of two-step or AI/ML assisted positioning, intermediate KPI(s) such as the accuracy of LOS/NLOS identification, accuracy of timing and/or angle of measurement, accuracy of the likelihood measurement, etc., should be reported together with the horizontal positioning accuracy.


	· Fraunhofer (R1-2212382)
Proposal 7:  	For the evaluation of performance gain resulting from additional reporting for input data to the AI/ML model (network based ToA estimator, for example) the main performance metric shall be the ToA error statistic. 
Proposal 8:  	For the evaluation of performance gain resulting from additional reporting for output data to the AI/ML model system level simulations including positioning algorithms are required and the main performance indicator is the positioning accuracy and the probability of false positions.



Model complexity for AI/ML assisted positioning 
In RAN1#110bis, the following agreement was made about AI/ML complexity for AI/ML assisted positioning.
Agreement
For AI/ML assisted positioning, when single-TRP construction is used for the AI/ML model, companies report at least the AI/ML complexity (Model complexity, Computation complexity) for N TRPs, which are used to determine the position of a target UE.
Table. Model complexity and computation complexity to support N TRPs for a target UE
	
	Model complexity to support N TRPs
	Computation complexity to process N TRPs

	Single-TRP, same model for N TRPs
	
When the model is at UE-side, where 
 is the model complexity for the same model.
FFS: if the model is at network-side
	
Where  is the computation complexity of the same model for one TRP.

	Single-TRP, N models for N TRPs
	When the model is at UE-side,

Where  is the model complexity for the i-th AI/ML model.
FFS: if the model is at network-side
	
Where  is the computation complexity for the i-th AI/ML model.

	Multi-TRP (i.e., one model for N TRPs)
	
Where  is the model complexity for the one model.
	
Where  is the computation complexity for the one model.




For RAN1#111, the following input was provided in companies’ contributions.
	· HW/HiSi (R1-2210889)
Observation 1 : The agreement for assisted positioning from last meeting on “model complexity” for the UE-side model is achieved for one UE. It is not applicable to the NW-side, since with this agreement the complexity would need to be counted over N models in N TRPs. Thus, no objective information about the complicity of one model could be obtained for a NW-side deployment. 
Proposal 4 : The model complexity on the AI/ML assisted positioning shall be counted for one model/entity in the evaluation.

	· Ericsson (R1-2210854)
Proposal 4	For single-TRP, the same model complexity calculation applies to UE-side model as well as network-side model. Remove “When the model is at UE-side,” and “FFS: if the model is at network-side” in the agreement of RAN1#110bis.



1st round discussion
The input from HW/HiSi (R1-2210889) and Ericsson (R1-2210854) attempt to resolve the FFS in the agreement of RAN1#110bis. For the case of “Single-TRP, same model for N TRPs”, HW/HiSi and Ericsson suggestions lead to the same outcome. Thus, at least for the case of “Single-TRP, same model for N TRPs” at the network side, it seems acceptable to remove “When the model is at UE-side,” and “FFS: if the model is at network-side” in the agreement of RAN1#110bis.
Proposal 3.2.1-1
For the RAN1#110bis agreement on the calculation of model complexity for “Single-TRP, same model for N TRPs”, the RAN1#110bis agreement is revised by deleting “When the model is at UE-side,” and “FFS: if the model is at network-side”.
	
	Company

	Support
	Fujitsu, CAICT, Apple,CMCC

	Not support
	



	Company
	Comments

	ZTE
	We tend to agree with Huawei. If multiple TRPs can process the same model simultaneously, which doesn’t make sense to have summation over model complexity. Besides, we think network-side model is an implementation issue, we prefer to focus on UE-side model.
In addition, we don’t think it’s an important issue as model complexity is hard to quantify as concluded in 9.2.1.
Conclusion
This RAN1 study considers ML TOP/FLOP/MACs as KPIs for computational complexity for inference. However, there may be a disconnection between actual complexity and the complexity evaluated using these KPIs due to the platform- dependency and implementation (hardware and software) optimization solutions, which are out of the scope of 3GPP.

	HW/HiSi
	Some more clarification from our side about our understandning:
The complexity should be counted for one entity, e.g. where the model is located. We think the current description gives the impression that the complexity is counted for one model in one UE when model at UE side, but for all gNB when model is at the gNB side. We think that also for the latter, the complexity should be counted only per model per entity.
Thus, if the complexity is calculated for “Single-TRP, same model for N TRPs” it should be made unambiguous that Ps refer to the complexity of one model at one TRP.
Therefore, we suggest to add the following text to the box in the table that included Ps
When the model is at UE-side, where 
 is the model complexity for the same model.
When the model is at gNB-side, where 
 is the model complexity for the same model in one TRP.
Another angle to look at it and to make a fair comparison between UE-side and NW-side orientation is to look at it from a model-centric perspective, which/how many models are needed to be developed and what complexity they do have.
If the same model is used for all N TRPs, then only one model with a certain complexity is required.
Similarly, if N different models are developed (one for each TRP), then, the complexity is counted over the sum of all models.
If we would agree on this interpretation, then it should be clarified in the table to avoid the current confusion. For example like below:
	
When the model is at UE-side, where 
 is the model complexity for one and the same model that is used for N TRPs.
FFS: if the model is at network-side

	When the model is at UE-side,

Where  is the model complexity for the i-th AI/ML model.
FFS: if the model is at network-side




	OPPO
	Fine with the proposal.

	Qualcomm
	For NW-side model with single TRP input construction, the same model needs to be deployed N times at the N TRPs. Thus, the model complexity at NW side shall reflect the complexity of such a deployment: 



2nd round discussion
Based on companies’ input in 1st round, it seems reasonable to acknowledge Huawei’s model-centric perspective. Thus the following is proposed to reflect Huawei’s edits.
Proposal 3.2.2-1
For the RAN1#110bis agreement on the calculation of model complexity, the FFS are resolved with the following update:
	
	Model complexity to support N TRPs

	Single-TRP, same model for N TRPs
	
When the model is at UE-side, where 
 is the model complexity for one and the same model that is used for N TRPs.
FFS: if the model is at network-side

	Single-TRP, N models for N TRPs
	When the model is at UE-side,

Where  is the model complexity for the i-th AI/ML model.
FFS: if the model is at network-side



	
	Company

	Support
	ZTE, CATT, Fujitsu, OPPO

	Not support
	



	Company
	Comments

	Qualcomm
	As we have discussed in our previous response, although the single-TRP model input construction considers the same model applied to all TRPs, it still requires managing and storing the model N times. Any LCM action should also check the model at all involved TRPs. As a resolution, we propose to add a note stating that these reported complexities need to be mainly considered for inference and may not directly apply to LCM aspects. We also suggest a minor rewording (blue below).

	
	Model complexity to support N TRPs

	Single-TRP, same model for N TRPs
	
When the model is at UE-side, where 
 is the model complexity for one TRP and the same model that is used for N TRPs.
FFS: if the model is at network-side

	Single-TRP, N models for N TRPs
	When the model is at UE-side,

Where  is the model complexity for the i-th AI/ML model.
FFS: if the model is at network-side


Note: The reported model complexity above is intended for inference and may not be directly applicable to complexity of LCM aspects.
[Moderator] The above seems acceptable, although it feels a bit redundant. 



Model complexity and computational complexity
In Figure 1 below, the scatterplot of the reported complexity (computational complexity vs model complexity) is shown for direct AI/ML positioning methods. Furthermore, most of the reported complexity fall near the linear approximation line. However, a few reported complexity numbers are outliers, where the computational complexity is substantially lower than expectation.
Companies are invited to report more details on how the complexity values are obtained, for example, whether the computational compelxity is the nominal complexity value, or GPU-optimized complexity value, which can be substantially different. 
[image: ]
Figure 1. Reported complexity (computational complexity vs model complexity) for direct AI/ML positioning methods.

4th round discussion

In RAN1#110bis, the following conclusion was made under AI 9.2.1.
Conclusion
This RAN1 study considers ML TOP/FLOP/MACs as KPIs for computational complexity for inference. However, there may be a disconnection between actual complexity and the complexity evaluated using these KPIs due to the platform- dependency and implementation (hardware and software) optimization solutions, which are out of the scope of 3GPP.

Thus RAN1 computation complexity KPI does not consider platform- dependency and implementation (hardware and software) optimization solutions, which are out of the scope of 3GPP. 
It is proposed that companies report the nominal computation complexity values, i.e., without platform- dependency and implementation (hardware and software) optimization solutions. This allows RAN1 to align the understanding of complexity KPIs, and to have meaningful comparison of the AI/ML complexity between companies.
Proposal 3.3.1-1
For the computational complexity of AI/ML models for positioning, the reporting uses nominal computation complexity values, i.e., without platform- dependency and implementation (hardware and software) optimization solutions.

Offline conclusion 3.3.1-1:
Companies describe how their computational complexity values are obtained. 
· It is out of 3GPP scope to consider computational complexity values that have platform-dependency and/or use implementation (hardware and software) optimization solutions.

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	Nokia/NSB
	We are not entirely sure if this proposal needs to be agreed as part of the positioning use case, since there is already a clear agreement on this topic in 9.2.1.

	
	





Other KPI
For this meeting, some companies shared views on additional KPIs to explore, see below. Moderator’s understanding is, the suggested KPIs lack extensive support thus far. Thus it is difficult to make progress on them.

	· Nokia (R1-2212331)
Proposal-4: Optional KPIs such as position estimation latency, radio resource efficiency and higher layer signaling overhead should be reported together with the horizontal positioning accuracy.


	· Lenovo (R1-2211777)
Observation 1: AI/ML models for positioning require a careful balance between performance and complexity depending on the type of positioning mode (UE-assisted or UE-based).
Proposal 3: In addition to FLOP counts, the evaluation should also consider the hardware and software platforms used to evaluate the positioning AI/ML algorithms, type of data being used as input, training type, e.g., offline vs online, complexity type, e.g., worst-case/average-case.




(Closed) Dataset
For RAN1#111, several companies discussed issues related to dataset.
	· Nokia (R1-2212331)
Observation-3: The availability of good quality data with sufficient diversity of positioning ground truth labels with accurate information, for model training and testing/validation is one of the key challenges in AI/ML based positioning.
Observation-4: It is important to note that training dataset size as an indication of user area density is valid only for uniform distribution of UEs within the simulation setting.
Proposal-5: For evaluation of AI/ML based positioning, consider additional UE distribution options such as sparse or clustered deployment of UEs, while evaluating model performance.
Observation-5: For UE-based positioning method with UE-based AI/ML model training and inference, currently it is unclear as to how to ensure that the provided training data is utilized in a manner than ensures optimal model performance.

[image: ]IPD 

Fig. 9: IPD metric estimation with Ripley’s G function for test data 70% of total data
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Fig. 11. Positioning accuracy vs. IPD for 18 TRPs case (left) and 9 TRPs case (right)
The main conclusions derived from the obtained results are: 
· The positioning accuracy is improved with higher number of TRPs measurements: from 5m accuracy with 6TRPs measurements to less than 3m with 18 TRPs measurements. 
· The positioning accuracy is enhanced with lower IPD of the training data set with around 13% improvement. This enhancement is more important for the case of lower number of TRPs.  

Observation-18: The positioning accuracy results improve in correlation with higher number of TRPs measurements: from 5m accuracy with 6TRPs measurements to less than 3m with 18 TRPs measurements.
Observation-19: The positioning accuracy is enhanced with lower IPD of the training data set with around 13 % improvement. This enhancement is more important for the case of lower number of TRPs.
Proposal-15: RAN1 to agree on the importance of data diversity in general and inter-point distance in particular, and further study mechanisms to ensure that datasets with diverse data samples are utilized for model training.


	· Qualcomm (R1-2212112)

Observation 6: RFFP can demonstrate different performance metrics depending on the UE area density considered for training. It is important to study how UE area density can affect performance as this helps companies decide on data collection strategies and signalling requirements depending on the case of interest.
Proposal 4: Study how AI/ML positioning performance changes as the user density for training data is changed.
[image: Chart
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[bookmark: _Ref101884490]Figure 6 CDF of horizontal positioning error for RFFP under different UE area densities (blue plot: sparse UE area density; black: dense UE area density).

	· China Telecom (R1-2211529)
Proposal 2: Company are encouraged to report model generalization performance with measurements from less TRPs and different dataset size.



1st round discussion
Based on the input from companies, user density of training data and additional UE distribution options affect dataset quality, and can be useful to study. 
Nokia (R1-2212331) also suggested to study mechanism to ensure datasets with diverse data samples are utilized for model training. Inter-point distance (IPD) is suggested as a metric for the training data diversity.
Questions 4.1-1
Please share your view on whether RAN1 should study training data quality in following directions. 
Study how AI/ML positioning performance is affected by the following factors:
(a) user density for training dataset;
(b) additional UE distribution options for training dataset, e.g., non-uniformly distributed UEs. 
(c) other  
	
	
	Company

	(a) user density
	Yes
	ZTE, Fujitsu, CAICT, LG, OPPO, Apple, Nokia/NSB, Qualcomm, CMCC, CATT

	
	No 
	

	(b) additional UE distribution options
	Yes
	Nokia/NSB

	
	No 
	ZTE, OPPO, Apple, CMCC

	(c) Other (please describe)
	
	



	Company
	Comments

	ZTE
	(a) It’s important to evaluate positioning performance as it may be hard to obtain training data in reality. Therefore, 3GPP should identify the positioning performance under different user density. In addition, we have a clarification question for this proposal. We agreed the following in RAN1#109 for dataset generation. In our understanding, different grid widths will naturally correspond to different user density. Can we just encourage companies to bring evaluation results under different grid widths?
· The distribution of UE location for generating the training dataset may be one of the following:
· Option 1: grid distribution, i.e., one training data is collected at the center of one small square grid, where, for example, the width of the square grid can be 0.25/0.5/1.0 m.
· Option 2: uniform distribution, i.e., the UE location is randomly and uniformly distributed in the evaluation area.
(b) It might be hard to align to common understandings on non-uniformly distributed UEs. It can be optionally provided by interested companies.

	HW/HiSi
	We already have agreed on the user distribution and user density in the EVM and think that this could be followed and is sufficient. 
If companies want to provide results for more/different assumptions, it is fine we think, but we don’t need an explicit agreements for this.

	OPPO
	One more sub-bullet should be included:
The non-ideal labels

	Qualcomm
	For (b), it is not clear what additional aspects the additional UE distribution options will provide.

	CMCC
	Different user density also means different sizes of training dataset. It is important to investigate how the user density will impact the positioning accuracy. 

	MediaTek
	Just a clarification question, thanks.
Is the fundamental purpose of studying this topic to investigate at least how much data we actually need in data collection for a specific scenario? If yes, we probably should first need to know a baseline model for the specific scenario to use these data.



Question 4.1-2
Please share your view on whether a metric (e.g., Inter-point distance (IPD)) is to be adopted to measure training data diversity. 
	[bookmark: _Hlk103708880]
	Company

	Yes
	Nokia/NSB

	No 
	



	[bookmark: _Hlk103701956]Company
	Comments

	ZTE
	It may not be necessary if we agreed to study different performances under different user density.

	CAICT
	We are not sure whether a metric could be defined and fine for FFS.

	HW/HiSi
	We think that we do not need a metric to measure the training data diversity.
If we would adopt a metric, it seems more complicated than using the inter-point distance. The relevant distance (at least for CIR fingerprint) should also be highly correlated with the spatial consistency. Thus, the group would need to agree on how to model spatial consistency.
We think it is up to companies to ensure the training data diversity in their simulations based on their assumptions. It will be very difficult (if not impossible) to find one common metric that applies in a unified manner to all the different schemes, configurations and assumptions that companies may investigate.

	LG
	The clarification on that metric is pre-requisite

	Nokia/NSB
	The necessity of the IPD metric is derived from two key aspects: (1) UE-side model training or fine-tuning: It is challenging for the network to control the quality of the dataset the UE might use for model training. IPD metric ensures that the dataset used for model training is sufficiently diverse. (2) Network-side model training: the metric could be used by the network to ensure that sufficiently diverse data has been collected for future model training.
Regarding investigating different model performance for different user density: This is one way to investigate the IPD metric for network-side model training, especially to understand the level of data diversity that is required to achieve acceptable model performance. However, this would not be sufficient for the UE-based model training and inference.

	MediaTek
	We would like an explaination on data diversity. Does it mean UEs in a dataset are scattered under a specific distribution or something else?



Model input, Model output
Regarding input and output of the ML model, representative proposals submitted in companies’ contributions are copied below.

	· Nokia (R1-2212331)
Observation-7: The use of CIR and PDP with high-dimensionality as model input could cause significantly high overhead for data collection for model training and inference.
Proposal-7: RAN1 to further study the impact of CIR and PDP as model input in terms of over-the-air signaling overhead with possible two-sided models as a solution to enable overhead reduction and for improving the quality of the collected data samples.
Observation-8: The UE/TRP can report only the timing and RSRP values, and the signaling of CIRs from the UE to the network is not supported.
Observation-9: If CIR is agreed as a baseline model input, that would imply that only UE-based direct or AI/ML assisted positioning methods are considered. However, in such a scenario, there might be challenges related to acquiring labeled training data from other UEs or from the network.
Proposal-8: RAN1 to consider RSRP as a baseline model input for evaluation of direct and AI/ML assisted positioning.
Observation-10: For CIR as model input, one key aspect that needs to be taken into account relates to the additional signaling overhead required for collecting CIR-based labeled dataset.
Proposal-9: RAN1 to consider overhead for CIR reporting as part of data collection and model inference – for LMF/network-based positioning where the UE would need to report this information frequently to the network.


	· Vivo (R1-2211002)

[bookmark: _Ref115170640]Evaluation results of  different model inputs for AI/ML model deployed on UE or Network side, without model generalization, ViT
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Computational complexity
	AI/ML

	CIR
	Pos.
	0
	{0.6,6,2}
	25k
	1k
	1.65M 
	22.30M
	0.99

	Power + delay + angle of the first path
	Pos.
	0
	{0.6,6,2}
	25k
	1k
	1.65M 
	22.30M
	1.19

	Power  + delay of the first path
	Pos.
	0
	{0.6,6,2}
	25k
	1k
	1.65M 
	22.30M
	1.31

	Delay + angle of the first path
	Pos.
	0
	{0.6,6,2}
	25k
	1k
	1.65M 
	22.30M
	1.43

	Angle + power of the first path
	Pos.
	0
	{0.6,6,2}
	25k
	1k
	1.65M 
	22.30M
	1.79


[image: ]
Figure 4	CDF of positioning accuracy (m) of different measurements
Observation 2:	Different inputs of AI model will affect the positioning performance for AI/ML based positioning. Time domain channel CIR as the input of AI model obtains the best positioning accuracy.
Proposal 1:	Capture in the TR that time domain CIR as the model input for direct AI/ML positioning obtains the best performance compared to other model inputs.
Proposal 2:	Support time domain CIR as the model input at least for direct AI/ML positioning. 


	· HW/HiSi (R1-2210889)
Proposal 5 : For comparison of evaluation on AI/ML-based fingerprint positioning evaluation results, support the channel impulse responses (CIRs) as the model inputs.

	· Samsung (R1-2212040)

Proposal 1: RAN1 shall study the generalization ability for imperfect input/output data and how to model the imperfections.
Proposal 2: the formation of the input data (e.g., the normalization of CIR) should be studied for AI/ML for positioning.

	· LG (R1-2211871)
Proposal #2: At least for LOS/NLOS classification of AI/ML assisted positioning, consider also to utilize a soft value of the ML output as a LOS classification accuracy.

	· Google (R1-2211128)

Proposal 1: For CIR/PDP based model input, study at least the following options for sample selection 
· Option 1: The samples with top Nt powers are selected
· Option 2: The first Nt samples are selected
Proposal 2: For CIR/PDP based model input, study at least the following options for CIR/PDP quantization:
· Option 1: The CIR/PDP is quantized based on several DFT bases
· Option 2: The CIR/PDP is quantized based on several DCT bases
Proposal 3: Study to use L1-SINR from each cell in addition to the CIR/PDP as the input to reflect the potential channel estimation accuracy for the CIR/PDP.


	· China Telecom (R1-2211529)

Observations 1: The positioning accuracy can be further improved when the measurement information is combined as the input of AI/ML model.
Proposal 1: Table 3 is used to report our evaluation results.
Proposal 2: Company are encouraged to report model generalization performance with measurements from less TRPs and different dataset size.
Table 2: Positioning accuracy for different schemes
	Methods
	50%
	67%
	80%
	90%

	Traditional method
	11.89
	13.62
	14.78
	16.36

	AI + TOA
	0.37
	0.46
	0.57
	0.69

	AI + DL-TDOA
	0.38
	0.49
	0.59
	0.73

	AI + CIR
	0.27
	0.36
	0.43
	0.54

	AI + RSRP +TOA
	0.22
	0.29
	0.36
	0.43

	AI + RSRP + DL-TDOA
	0.19
	0.25
	0.31
	0.38




	· Xiaomi (R1-2211359)
· The input dimension is 18*24*2, where 18 represents the number of the involved TRP for positioning, 24 represents the top 24 CIR points with strongest signaling strength among 256 CIR points and 2 represents the amplitude of the CIR points and the index of the CIR point

Proposal 1: On the basis of satisfying the positioning accuracy requirement, study solution to reduce the model size, computation complexity and involved signalling overhead
Table 15 Evaluation results for reduced input dimension for direct AI-based positioning and AI-based ToA predication, model deployed on UE or NW side, without model generalization, ResNet
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*24*2 CIR 
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
	{0.6，6，2}

	70000
	10000
	21,277,442
	539.94MFlops
	0.8219

	18*24*2 CIR 
	18*1 UE TOA
	18*1 UE TOA
	{0.6，6，2}
	{0.6，6，2}

	70000
	10000
	21,285,650
	539.95MFlops
	0.8993




	· ZTE (R1-2211061)
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP (1x18x256)
8 path timings + DL PRS RSRPPs
	1. D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	1.93

	PDP (1x18x256)
16 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	1.40

	PDP (1x18x256)
32 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	1.75

	PDP (1x18x256)
64 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	0.83

	PDP (1x18x256)
128 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	0.71

	PDP (1x18x256)
256 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	0.69



Table.1 Positioning performance based on PDP (Grid width for data generation is 1.0 m), Model backbone(CNN)
Observation 1:  The AI/ML based positioning method (i.e., via PDP) has excellent performances even in heavy NLOS conditions.
Observation 2: With the increase in number of path timings and RSRPPs, positioning performances are improved significantly.
Proposal 1: Study and evaluate performance of direct AI/ML positioning under different number of path timings and RSRPPs.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP (1x18x256)
64 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50 M
	158.47 M
	0.508

	CIR (2x18x256)
64 path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50M
	158.66 M
	0.421

	PDP (1x18x256)
128 path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50 M
	158.47 M
	0.446

	CIR (2x18x256)
128 path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50M
	158.66 M
	0.278



Table.3 Positioning performance based on CIR, Model backbone(CNN)

Observation 3: With path phase information included in the AI model input,  the positioning performance is improved obviously when compared to AI model input without path phase information.
Proposal 2: Study and evaluate the performance of direct AI/ML positioning when AI model input includes channel phase information.


	· Ericsson (R1-2210854)

Proposal 10	At least for Case 2a and 3a, define ML model output which are to be carried by the standardized interfaces for model inference. Companies provide evaluation results for the defined ML model output.
Proposal 11	At least for Case 2b and 3b, define ML model input which are to be carried by the standardized interfaces for model inference. Companies provide evaluation results for the defined ML model input.
Proposal 12	For Case 2a and 3a, support both types of ML model output: (a) a single type of output (e.g., LOS/NLOS indicator or ToA); (b) composite type of output (e.g., both LOS/NLOS indicator and ToA).




1st round discussion
Regarding model input, the following agreement was made in RAN1#110bis. 
Agreement
For the model input used in evaluations of AI/ML based positioning, if time-domain channel impulse response (CIR) or power delay profile (PDP) is used as model input in the evaluation, companies report the input dimension NTRP * Nport * Nt, where NTRP is the number of TRPs, Nport is the number of transmit/receive antenna port pairs, Nt is the number of time domain samples. 
· Note: CIR and PDP may have different dimensions. 
· Note: Companies provide details on their assumption on how PDP is constructed and how (if applicable) it is mapped to Nt samples.

Based on companies’ input (e.g., Google (R1-2211128), Xiaomi (R1-2211359), ZTE (R1-2211061)), there is a need to further clarify issues for CIR and PDP as model input. 
· One issue is, whether Nt refers to the number of time domain samples as is (i.e., first Nt samples, without selection or processing), or Nt samples with strongest powers are selected. Moderator’s understanding is, most companies consider Nt refers to the number of time domain samples as is. If selection is applied (e.g., select the samples with strongest powers), then timing info need to be provided for the selected samples.
· Another issue is, some companies consider one CIR value as one complex numbers and keep the dimension as NTRP * Nport * Nt, while other companies change the dimension by multiplying 2 to account for the complex value. Although both ways are valid, a unified description should be agreed to avoid confusion. To avoid misunderstanding of the dimensions, it seems simpler to clarify that input value is a complex number if CIR (thus it contains two real values, either {real, imaginary} or {magnitude, phase}).

Based on the discussion above, the following are proposed. 

Proposal 5.1-1
[bookmark: OLE_LINK38]For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.

	
	Company

	Support
	ZTE, Fujitsu, CAICT, HW/HiSi, OPPO, Apple, Nokia/NSB,CMCC, CATT

	Not support
	Qualcomm, MediaTek



	Company
	Comments

	ZTE
	To avoid ambiguity with some minor wording changes:
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt continuous time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.

	Apple
	Fine with the FL’s wording. If any change can say "first Nt consecutive time domain“…

	Qualcomm
	The aspect related to specifying N’t is not clear and can give wrong impression on reported complexity. The selection of strongest power samples will require additional processing that is not expected to be reported as part of the agreed KPIs. The down selection of Nt to N’t needs to be part of model implementation.

	MediaTek
	We think it is not nessesary to define how to calculate Nt. It is up to defferent model design or the pre-prosessing of a model.



Proposal 5.1-2
For reporting the model input dimension NTRP * Nport * Nt:
· If the model input is CIR, then each input value of CIR is a complex number, i.e. it contains two real values, either {real, imaginary} or {magnitude, phase}.
· If the model input is PDP, then each input value of PDP is a real value.


	
	Company

	Support
	ZTE, Fujitsu, CAICT, LG, Hw/HISi, OPPO, Apple,CMCC, CATT

	Not support
	



	Company
	Comments

	Nokia/NSB
	We would like further clarification regarding whether this proposal is intended as a conclusion or as an agreement. We are not sure as to what the exact agreement is here.

	Qualcomm
	We suggest having a proposal that also guides companies on how to report model complexity if their model considers complex parameters. The reported KPI needs to reflect the number of all parameters.



Regarding model input, several companies proposed to study what type of information to use as input, and to study solutions to reduce the dimension of the input size. Similarly, for model output, this needs to be studied if the model output need to be transported over standardized interface. Thus the following are proposed.

Proposal 5.1-3
At least for Case 2b and 3b, study the AI/ML model input, including (a) the type of information (e.g., CIR, PDP, angle) to use as model input, (b) the formulation of the input data (e.g., the normalization of CIR), and (c) the dimension of model input (including study the reduction of input dimension).
· Case 2b: UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning
· Case 3b: NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning

	
	Company

	Support
	CAICT, LG, OPPO, Nokia/NSB,CMCC, CATT

	Not support
	Qualcomm[Case2b]



	Company
	Comments

	ZTE
	Prefer to focus on (a) and (b). (c) should be studied in AI 9.2.4.2 as it seems to be signaling overhead study.

	HW/HiSi
	We think it should be clarified if this proposal is for training and/or inference? If training is included then more cases should be included 
For example also for training for Case 2a. There would be a need to send the measurement results (CIRs) and corresponding labels.

	Apple
	What about case 1 ?

	Qualcomm
	First, this seems to be more relevant to 9.2.4.2 discussion.
Reporting of measurements over the air needs to consider realistic options like those considered in previous releases (e.g., RSTD, LOS/NLOS reporting, RSRP, RSRPP, etc.). While reporting CIR/PDP can be easily realized for Case 3b, considering them for Case2b is not straightforward and needs to be deprioritized due to its over the air transmission aspect.

	MediaTek
	[bookmark: OLE_LINK17]This is maybe a little bit off topic, but for the direct AI/ML positioning in Case 1, we think a similar study is also needed. A sub bullet can be added like:
[bookmark: OLE_LINK16]Case 1: UE-based positioning with UE-side model, direct AI/ML positioning



Proposal 5.1-4
At least for AI/ML assisted positioning of Case 2a and 3a, study the AI/ML model output, including (a) the type of information (e.g., RSTD, AoD) to use as model output, (b) whether the proposed the model output can reuse existing signaling (e.g., LPP). 
· Case 2a: UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning
· Case 3a: NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning

	
	Company

	Support
	Fujitsu, CAICT, LG, Nokia/NSB, CATT

	Not support
	



	Company
	Comments

	ZTE
	Prefer to focus on (a) . (b) should be studied in AI 9.2.4.2 as it seems to be enhancement study.

	HW/HiSI
	We think we could focus on the commonly assumed outputs, i.e. TOA, LOS tag. For (b) we agree with ZTE. 

	OPPO
	In principle fine with the proposal. Better to discuss bullet (b) in agenda 9.2.4.2.

	Apple
	What about case 1 ?

	Qualcomm
	We prefer the following updated wording:
At least for AI/ML assisted positioning of Case 2a and 3a, study the AI/ML model output, including (a) the type of information (e.g., RSTD, AoD, soft-information of timing, soft-information of angle, soft-information of LOS identification) to use as model output, (b) whether the proposed the model output can reuse existing signaling (e.g., NRPPa, LPP, LPPa). 
· Case 2a: UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning
· Case 3a: NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning


	CMCC
	For (b), it can be discussed in AI 9.2.4.2.

	MediaTek
	[bookmark: OLE_LINK15]For the AI/ML assisted positioning in Case 1, we think a study is also needed. A sub bullet can be added like:
Case 1: UE-based positioning with UE-side model, AI/ML assisted positioning



2nd round discussion
Based on input in 1st round discussion, the following are proposed. The two proposals below have offline consensus.

Proposal 5.2-1
For reporting the model input dimension NTRP * Nport * Nt:
· If the model input is CIR, then each input value of CIR is a complex number, i.e. it contains two real values, either {real, imaginary} or {magnitude, phase}.
· If the model input is PDP, then each input value of PDP is a real value.

Proposal 5.2-2
At least for model inference of AI/ML assisted positioning, evaluate and report the AI/ML model output, including (a) the type of information (e.g., ToA, RSTD, AoD, AoA, LOS/NLOS indicator) to use as model output, (b) soft information vs hard information, (c) whether the model output can reuse existing measurement report (e.g., NRPPa, LPP). 

3rd/4th round discussion
With the agreement made in 2nd round on model input, let’s revisit the issue of model input. As discussed in 1st round, model input need to be provided and evaluated at least for Case 2b and 3b, since the model input need to be transferred over a standardized interface.
· Case 2b: UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning
· Case 3b: NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning


Offline discussion:
Proposal 5.3-1
At least for direct AI/ML positioning, evaluate and report the AI/ML model input, including (a) the type of information (e.g., CIR, PDP, angle) to use as model input, (b) the preprocessing/formulation of the input data (e.g., the normalization of CIR), (c) the dimension of model input (including study the reduction of input dimension), (d) whether the model input can reuse existing measurement report (e.g., NRPPa, LPP).

	
	Company

	Support
	vivo

	Not support
	Qualcomm



	Company
	Comments

	Qualcomm
	We believe this proposal is not necessary. Companies already agreed on reporting their evaluation assumptions, including (a) type of model input, (c) dimension of the input, and whether (d) they consider UE side or NW side of their evaluation. 
For (b), this is part of the model implementation, and it is up to each company.
To address the larger question on standardizing the reporting for model input of Case2b and Case3b, we need to first discuss whether Case2b is necessary and provides any gains over Case1.

	vivo
	We’re puzzled by the comment from Qualcomm in above.
Even for the comparison study of Case 1 and Case 2b, we still need to report what is used as input. Without details of input formulation, how can the group do a fair comparison between Case 1 and Case 2b.




(Closed) Model construction for AI/ML-assisted positioning 
For the single-TRP (same or different models for N TRPs) and multi-TRP constructions, companies have provided evaluation results, as shown below.
Single-TRP construction with same model for N TRP
	· Qualcomm (R1-2212112)
Proposal 8: For AI/ML-assisted positioning, the single-TRP approach is adopted for evaluation as a baseline.
Observation 17: The ML-assisted soft information reporting method using single-TRP approach generalizes well across inter-site changes with homogeneous clutter settings.
[image: Chart, line chart
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[bookmark: _Ref118478222]Figure 19 CDF of horizontal positioning error for ML-based soft information reporting across drops


	· CATT (R1-2211193)
Table 17: Evaluation results for AI/ML-based LOS/NLOS identification model deployed on UE/LMF-side,  ResNet18
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Los or nlos identification accuracy 

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Type: CIR;
Size:
1*256*2
	LOS or NLOS
Size:
1*2
	LOS or NLOS with 100% ground truth label
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	58320
	6480
	0.7M
	18*8M FLOPs
	94.2%



Table 18: Evaluation results for AI/ML-based LOS/NLOS identification model deployed on UE/LMF-side, compress ResNet18
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Los or nlos identification accuracy 

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Type:PDP;
Size:
1*256*2
	LOS or NLOS
Size:
1*2
	LOS or NLOS with 100% ground truth label
	InF-DH{40%, 2m, 2m}
	InF-DH{40%, 2m, 2m}
	58320
	6480
	0.7M
	18*8M FLOPs
	94.89%




	· MediaTek (R1-2212230)
Table 1. UE side model/CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized PDP(256*8)
	LOS/NLOS hard value
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	Training:77,760
Validation:25,920
	25,920
	4,498
	208.9k
	9.1

	non-normalized PDP(256*8)
	LOS/NLOS soft value
	Ideal
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	Training:77,760
Validation:25,920
	25,920
	4,498
	208.9k
	8.1


Observation 1:	From the evaluation results, performance of soft-decision is better than hard-decision for AI-ML-assisted LOS/NLOS identification positioning.
Table 2. Accuracy of the LOS/NLOS identification with generalization
	Training dataset
	Test dataset
	LOS/NLOS identification accuracy

	Dataset 1
{40%, 2m, 2m}
	Dataset 1 {40%, 2m, 2m} same drop
	91.5%

	
	Dataset 2 {40%, 2m, 2m} new drop
	92.1%

	
	Dataset 3 {60%, 6m, 2m} new drop
	95.2%


Observation 2:	From the evaluation results, AI/ML model in AI/ML assisted LOS/NLOS identification positioning has robust generalization capability when the model is trained with dataset of one drop and tested with dataset of other drops or other clutter parameters.

	· Ericsson (R1-2210854)
[image: ]
Observation 9	A single simple AI/ML model deployed to all TRPs for LoS classification and ToA estimation can generalize to different InF-DH {40%, 2m, 2m} environment realizations. Reliable positioning performance is achieved irrespective of environment change.
Observation 13	Reliable positioning performance can be achieved by deploying an identical simple AI/ML model trained in the InF-DH {40%, 2m, 2m} environment to operate independently at different TRPs in the InF-DH {50%, 2m, 2m} environment and conventional UL-TDOA positioning algorithms at the centralized node. The positioning accuracy using ML model inputs is substantially better than that achieved using conventional baseline solutions.



Single-TRP construction with N models for N TRP
	· Vivo (R1-2211002)

Table 3	Evaluation results for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	Drop1
	Drop1
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	TOA
	0
	Drop1
	Drop1
	25k
	1k
	44M *18
	1.45G*18
	0.60

	CIR
	Pos.
	0
	Drop1
	Drop2
	25k
	1k
	1.65M
	22.30M
	6.00

	CIR
	TOA
	0
	Drop1
	Drop2
	25k
	1k
	44M *18
	1.45G*18
	2.51



Observation 3:	AI/ML based TOA estimation for positioning has great advantages in positioning performance, deployment flexibility, compatibility with existing positioning protocol framework, and generalization capability.
Table 5	Evaluation results of LOS/NLOS identification accuracy for AI/ML model deployed on UE or Network side, without model generalization, full-connection network
	Model input
	Model output
	Label
	Clutter param
	Dataset size & type
	AI/ML complexity
	Accuracy of LOS/NLOS identification

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR
	LOS/NLOS
	0
	{0.4, 2, 2}
	25k 
	1k
	3.62M*18
	7.24M*18
	>99%

	R17 [9]
	{0.4, 2, 2}
	/
	93%



Table 6	Evaluation results for AI/ML model deployed on UE or Network side, without model generalization, full-connection network
	Model input
	Model output
	Label
	Clutter param
	Dataset size & type
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	[bookmark: _Hlk115339209]CIR
	LOS/NLOS
	0
	{0.4, 2, 2}
	25k 
	1k
	3.62M*18
	7.24M*18
	1.10

	CIR
	TOA
	0
	{0.4, 2, 2}
	25k 
	1k
	44M*18
	1.45G*18
	0.39



Observation 4:	 AI/ML based LOS/NLOS identification for positioning has the following advantages:
-	More accurate LOS/NLOS identification along with a confidence metric 
-	Better compatibility with existing positioning protocol framework. 
-	Great generalization capability.
and disadvantages: 
-	Positioning performance could suffer from severe degradation in heavy-NLOS scenarios.
-	Obtain LOS/NLOS labels is a challenging task for data collection.
Proposal 3:	Capture in the TR the benefits of AI/ML assisted positioning in terms of positioning accuracy and AI model generalization.

	· Ericsson (R1-2210854)
[image: ]
Observation 29	Distributed direct path ToA estimation ML models together with conventional positioning algorithms can obtain highly accurate UE position estimates in highly NLoS {60%, 6m, 2m} environment. The positioning accuracy level is comparable to centralized direct positioning ML models.
Observation 30	Robust direct path ToA estimation and positioning performance can be achieved by deploying AI/ML models to operate independently at different TRPs in the InF-DH environment with {60%, 6m, 2m} clutter parameters even when the operating SNR is 20 dB lower than that used for training the ML models.
Observation 32	The AI/ML models trained with the InF-DH environment with {60%, 6m, 2m} clutter parameters and operating independently at different TRPs can generalize well to an environment with similar clutter height, like {40%, 6m, 2m} clutter parameters, but they fail to generalize in the environments with different clutter height, even if the clutter density is the same as training environment.



Multi-TRP construction
	· OPPO (R1-2211482)
Table 3: Performance comparison of different schemes for AI/ML assisted positioning
	Accuracy achieved @90% (m)
	Scheme 1:
Indirect: Normalized CIR of all TRPs
	Scheme 2:
Indirect: Normalized CIR of single TRP
	Non-AI method on the drop(s)

	1 drop, 80000 UEs per drop
	0.52
	2.42
	8.2

	10 drops, 80000 UEs per drop
	1.03
	7.17
	10.16

	80000 drops, 1 UEs per drop
	5.78
	14.47
	10.55


Observation 3: For AI/ML assisted positioning
•	The performance of “Indirect: Normalized CIR of single TRP” is much worse than “Indirect: Normalized CIR of all TRPs”
•	The performance of “Indirect: Normalized CIR of single TRP” is comparable to the traditional non-AI scheme
Proposal 1: For AI/ML assisted positioning, if the output of AI model is timing-based result (e.g., TOA), prioritize the scheme where the measurement results corresponding to all TRPs are used as the input of AI model
•	the scheme where the measurement results corresponding to single TRP are used as the input of AI model is deprioritized.


	· CATT (R1-2211193)
Table 9：Evaluation results for AI/ML model deployed on UE/LMF-side, without model generalization, ResNet18
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Type: CIR;
Size:
18*1*256*2
	Type: ToA;
Size:
1*18
	ToA with 100% ground truth label
	InF-DH
{60%,6m,2m}
	InF-DH
{60%,6m,2m}
	20000
	1600
	12.7M
	4.42G FLOPs
	0.77m




	· MediaTek (R1-2212230)
Table 3. UE side model/CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized PDP(256*8)
	1TOA
	Ideal 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	Training:77,760
Validation:25,920
	25,920
	187k
	15M
	19.9

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	Training:77,760
Validation:25,920
	25,920
	205k
	77M
	2.5

	non-normalized PDP(256*8)
	1TOA
	Ideal 
	{40%, 4m, 2m}
	{40%, 4m, 2m}
	Training:77,760
Validation:25,920
	25,920
	187k
	15M
	14.4

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	{40%, 4m, 2m}
	{40%, 4m, 2m}
	Training:77,760
Validation:25,920
	25,920
	205k
	77M
	3.8


Observation 3:	From the evaluation results, performance of multi-TRP is better than single-TRP for AI/ML assisted TOA estimation positioning.
Table 4. positioning accuracy of the TOA estimation with generalization
	Training dataset
	Test dataset
	Horizontal positioning accuracy at CDF=90% (meters)

	Dataset 1 {40%, 2m, 2m}
	Dataset 1 {40%, 2m, 2m} same drop
	3.8

	
	Dataset 2 {40%, 2m, 2m} new drop
	6.4

	
	Dataset 3 {60%, 6m, 2m} new drop
	9.2

	Dataset 3 {60%, 6m, 2m}
	Dataset 3 {60%, 6m, 2m} same drop
	2.5

	
	Dataset 4 {60%, 6m, 2m} new drop
	9.3

	
	Dataset 2 {40%, 2m, 2m} new drop
	13.5

	Dataset 1 {40%, 2m, 2m}; Dataset 3 {60%, 6m, 2m}
	Dataset 1 {40%, 2m, 2m} same drop
	3.49

	
	Dataset 3 {60%, 6m, 2m} same drop
	2.95


Observation 4:	From the evaluation results, performance of AI/ML assisted TOA estimation positioning degrades when the model is trained with dataset of one drop and tested with dataset of other drops or other clutter parameters.
Observation 4:	From the evaluation results, performance of AI/ML assisted TOA estimation positioning degrades when the model is trained with dataset of one drop and tested with dataset of other drops or other clutter parameters.

	· Xiaomi (R1-2211359)
Table 2 Evaluation results for AI-based ToA predication with model deployed on UE or NW side, without model generalization, ResNet
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*2 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.6，6，2}
	{0.6，6，2}
	70000
	10000
	21,285,650
	5.76GFlops
	0.6778

	18*256*2 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.4，2，2}
	{0.4，2，2}
	70000
	10000
	21,285,650
	5.76GFlops
	0.8533




	· Ericsson (R1-2210854)
[image: ]
Observation 36	Centralized direct path ToA estimation ML models together with conventional positioning algorithms can obtain highly accurate UE position estimates in highly NLoS {60%, 6m, 2m} environment; and can, in fact, outperform direct positioning ML models in terms of both better UE positioning accuracy and lower computational complexity.
Observation 38	UE positioning using centralized direct path ToA estimation models are sensitive to operating SNR deviation from that assumed during model training. With a 20 dB SNR reduction, the 90%tile 2D positioning errors may double or triple.
Observation 39	UE positioning using centralized direct path ToA estimation models do not generalize well to new environmental settings with the same clutter parameters.



1st round discussion
Based on the evaluation results, there are advantages and disadvantages to each construction. Although some companies proposed to prioritize or deprioritize certain design, there is no strong evidence to prioritize (or deprioritize) at the moment. Thus it is proposed that RAN1 would continue to evaluate the three constructions. Down-selection can be discussed in the future if a construction is clearly inferior.

Proposal 6.4-1
For AI/ML assisted positioning, evaluate the three constructions:
· Single-TRP, same model for N TRPs
· Single-TRP, N models for N TRPs
· Multi-TRP (i.e., one model for N TRPs)

	
	Company

	Support
	ZTE, Fujitsu, CAICT, LG, Nokia/NSB, CATT

	Not support
	



	Company
	Comments

	HW/HiSi
	We are fine with the understanding following understanding for a NW-side orientation:
Single-TRP, same model for N TRPs: 
· The model is deployed in the TRP (gnB) the same model is used for all TRPs.
Single-TRP, N model for N TRPs: 
· A dedicated model is deployed in each TRP (gNB) 
· This constellation could also evolve from fine-tuning an initially same model for all TRPs.

Multi-TRP (i.e., one model for N TRPs)
· Model deployed at LMF, taking N TRPs as input.

	OPPO
	It should not mandate companies to evaluate all of the three constructions. Thus, some modification is suggested as highlight part:
For AI/ML assisted positioning, companies can evaluate one or more of the three constructions:

	Apple
	Agree with Oppo

	Nokia/NSB
	Our understanding is that this proposal is implicitly agreed as part of the model complexity agreement from RAN1#110bis.



2nd round discussion
The proposal below has offline consensus.
Proposal 6.5-1
For AI/ML assisted positioning, evaluate the three constructions:
· Single-TRP, same model for N TRPs
· Single-TRP, N models for N TRPs
· Multi-TRP (i.e., one model for N TRPs)
Note: Individual company may evaluate one or more of the three constructions.

(Closed) Model monitoring metrics
For the topic of model monitoring, AI 9.2.1 made the following agreements in RAN1#110bis.

Agreement
Study at least the following metrics/methods for AI/ML model monitoring in lifecycle management per use case:
· Monitoring based on inference accuracy, including metrics related to intermediate KPIs
· Monitoring based on system performance, including metrics related to system peformance KPIs
· Other monitoring solutions, at least following 2 options.
· Monitoring based on data distribution
1. Input-based: e.g., Monitoring the validity of the AI/ML input, e.g., out-of-distribution detection, drift detection of input data, or something simple like checking SNR, delay spread, etc.
1. Output-based: e.g., drift detection of output data
· Monitoring based on applicable condition
Note: Model monitoring metric calculation may be done at NW or UE

Agreement
Study performance monitoring approaches, considering the following model monitoring KPIs as general guidance
· Accuracy and relevance (i.e., how well does the given monitoring metric/methods reflect the model and system performance)
· Overhead (e.g., signaling overhead associated with model monitoring)
· Complexity (e.g., computation and memory cost for model monitoring)
· Latency (i.e., timeliness of monitoring result, from model failure to action, given the purpose of model monitoring)
· FFS: Power consumption
· Other KPIs are not precluded.
Note: Relevant KPIs may vary across different model monitoring approaches.
FFS: Discussion of KPIs for other LCM procedures

Ericsson (R1-2210854) provided some input on model monitoring metrics for AI/ML assisted positioning.
	· Ericsson (R1-2210854)
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Figure 5: Residual losses from conventional triangulation-based error minimization positioning algorithms. The ML model is trained in the {60%, 6m, 2m} environment and tested in three environments: {60%, 6m, 2m}, {40%, 6m, 2m} and {40%, 2m, 2m}.
Observation 3	For AI/ML assisted positioning approaches (e.g., Case 3a and Case 3c), model monitoring metrics can be accurately and reliably provided by the conventional positioning methods (e.g., residual loss). This is an important advantage of AI/ML assisted positioning approaches over the direct AI/ML positioning approach (e.g., Case 3b).
Observation 4	For AI/ML assisted positioning approaches, model monitoring leveraging conventional positioning method incurs negligible cost in terms of: signaling overhead, complexity, latency, and power consumption.
Proposal 6	Evaluate the performance of model monitoring metrics for both AI/ML assisted approach and direct AI/ML approach. 
Proposal 7	For their proposed model monitoring metrics, the proponent company report model monitoring KPIs including: accuracy, signaling overhead, complexity (computation and memory cost for model monitoring), and latency.
Proposal 8	Capture in TR 38.843 that: For AI/ML assisted positioning, model monitoring metrics can be reliably provided by the conventional positioning methods.



1st round discussion
Based on the input received, it is proposed to study and evaluate the model monitoring metrics for AI/ML assisted approach, e.g., residual loss provided by the conventional positioning methods. 
For direct AI/ML approach, it is not clear if an effective model monitoring metric can be found. Thus, input on model monitoring is encouraged in general.
Proposal 7.1-1
For AI/ML assisted approach, study the performance of model monitoring metrics where the metrics are obtained from model output (e.g., residual loss provided by the conventional positioning methods).

	
	Company

	Support
	Nokia/NSB

	Not support
	



	Company
	Comments

	ZTE
	Okay in general. Prefer to remove the example.

	Fujitsu
	A bit confused here when reading FL’s contribution, do you mean the “residual loss provided by the conventional positioning methods” can be used as sort of ground truth with high accuracy for model monitoring? 

	CAICT
	We also would like to remove the example.

	LG
	Similar view as many companies have mentioned on the example on that

	HW/HiSi
	We should have a more general discussion firstly to understand and agree the different cases of monitoring for a UE-side and for a NW-side model. 
Not all entities have e.g. access to all information, for example if the UE location is obtained by a conventional positioning method then, this info is available at the LMF but not at the gNB.
If LOS tag or TOA is used as model output, then it is hard to use conventional methods as comparison, since they do not have good performance in the scenarios where we want to apply AI/ML. We think a more general proposal is needed frstly (in 9.2.4.2) and then we could discuss details.

	OPPO
	It is better to delete the example. It is not clear what the relationship between the example and the proposal is as the example is based on the conventional method rather than AI model

	Apple
	Is this the output from and all conventional positioning metho or is this the output from the conventional positioning method with the AI assistance input ?

	Nokia/NSB
	We are fine with removing the example.

	Qualcomm
	We think it can be too early to agree on this aspect until more relevant evaluations are provided by companies.

	CMCC
	We think more discussion is needed. OK to remove the example.



Proposal 7.1-2
For direct AI/ML approach, investigate model monitoring methods.
	
	Company

	Support
	ZTE, Fujitsu, CAICT, LG, Apple, Nokia/NSB, CMCC

	Not support
	



	Company
	Comments

	Hw/HiSi
	We think this proposal could also be extended to assisted positioning and then 7.1.-1 is not need at this stage. 
It seems that 7.1.-1 and 7-1-2 are not in balance in level of details.
If the group wants to discuss this proposal in the EVM thread, we suggest to update as follows. But otherwise we think it is more suitable in 9.2.4.2
Suggested updated proposal: For direct and assisted AI/ML approach, investigate model monitoring methods.

	OPPO
	We are ok with the proposal. But we fail to say any value of this proposal. Does it provide any information compared to existing agreements? 



Proposal 7.1-3
For both AI/ML assisted approach and direct AI/ML approach, for a proposed model monitoring method, proponent companies report model monitoring KPIs including: accuracy, signaling overhead, complexity (computation and memory cost for model monitoring), and latency.
	
	Company

	Support
	CAICT

	Not support
	ZTE



	Company
	Comments

	ZTE
	It seems that no specific mechanisms have been studied to evaluate the model monitoring KPIs, which should be better studied in 9.2.1.

	Fujitsu
	The positioning performance will be affected by the system complexity and/or latency introduced by multiple contributors, not the AI/ML model only, so it is not easy to perform an accurate model monitoring based on complexity or latency only. We suggest to deprioritize (not preclude) these two options.

	HW/HiSi
	Can be postponed until more progress is done on more general issues related to monitoring.

	OPPO
	Would the proponent(s) like to elaborate a bit more on the definition of “accuracy”? 

	Nokia/NSB
	We are not sure if “computation and memory cost for model monitoring” is a model monitoring KPI. We wonder if this should this be the complexity of the model itself? Maybe it is better to remove this parameter.
Regarding Latency: We wonder if this implies the latency for model interference or something else? It would be beneficial to clarify this.

	Qualcomm
	The general theme of the proposal seems ok, but some aspects of monitoring KPIs are still unclear and requires further discussion and development. For example, it is not clear how signaling overhead is to be modeled and calculated (the same applies to complexity and latency). We share the view of other companies, let’s postpone this one.

	CMCC
	How to evaluate or report the monitoring KPIs (accuracy, signaling overhead, complexity, latency) is unclear to us. The evaluation or calculation methodology should be aligned among companies.

	MediaTek
	Agree with HW/HiSi



2nd round discussion
The proposal below has offline consensus.
Proposal 7.2-1
For AI/ML assisted approach, study the performance of model monitoring metrics where the metrics are obtained from model output.
	Company
	Comments

	ZTE
	9.2.1 has a following agreement in last meeting:
Agreement
Study at least the following metrics/methods for AI/ML model monitoring in lifecycle management per use case:
0. Monitoring based on inference accuracy, including metrics related to intermediate KPIs
0. Monitoring based on system performance, including metrics related to system peformance KPIs
0. Other monitoring solutions, at least following 2 options.
3. Monitoring based on data distribution
1. Input-based: e.g., Monitoring the validity of the AI/ML input, e.g., out-of-distribution detection, drift detection of input data, or SNR, delay spread, etc.
1. Output-based: e.g., drift detection of output data
3. Monitoring based on applicable condition
The current proposal has a ambiguity on which monitoring metric we’re going to evaluate, i.e., inference accuracy based monitoring or output based monitoring. Our interpretation is that this proposal is for inference accuracy based monitoring. However, we’re fine to have a general starting point in this meeting as below:
For AI/ML assisted approach, study the performance of model monitoring metrics where the metrics are obtained from model output.
FFS: the detailed metrics/methods for model monitoring
[Moderator] This proposal is based on the evaluation results submitted, which is model monitoring metrics calculated from model output. Evaluation results shows that one approach from 9.2.1 agreement (copied above) works well for AI/ML assited positioning sub-use case. It’s more useful to have a bit more specific proposal. Otherwise, a very high-level proposal does not seem to add any value beyond the generic agreement from 9.2.1.  

	CATT
	Share the same view as ZTE. Fine with the updates proposal by ZTE.



Evaluation of direct AI/ML positioning approach
In this meeting, a large amount of evaluation work has been performed by companies for direct AI/ML positioning. These valuable results are very important to help RAN1 to make progress.
Selected results submitted by companies are copied below.

Evaluation results without model generalization investigation
	· HW/HiSi (R1-2210889)
Table 3. Evaluation results for AI/ML model deployed on network-side, ResNet
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	34 K
	10M
	0.492

	
	
	
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	
	
	
	
	0.606


Observation 2 : From the above evaluation results, it is observed that AI/ML-based fingerprint positioning provides reliable positioning accuracy under both heavy and moderate NLOS conditions.
Observation 3 : From the above evaluation results, it is observed that AI/ML-based fingerprint positioning provides reliable positioning accuracy under a small number of receiving ports.


	· Qualcomm (R1-2212112)
Table 1 Evaluation results for AI/ML model deployed on UE-side, without model generalization, CNN
	Model input
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Training
	test
	Model complexity [parameters]
	Computational complexity
	AI/ML

	CIR (18,4, 400)
	2D 
	0%
	Drop A
	Drop A
	15k
	2k
	1.5M params
	1.54G FLOPs
	2.77




	· NVIDIA (R1-2211722)
Table 6: Evaluation results for AI/ML model deployed on network-side, RF fingerprinting with same drop, CNN.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Position
	0%
	Drop 1, {60%, 6m, 2m}
	Drop 1, {60%, 6m, 2m}
	16k
	4k
	1.8 M
	90.9 M
	2.3 m




	· OPPO (R1-2211482)
Table 5. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, without generalization consideration
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horiz. Pos. accuracy @90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coord
	UE coord
	1 drop, 80,000 Ues per drop 
{60%, 6, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	0.33


	Normalized CIR + RSRP
	UE coord
	UE coord
	0 drop, 80,000 Ues per drop 
{60%, 6, 2}
	Same drops 
	784,000
	16,000
	2.66M
	5.32 MFLOPs
	0.52


	Normalized CIR + RSRP
	UE coord
	UE coord
	80,000 drops, 1 UE per drop 
{60%, 6, 2}

	Same drops 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	4.35





	· CATT (R1-2211193)
Table 1: Evaluation results for AI/ML model deployed on UE/LMF-side, without model generalization, ResNet18
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Type: CIR;
Size:
18*1*256*2
	Type: UE’s position;
Size:
1*2
	UE’s position with 100% ground truth label
	clutter param: {60%, 6m, 2m}
	clutter param: {60%, 6m, 2m}
	Training:
19440;
Validation: 
1080;
	1080
	11.2M
	2.78G FLOPs
	0.98m





	· MediaTek (R1-2212230)
[bookmark: _Ref118372423]Table 5. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	1-port CIR [18,1,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	202.10K
	73.18M
	1.32

	2-port CIR [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	464.24K
	0.266G
	0.987

	PDP [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	463.95K
	0.264G
	0.874


Observation 5:	Direct AI positioning can significantly improve the positioning performance in heavy-NLOS scenarios compared to conventional methods.
Observation 6:	The evaluation results shown that the positioning performance of 2 transmit antenna ports (by different polarization) is better than the existing 1 antenna port in the spec.
Proposal 2:	At least support PDP as model input for direct AI/ML positioning, and further study CIR to check whether the phase part in CIR is useful.
Proposal 3:	Study and evaluate the performance of direct AI/ML positioning with multiple transmit/receive antenna port pairs (for example, 2 ports with different polarization).

	· Apple (R1-2211809)
Table 3: Evaluation results for AI/ML model deployed on UE/network-side, without model generalization, with a CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18 x 256 x 2]
	UE coordinates
[1x2]
	100% labeled
	Drop 1
	Drop 1
	47500
	2500
	2.43
	5.12
	1.1m




	· China Telecom (R1-2211529)
Table 3. Evaluation results for AI/ML model deployed on network-side, without model generalization
	Model input
	Model output
	Label
	Settings (clutter parameter)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	TOA
	Predicted UE position
	True UE position
	[0.6,6m,2m]
	[0.6,6m,2m]
	78400 samples
	1600
samples
	75.7k
	75.1k
	0.69

	DL-TDOA
	Predicted UE position
	True UE position
	[0.6,6m,2m]
	[0.6,6m,2m]
	78400 samples
	1600 samples
	75.7k
	75.1k
	0.73

	CIR
	Predicted UE position
	True UE position
	[0.6,6m,2m]
	[0.6,6m,2m]
	78400 samples
	1600 samples
	145.9M
	2.8M
	0.54

	RSRP+TOA
	Predicted UE position
	True UE position
	[0.6,6m,2m]
	[0.6,6m,2m]
	78400 samples
	1600
samples
	184.2k
	182.8k
	0.43

	RSRP+DL-TDOA
	Predicted UE position
	True UE position
	[0.6,6m,2m]
	[0.6,6m,2m]
	78400 samples
	1600 samples
	184.2k
	182.8k
	0.38




	· CMCC (R1-2211676)
Table II. Evaluation results for AI/ML model deployed on UE side
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	UE location
	UE coordinates
	1drop, {60%, 6m, 2m}
	1drop, {60%, 6m, 2m}
	78400
	1600
	3.71 M
	7.41 M
	0.70 m

	CIR
	UE location
	UE coordinates
	1drop, {60%, 6m, 2m}
	1drop, {60%, 6m, 2m}
	5000
	500
	3.71 M
	7.41 M
	1.44 m

	CIR+
RSRP
	UE location
	UE coordinates
	1drop, {60%, 6m, 2m}
	1drop, {60%, 6m, 2m}
	78400
	1600
	3.71 M
	7.42 M
	0.35 m

	TOA
	UE location
	UE coordinates
	1drop, {60%, 6m, 2m}
	1drop, {60%, 6m, 2m}
	78400
	1600
	1.85 M
	3.7 M
	0.47 m

	TOA
	UE location
	UE coordinates
	1drop, {60%, 6m, 2m}
	1drop, {60%, 6m, 2m}
	5000
	500
	1.85 M
	3.7 M
	0.60 m

	TOA+
RSRP
	UE location
	UE coordinates
	1drop, {60%, 6m, 2m}
	1drop, {60%, 6m, 2m}
	78400
	1600
	1.85 M
	3.7 M
	0.34 m

	TDOA
	UE location
	UE coordinates
	1drop, {60%, 6m, 2m}
	1drop, {60%, 6m, 2m}
	78400
	1600
	1.85 M
	3.7 M
	0.41 m

	TDOA+
RSRP
	UE location
	UE coordinates
	1drop, {60%, 6m, 2m}
	1drop, {60%, 6m, 2m}
	78400
	1600
	1.85 M
	3.7 M
	0.16 m



Observation 1: Taking RSRP as an additional model input to CIR/TOA/TDOA, the positioning accuracy can be improved.
Observation 2: When compared with taking TOA as model input, the performance of taking CIR as model input is more sensitive to the training dataset size.


	· Xiaomi (R1-2211359)
Table 1 Evaluation results for direct AI-based positioning with model deployed on UE or NW side, without model generalization, ResNet
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*2 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
	{0.6，6，2}
	70000
	10000
	21,277,442
	5.76Gflops
	0.4462

	18*256*2 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.4，2，2}
	{0.4，2，2}
	70000
	10000
	21,277,442
	5.76Gflops
	0.7566






Evaluation of generalization aspects – direct AI/ML positioning approach

Generalization aspect: different drops
	· vivo (R1-2211002)
Table 7	Evaluation results of  different drops for AI/ML model deployed on UE or Network side, with model generalization, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	Drop1
	Drop1
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	Drop1
	Drop2
	25k
	1k
	1.65M
	22.30M
	6.00

	CIR
	Pos.
	0
	Drop1
	Drop3
	25k
	1k
	1.65M
	22.30M
	5.81





	· Qualcomm (R1-2212112)
Observation 7: RFFP method is site-specific and can provide excellent performance when operated on the site being trained on. It should not be expected to generalize over unseen sites that have entirely different reflections and multipath realization.

[bookmark: _Ref111123281][bookmark: _Ref111123274]Table 2 Horizontal positioning error (meters) of RFFP with Type 2 generalizations
	Train
	Test
	50%
	67%
	80%
	90%tile

	Drop A
	Drop A
	1.41
	1.79
	2.19
	2.77

	Drop A
	Drop B
	5.98
	7.81
	9.88
	12.33

	Classical – Drop A
	14.65
	>20
	>20
	>20

	Classical – Drop B
	13.88
	>20
	>20
	>20




	· NVIDIA (R1-2211722)
Table 3: Summary of CDF percentiles of horizontal positioning accuracy under different drops.
	Training
	Testing
	50%
	67%
	80%
	90%

	Drop 1
	Drop 1
	1.1 m
	1.5 m
	1.8 m
	2.3 m

	Drop 1
	Drop 2
	7.1 m
	9.3 m
	11.6 m
	14.5 m



Table 7: Evaluation results for AI/ML model deployed on network-side: RF fingerprinting with different drops and without finetuning, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Position
	0%
	Drop 1, {60%, 6m, 2m}
	Drop 2, {60%, 6m, 2m}
	16k
	4k
	1.8 M
	90.9 M
	14.5 m



Observation 3: RF fingerprinting is site specific, i.e., the AI/ML model learns the mapping between channel realizations and the corresponding UE’s positions.
Observation 4: The AI/ML model for RF fingerprinting trained on Drop 1 does not generalize well to a different Drop 2.
Proposal 3: If the AI/ML model for RF fingerprinting trained on Drop 1 is directly applied to a different Drop 2, it should not be expected that the model can generalize well. 


	· HW/HiSi (R1-2210889)
Table 4. Evaluation results for AI/ML model deployed on network-side, ResNet
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	34 K
	10M
	0.492

	
	
	
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	5000
	
	
	0.606

	
	
	
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 2
	25000
	5000
	
	
	>10

	
	
	
	{60%, 6m, 2m}, 5 Drops mixed
	{60%, 6m, 2m}, Drop 2(outside of the trained Drops) 
	25000 (5000/drop)
	
	
	
	8.04

	
	
	
	{60%, 6m, 2m}, 5 Drops mixed
	{60%, 6m, 2m}, Drop 1 (inside the trained Drops)
	25000 (5000/drop)
	5000
	
	
	1.28

	
	
	
	{60%, 6m, 2m}, Drop 1 & 2 mixed
	{60%, 6m, 2m}, Drop 1 (inside the trained Drops)
	25000 (12500/drop)
	5000
	
	
	0.69

	
	
	
	{40%, 2m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	
	
	>10

	
	
	
	{60%, 6m, 2m} & {40%, 2m, 2m} mixed, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000 (12500/ paras)
	5000
	
	
	0.86

	
	
	
	{60%, 6m, 2m} & {40%, 2m, 2m} mixed, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000 (12500/ paras)
	5000
	
	
	0.88

	
	
	
	Without network synchronization error
	With network synchronization error @50ns
	25000
	5000
	
	
	>10

	
	
	
	With network synchronization error @50ns
	With network synchronization error @50ns
	25000
	5000
	
	
	3.02

	
	
	
	With network synchronization error @0&30&40&50ns
	With network synchronization error @0&30&40&50ns
	25000 (6250/ paras)
	5000 (1250/ paras)
	
	
	2.51

	
	
	
	With network synchronization error @0&30&40&50ns
	With network synchronization error @50ns
	25000 (6250/ paras)
	5000 (1250/ paras)
	
	
	4.28

	
	
	
	Without UE timing error
	With UE timing error @10ns
	25000
	5000
	
	
	3.12

	
	
	
	With UE timing error @10ns
	With UE timing error @10ns
	25000
	5000
	
	
	0.61

	
	
	
	With UE timing error @0&10&20&30ns
	With UE timing error @0&10&20&30ns
	25000 (6250/ paras)
	5000 (1250/ paras)
	
	
	0.68

	
	
	
	With UE timing error @0&10&20&30ns
	With UE timing error @30ns
	25000 (6250/ paras)
	5000
	
	
	0.89


Observation 4 : When the inference dataset and the training dataset are from different drops, AI/ML-based fingerprint positioning model provides poor generalization performance. But when the mixed training dataset consists of samples from the same drop as the inference dataset, the generalization performance is improved.
Observation 5 : Enriching the composition of the mixed training dataset can improve unseen drop’s positioning accuracy.
Observation 6 : The positioning performance for a seen drop improves when the amount/ratio of data samples from that drop in the mixed training dataset increases.

	· OPPO (R1-2211482)
Table 7. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: Different drops
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	RSTD + RSRP
	UE coord
	UE coord
	1 drop, 80,000 Ues per drop 
{60%, 6, 2}
	Another drop 
{60%, 6, 2}
	80,000
	80,000
	0.24M
	0.47 MFLOPs
	10.53


	RSTD + RSRP
	UE coord
	UE coord
	5 drops, 80,000 Ues per drop 
{60%, 6, 2}
	Another 5 drops 
{60%, 6, 2}
	400,000
	400,000
	0.24M
	0.47 MFLOPs
	9.3


	Normalized CIR + RSRP
	UE coord
	UE coord
	1 drop, 80,000 Ues per drop 
{60%, 6, 2}
	Another drop 
{60%, 6, 2}
	80,000
	80,000
	2.66M
	5.32 MFLOPs
	10.11


	Normalized CIR + RSRP
	UE coord
	UE coord
	5 drops, 80,000 Ues per drop 
{60%, 6, 2}
	Another 5 drops 
{60%, 6, 2}
	400,000
	400,000
	2.66M
	5.32 MFLOPs
	6.55




Table 11. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: Mixed data sets
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	RSTD + RSRP
	UE coord
	UE coord
	1 drop with {60%, 6, 2}
+ 
1 drop with {40%, 4, 2}
80,000 Ues per drop 
	The same drop with
{40%, 4, 2}
	158,400
	1,600
	0.24M
	0.47 MFLOPs
	0.44

	RSTD + RSRP
	UE coord
	UE coord
	1 drop with {60%, 6, 2}
+ 
1 drop with {40%, 4, 2}
80,000 Ues per drop 
	The same drop with
{60%, 6, 2}
	158,400
	1,600
	0.24M
	0.47 MFLOPs
	0.78

	Normalized CIR + RSRP
	UE coord
	UE coord
	1 drop with {60%, 6, 2}
+ 
1 drop with {40%, 4, 2}
80,000 Ues per drop 
	The same drop with
{40%, 4, 2}
	158,400
	1,600
	2.66M
	5.32 MFLOPs
	0.38

	Normalized CIR + RSRP
	UE coord
	UE coord
	1 drop with {60%, 6, 2}
+ 
1 drop with {40%, 4, 2}
80,000 Ues per drop 
	The same drop with
{60%, 6, 2}
	158,400
	1,600
	2.66M
	5.32 MFLOPs
	0.46




	· MediaTek (R1-2212230)
Table 8. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	1-port CIR [18,1,256]
	UE pos
[x,y]
	0%
	Drop1
	Drop2
	32400
	3600
	202.10K
	73.18M
	9.15

	
	
	
	Drop1+Drop2
	Drop2
	16200+16200
	3600
	
	
	3.63

	2-port CIR [18,2,256]
	UE pos
[x,y]
	0%
	Drop1
	Drop2
	32400
	3600
	464.24K
	0.266G
	9.36

	
	
	
	Drop1+Drop2
	Drop2
	16200+16200
	3600
	
	
	1.52

	PDP
[18,2,256]
	UE pos
[x,y]
	0%
	Drop1
	Drop2
	32400
	3600
	463.95K
	0.264G
	8.57

	
	
	
	Drop1+Drop2
	Drop2
	16200+16200
	3600
	
	
	1.72


Observation 10:	Performance of direct AI/ML positioning degrades when the model trained with dataset of one drop is tested with dataset of other drops since there is no correlation between multipath realization of different drops.
Observation 11:	Training the AI model with mixed dataset can be an effective way to improve the performance of direct AI positioning when the model is deployed at different drops.

	· Apple (R1-2211809)
Table 3: Evaluation results for AI/ML model deployed on UE/network-side, model generalization, with a CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18 x 256 x 2]
	UE coordinates
[1x2]
	100% labeled
	Drop 1
	Drop 2
	47500
	2500
	2.43
	5.12
	3.1m

	CIR
[18 x 256 x 2]
	UE coordinates
[1x2]
	100% labeled
	{60%,6,2}
	{40%,2,2}
	47500
	2500
	2.43
	5.12
	3.6m

	CIR
[18 x 256 x 2]
	UE coordinates
[1x2]
	100% labeled
	Ideal n/w synch
	Non-ideal network sync
	47500
	2500
	2.43
	5.12
	43.4m

	CIR
[18 x 256 x 2]
	UE coordinates
[1x2]
	100% labeled
	InF-DH
	InF-SH
	47500
	2500
	2.43
	5.12
	6.9m




	· CAICT (R1-2211915)
Table 2. Evaluation results for AI/ML model deployed on UE side, without model generalization, CNN
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR
	UE coordinate
	100% data with ground truth label
	{60%, 6m, 2m}
	15000
	5000
	2.4M parameters
	4.8M FLOPs

	 <0.65m

	CIR
	UE coordinate
	100% data with ground truth label
	{60%, 6m, 2m}
	15000
	different drops5000
	2.4M parameters
	4.8M FLOPs

	 <5m




	· CMCC (R1-2211676)
Table IV. Evaluation results for AI/ML model deployed on UE side
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	UE location
	UE coordinates
	1drop, {60%, 6m, 2m}, with spatial consistency of small scale parameters
	same as training
	78400
	1600
	3.71 M
	7.41 M
	0.70 m

	CIR
	UE location
	UE coordinates
	1drop, {60%, 6m, 2m}, without spatial consistency of small scale parameters
	same as training
	78400
	1600
	3.71 M
	7.41 M
	1.90 m

	CIR

	UE location
	UE coordinates
	80000 drops, {60%, 6m, 2m}
	same as training
	78400
	1600
	3.71 M
	7.42 M
	5.90 m



Observation 3: The positioning accuracy is sensitive to the generalization and spatial consistency of the small-scale parameters.

	· ZTE (R1-2211061)

	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	
1st Drop
	
N/A
	
1st Drop
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.26

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	
1st Drop
	
N/A
	
2nd Drop
	28800
	N/A
	1800
	984.96K
	44.28 M
	20.42

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	
1st Drop
	
2nd Drop
	
2nd Drop
	28800
	5000
	1800
	984.96K
	44.28 M
	2.72

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	
1st Drop
	
2nd Drop
	
2nd Drop
	28800
	10000
	1800
	984.96K
	44.28 M
	2.33

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	Mixed datasets from 1st Drop and 2nd Drop
	N/A
	1st Drop
	28800 + 28800
	N/A
	1800
	984.96K
	44.28 M
	0.31


Table.5 Positioning performance in various simulation drops, Model backbone(CNN)





Generalization aspect: different clutter parameters
	· vivo (R1-2211002)

Table 8	Evaluation results of  different clutter parameters for AI/ML model deployed on UE or Network side, with model generalization, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	{0.6, 6, 2}
	{0.6, 6, 2}
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	{0.6, 6, 2}
	{0.4, 2, 2}
	25k
	1k
	1.65M
	22.30M
	8.67

	CIR
	Pos.
	0
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	1k
	1.65M
	22.30M
	1.06

	CIR
	Pos.
	0
	{0.4, 2, 2}
	{0.6, 6, 2}
	25k
	1k
	1.65M
	22.30M
	4.77

	CIR
	Pos.
	0
	Mix of {0.6, 6, 2} and {0.4, 2, 2}
	{0.6, 6, 2}
	25k  & 25k
	1k
	1.65M
	22.30M
	0.87

	CIR
	Pos.
	0
	Mix of {0.6, 6, 2} and {0.4, 2, 2}
	{0.4, 2, 2}
	25k  & 25k
	1k
	1.65M
	22.30M
	0.94



Observation 6:	Positioning performance of AI/ML based positioning degrades when the training and testing datasets are of different clutter parameters in an InF-DH scenario.
Observation 7:	Training AI/ML model with a mixed dataset is an effective way to improve model generalization performance.
Proposal 4:	 Capture in the TR the benefits of training dataset with mixed/different configurations for AI/ML based positioning in terms of AI model generalization capability.


	· Nokia (R1-2212331)
Table 7. Evaluation results for AI/ML model deployed on UE-side, with model generalization, considering different clutter parameters without fine-tuning.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter params, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos., accuracy at CDF=90% (m)

	
	
	
	train
	test
	train
	test
	Model complexity (parameters)
	Computational complexity (flops)
	AI/ML

	CIR from 18 BSs
	X,Y location
	True X,Y location
	40% clutter density
	40% clutter density
	11K (90%)
	11k (10%)
	300K
	20M
	5.6

	CIR from 18 BSs
	X,Y location
	True X,Y location
	40% clutter density
	60% clutter density
	11K (90%)
	11k (10%)
	300K
	20M
	12.4

	CIR from 18 BSs
	X,Y location
	True X,Y location
	60% clutter density
	60% clutter density
	11K (90%)
	11k (10%)
	300K
	20M
	7.8

	CIR from 18 BSs
	X,Y location
	True X,Y location
	60% clutter density
	40% clutter density
	11K (90%)
	11k (10%)
	300K
	20M
	11.4



Table 9. Evaluation results for AI/ML model deployed on UE-side, with model generalization, considering different clutter parameters without fine-tuning. A mixed dataset between 40% and 60% clutter density is considered.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter params, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos., accuracy at CDF=90% (m)

	
	
	
	train
	test
	train
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR from 18 BSs
	X,Y location
	True X,Y location
	Mixed40% and 60% clutter density
	Mixed 40% and 60% clutter density
	22K (90%)
	22K (10%)
	300K
	20M
	6.67

	CIR from 18 BSs
	X,Y location
	True X,Y location
	Mixed40% and 60% clutter density
	40% clutter density
	22K (90%)
	11K (10%)
	300K
	20M
	4.33

	CIR from 18 BSs
	X,Y location
	True X,Y location
	Mixed40% and 60% clutter density
	60% clutter density
	22K (90%)
	11K (10%)
	300K
	20M
	5.08




	· HW/HiSi (R1-2210889)
Observation 7 : When the channel parameters of the inference dataset and the training dataset are different, AI/ML-based fingerprint positioning model provides poor generalization performance.
Observation 8 : When the mixed training dataset consists of samples with the same channel parameters as the inference dataset, the positioning performance is improved and reaches the sub-meter level.

	· OPPO (R1-2211482)
Table 9. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: Different clutter settings
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	RSTD + RSRP
	UE coord
	UE coord
	1 drop, 80,000 Ues per drop 
{60%, 6, 2}
	Another drop 
{40%, 4, 2}
	80,000
	80,000
	0.24M
	0.47 MFLOPs
	8.05

	RSTD + RSRP
	UE coord
	UE coord
	1 drop, 80,000 Ues per drop 
{40%, 4, 2}
	Another 1 drop 
{60%, 6, 2}
	80,000
	80,000
	0.24M
	0.47 MFLOPs
	10.8

	RSTD + RSRP
	UE coord
	UE coord
	5 drops, 80,000 Ues per drop 
{60%, 6, 2}
	Another 5 drops 
{40%, 4, 2}
	400,000
	400,000
	0.24M
	0.47 MFLOPs
	7.78

	RSTD + RSRP
	UE coord
	UE coord
	1 drop, 80,000 Ues per drop 
{60%, 6, 2}
	Another 1 drop 
{40%, 4, 2}
	400,000
	400,000
	0.24M
	0.47 MFLOPs
	4.86

	Normalized CIR + RSRP
	UE coord
	UE coord
	1 drop, 80,000 Ues per drop 
{60%, 6, 2}
	Another drop 
{40%, 4, 2}
	80,000
	80,000
	2.66M
	5.32 MFLOPs
	15.75

	Normalized CIR + RSRP
	UE coord
	UE coord
	1 drop, 80,000 Ues per drop 
{40%, 4, 2}
	Another 1 drop 
{60%, 6, 2}
	80,000
	80,000
	2.66M
	5.32 MFLOPs
	8.61

	Normalized CIR + RSRP
	UE coord
	UE coord
	5 drops, 80,000 Ues per drop 
{60%, 6, 2}
	Another 5 drops 
{40%, 4, 2}
	400,000
	400,000
	2.66M
	5.32 MFLOPs
	8.67

	Normalized CIR + RSRP
	UE coord
	UE coord
	1 drop, 80,000 Ues per drop 
{60%, 6, 2}
	Another 1 drop 
{40%, 4, 2}
	400,000
	400,000
	2.66M
	5.32 MFLOPs
	6.82





	· CATT (R1-2211193)
Table 3: Evaluation results for AI/ML model deployed on UE/LMF-side, with model generalization, ResNet18
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Type: CIR;
Size:
18*1*256*2
	Type: UE’s position;
Size:
1*2
	UE’s position with 100% ground truth label
	clutter param: {60%, 6m, 2m}
	clutter param: {40%, 2m, 2m}
	Training:
19440;
Validation: 
1080;
	1080
	11.2M
	2.78G FLOPs
	2.64m




	· MediaTek (R1-2212230)
Table 10. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	1port-CIR [18,1,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	202.10K
	73.18M
	9.10

	
	
	
	{60%, 6m, 2m}+{40%, 2m, 2m}
	{40%, 2m, 2m}
	16200+16200
	3600
	
	
	5.49

	2port-CIR [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	464.24K
	0.266G
	7.43

	
	
	
	{60%, 6m, 2m}+{40%, 2m, 2m}
	{40%, 2m, 2m}
	16200+16200
	3600
	
	
	2.30

	PDP [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	463.95K
	0.264G
	7.72

	
	
	
	{60%, 6m, 2m}+{40%, 2m, 2m}
	{40%, 2m, 2m}
	16200+16200
	3600
	
	
	2.43


Observation 13:	Performance of direct AI/ML positioning degrades when the model trained with clutter setting ({60%,6m,2m}) is tested with dataset of another clutter setting ({40%,2m,2m}).
Observation 14:	From the evaluation results, it is shown that the generalization performance of the model is more sensitive to the sampling period than clutter setting and random seeds of drops.
Observation 15:	Training the AI model with mixed dataset can be an effective way to improve the performance of direct AI positioning when the model is deployed at different clutter settings.

	· Xiaomi (R1-2211359)
Table 3 Evaluation results for direct AI-based positioning with model deployed on UE or NW side, without model generalization (different clutter parameter), ResNet
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*2 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
	{0.4，2，2}
	70000
	10000
	21,277,442
	5.76Gflops
	7.0914

	18*256*2 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.4，2，2}
	{0.6，6，2}
	70000
	10000
	21,277,442
	5.76Gflops
	1.5328



Table 5 Evaluation results for direct AI-based positioning with model deployed on UE or NW side, with model generalization (different clutter parameter), ResNet
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*2 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	Mix of
{0.6，6，2}
{0.4，2，2}
	{0.6，6，2}
	35000+35000
	10000
	21,277,442
	5.76Gflops
	0.5419

	18*256*2 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	Mix of
{0.6，6，2}
{0.4，2，2}
	{0.4，2，2}
	35000+35000
	10000
	21,277,442
	5.76Gflops
	0.7684



Observation 4: 
-	Generating the training data set with different  cluster parameters could relax the problem of inferior generalization capability

	· ZTE (R1-2211061)
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}

	N/A
	{60%, 6m, 2m}

	28800
	N/A
	1800
	984.96K
	44.28 M
	0.26

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	N/A
	{40%, 4m, 2m}

	28800
	N/A
	1800
	984.96K
	44.28 M
	19.31

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
1st Drop
	{{40%, 4m, 2m}

	{40%, 4m, 2m}

	28800
	5000
	1800
	984.96K
	44.28 M
	3.81

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}

	{40%, 4m, 2m}

	{40%, 4m, 2m}

	28800
	10000
	1800
	984.96K
	44.28 M
	3.18

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	Mixed datasets from
{60%, 6m, 2m} and {40%, 4m, 2m}
	N/A
	{40%, 4m, 2m}

	28800 + 28800
	N/A
	1800
	984.96K
	44.28 M
	0.48


Table.6 Positioning performance in various clutter settings, Model backbone(CNN)


	· Ericsson (R1-2210854)
Table 126. Evaluation results for AI/ML model deployed on network-side, Model I with 18 layers, 23 dBm UE power
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. Pos. accuracy @90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model complexity
	Computation complexity
	AI/ML

	18x2x 256 complex array 
	(x, y) position
	Ideal
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	86,400 UE drops
	1,000 UE drops
	1,000 UE drops
	1,226,809 complex parameters 
	86,122,516 FLOPs
	4.901

	
	
	
	
	{40%, 6m, 2m}
	{40%, 6m, 2m}
	
	
	
	
	
	1.898

	
	
	
	
	{60%, 2m, 2m}
	{60%, 2m, 2m}
	
	
	
	
	
	4.180

	
	
	
	
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	
	
	
	
	
	1.758



Table 127. Evaluation results for AI/ML model deployed on network-side, Model II with 18 layers, 23 dBm UE power
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. Pos. accuracy @90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	18 x 2 x 256 complex array 
	(x, y) position
	Ideal
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	86,400 UE drops
	1,000 UE drops
	1,000 UE drops
	4,879,729 complex parameters
	328,850,247 FLOPs
	4.293

	
	
	
	
	{40%, 6m, 2m}
	{40%, 6m, 2m}
	
	
	
	
	
	1.660

	
	
	
	
	{60%, 2m, 2m}
	{60%, 2m, 2m}
	
	
	
	
	
	3.638

	
	
	
	
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	
	
	
	
	
	1.476



Table 128. Evaluation results for AI/ML model deployed on network-side, Model III with 18 layers, 23 dBm UE power
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. Pos. accuracy @90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	18 x 2 x 256 complex array 
	(x, y) position
	Ideal
	{60%, 6m, 2m}

	{40%, 2m, 2m}
	{40%, 2m, 2m}
	86,400 UE drops
	1,000 UE drops
	1,000 UE drops
	19,463,905 complex parameters
	1,284,201,840 FLOPs
	4.172

	
	
	
	
	{40%, 6m, 2m}
	{40%, 6m, 2m}
	
	
	
	
	
	1.377

	
	
	
	
	{60%, 2m, 2m}
	{60%, 2m, 2m}
	
	
	
	
	
	3.215

	
	
	
	
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	
	
	
	
	
	1.226






Generalization aspect: different scenarios
	· vivo (R1-2211002)

Table 9	Evaluation results of  different scenarios for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	DH
	DH
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	HH
	HH
	25k
	1k
	1.65M
	22.30M
	0.63

	CIR
	Pos.
	0
	SH
	SH
	25k
	1k
	1.65M
	22.30M
	0.87

	CIR
	Pos.
	0
	DH
	HH
	25k
	1k
	1.65M
	22.30M
	>10

	CIR
	Pos.
	0
	DH
	SH
	25k
	1k
	1.65M
	22.30M
	>10


Observation 8:	The positioning accuracy of AI/ML based positioning trained with dataset from one InF scenario is seriously degraded when tested on dataset from a different InF scenario.


	· CATT (R1-2211193)
Table 5: Evaluation results for AI/ML model deployed on UE/LMF-side, with model generalization, ResNet18
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Type:cir
Size:18*1*256*2
	Type:pos
Size:1*2
	UE’s position with 100% ground truth label
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	Training:
19440;
Validation: 
1080;
	1080
	11.2M
	2.78G FLOPs
	6.48m



Observation 5: When AI/ML model is trained and tested with dataset from different InF scenarios, e.g. training dataset with InF-DH scenario and testing dataset with InF-SH scenario, the positioning accuracy is seriously degraded.

	· Samsung (R1-2212040)
Table X. Evaluation results for AI/ML model deployed on UE-side or network-side, Resnet
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	DH662
	80000
	10000
	76K
	9.5M
	0.67

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	DH662
	18000
	2000
	76K
	9.5M
	1.72

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	DH422
	18000
	2000
	76K
	9.5M
	18.8

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	SH
	18000
	2000
	76K
	9.5M
	22.4

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662 small Hall
	DH662 large Hall
	18000
	2000
	76K
	9.5M
	113.4

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662(original  CIR)
	DH662(normalized  CIR)
	18000
	2000
	76K
	9.5M
	2.79

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	SH
	SH
	18000
	2000
	76K
	9.5M
	0.37

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	SH
	DH662
	18000
	2000
	76K
	9.5M
	1.32

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	SH
	DH422
	18000
	2000
	76K
	9.5M
	22.4

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH422
	DH422
	18000
	2000
	76K
	9.5M
	1.48

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH422
	DH662
	18000
	2000
	76K
	9.5M
	18.8

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH422
	SH
	18000
	2000
	76K
	9.5M
	4.96




	· InterDigital (R1-2211715)
Table 1 Summary of evaluation results of AIML based positioning (model deployed on UE side) without retraining/mixed training
	[bookmark: _Hlk118289984]Model Input

	Model output
	(Percentage of training data set without) Label
	Settings (drops, clutter param, network synchronization error)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	RSRP
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{60%, 6m, 2m} , drop A’ (unseen), T1= 0 ns
	16000
	3000
	332 k
	11.37 M FLOPs
	3.6370

	RSRP
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{40%, 2m, 2m} , drop A, T1= 0 ns
	16000
	3000
	332 k
	11.37 M FLOPs
	3.6656

	RSRP
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{60%, 6m, 2m} , drop A, T1= 50 ns
	16000
	3000
	332 k
	11.37 M FLOPs
	3.6370

	RSRP + RSTD
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{60%, 6m, 2m} , drop A’ (unseen), T1= 0 ns
	16000
	3000
	334 k
	11.41 M FLOPs
	2.2238

	RSRP + RSTD
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{40%, 2m, 2m} , drop A, T1= 0 ns
	16000
	3000
	334 k
	11.41 M FLOPs
	2.2279

	RSRP + RSTD
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{60%, 6m, 2m} , drop A, T1= 50 ns
	16000
	3000
	334 k
	11.41 M FLOPs
	9.2496



Table 2 Generalization evaluation results of direct AIML based positioning (model deployed on UE side) with mixed training dataset
	Model Input

	Model output
	(percentage of training data set without) Label
	Settings (drops, clutter param, network synchronization error)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	RSRP
	UE position
	0% (default)
	{60%, 6m, 2m} + {40%, 2m, 2m}, drop A, T1= 0 ns
	{40%, 2m, 2m} , drop A, T1= 0 ns
	17400
	1600
	332 k
	11.37 M FLOPs
	3.5254

	RSRP
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns & 50 ns
	{60%, 6m, 2m} , drop A, T1= 50 ns
	17400
	1600
	332 k
	11.37 M FLOPs
	3.5680

	RSRP + RSTD
	UE position
	0% (default)
	{60%, 6m, 2m} + {40%, 2m, 2m}, drop A, T1= 0 ns
	{40%, 2m, 2m} , drop A, T1= 0 ns
	17400
	1600
	334 k
	11.41 M FLOPs
	1.7965

	RSRP + RSTD
	UE position
	0% (default)
	{60%, 6m, 2m} + {40%, 2m, 2m}, drop A, T1= 0 ns
	{60%, 6m, 2m} , drop A, T1= 0 ns
	17400
	1600
	334 k
	11.41 M FLOPs
	1.7474

	RSRP + RSTD
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns & 50 ns
	{60%, 6m, 2m}, drop A, T1= 0 ns
	17400
	1600
	334 k
	11.41 M FLOPs
	2.1870

	RSRP + RSTD
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns & 50 ns
	{60%, 6m, 2m}, drop A, T1= 50 ns
	17400
	1600
	334 k
	11.41 M FLOPs
	2.2127







Generalization aspect: network synchronization error

	· vivo (R1-2211002)
Table 11	Evaluation results for AI/ML model deployed on UE or Network side, with model generalization, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	0ns
	0ns
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	0ns
	2ns
	25k
	1k
	1.65M
	22.30M
	1.64

	CIR
	Pos.
	0
	0ns
	10ns
	25k
	1k
	1.65M
	22.30M
	4.56

	CIR
	Pos.
	0
	0ns
	50ns
	25k
	1k
	1.65M
	22.30M
	10.18



Table 12	Evaluation results for AI/ML model deployed on UE or Network side, with model generalization, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	0ns
	10ns
	25k
	1k
	1.65M
	22.30M
	4.56

	CIR
	Pos.
	0
	Mix 0ns+10ns
	10ns
	25k+2k
	1k
	1.65M
	22.30M
	1.16

	CIR
	Pos.
	0
	0ns
	50ns
	25k
	1k
	1.65M
	22.30M
	10.18

	CIR
	Pos.
	0
	Mix 0ns+50ns
	50ns
	25k+2k
	1k
	1.65M
	22.30M
	1.52


Observation 10:	The positioning accuracy of AI/ML based positioning significantly degrades with the increase of network synchronization error.
Observation 11:	The positioning accuracy of AI/ML model is significantly improved from 10.18m@90% to 1.52m@90% by mix-training with sampels of synchronization error.
Proposal 6:	Further study the impact and potential solution of network synchronization error on AI/ML based positioning performance.


	· Qualcomm (R1-2212112)
[image: Chart, line chart

Description automatically generated]
[bookmark: _Ref101883668]Figure 5 CDF of horizontal positioning error for RFFP scheme under different TRPs’ synchronization assumptions (blue plot: TRPs are synchronized; magenta plot: TRPs have random synchronization error within [-10, 10] nanoseconds).


	· Nokia (R1-2212331)
Table 10. Evaluation results for AI/ML model deployed on UE-side, with model generalization, considering different clutter parameters and network sync error for the case without fine-tuning.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter params, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos., accuracy at CDF=90% (m)

	
	
	
	train
	test
	train
	test
	Model complexity (parameters)
	Computational complexity (flops)
	AI/ML

	CIR from 18 BSs
	X,Y location
	True X,Y location
	40% clutter density+ Sync error.
	40% clutter density + Sync error.
	11K (90%)
	11k (10%)
	300K
	20M
	15.33

	CIR from 18 BSs
	X,Y location
	True X,Y location
	40% clutter density+ Sync error.
	40% clutter density
	11K (90%)
	11k (10%)
	300K
	20M
	10.77



Table 11. Evaluation results for AI/ML model deployed on UE-side, with model generalization, considering different clutter parameters and network sync error for the case without fine-tuning.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter params, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos., accuracy at CDF=90% (m)

	
	
	
	train
	fine-tune
	test
	train
	Fine-tune
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR from 18 BSs
	X,Y location
	True X,Y location
	40% clutter density + sync error
	40% clutter density
	40% clutter density

	11K (90%)
	11K (20%)
	11K (10%)
	300K
	20M
	8.1

	CIR from 18 BSs
	X,Y location
	True X,Y location
	40% clutter density + sync error
	40% clutter density
	40% clutter density + sync error
	11K (90%)
	11k (20%)
	11K (10%)
	300K
	20M
	14.99



Table 12. Evaluation results for AI/ML model deployed on UE-side, with model generalization, considering different clutter parameters without fine-tuning. A mixed dataset between 40% with and without network sync error is considered.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter params, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos., accuracy at CDF=90% (m)

	
	
	
	train
	test
	train
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR from 18 BSs
	X,Y location
	True X,Y location
	Mixed 40% + sync error and 40% clutter density without sync error
	Mixed 40% + sync error and 40% clutter density without sync error
	22K (90%)
	22K (10%)
	300K
	20M
	11.74

	CIR from 18 BSs
	X,Y location
	True X,Y location
	Mixed 40% + sync error and 40% clutter density without sync error
	40% clutter density + sync error
	22K (90%)
	11K (10%)
	300K
	20M
	9.59

	CIR from 18 BSs
	X,Y location
	True X,Y location
	Mixed 40% + sync error and 40% clutter density without sync error
	40% clutter density
	22K (90%)
	11K (10%)
	300K
	20M
	5.76



Observation-16: The performance of the dataset with network sync error is degraded in all generalization scenarios when compared to the dataset without network sync error.
Observation-17: The results for network synchronization error and clutter density follow a similar trend in terms of the performance of fine-tuning and initial model training using mixed dataset. However, it is important to note that the configurations used for fine-tuning could impact model performance significantly.
Proposal-14: RAN1 to study further the impact of configurations used for fine-tuning on model performance, and how the network could have better control over such aspects for UE-based positioning.

	· HW/HiSi (R1-2210889)

Observation 9 : When the model is trained without network synchronization error but inferred with the added network synchronization error randomly distributed with the standard deviation value T_1 = 50ns, AI/ML-based fingerprint positioning model provides poor generalization performance. 
Observation 10 : When the model is both trained and inferred with the added network synchronization error randomly distributed with the standard deviation value T_1 = 50ns, the positioning performance is improved compared with trained without error. 
Observation 11 : When the model is both trained and inferred with the added network synchronization error randomly distributed with mixed T_1 = 0&30&40&50ns, the positioning performance is improved compared with trained without error. The larger synchronization error the network have, the poorer positioning performance they will have.
Proposal 6 : For AI/ML-based positioning, study potential solutions to address the issues of network synchronization error on positioning performance.

	· OPPO (R1-2211482)
Table 13. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: NW synchronization error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	RSTD + RSRP
	UE coord
	UE coord
	1 drop w/o NW sync error
{60%, 6, 2}
80,000 Ues per drop
	1 drop w/ NW sync error
{60%, 6, 2}
80,000 Ues per drop
	80,000
	80,000
	0.24M
	0.47 MFLOPs
	5.29

	RSTD + RSRP
	UE coord
	UE coord
	0 drops w/o NW sync error
{60%, 6, 2}
80,000 Ues per drop 
	0 drops w/ NW sync error
{60%, 6, 2}
80,000 Ues per drop 
	800,000
	800,000
	0.24M
	0.47 MFLOPs
	7.11

	Normalized CIR + RSRP
	UE coord
	UE coord
	1 drop w/o NW sync error
{60%, 6, 2}
80,000 Ues per drop 
	1 drop w/ NW sync error
{60%, 6, 2}
80,000 Ues per drop 
	80,000
	80,000
	2.66M
	5.32 MFLOPs
	6.54

	Normalized CIR + RSRP
	UE coord
	UE coord
	0 drops w/o NW sync error
{60%, 6, 2}
80,000 Ues per drop 
	0 drops w/ NW sync error
{60%, 6, 2}
80,000 Ues per drop
	800,000
	800,000
	2.66M
	5.32 MFLOPs
	11.77





	· CATT (R1-2211193)
Table 2: Evaluation results for AI/ML model deployed on UE/LMF-side, without model generalization, ResNet18
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Type: CIR;
Size:
18*1*256*2
	Type: UE’s position;
Size:
1*2
	UE’s position with 100% ground truth label
	with network synchronization error
	with network synchronization error
	Training:
19440;
Validation: 
1080;
	1080
	11.2M
	2.78G FLOPs
	0.84m



Observation 2: If network synchronization error with a truncated Gaussian distribution of 50 ns is assumed, the horizontal accuracy of direct AI/ML positioning is 0.84m@90%.
Proposal 1: In IioT scenario, for direct AI/ML positioning, AI/ML model has ability to overcome the network synchronization error to improve positioning accuracy.
Table 4: Evaluation results for AI/ML model deployed on UE/LMF-side, with model generalization, ResNet18
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Type: CIR;
Size:
18*1*256*2
	Type: UE’s position;
Size:
1*2
	UE’s position with 100% ground truth label
	w/o network synchronization
	w/ network synchronization
	Training:
19440;
Validation: 
1080;
	1080
	11.2M
	2.78G FLOPs
	12.6m



Observation 4: When AI/ML model is trained and tested with different network synchronization assumptions, e.g. training dataset with perfect network synchronization and testing dataset with network synchronization error, the horizontal positioning accuracy is seriously degraded.

	· Fujitsu (R1-2211077)
[image: 图表
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Figure 1 	Simulation results of direct AI/ML methods for perfect and imperfect synchronizations under original trained and fine-tuned models
Table 1 	The explanation of the legend of figure 1
	pp
	AI/ML model trained with dataset of perfect sync and inferred with dataset of perfect sync.

	Ss
	AI/ML model trained with dataset of sync error and inferred with dataset of sync errors.

	Sp
	AI/ML model trained with dataset of sync error and inferred with dataset of perfect sync.

	Ps
	AI/ML model trained with dataset of perfect sync and inferred with dataset of sync errors.

	Ps_ft
	AI/ML model trained with dataset of perfect sync and fine-tuned with dataset of sync errors.

	Sp_ft
	AI/ML model trained with dataset of sync error and fine-tuned with dataset of perfect sync.




	· Xiaomi (R1-2211359)
Table 9 Evaluation results for direct AI-based positioning with model deployed on UE or NW side, without model generalization (AI/ML model is trained by data set with ideal network synchronization and tested by data set with 100ns network synchronization error), ResNet
	Model input
	Model output
	Label
	Clutter param & network synchronization error
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*2 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
0ns error
	{0.6，6，2}
100ns error
	70000
	10000
	21,277,442
	5.76Gflops
	12.4486

	18*256*2 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.4，2，2}
0 ns error
	{0.4，2，2} 
100ns error
	70000
	10000
	21,277,442
	5.76Gflops
	14.5779



Table 11 Evaluation results for direct AI-based positioning with model deployed on UE or NW side, with model generalization (AI/ML model is trained by data set with 100ns network synchronization error and tested by data set with 100ns network synchronization error), ResNet
	Model input
	Model output
	Label
	Clutter param & network synchronization error 
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*2 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
100 ns error
	{0.6，6，2}
100 ns error
	70000
	10000
	21,277,442
	5.76Gflops
	1.0666

	18*256*2 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.4，2，2}
100 ns error
	{0.4，2，2}
100 ns error 
	70000
	10000
	21,277,442
	5.76Gflops
	1.7981


Observation 6: 
-	If the AI/ML model is trained with data set of ideal network synchronization and the tested by  data set is with network synchronization error, poor generalization performance is observed
Observation 7: 
-	Generating the training data set with network synchronization error could relax the problem of inferior generalization capability


	· ZTE (R1-2211061)
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	Ideal network sync
	N/A
	Ideal network sync
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.26

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	Ideal network sync
	N/A
	Network sync error
= 50 ns
	28800
	N/A
	1800
	984.96K
	44.28 M
	10.32

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	Network sync error
= 50 ns
	N/A
	Network sync error
= 50 ns
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.34



Table.6 Positioning performance in various network synchronization errors, Model backbone(CNN)
Observation 11: For model generalization evaluation in various network synchronization errors, when a dataset for training has ideal network synchronization errors and a dataset for test has network synchronization errors following a truncated Gaussian distribution between [-2T1,2T1] (T1=50 ns is a rms value), the positioning performance degrades seriously compared to ideal network synchronization.
Observation 12: For model generalization evaluation in various network synchronization errors, when both datasets for training test have network synchronization errors following a truncated Gaussian distribution between [-2T1,2T1] (T1=50 ns is a rms value),  positioning performance is comparable to ideal network synchronization. This may be explained by:
· CNN model is translation-invariant to the time shift of channel information due to network synchronization error;
· Random network synchronization errors added in training dataset are analogous to data augmentation, thus increase the model robustness.



Generalization aspect: UE/gNB RX and TX timing error
	· Qualcomm (R1-2212112)
[image: Chart, line chart
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[bookmark: _Ref101880951]Figure 4 CDF of horizontal positioning error for RFFP scheme under different UE clock drift conditions (green plot: RFFP performance in ideal settings when no clock drift present; blue plot: training accounts for UE clock drift and testing includes UE clock drift within [-150,150] nanoseconds).


	· HW/HiSi (R1-2210889)

Observation 12 : When the model is trained without UE timing error but inferred with the added UE timing error randomly distributed with the standard deviation value T_1 = 10ns, the AI/ML-based fingerprint positioning model provides poor generalization performance. 
Observation 13 : When the model is both trained and inferred with the added UE timing error randomly distributed with T_1 = 10ns, the positioning performance is improved compared with trained without error. 
Observation 14 : When the model is both trained and inferred with the added UE timing error randomly distributed with mixed T_1 = 0&10&20&30ns, the positioning performance is improved compared to when trained without error.

	· OPPO (R1-2211482)
Table 15. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: UE timing error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	RSTD + RSRP
	UE coord
	UE coord
	1 drop w/o UE timing error
{60%, 6, 2}
80,000 Ues per drop 
	1 drop w/ UE timing error
{60%, 6, 2}
80,000 Ues per drop 
	80,000
	80,000
	0.24M
	0.47 MFLOPs
	0.48

	RSTD + RSRP
	UE coord
	UE coord
	0 drops w/o UE timing error
{60%, 6, 2}
80,000 Ues per drop 
	0 drops w/ UE timing error
{60%, 6, 2}
80,000 Ues per drop 
	800,000
	800,000
	0.24M
	0.47 MFLOPs
	0.456

	Normalized CIR + RSRP
	UE coord
	UE coord
	1 drop w/o UE timing error
{60%, 6, 2}
80,000 Ues per drop 
	1 drop w/ UE timing error
{60%, 6, 2}
80,000 Ues per drop 
	80,000
	80,000
	2.66M
	5.32 MFLOPs
	6.18

	Normalized CIR + RSRP
	UE coord
	UE coord
	0 drops w/o UE timing error
{60%, 6, 2}
80,000 Ues per drop 

	0 drops w/ UE timing error
{60%, 6, 2}
80,000 Ues per drop 
	800,000
	800,000
	2.66M
	5.32 MFLOPs
	12.393




	· ZTE (R1-2211061)
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	Without UE Rx timing error
	N/A
	Without UE Rx timing error
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.26

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	Without UE Rx timing error
	N/A
	UE Rx timing error = 10 ns
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.89

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	UE Rx timing error = 10 ns
	N/A
	UE Rx timing error = 10 ns
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.27

	CIR (2x18x256)
256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	UE Rx timing error = 20 ns
	N/A
	UE Rx timing error = 20 ns
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.34


Table.6 Positioning performance in various UE RX timing errors, Model backbone(CNN)
Observation 13: For model generalization evaluation in various UE Rx timing errors, the positioning performance in a test dataset with UE Rx timing errors degrades slightly compared to the dateset without UE Rx timing errors.




Additional generalization aspect: CIR estimation error
	· vivo (R1-2211002)

Table 10	Evaluation results for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	Without interference
	0 interfering TRP (Without interference)
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	
	1 interfering TRP
	25k
	1k
	1.65M
	22.30M
	8.35

	CIR
	Pos.
	0
	
	4 interfering TRPs
	25k
	1k
	1.65M
	22.30M
	10.22

	CIR
	Pos.
	0
	
	8 interfering TRPs
	25k
	1k
	1.65M
	22.30M
	13.14


Observation 9:	The interference from TPRs can dramatically impair the positioning performance of AI/ML model.
Proposal 5:	 Further study the impact and potential solution of CIR estimation error on AI/ML based positioning performance.




Additional generalization aspect: SNR mismatch
	· Ericsson (R1-2210854)

Table 123. Evaluation results for AI/ML model deployed on network-side, Model I with 18 layers.
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. Pos. accuracy @90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity 
	Computation complexity 
	AI/ML

	18 x 2 x 256 complex array 
	(x, y) position
	Ideal
	{60%, 6m, 2m},
23 dBm UE power
	{60%, 6m, 2m},
23 dBm UE power
	86,400 UE drops
	4,000 UE drops
	1,226,809 complex parameters
	86,122,516 FLOPs
	0.754

	
	
	
	
	{60%, 6m, 2m},
new drop
23 dBm UE power
	
	
	
	
	13.254

	
	
	
	
	{40%, 2m, 2m},
23 dBm UE power
	
	
	
	
	11.072

	
	
	
	
	{40%, 6m, 2m},
23 dBm UE power
	
	
	
	
	0.881

	
	
	
	
	{60%, 2m, 2m},
23 dBm UE power
	
	
	
	
	6.802

	
	
	
	{60%, 6m, 2m},
23 dBm UE power
	{60%, 6m, 2m},
13 dBm UE power
	
	
	
	
	0.820

	
	
	
	{60%, 6m, 2m},
23 dBm UE power
	{60%, 6m, 2m},
3 dBm UE power
	
	
	
	
	2.297

	
	
	
	{60%, 6m, 2m} and {40%, 2m, 2m}
23 dBm UE power
	{40%, 2m, 2m},
23 dBm UE power
	43,200 UE drops of each
	
	
	
	1.505

	
	
	
	
	{40%, 6m, 2m},
23 dBm UE power
	
	
	
	
	1.469

	
	
	
	
	{60%, 2m, 2m},
23 dBm UE power
	
	
	
	
	1.866

	
	
	
	
	{60%, 6m, 2m},
23 dBm UE power
	
	
	
	
	1.345






Additional generalization aspect: different sampling periods
	· MediaTek (R1-2212230)
Table 6. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	1-port CIR [18,1,256]
	UE pos [x,y]
	0%
	9.3ns
	1ns
	32400
	3600
	202.10K
	73.18M
	>10(65.22)

	
	
	
	93.ns+1ns
	1ns
	16200+16200
	3600
	
	
	3.84

	2-port CIR [18,2,256]
	UE pos [x,y]
	0%
	9.3ns
	1ns
	32400
	3600
	464.24K
	0.266G
	>10(76.47)

	
	
	
	9.3ns+1ns
	1ns
	16200+16200
	3600
	
	
	1.32

	PDP [18,2,256]
	UE pos [x,y]
	0%
	9.3ns
	1ns
	32400
	3600
	463.95K
	0.264G
	>10(58.60)

	
	
	
	9.3ns+1ns
	1ns
	16200+16200
	3600
	
	
	2.02


Observation 7:	Positioning performance of direct AI/ML positioning degrades when the training and testing datasets are generated from different sampling periods in an InF-DH scenario with the same clutter parameters.
Observation 8:	Training the AI model with mixed dataset can be an effective way to improve the performance of direct AI positioning when the model is deployed at dataset with different sampling rates.
Table 7. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	1-port CIR [18,1,256]
	UE pos [x,y]
	0%
	9.3ns
	1ns
	1ns
	0
	0
	3600

	202.10K
	73.18M
	>10(60)

	
	
	
	
	
	
	
	1200
	
	
	
	6.57

	
	
	
	
	
	
	
	2400
	
	
	
	5.15

	
	
	
	
	
	
	
	3600
	
	
	
	4.22

	2-port CIR [18,2,256]
	UE pos [x,y]
	0%
	9.3ns
	1ns
	1ns
	0
	0
	3600
	464.24K
	0.266G
	>10(76.47)

	
	
	
	
	
	
	
	1200
	
	
	
	6.99

	
	
	
	
	
	
	
	2400
	
	
	
	4.39

	
	
	
	
	
	
	
	3600
	
	
	
	2.76

	PDP [18,2,256]
	UE pos [x,y]
	0%
	9.3ns
	1ns
	1ns
	0
	0
	3600

	463.95K
	0.264G
	>10(58.60)

	
	
	
	
	
	
	
	1200
	
	
	
	7.49

	
	
	
	
	
	
	
	2400
	
	
	
	4.51

	
	
	
	
	
	
	
	3600
	
	
	
	3.36



Observation 9:	Fine-tune (Re-train) a pre-trained model based on dataset of 9.3ns sampling period with a small amount of samples of 1ns sampling period can significantly improve the performance of direct AI positioning when the pre-trained model is deployed at dataset of 1ns sampling period.




Evaluation of model fine-tuning / re-training 
	· vivo (R1-2211002)
5.1.1 Model fine-tuning across clutter parameters

Table 14	Evaluation results for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0%
	{0.6, 6, 2}
	/
	{0.4, 2, 2}
	25k
	0
	1k
	1.65M
	22.30M
	8.67

	CIR
	Pos.
	0%
	{0.4, 2, 2}
	/
	{0.6, 6, 2}
	25k
	0
	1k
	1.65M
	22.30M
	4.77

	CIR
	Pos.
	0%
	{0.6, 6, 2}
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	0.5k
	1k
	1.65M
	22.30M
	5.22

	CIR
	Pos.
	0%
	{0.4, 2, 2}
	{0.6, 6, 2}
	{0.6, 6, 2}
	25k
	0.5k
	1k
	1.65M
	22.30M
	3.89

	CIR
	Pos.
	0%
	{0.6, 6, 2}
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	1k
	1k
	1.65M
	22.30M
	4.40

	CIR
	Pos.
	0%
	{0.4, 2, 2}
	{0.6, 6, 2}
	{0.6, 6, 2}
	25k
	1k
	1k
	1.65M
	22.30M
	3.23

	CIR
	Pos.
	0%
	{0.6, 6, 2}
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	2k
	1k
	1.65M
	22.30M
	3.50

	CIR
	Pos.
	0%
	{0.4, 2, 2}
	{0.6, 6, 2}
	{0.6, 6, 2}
	25k
	2k
	1k
	1.65M
	22.30M
	2.56

	CIR
	Pos.
	0%
	{0.6, 6, 2}
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	3k
	1k
	1.65M
	22.30M
	3.16

	CIR
	Pos.
	0%
	{0.4, 2, 2}
	{0.6, 6, 2}
	{0.6, 6, 2}
	25k
	3k
	1k
	1.65M
	22.30M
	2.40



Observation 14:	Fine-tuning the model with small amounts of samples from an unseen scenario can achieve significantly positioning accuracy improvement when the pre-trained model is transferred to a new scenario with a different clutter parameter for direct AI/ML positioning.
5.1.2.	Model fine-tuning across drops
Table 15	Evaluation results for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0%
	Drop1
	/
	Drop2
	25k
	0
	1k
	1.65M
	22.30M
	6.00

	CIR
	Pos.
	0%
	Drop1
	Drop2
	Drop2
	25k
	0.5k
	1k
	1.65M
	22.30M
	4.69

	CIR
	Pos.
	0%
	Drop1
	Drop2
	Drop2
	25k
	1k
	1k
	1.65M
	22.30M
	3.97

	CIR
	Pos.
	0%
	Drop1
	Drop2
	Drop2
	25k
	2k
	1k
	1.65M
	22.30M
	3.37

	CIR
	Pos.
	0%
	Drop1
	Drop2
	Drop2
	25k
	3k
	1k
	1.65M
	22.30M
	2.90



Observation 15:	Fine-tuning the model with small amounts of samples from an unseen scenario can achieve significantly positioning accuracy improvement when the pre-trained model is transferred to a new drop for direct AI/ML positioning.
5.1.3.	Model fine-tuning across scenarios
Table 16	Evaluation results for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0%
	DH
	/
	HH
	25k
	0
	1k
	1.65M
	22.30M
	>10

	CIR
	Pos.
	0%
	DH
	HH
	HH
	25k
	0.5k
	1k
	1.65M
	22.30M
	10.50

	CIR
	Pos.
	0%
	DH
	HH
	HH
	25k
	1k
	1k
	1.65M
	22.30M
	8.78

	CIR
	Pos.
	0%
	DH
	HH
	HH
	25k
	2k
	1k
	1.65M
	22.30M
	5.84

	CIR
	Pos.
	0%
	DH
	HH
	HH
	25k
	3k
	1k
	1.65M
	22.30M
	4.66


Observation 16:	Fine-tuning the model with small amounts of samples from an unseen scenario can achieve significantly positioning accuracy improvement when the pre-trained model is transferred to a new scenario for direct AI/ML positioning.
5.1.4.	Model fine-tuning across synchronization errors
Table 17	Evaluation results for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0%
	Sync.
0ns
	/
	50ns
	25k
	0
	1k
	1.65M
	22.30M
	10.18

	CIR
	Pos.
	0%
	0ns
	50ns
	50ns
	25k
	0.5k
	1k
	1.65M
	22.30M
	3.22

	CIR
	Pos.
	0%
	0ns
	50ns
	50ns
	25k
	1k
	1k
	1.65M
	22.30M
	2.39

	CIR
	Pos.
	0%
	0ns
	50ns
	50ns
	25k
	2k
	1k
	1.65M
	22.30M
	1.73

	CIR
	Pos.
	0%
	0ns
	50ns
	50ns
	25k
	3k
	1k
	1.65M
	22.30M
	1.47


Table 18	Evaluation results for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0%
	Sync.
0ns
	/
	10ns
	25k
	0
	1k
	1.65M
	22.30M
	4.56

	CIR
	Pos.
	0%
	0ns
	10ns
	10ns
	25k
	0.5k
	1k
	1.65M
	22.30M
	1.44

	CIR
	Pos.
	0%
	0ns
	10ns
	10ns
	25k
	1k
	1k
	1.65M
	22.30M
	1.28

	CIR
	Pos.
	0%
	0ns
	10ns
	10ns
	25k
	2k
	1k
	1.65M
	22.30M
	1.06

	CIR
	Pos.
	0%
	0ns
	10ns
	10ns
	25k
	3k
	1k
	1.65M
	22.30M
	0.95


Observation 17:	Fine-tuning the model with small amounts of samples from an unseen scenario can achieve significantly positioning accuracy improvement when the pre-trained model is transferred to a new scenario with a different clutter synchronization error for direct AI/ML positioning.
Proposal 8:	Further study and confirm the benefits of fine-tuning in terms of model generalization enhancement for direct AI/ML positioning.


	· Qualcomm (R1-2212112)
Observation 8: Model fine-tuning with relatively small dataset can only offer slight to moderate enhancement to positioning performance of direct AI/ML positioning when tested with different drops (i.e., inter-site generalization).
[bookmark: _Ref118476422]Table 3 Horizontal positioning error (meters) of RFFP with finetuning for Type 2 generalizations
	Training
	Finetuning (Drop B)
	Testing
	50%
	67%
	80%
	90%

	Drop A
	--
	Drop A
	1.41
	1.79
	2.19
	2.77

	Drop A
	--
	Drop B
	5.98
	7.81
	9.88
	12.33

	Drop A
	500 samples
	Drop B
	3.09
	4.02
	4.98
	6.07

	Drop A
	240 samples
	Drop B
	3.54
	4.55
	5.61
	6.92

	Drop A
	100 samples
	Drop B
	5.17
	6.64
	8.46
	10.47



[bookmark: _Ref115427518]Table 4 Evaluation results for AI/ML model deployed on UE-side, with model finetuning generalization (Type 2 – different drops), CNN
	Model input
	Model output
	Label
	Settings ({60%, 6m, 2m})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	train
	finetune
	Test
	Train 
	Finetune
	Test
	Model complexity [parameters]
	Computational complexity FLOPs
	AI/ML

	CIR (18,4,400)
	2D 
	0%
	drop A
	--
	drop B
	15k
	0
	2K
	1.5M 
	1.54G 
	12.33

	CIR (18,4,400)
	2D
	0%
	drop A
	drop B
	drop B
	15k
	100
	2K
	1.5M 
	1.54G 
	10.47

	CIR (18,4,400)
	2D
	0%
	drop A
	drop B
	drop B
	15k
	240
	2K
	1.5M 
	1.54G 
	6.92

	CIR (18,4,400)
	2D
	0%
	drop A
	drop B
	drop B
	15k
	500
	2K
	1.5M 
	1.54G 
	6.07




	· Nokia (R1-2212331)
Table 8. Evaluation results for AI/ML model deployed on UE-side, with model generalization, considering different clutter parameters with fine-tuning.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter params, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos., accuracy at CDF=90% (m)

	
	
	
	train
	fine-tune
	test
	train
	Fine-tune
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR from 18 BSs
	X,Y location
	True X,Y location
	40% clutter density
	60% clutter density
	60% clutter density

	11K (90%)
	11K (20%)
	11K (10%)
	300K
	20M
	7.89

	CIR from 18 BSs
	X,Y location
	True X,Y location
	40% clutter density
	60% clutter density
	40% clutter density
	11K (90%)
	11k (20%)
	11K (10%)
	300K
	20M
	8.94

	CIR from 18 BSs
	X,Y location
	True X,Y location
	60% clutter density
	40% clutter density
	40% clutter density

	11K (90%)
	11K (20%)
	11K (10%)
	300K
	20M
	6.45

	CIR from 18 BSs
	X,Y location
	True X,Y location
	60% clutter density
	40% clutter density
	60% clutter density
	11K (90%)
	11k (20%)
	11K (10%)
	300K
	20M
	10.95



Observation-13: The fine-tuning scheme could lead to degradation in model performance when some specific parameters update is performed using a different dataset in terms of clutter density.
Observation-14: Fine-tuning improves the performance of a previously trained model in a new/different dataset. However, there is a degradation in the generalization of the model when evaluated in the original dataset used in the initial training. 
Observation-15: The performance of mixed dataset obtains a similar performance when compared to the fine-tuning approach. However, using a mixed dataset provides a better generalization when both datasets are evaluated in an isolated manner.
Proposal-11: RAN1 to consider the impact of different fine-tuning performance on different generalization performance approaches in terms of horizontal positioning accuracy.
Proposal-12: RAN1 to consider the impact of mixed dataset on the generalization performance of ML-based approaches in terms of horizontal positioning accuracy. 
Proposal-13: RAN1 to consider the evaluation of trade-offs between fine-tuning and mixed dataset approaches on the generalization performance of ML-based approaches in terms of horizontal positioning accuracy.


	· NVIDIA (R1-2211722)
Table 4: Summary of CDF percentiles of horizontal positioning accuracy with model finetuning.
	Training
	Testing
	Finetuning
	50%
	67%
	80%
	90%

	Drop 1
	Drop 1
	N/A
	1.1 m
	1.5 m
	1.8 m
	2.3 m

	Drop 1
	Drop 2
	No finetuning
	7.1 m
	9.3 m
	11.6 m
	14.5 m

	Drop 1
	Drop 2
	Finetuning with 1k samples
	2.5 m
	3.3 m
	4.2 m
	5.3 m

	Drop 1
	Drop 2
	Finetuning with 2k samples
	2.1 m
	2.7 m
	3.5 m
	4.3 m

	Note: The original model was trained with 16k samples. Thus, 1k (resp. 2k) finetuning samples corresponds to 6.25% (resp. 12.5%) of the total 16k samples.



Table 8: Evaluation results for AI/ML model deployed on network-side: RF fingerprinting with different drops and with finetuning, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Position
	0%
	Drop 1, {60%, 6m, 2m}
	Drop 2, {60%, 6m, 2m}
	Drop 2, {60%, 6m, 2m}
	16k
	1k
	4k
	1.8 M
	90.9 M
	5.3 m

	CIR
	Position
	0%
	Drop 1, {60%, 6m, 2m}
	Drop 2, {60%, 6m, 2m}
	Drop 2, {60%, 6m, 2m}
	16k
	2k
	4k
	1.8 M
	90.9 M
	4.3 m



Observation 5: When the AI/ML model for RF fingerprinting trained on Drop 1 is finetuned with a small number of samples from Drop 2, the positioning accuracy of the finetuned AI/ML model is much improved compared to the performance of the AI/ML model without finetuning.
Proposal 4: When an AI/ML model for RF fingerprinting trained in a first scenario is transferred to a second scenario, the AI/ML model should be finetuned/retrained with new data from the second scenario.


	· HW/HiSi (R1-2210889)
[bookmark: _Ref118368998]Table 5. Evaluation results for AI/ML model deployed on network-side, ResNet
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	abe-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 2
	{60%, 6m, 2m}, Drop 2
	25000
	1000
	5000
	34K
	10M
	3.2

	
	
	
	{60%, 6m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	1000
	5000
	
	
	3.1

	
	
	
	Without network synchronization error
	With network synchronization error @50ns
	With network synchronization error @50ns
	25000
	5000
	5000
	
	
	8.47

	
	
	
	Without UE timing error
	With UE timing error@20ns
	With UE timing error@20ns
	25000
	5000
	5000
	
	
	1.13


Observation 15 : From the model update evaluation results of the above aspect – Different Drops, on top of the dataset with large amount of samples from a different drop, fine-tuned with a relatively small amount of samples from the same drop as the inference dataset will be helpful to improve the generalization performance.
Observation 16 : From the model update evaluation results of the above aspect – Clutter parameters, on top of the dataset with large amount of samples from a different clutter setting, fine-tuned with a relatively small amount of samples from the same clutter setting as the inference dataset will be helpful to improve the generalization performance.
Observation 17 : From the model update evaluation results of the above aspect – Network synchronization error, on top of the dataset with large amount of samples without network synchronization error, fine-tuned with a relatively small amount of samples with the same added network synchronization error randomly distributed as the inference dataset will be helpful to improve the generalization performance but the performance is still poor. Fine-tuning helps less in solving the network synchronization error.
Observation 18 : From the model update evaluation results of the above aspect – UE timing error, on top of the dataset with large amount of samples without UE timing error, fine-tuned with a relatively small amount of samples with the same added UE timing error randomly distributed as the inference dataset will be helpful a lot to improve the generalization performance.
Proposal 8 : Model updating is supported to improve the performance under the presence of UE timing errors and for the occurrence of the unlearned channel characteristics, including unseen drops and clutter settings. 
•	FFS how to improve the performance under the presence of network synchronization errors.

	· OPPO (R1-2211482)
Table 16. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Fine-tuning: Different drops
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coord
	UE coord
	1 drop, 80,000 Ues per drop 
{60%, 6, 2}
	1000 samples from the 2nd drop
{60%, 6, 2}
	Remaining samples of the 2nd drop
	80,000
	1,000
	7,900
	2.66M
	5.32 MFLOPs
	1.233

	Normalized CIR + RSRP
	UE coord
	UE coord
	1 drop, 80,000 Ues per drop 
{60%, 6, 2}
	5000 samples from the 2nd drop
{60%, 6, 2}
	Remaining samples of the 2nd drop
	80,000
	5,000
	7,500
	2.66M
	5.32 MFLOPs
	0.688



Table 17. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Fine-tuning: Different clutter settings
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coord
	UE coord
	1 drop, 80,000 Ues per drop 
{60%, 6, 2}
	1000 samples from the 2nd drop
{40%, 4, 2}
	Remaining samples of the 2nd drop
	80,000
	1,000
	7,900
	2.66M
	5.32 MFLOPs
	2.712

	Normalized CIR + RSRP
	UE coord
	UE coord
	1 drop, 80,000 Ues per drop 
{60%, 6, 2}
	5000 samples from the 2nd drop
{40%, 4, 2}
	Remaining samples of the 2nd drop
	80,000
	5,000
	7,500
	2.66M
	5.32 MFLOPs
	1.282


Table 18. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Fine-tuning: NW synchronization error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coord
	UE coord
	1 drop, 80,000 Ues per drop w/o NW sync error
{60%, 6, 2}
	1000 samples from the 2nd drop
w/ NW sync error
{40%, 4, 2}
	Remaining samples of the 2nd drop
	80,000
	1,000
	7,900
	2.66M
	5.32 MFLOPs
	0.841

	Normalized CIR + RSRP
	UE coord
	UE coord
	1 drop, 80,000 Ues per drop 
w/o NW sync error
{60%, 6, 2}
	5000 samples from the 2nd drop
w/ NW sync error
{40%, 4, 2}
	Remaining samples of the 2nd drop
	80,000
	5,000
	7,500
	2.66M
	5.32 MFLOPs
	0.563


Table 19. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Fine-tuning: UE timing error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coord
	UE coord
	1 drop, 80,000 Ues per drop 
w/o UE timing error
{60%, 6, 2}
	1000 samples from the 2nd drop
w/ UE timing error
{40%, 4, 2}
	Remaining samples of the 2nd drop
	80,000
	1,000
	7,900
	2.66M
	5.32 MFLOPs
	0.814

	Normalized CIR + RSRP
	UE coord
	UE coord
	1 drop, 80,000 Ues per drop 
w/o UE timing error
{60%, 6, 2}
	5000 samples from the 2nd drop
w/ UE timing error {40%, 4, 2}
	Remaining samples of the 2nd drop
	80,000
	5,000
	7,500
	2.66M
	5.32 MFLOPs
	0.567





	· CATT (R1-2211193)
Table 6: Evaluation results for AI/ML model deployed on UE/LMF-side, with model generalization and fine-tuning, ResNet18
	[bookmark: _Ref115368411]Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	abe-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Type: CIR;
Size:
18*1*256*2
	Type:position
Size:1*2
	UE’s position with 100% abell truth label
	clutter param:
{60%,6m,2m}
	clutter param:{40%,2m,2m}
	clutter param:{40%,2m,2m}
	19440
	1080
	1080
	11.2M
	2.78G FLOPs
	1.23m


Observation 6: When AI/ML model is trained with the dataset of clutter parameter {60%, 6m, 2m} and fine-tuned with a small dataset with dataset of clutter parameter {40%, 2m, 2m}, the horizontal positioning accuracy is improved from 2.64m to 1.23m compared with AI/ML model without fine-tuning.

Table 7: Evaluation results for AI/ML model deployed on UE/LMF-side, with model generalization and fine-tuning, ResNet18
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	UE’s position with 100% abell truth label
	w/o network synchronization
	w/ network synchronization
	w/ network synchronization
	19440
	1080
	1080
	11.2M
	2.78G FLOPs
	2.23m


Observation 7: When AI/ML model is trained with perfect network synchronization and fine-tuned with a small dataset with network synchronization error, the horizontal positioning accuracy is improved from 12.6m to 2.23m compared with AI/ML model without fine-tuning.
Proposal 2: Further study the benefits and methods of AI/ML model fine-tuning for direct AI/ML positioning.
Table 8: Evaluation results for AI/ML model deployed on UE/LMF-side, with model generalization and fine-tuning, ResNet18
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horiz. Pos. accuracy @90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Type: CIR;
Size:
18*1*256*2
	Type:position
Size:1*2
	UE’s position with 100% ground truth label
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-SH
{20%,10m,2m}
	19440
	1080
	1080
	11.2M
	2.78G FLOPs
	2.37m


Observation 8: When AI/ML model is trained with perfect network synchronization and fine-tuned with a small dataset with network synchronization error, the horizontal positioning accuracy is improved from 6.48m to 2.37m compared with AI/ML model without fine-tuning.


	· MediaTek (R1-2212230)
Table 9. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	1-port CIR [18,1,256]
	UE pos [x,y]
	0%
	Drop1
	Drop2
	Drop2
	0
	0
	3600
	202.10K
	73.18M
	9.15

	
	
	
	
	
	
	
	1200
	
	
	
	3.05

	
	
	
	
	
	
	
	2400
	
	
	
	2.52

	
	
	
	
	
	
	
	3600
	
	
	
	2.25

	2-port CIR [18,2,256]
	UE pos [x,y]
	0%
	Drop1
	Drop2
	Drop2
	0
	0
	3600
	464.24K
	0.266G
	9.36

	
	
	
	
	
	
	
	1200
	
	
	
	3.08

	
	
	
	
	
	
	
	2400
	
	
	
	2.54

	
	
	
	
	
	
	
	3600
	
	
	
	2.17

	PDP [18,2,256]
	UE pos [x,y]
	0%
	Drop1
	Drop2
	Drop2
	0
	0
	3600
	463.95K
	0.264G
	8.57

	
	
	
	
	
	
	
	1200
	
	
	
	3.23

	
	
	
	
	
	
	
	2400
	
	
	
	3.01

	
	
	
	
	
	
	
	3600
	
	
	
	2.37



Observation 12:	Fine-tune (Re-train) a pre-trained model based on dataset of one drop with a small amount of samples of other drops can significantly improve the performance of direct AI positioning when the pre-trained model is deployed at other drops.
Table 11. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	1port-CIR [18,1,256]

	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	0
	0
	3600
	202.10K
	73.18M
	9.10

	
	
	
	
	
	
	
	1200
	
	
	
	4.49

	
	
	
	
	
	
	
	2400
	
	
	
	3.86

	
	
	
	
	
	
	
	3600
	
	
	
	3.50

	2port-CIR [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	0
	0
	3600
	464.24K
	0.266G
	7.43

	
	
	
	
	
	
	
	1200
	
	
	
	3.80

	
	
	
	
	
	
	
	2400
	
	
	
	3.42

	
	
	
	
	
	
	
	3600
	
	
	
	3.09

	PDP [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	0
	0
	3600
	463.95K
	0.264G
	7.72

	
	
	
	
	
	
	
	1200
	
	
	
	3.74

	
	
	
	
	
	
	
	2400
	
	
	
	3.38

	
	
	
	
	
	
	
	3600
	
	
	
	3.10



Observation 16:	Fine-tune(Re-train) a pre-trained model based on dataset of clutter setting ({60%,6m,2m}) with a small amount of samples of another clutter settings  ({40%,2m,2m}) can significantly improve the performance of direct AI positioning when the pre-trained model is deployed at other clutter settings.
Observation 17:	Despite different types of parameters (e.g., sampling rate, clutter parameter and random seed) for generalization, the same model (model architecture and model parameters) pre-trained on a dataset can still be fine-tuned (re-trained) to improve the performance of direct AI positioning.
Proposal 4:	For direct AI positioning, support better training dataset construction (e.g., training dataset is composed of data from multiple clutter parameter settings, multiple drops or multiple sampling periods) for AI model generalization.
Proposal 5:	For direct AI positioning, support model fine-tuning or re-training for AI model generalization.

	· Samsung (R1-2212040)
[image: ][image: ]
Fig.6 – Test and fine-tune performance on DH662 and SH on model trained from DH422

Table X. Evaluation results for AI/ML model deployed on UE-side or network-side, Resnet
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	DH422
	DH422
	18000
	1000
	2000
	76K
	9.5M
	3.38

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	DH422
	DH422
	18000
	2000
	2000
	76K
	9.5M
	2.27

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	SH
	SH
	18000
	1000
	2000
	76K
	9.5M
	6.08

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	SH
	SH
	18000
	2000
	2000
	76K
	9.5M
	4.68

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662 small Hall
	DH662 large Hall
	DH662 large Hall
	18000
	2000
	2000
	76K
	9.5M
	20.72

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	SH
	DH662
	DH662
	18000
	1000
	2000
	76K
	9.5M
	3.38

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	SH
	DH662
	DH662
	18000
	2000
	2000
	76K
	9.5M
	2.27

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	SH
	DH422
	DH422
	18000
	1000
	2000
	76K
	9.5M
	0.70

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	SH
	DH422
	DH422
	18000
	2000
	2000
	76K
	9.5M
	0.58

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH422
	DH662
	DH662
	18000
	1000
	2000
	76K
	9.5M
	6.08

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH422
	DH662
	DH662
	18000
	2000
	2000
	76K
	9.5M
	4.68

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH422
	SH
	SH
	18000
	1000
	2000
	76K
	9.5M
	3.32

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH422
	SH
	SH
	18000
	2000
	2000
	76K
	9.5M
	2.85





	· InterDigital (R1-2211715)
Table 3 Generalization evaluation results of AIML based positioning (model deployed on UE side) with model finetuning
	Model Input

	Model output
	(percentage of training data set without) Label
	Settings (drops, clutter param, network synchronization error)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	RSRP
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{40%, 2m, 2m} , drop A, T1= 0 ns
	{40%, 2m, 2m} , drop A, T1= 0 ns
	16000
	3400
	600
	332 k
	11.37 M FLOPs
	3.2128

	RSRP
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{60%, 6m, 2m} , drop A’ (unseen), T1= 0 ns
	{60%, 6m, 2m} , drop A, T1= 50 ns
	16000
	3400
	600
	332 k
	11.37 M FLOPs
	3.5392

	RSRP + RSTD
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{40%, 2m, 2m} , drop A, T1= 0 ns
	{40%, 2m, 2m} , drop A, T1= 0 ns
	16000
	3400
	600
	334 k
	11.41 M FLOPs
	1.8999

	RSRP + RSTD
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{60%, 6m, 2m} , drop A, T1= 50 ns
	{60%, 6m, 2m} , drop A, T1= 50 ns
	16000
	3400
	600
	334 k
	11.41 M FLOPs
	2.0052




	· Apple (R1-2211809)
Table 3: Evaluation results for AI/ML model deployed on UE/network-side, without model finetuning, with a CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy @90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18 x 256 x 2]
	UE abelling
[1x2]
	100% labeled
	Drop1
	Drop 2
	Drop2
	47500
	1250
	1250
	2.43
	5.12
	2.6m

	CIR
[18 x 256 x 2]
	UE abelling
[1x2]
	100% labeled
	{60%,6,2}
	{40%,2,2}
	{40%,2,2}
	47500
	1250
	1250
	2.43
	5.12
	2.7m

	CIR
[18 x 256 x 2]
	UE abelling
[1x2]
	100% labeled
	Ideal n/w synch
	Non-ideal network sync
	Non-ideal network sync
	47500
	1250
	1250
	2.43
	5.12
	25.3m

	CIR
[18 x 256 x 2]
	UE abelling
[1x2]
	100% labeled
	InF-DH
	InF-SH
	InF-SH
	47500
	1250
	1250
	2.43
	5.12
	6.2m



Observations
•	 Direct AI based positioning does show good performance in the baseline case
•	There is some loss when the training parameters are not exactly matched. 
 Network synchronization effects show the worst performance
•	Fine-tuning results in a reduction of the loss
 The data size for effective finetuning should be investigated

Proposal 1: investigate the effect of the amount of fine-tuning data on the reduction in performance loss.

	· LG (R1-2211871)
Proposal #1: Study methods of model fine-tuning including dataset generation and delivery.

	· Fujitsu (R1-2211077)
Table A-1	Fine-tuning on sync error dataset based on perfect timing original model
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	UE location
	UE location
	662
Perfect
timing
	662
Sync
Error
	662
Sync
Error
	30000
	3000
	6000
	Num of parameters < 1.5M
	FLOPS
1.14M
	Before ft: 19m
After ft: 11.6m



Table A-2	Fine-tuning on perfect timing dataset based on sync error original model
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	UE location
	UE location
	662
Sync
Error
	662
Perfect
timing
	662
Perfect
timing
	30000
	3000
	6000
	Num of parameters < 1.5M
	FLOPS
1.14M
	Before ft: 13.6m
After ft: 7.9m




	· Xiaomi (R1-2211359)
Table 7 Evaluation results for direct AI-based  positioning with model deployed on UE or NW side, with model generalization (with fine-tuning), ResNet
	Model input
	Model output
	Label
	Clutter parameter 
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	18*256*2 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
	{0.4，2，2}
	{0.4，2，2}
	70000
	5000
	10000
	21,277,442
	5.76Gflops
	1.4315

	18*256*2 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.4，2，2}
	{0.6，6，2}
	{0.6，6，2}
	70000
	5000
	10000
	21,277,442
	5.76Gflops
	0.7185



Table 13 Evaluation results for direct AI-based positioning with model deployed on UE or NW side, with model generalization (with fine-tuning), ResNet
	Model input
	Model output
	Label
	Clutter param & network synchronization error
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	18*256*2 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2} , 0ns error 
	{0.6，6，2} , 100 ns error
	{0.6，6，2} , 100 ns error
	70000
	5000
	10000
	21,277,442
	5.76Gflops
	4.7145

	18*256*2 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.4，2，2} 0ns error
	{0.4，2，2}
100 ns error
	{0.4，2，2}
100 ns error
	70000
	5000
	10000
	21,277,442
	5.76Gflops
	8.0254



Observation 8: 
-	From the aspect that AI model is trained by data set with ideal network synchronization error and fine-tuned by data set with 100ns network synchronization error, improvement in the positioning accuracy is observed. But the improved positioning accuracy is still poor



Evaluation of issues related to ground truth label
Evaluation of labelling error
	· vivo (R1-2211002)
Table 13	Evaluation results for AI/ML model deployed on UE or Network side, with model generalization, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	Std = 0
	0
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	Std = 0.5
	0
	25k
	1k
	1.65M
	22.30M
	1.51

	CIR
	Pos.
	0
	Std = 1
	0
	25k
	1k
	1.65M
	22.30M
	2.17

	CIR
	Pos.
	0
	Std = 2
	0
	25k
	1k
	1.65M
	22.30M
	3.55



[image: ]
 Figure 17	 Evaluation of the impact of abelling error on positioning accuracy
Observation 12:	The positioning accuracy gradually degrades with the increase of labeling error, but is still acceptable until standard deviation   is 1 m (2.17m@90%). 
Observation 13:	AI/ML based positioning is robust to label noise to some extent.
Proposal 7:	Further study the impact and potential solution of labeling error on AI/ML based positioning performance.




Evaluation of semi-supervised learning (ground truth labels partially unavailable)

	· vivo (R1-2211002)
Table 24	Evaluation results of  semi-supervised learning for AI/ML model deployed on UE or Network side, without model generalization, ViT
	Model input
	Model output
	Label
	Clutter param
	Dataset size & type
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR
	Pos.
	96%
	{0.6, 6, 2}
	1k labeled &
25k unlabeled
	1k
	1.65M 
	22.30M
	5.05

	CIR
	Pos.
	99%
	{0.6, 6, 2}
	0.3k labeled &
25k unlabeled
	1k
	1.65M 
	22.30M
	8.78

	CIR
	Pos.
	0
	{0.6, 6, 2}
	1k
	1k
	1.65M 
	22.30M
	12.06

	CIR
	Pos.
	0
	{0.6, 6, 2}
	2k
	1k
	1.65M 
	22.30M
	9.03

	CIR
	Pos.
	0
	{0.6, 6, 2}
	2k
	1k
	1.65M 
	22.30M
	5.53


Observation 21:	 Semi-supervised learning can achieve a more accurate position estimation as compared to supervised learning with less amount of labeled data.
Proposal 12:	Capture in the TR the benefits of semi-supervised learning for AI/ML based positioning in terms of less data collection for training and more positioning accuracy.

	· Ericsson (R1-2210854)
Table 130. Evaluation results for semi-supervised learning vs supervised learning. The AI/ML model is deployed on network-side. The model is trained in InF-DH {60%,6m, 2m}, and tested with the same drop. No network synchronization errors or UE/gNB timing errors.
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horiz. Pos. accuracy @60% , 90% (m)

	
	
	
	
	Training/ validation
	test
	Model complexity
	AI/ML

	18 RSRP values for a target UE
	Horizontal position of the target UE
	1% data with ideal label, 99% data without labels
	{60%,6m, 2m}, same drop for training and testing
	100 data points with ideal label, 10000 data-points without label.
Total: 10,100 of 18 RSRP values   
	2,000 of 18 RSRP values
	around 2 million coefficients
for inference

	4.9, 12.5 
(semi-supervised learning)


	18 RSRP values for a target UE
	Horizontal position of the target UE
	Ideal
	{60%,6m, 2m}, same drop for training and testing
	100 of 18 RSRP values
	2,000 of 18 RSRP values  
	around 2 million coefficients
for inference

	8.5, 20.0 
(Supervised learning)







Other evaluation results
Model switching for inter-site generalization
	· Qualcomm (R1-2212112)
Observation 10: Model switching offers superior performance enhancement than model fine-tuning when considering generalization of direct AI/ML positioning across different drops.  

[bookmark: _Ref118298315]Table 5 Horizontal positioning error (meters) of RFFP with model switching for Type 2 generalizations (different drops)
	Testing on two drops
	50%
	67%
	80%
	90%tile

	No model switching
	2.56
	4.42
	7.01
	9.45

	Model switching
	1.34
	1.72
	2.16
	2.75



[bookmark: _Ref118298364]Table 6 Evaluation results for AI/ML model deployed on UE-side, with model switching for generalization (Type 2 – different drops), CNN
	Model input
	Model output
	Label
	Model switching (number of models)

	Setting ({60%, 6m, 2m})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Training 
	Test 
	Model complexity [parameters]
	Computational complexity [FLOPs]
	AI/ML

	CIR (18,4,400)
	2D 
	0%
	2
	two drops 
	two drops 
	15k
	2k
	1.5M 
	1.54G
	2.75

	CIR (18,4,400)
	2D
	0%
	1
	one drop
	two drops
	15k 
	2k
	1.5M 
	1.54G
	9.45






Robustness to time varying changes
	· Qualcomm (R1-2212112)
Observation 11: RFFP shows good robustness to subtle and moderate unseen reflections and multipath components that are different from training.
[bookmark: _Ref118476604]Table 7 Horizontal positioning error (meter) for RFFP method robustness with Type 3 time varying changes (ML model trained on one channel realization, i.e., channel with odd clusters)
	Train
	Test
	50%tile
	67%tile
	80%tile
	90%tile

	Odd clusters
	Odd clusters
	1.27
	1.65
	2.13
	2.74

	Odd clusters
	Odd except clusters 1&3 
	2.87
	3.69
	4.54
	5.63

	Odd clusters
	Odd except clusters 1&5
	2.73
	3.60
	4.60
	5.62

	Odd clusters
	Odd except clusters 5&7
	1.47
	1.91
	2.41
	3.16

	Odd clusters
	Odd with clusters 2&4
	1.33
	1.75
	2.19
	2.88

	Odd clusters
	Odd with clusters 6&8
	1.30
	1.69
	2.18
	2.89

	Odd clusters
	Remove up to two random odd clusters and add up to two random even ones 
	1.60
	2.11
	2.67
	3.46






Positioning with multiple ports data

	· vivo (R1-2211002)
Table 25	Evaluation results of multiple ports for AI/ML model deployed on UE or Network side, without model generalization, ViT
	Model input
	Model output
	Label
	Clutter param
	Dataset size & type
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR
	Pos.
	0
	{0.6, 6, 2}
	3k &
8 ports
	1k &
8 ports
	1.65M 
	22.30M
	3.14

	CIR
	Pos.
	0
	{0.6, 6, 2}
	3k &
1 port
	1k &
1 ports
	1.65M 
	22.30M
	5.53


Observation 22:	Positioning with multi-port data can achieve a more accurate position estimation as compared to single-port positioning.
Proposal 13:	 Capture in the TR the benefits of multi-port positioning for AI/ML based positioning in terms of positioning accuracy.

	· MediaTek (R1-2212230)
Observation 6:	The evaluation results shown that the positioning performance of 2 transmit antenna ports (by different polarization) is better than the existing 1 antenna port in the spec.
Proposal 3:	Study and evaluate the performance of direct AI/ML positioning with multiple transmit/receive antenna port pairs (for example, 2 ports with different polarization).

	· ZTE (R1-2211061)
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP (1x18x256)
One-port 256 PRS + path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50 M
	158.47 M
	0.467

	CIR (2x18x256)
One-port 256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50M
	158.66 M
	0.264

	PDP (2x18x256)
Two-port 256 PRS + path timings + DL PRS RSRPPs
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50M
	158.66 M
	0.369

	CIR (4x18x256)
Two-port 256 PRS + path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.69 M
	172.77 M
	0.167



Observation 4: With measurement results from multi-port PRS included in the AI model input, better positioning performance can be observed when compared to AI model input only includes measurement results from single port PRS.
Proposal 3: Study and evaluate the performance of direct AI/ML positioning when AI model input includes measurement results from multi-port PRS.



1st round discussion
Based on the evaluation results submitted by companies, similar observations were made by several companies. Preliminary observations are proposed below based on evaluation results provided by companies. Also, its seems clear that site-specific model is needed for direct AI/ML positioning approach. Thus it is proposed to support site-specific model deployment.

Proposal 8.6-1 
For direct AI/ML positioning approach, support site-specific model deployment, where the site-specific model can be obtained by fine-tuning or model switching.
	
	Company

	Support
	

	Not support
	



	Company
	Comments

	ZTE
	site-specific model is not clear to us. Prefer to use ‘scenario/configuration-specific’.

	Fujitsu
	It seems that the understanding of “site“ is different, e.g., QC quoted site = zone while other companies may have different views.

	CAICT
	We would like to have a clear definition on site-specific model.

	LG
	Similar view with Fujitsu that the clarification is needed on ‘site‘-specific

	HW/HiSi
	We are wondering if this kind of proposal is more suitable for 9.2.4.2
With site-specific, is it meant per TRP or per model? For direct positioning with LMF model, there is one model for all TRPs. If we have not missed the point here, we think this proposal is not suitable for a NW-side deployment. For a UE side deployment, would it mean that N models (one model for each TRP) are allocated in the UE and can be updated individually?   

	OPPO
	1. The meaning of site-specific model is not very clear. Fine-tuning/model switching/mixed dataset can be discussed after site-specific model is clarified.
2. The site-specific model can be obtained without fine-tuning or model switching. For example, the gNB/TRP can use the only one dedicated to itself. 

	Nokia/NSB
	We agree with other companies that it would be beneficial to clarify/agree on the meaning of the term „site“. Also, we would like to clarify whether model switching includes switching between direct and AI/ML-assisted positioning methods as well – i.e., switching between models with different model outputs.

	Qualcomm
	From evaluations, it can be observed that model finetuning (with reasonable small dataset) cannot secure the baseline performance. We prefer to modify the wording of the proposal to reflect this point as the current wording seems to treat fine-tuning and model switching as equivalent approaches.

	CATT
	The definition of “site-specific” is not clear to us, we prefer to clarify details of “site-specific” in general first.



Proposal 8.6-2 
For direct AI/ML positioning method, investigate the impact of the amount of fine-tuning data on the positioning accuracy of the model.
	
	Company

	Support
	ZTE, Fujitsu, LG, Apple, Nokia/NSB,CMCC, MediaTek, CATT

	Not support
	



	Company
	Comments

	Fujitsu
	It is almost clear that the fine-tuning performance will be increased accordingly by feeding more data, but we think it is not easy to find an absolute or relative data amount required to meet the requirement of fine-tuning positioning accuracy due to the discrepancy among companies’ implementations, e.g., for company A an extra 1000 samples will be enough while for company B maybe 2000 samples are still not good. It can be noted that even for basic evaluation without generalization or fine-tuning, different companies may need different sizes of dataset to reach the same or similar positioning accuracy. 

	CAICT
	Fine to study and not sure how to construct the variation environment for fine-tuning. 

	HW/HISi
	We think that this is already ongoing, since companies are reporting the data set size for initial training and for fine-tuning as part of the generalization study. We think that observations can be drawn from the already reported results and there is no need for a specific agreement.
Is the intention to describe the fine-tuning data set size in absolute numbers or as a fraction of the data size for initial dataset?

	OPPO
	Fine with the proposal.

	Nokia/NSB
	We wonder if other aspects of fine-tuning such as the frequency of fine-tuning data exchange needs to be investigated.

	Qualcomm
	-Please add an equivalent proposal for model switching.

-We suggest the current wording to be more specific to what robustness and/or generalization aspect the amount of fine-tuning needs to be evaluated.



Proposal 8.6-3 
Observation: Positioning accuracy of direct AI/ML positioning deteriorates when the ML model is trained with dataset of one drop, and tested with dataset of a different drop. 
· Companies have provided initial evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning.
· Better training dataset construction: The training dataset is composed of data from multiple drops, which include data from the same drop as the test dataset. 
· Model fine-tuning: the model is re-trained with a small dataset from the same drop as the test dataset.

	
	Company

	Support
	Fujitsu, Apple, Nokia/NSB

	Not support
	



	Company
	Comments

	ZTE
	If the intention is to capture this observation in TR, it would be also include a table to include all the evaluation results from companies as we have done in previous releases.

	CAICT
	Fine in general.

	LG
	Fine as an observation

	HW/HiSi
	We are fine with the observation in general, but cannot really agree to it unless we firstly agree on that basic finding that AI/ML positioning with training and inference from the same drop achieve better accuracy than the legacy approaches.
Maybe we can soften it a bit with the following addition to the observation: 
Observation: Positioning accuracy of direct AI/ML positioning deteriorates when the ML model is trained with dataset of one drop, and tested with dataset of a different drop compared to when the same drop is used for traning and inference. 

	OPPO
	We are fine with the proposal except the fine-tuning part. Proposal 8.6-2 is encouraging companies to do more investigation on fine-tuning. Thus, the observation on fine-tuning can be done later when more evaluations/investigations are done 

	Nokia/NSB
	We tend to agree with ZTE in terms of capturing performance evaluation results from different companies on this topic.

	Qualcomm
	This proposal does not quantify how much improvement can be obtained by the two approaches. It also ignores the fact that generalization and scalability across different drops for site specific models can be secured using model switching. Please add model switching as third approach and provide description on expected enhancement level from each approach.

We also share view of ZTE. Let’s adopt the way of capturing observations as done in TRs of previous releases.



Proposal 8.6-4 
Observation: Positioning accuracy of direct AI/ML positioning deteriorates when the ML model is trained with dataset of one clutter parameter setting (e.g., InF-DH {60%, 6m, 2m}), and tested with dataset of a different clutter parameter setting (e.g., InF-DH {40%, 2m, 2m}). As the clutter parameter setting of training dataset deviates further from that of training, worse positioning accuracy is observed. 
· Companies have provided initial evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning.
· Better training dataset construction: The training dataset is composed of data from multiple clutter parameter settings, which include clutter parameter setting of the test dataset. 
· Model fine-tuning: the model is re-trained with a small dataset from the same clutter parameter setting as the test dataset.
	
	Company

	Support
	Fujitsu, Apple, Nokia/NSB, CATT

	Not support
	



	Company
	Comments

	ZTE
	If the intention is to capture this observation in TR, it would be also include a table to include all the evaluation results from companies as we have done in previous releases.

	CAICT
	Fine in general.

	LG
	Fine as an observation

	HW/HISi
	Same comment as above: we are fine with the observation in general, but cannot really agree to it unless we firstly agree on that basic finding that AI/ML positioning with training and inference from the same drop achieve better accuracy than the legacy approaches.

Observation: Positioning accuracy of direct AI/ML positioning deteriorates when the ML model is trained with dataset of one clutter parameter setting (e.g., InF-DH {60%, 6m, 2m}), and tested with dataset of a different clutter parameter setting (e.g., InF-DH {40%, 2m, 2m}) compared to when the same clutter parameters are applied for training and inference . As the clutter parameter setting of training dataset deviates further from that of training, worse positioning accuracy is observed. 


	OPPO
	We are fine with the proposal except the fine-tuning part. Proposal 8.6-2 is encouraging companies to do more investigation on fine-tuning. Thus, the observation on fine-tuning can be done later when more evaluations/investigations are done 

	Nokia/NSB
	Similar comment as earlier.

	Qualcomm
	Similar to our comment on previous proposal. There is no quantification or description on how much improvement can be obtained by the two approaches. It also ignores the fact that generalization and scalability across different clutter settings for site specific models can be secured using model switching. Please add model switching as third approach and provide description on expected enhancement level from each approach.



2nd round discussion
The proposal below has offline consensus, except the sub-bullet.
Proposal 8.7-1 
For direct AI/ML positioning method, investigate the impact of the amount of fine-tuning data on the positioning accuracy of the fine-tuned model.
· The fine-tuning data is the training dataset from the target deployment scenario.

Proposal 8.7-2 
Observation: Direct AI/ML positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods.
· For example, evaluation results submitted to RAN1#111 indicate that the direct AI/ML positioning can achieve horizontal positioning accuracy of <1m at CDF=90%, as compared to >15m for conventional positioning method. 
· For exemplary evaluation results, see Ericsson (R1-2210854), HW/HiSi (R1-2210889), vivo (R1-2211002), CATT (R1-2211193), Xiaomi (R1-2211359), OPPO (R1-2211482), China Telecom (R1-2211529), CMCC (R1-2211676), MediaTek (R1-2212230).
	
	Company

	Support
	

	Not support
	



	Company
	Comments

	ZTE
	We agree with the main bullet. However, the example in the sub-bullet may not be representative enough. For example, the positioning performance depends on user density/data size, model design/complexity, model input, which should be reflected in the final TR. To our understanding, the reason why we have agreed some tables is to collect companies’ evaluation results in TR. Before we discuss how to capture the evaluation results, giving any conclusions without conditions being attached is not reliable.
[Moderator] Yes, proposal is updated with conditions added.

	Fujitsu
	It seems that the same observation was given last meeting, we wonder why it raised again since the new evaluations submitted in RAN1#111 mainly focus on generalization and fine-tuning, the basic performance evaluation results are from previous evaluations even in 109e, so we think the proposal 8.7-1 and 8.7.3 are the direct results of 111 submission while 8.7-2 is not.  
[Moderator] Huawei commented earlier that a high-level observation should be made before moving to the various generalization aspects. Thus this proposal is attempted. Also, evaluation results submitted to RAN1#111 do support the observation above. Please check the contributions listed.

	Qualcomm
	Please add contribution of Qualcomm (R1-221212). In Section 3.1.1 (Figure 6), we show the direct AI/ML performance can be smaller than 1 meter.

	OPPO
	1. For the main bullet, a modification is suggested as below. The main reason is that the evaluation results of many companies (e.g., Ericsson’s tdoc R1-2210854) showed accuracy > 1m at CDF=90% for some cases 
Observation: Direct AI/ML positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods if the generalization aspects are not considered.

2. For the sub-bullet, it is suggested to add the scenarios (e.g.,  InF-DH with the clutter setting {60%, 6m, 2m}). In R17, the study claimed that the horizontal positioning accuracy can be less than 0.2m for IioT UEs. Now the proposal say “> 15m“ without any condition. The current version will be very confusing and may lead to mis-leading message to the industry. 
[Moderator] Yes, proposal is updated with conditions added.




Proposal 8.7-3 
Observation: Positioning accuracy of direct AI/ML positioning deteriorates when the ML model is trained with dataset of one drop and tested with dataset of a different drop, compared to when the same drop is used for training and inference. 
· Companies have provided initial evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning.
· Better training dataset construction: The training dataset is composed of data from multiple drops, which include data from the same drop as the test dataset. 
· Model fine-tuning: the model is re-trained with a small dataset from the same drop as the test dataset.
	
	Company

	Support
	Fujitsu

	Not support
	



	Company
	Comments

	ZTE
	Similar comment as Proposal 8.7-2. In addition, proposal 8.7-1 also encourage companies to investigate the impact of the amount of fine-tuning data. How to capture the observation when companies bring their evaluation results?
Proposal 8.7-1 
For direct AI/ML positioning method, investigate the impact of the amount of fine-tuning data on the positioning accuracy of the fine-tuned model.
· The fine-tuning data is the training dataset from the target deployment scenario.


	Qualcomm
	We suggest the following modified version to account for model switching as candidate solution (see blue):
Observation: Positioning accuracy of direct AI/ML positioning deteriorates when the ML model is trained with dataset of one drop and tested with dataset of a different drop, compared to when the same drop is used for training and inference. 
· Companies have provided initial evaluation results which show that the positioning accuracy on the test dataset can be improved by model switching, better training dataset construction and/or model fine-tuning.
· Model switching: Train multiple AI/ML models, each with dataset that includes data of drop value same to the test dataset, and switch between models depending on the drop value of test dataset (as applicable). 
· Better training dataset construction: The training dataset is composed of data from multiple drops, which include data from the same drop as the test dataset. 
· Model fine-tuning: the model is re-trained with a small dataset from the same drop as the test dataset.


	OPPO
	We are fine with the proposal except the fine-tuning part. Proposal 8.7-1 is encouraging companies to do more investigation on fine-tuning. Thus, the observation on fine-tuning can be done later when more evaluations/investigations are done.




Proposal 8.7-4 
Observation: Positioning accuracy of direct AI/ML positioning deteriorates when the ML model is trained with dataset of one clutter parameter setting (e.g., InF-DH {60%, 6m, 2m}) and tested with dataset of a different clutter parameter setting (e.g., InF-DH {40%, 2m, 2m}), compared to when the same clutter parameters are applied for training and inference. As the clutter parameter setting of training dataset deviates further from that of training, worse positioning accuracy is observed. 
· Companies have provided initial evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning.
· Better training dataset construction: The training dataset is composed of data from multiple clutter parameter settings, which include clutter parameter setting of the test dataset. 
· Model fine-tuning: the model is re-trained with a small dataset from the same clutter parameter setting as the test dataset.

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	ZTE
	Similar comment as Proposal 8.7-2

	Qualcomm
	Please consider the following modified wording to account for model switching as a solution to enhance performance of direct AI/ML positioning across different clutter settings.

Observation: Positioning accuracy of direct AI/ML positioning deteriorates when the ML model is trained with dataset of one clutter parameter setting (e.g., InF-DH {60%, 6m, 2m}) and tested with dataset of a different clutter parameter setting (e.g., InF-DH {40%, 2m, 2m}), compared to when the same clutter parameters are applied for training and inference. As the clutter parameter setting of training dataset deviates further from that of training, worse positioning accuracy is observed. 
· Companies have provided initial evaluation results which show that the positioning accuracy on the test dataset can be improved by model switching, better training dataset construction and/or model fine-tuning.
· Model switching: Train multiple AI/ML models, each with dataset that includes data of clutter parameter setting same to the test dataset, and switch between models depending on the clutter parameter setting of test dataset (as applicable). 
· Better training dataset construction: The training dataset is composed of data from multiple clutter parameter settings, which include clutter parameter setting of the test dataset. 
· Model fine-tuning: the model is re-trained with a small dataset from the same clutter parameter setting as the test dataset.


	OPPO
	Similar comment on model fine-tuning as earlier.



3rd/4th round discussion
With the agreements made in 2nd round, we can move on to the two Observations that we’ve talked about since previous meeting.
Regarding QC addition of model switching to the Observation: Moderator’s understanding is, so far only one company has evaluated model switching, which is quite different status compared to “Better training dataset construction” and “Model fine-tuning”. Thus moderator suggests to leave it out for now.
Regarding OPPO’s comment to remove fine-tuning part: Moderator’s understanding is, many companies have provided simulation results over several meetings on this aspect. Thus it is not premature to capture. On the other hand, for the sake of progress, it’s also OK to leave it out of the Observation for now.
With the above, the following proposals are provided for discussion.

Observation 8.8-1 
Positioning accuracy of direct AI/ML positioning deteriorates when the ML model is trained with dataset of one drop and tested with dataset of a different drop, compared to when the same drop is used for training and inference. 
· Companies have provided initial evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning.
· Better training dataset construction: The training dataset is composed of data from multiple drops, which include data from the same drop as the test dataset. 
· Model fine-tuning: the model is re-trained with a small dataset from the same drop as the test dataset.

	
	Company

	Support
	

	Not support
	vivo



	Company
	Comments

	Qualcomm
	To Moderator: We asked to propose evaluating model switching in more than one occasion. However, so far there is no such proposal has been put forward for discussion (please find examples after this response). The TR needs to collect observations on how companies approached evaluating and improving performance of direct AI/ML positioning when testing on different drops.  
Please consider this updated proposal wording and addition of our observation on model switching:
Positioning accuracy of direct AI/ML positioning deteriorates when the ML model is trained with dataset of one drop and tested with dataset of a different drop, compared to when the same drop is used for training and inference. 
· Companies have provided initial evaluation results which show that the positioning accuracy on the test dataset can be fully recovered by model switching and can be partially recovered by better training dataset construction can be improved by better training dataset construction and/or model fine-tuning.
· Better training dataset construction: The training dataset is composed of data from multiple drops, which include data from the same drop as the test dataset. 
· Model switching: Train multiple AI/ML models where each model is trained on data with one or more drop values of the test dataset, and switch between models depending on the drop value of test dataset (as applicable). 
· Model fine-tuning: the model is re-trained with a small dataset from the same drop as the test dataset.
Examples for proposals on model switching evaluation
Proposal: Evaluate the model switching as a solution to enhance performance of AI/ML positioning models across different training and testing settings. 

Proposal: To evaluate AI/ML positioning enhancement with model switching, consider multiple settings (e.g., N settings) that have different drop values, clutter settings, and/or deployment scenarios. Then conduct evaluation for the two following cases:
· No model switching case: Train a single model with L datasets from L settings among the N settings (where L<N), and test on all N settings using the trained model. 
· Model switching case: Train M models (M>1) with datasets from the N settings, and test on all N settings while switching between the M trained models and picking the right model that fits the testing setting. 


	vivo
	We don’t understand why model fine-tuning is crossed-out.
Many compnaies provided results to show the gain of model fine-tuning. The sentense „Companies have provided initial evaluation results which show that the positioning accuracy on the test dataset can be improved by model fine-tuning“ is a factual statement. How can it be disputed. 

	Nokia/NSB
	We are fine with the proposal. However, we think that evaluations across different drops have limited practical relevance as compared to other generalization evaluations such as scenarios with different clutter parameters.
We are fine with further discussion model switching related proposals as well, since the related terminology is clearly defined in 9.2.1.

	
	




Observation 8.8-2 
Positioning accuracy of direct AI/ML positioning deteriorates when the ML model is trained with dataset of one clutter parameter setting (e.g., InF-DH {60%, 6m, 2m}) and tested with dataset of a different clutter parameter setting (e.g., InF-DH {40%, 2m, 2m}), compared to when the same clutter parameters are applied for training and inference. As the clutter parameter setting of training dataset deviates further from that of training, worse positioning accuracy is observed. 
· Companies have provided initial evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning.
· Better training dataset construction: The training dataset is composed of data from multiple clutter parameter settings, which include clutter parameter setting of the test dataset. 
· Model fine-tuning: the model is re-trained with a small dataset from the same clutter parameter setting as the test dataset.

	
	Company

	Support
	

	Not support
	vivo



	Company
	Comments

	Qualcomm
	Like our comment on previous proposal, please consider a proposal to ask companies for evaluating model switching. We find it is too early to put the summaries on this aspect while other enhancement methods are not yet considered. 

	vivo
	Again, we don’t understand why model fine-tuning is crossed-out.
Many compnaies provided results to show the gain of model fine-tuning. The sentense „Companies have provided initial evaluation results which show that the positioning accuracy on the test dataset can be improved by model fine-tuning“ is a factual statement. How can it be disputed. 

	Nokia/NSB
	We are fine with this proposal, and we are also fine to wait for further evaluations on different enhancement mechanisms.

	
	




Evaluation of AI/ML-assisted positioning
In this meeting, a large amount of evaluation work has been performed by companies for AI/ML-assisted positioning. These valuable results are crucial to help RAN1 to make progress.
Representative results submitted by companies are copied below.

Evaluation results without model generalization investigation
	· Qualcomm (R1-2212112)
[bookmark: _Ref118477681]Table 10 Evaluation results for the {60%, 6m, 2m} clutter setting, with the AI/ML model deployed on UE-side, without model generalization, using a single-TRP construction with the same model for all TRPs
	Method
	Model input
	Model output
	Label
	Settings (e.g. drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	Hard-decision
	CER (1,2, 64)
	Single value of ToA
	0%
	{60%, 6m, 2m},
Drop A
	{60%, 6m, 2m},
Drop A
	18000

(1000 UEs * 18 TRPS)
	18000

(1000 UEs * 18 TRPS)
	22K params
	206K FLOPs per TRP
3.7M FLOPs for 18 TRPs
	25.0

	Soft-information
	CER (1,2, 64)
	Distribution of ToA
	0%
	{60%, 6m, 2m},
Drop A
	{60%, 6m, 2m},
Drop A
	18000

(1000 UEs * 18 TRPS)
	18000

(1000 UEs * 18 TRPS)
	22K params
	206K FLOPs per TRP

3.7M FLOPs for 18 TRPs
	5.1


[bookmark: _Ref118477740]
Table 11 Evaluation results for the {40%, 4m, 2m} clutter setting, with the AI/ML model deployed on UE-side, without model generalization, using a single-TRP construction with the same model for all TRPs
	Method
	Model input
	Model output
	Label
	Settings (e.g. drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	Test
	Training
	Test
	Model complexity
	Computational complexity
	AI/ML

	Hard-decision
	CER (1,2, 64)
	Single value of ToA
	0%
	{40%, 4m, 2m}, 
Drop A
	{40%, 4m, 2m}, 
Drop A
	18000

(1000 UEs * 18 TRPS)
	18000

(1000 UEs * 18 TRPS)
	22K params
	206K FLOPs per TRP
3.7M FLOPs for 18 TRPs
	14.8

	Soft-information
	CER (1, 2, 64)
	Distribution of ToA
	0%
	{40%, 4m, 2m}, 
Drop A
	{40%, 4m, 2m}, 
Drop A
	18000

(1000 UEs * 18 TRPS)
	18000

(1000 UEs * 18 TRPS)
	22K params
	206K FLOPs per TRP
3.7M FLOPs for 18 TRPs
	0.5



Observation 15: The soft-decision algorithm outperforms the hard-decision approach for AI-ML-assisted positioning. 
· The 90th percentile positioning error improves from 25.0 m to 5.1 m for the {60%, 6m, 2m} clutter setting 
· The 90th percentile positioning error improves from 14.8 m to 0.5 m for the {40%, 4m, 2m} setting. 


	· NVIDIA (R1-2211722)
Table 5: Confusion matrix of LOS/NLOS classification
	
	Target class: NLOS
	Target class: LOS
	Precision

	Output class: NLOS
	70120
	45
	99.94%

	Output class: LOS
	9
	1539
	99.42%

	Recall
	99.99%
	97.16%
	Overall accuracy: 99.92%


Observation 6: AI/ML assisted positioning can provide high-fidelity intermediate estimates such as LOS/NLOS classification, which in turn can be used to derive final position estimate.


	· HW/HiSi (R1-2210889)
Table 6. Evaluation results for AI/ML model deployed on network-side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%) 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	18000
	9000
	582
	192K
	0.353


Observation 19 : From the evaluation results, it is observed that for a small number of gNB antennas, AI/ML-based LOS/NLOS identification could significantly improve the positioning accuracy.
Observation 20 : For AI/ML-based LOS/NLOS identification evaluation, the applied model only needs very small number of parameters and does not require tremendous FLOPs.

	· OPPO (R1-2211482)
Table 5. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, without generalization consideration
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR
	TOA
	Ideal TOA
	1 drop, 80,000 UEs per drop {60%, 6, 2}
Multi-TRP construction
	Same drop 
	78,400
	1,600
	1.48M
	2.96 MFLOPs
	0.52

	Normalized CIR
	TOA
	Ideal TOA
	10 drop, 80,000 UEs per drop 
{60%, 6, 2}
Multi-TRP construction
	Same drops 
	784,000
	16,000
	1.48M
	2.96 MFLOPs
	1.03

	Normalized CIR
	TOA
	Ideal TOA
	80,000 drops, 1 UE per drop 
{60%, 6, 2}
Multi-TRP construction
	Same drops 
	78,400
	1,600
	1.48M
	2.96 MFLOPs
	5.78

	Normalized CIR
	TOA
	Ideal TOA
	1 drop, 80,000 UEs per drop 
{60%, 6, 2}
Single-TRP construction
	Same drop 
	78,400
	1,600
	0.33M
	0.66 MFLOPs
	2.42

	Normalized CIR
	TOA
	Ideal TOA
	10 drop, 80,000 UEs per drop 
{60%, 6, 2}
Single-TRP construction
	Same drops 
	784,000
	16,000
	0.33M
	0.66 MFLOPs
	7.17

	Normalized CIR
	TOA
	Ideal TOA
	80,000 drops, 1 UE per drop 
{60%, 6, 2}
Single-TRP construction
	Same drops 
	78,400
	1,600
	0.33M
	0.66 MFLOPs
	14.47

	Normalized CIR
	LOS/NLOS indicator
	Ideal LOS/NLOS (0,1)
	1 drop, 80,000 UEs per drop 
{40%, 4, 2}
Single-TRP construction
	Same drop 
	78,400
	1,600
	0.33M
	0.66 MFLOPs
	0.35




	· ZTE (R1-2211061)
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR (2x18x256)
128 path timings + DL PRS RSRPPs + path phases
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50M
	158.66 M
	0.278

	CIR (2x18x256)
128 path timings + DL PRS RSRPPs + path phases
	DL RSTD values
(1x18)
	DL RSTD values

	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50M
	158.66 M
	0.269
(Based on AI/ML assisted RSTD estimation)



Table.7 Positioning performance comparison between direct AI/ML positioning and AI/ML assisted positioning
Observation 14: The AI/ML based positioning method has excellent accuracy on the estimation of DL PRS RSTD values even in heavy NLOS conditions.
Observation 15: AI/ML assisted positioning achieves better positioning performance than direct AI/ML positioning to some degree.
Proposal 4: Study and evaluate the performance of AI/ML assisted positioning where the AI model output includes DL PRS RSTD values.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS accuracy rate

	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR (2x18x256)
128 path timings + DL PRS RSRPPs + path phases
	Confidence levels of LOS&NLOS
(1x2)
	LOS&NLOS indicator
	{40%, 2m, 2m}
	{40%, 4m, 2m}
	60000
	1800
	90.45K
	10.45 M
	95%





	· Ericsson (R1-2210854)
Table 49 Evaluation results for AI/ML model deployed on network-side, without model generalization investigation. No network synchronization error. Two architectures of the ML model: Model I (6 layers: 3 Conv1D layers, 3 Dense layers) and Model II (9 layers: 6 Conv1D layers, 3 Dense layers)
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
1x2x256  complex array
	(1). LoS/NLoS classification
(2). ToA estimate
	Ideal

	{40%, 2m, 2m}
	{40%, 2m, 2m}
	5400 UE drops
	4000 UE drops
	35,447  complex parameters
	7,283,790 FLOPs
	0.109	

	II
	
	
	
	
	
	
	
	36,512 complex parameters
	16,998,966 FLOPs
	0.062



Table 70. Evaluation results for AI/ML model deployed on network-side, without model generalization investigation. No network synchronization error. Architectures of the ML model: 34 layers complex network.
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	Time domain CIR, 
1x2x256  complex array
	ToA estimate
	Ideal

	{60%, 6m, 2m}
	{60%, 6m, 2m}
	86,400  UE drops
	4000 UE drops
	32,553,234 complex parameters
	2,316,337,272 FLOPs
	0.744	



Table 103. Evaluation results for AI/ML model deployed on network-side, without model generalization investigation. No network synchronization error. Architectures of the ML model: 18 layers complex network.
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
18x2x256  complex array
	ToA estimate
	Ideal

	{60%, 6m, 2m}
	{60%, 6m, 2m}
	86,400  UE drops
	4000 UE drops
	1,229,121 complex parameters
	86,127,185 FLOPs
	0.653

	II
	
	
	
	
	
	
	
	4,884,345 complex parameters
	328,859,463 FLOPs
	0.436







Evaluation of generalization aspects

Generalization aspect: different drops
	· OPPO (R1-2211482)
Table 7. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: Different drops
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR
	TOA
	Ideal TOA
	1 drop, 80,000 UEs per drop 
{60%, 6, 2}
Multi-TRP construction
	Another drop 
{60%, 6, 2}
	80,000
	80,000
	1.48M
	2.96 MFLOPs
	11.29

	Normalized CIR
	TOA
	Ideal TOA
	5 drops, 80,000 UEs per drop 
{60%, 6, 2}
Multi-TRP construction
	Another 5 drops 
{60%, 6, 2}
	400,000
	400,000
	1.48M
	2.96 MFLOPs
	7.4

	Normalized CIR
	LOS/NLOS indicator
	Ideal LOS/NLOS indicator (0,1)
	1 drop, 80,000 UEs per drop 
{40%, 4, 2}
Single-TRP construction
	Another drop 
{40%, 4, 2}
	80,000
	80,000
	0.33M
	0.66 MFLOPs
	5.25



Table 11. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: Mixed data sets
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR
	TOA
	Ideal TOA
	1 drop with {60%, 6, 2}
+ 
1 drop with {40%, 4, 2}
80,000 UEs per drop 
Multi-TRP construction
	The same drop with
{40%, 4, 2}
	158,400
	1,600
	1.48M
	2.96 MFLOPs
	0.55

	Normalized CIR
	TOA
	Ideal TOA
	1 drop with {60%, 6, 2}
+ 
1 drop with {40%, 4, 2}
80,000 UEs per drop 
Multi-TRP construction
	The same drop with
{60%, 6, 2}
	158,400
	1,600
	1.48M
	2.96 MFLOPs
	0.66



Observation 6: For the InF-DH scenario, by training AI model based on the mixed data set with different clutter settings, the performance of AI model inference for the data set with one of these clutter settings can be improved.



Generalization aspect: different clutter parameters
	· Qualcomm (R1-2212112)

Observation 18: Training on a mix of clutter settings achieves good accuracy in each setting without the overhead of model switching, while training a separate model for each setting provides better accuracy. 
· The 90th percentile error increases from 5.10 m to 7.34 m when testing on (60%, 6m, 2m) clutter, and
· from 0.53 m to 0.91 m when testing on (40%, 2m, 2m) clutter 
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Figure 20. CDF of horizontal positioning error for ML-based soft information reporting across clutter settings


	· HW/HiSi (R1-2210889)
Table 7. Evaluation results for AI/ML model deployed on network-side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Identification rate

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%) 
	InF-DH {40%, 2m, 2m}
	InF-DH {40%, 2m, 2m}
	18000
	9000
	582
	192K
	97.2%

	
	
	
	InF-DH {40%, 2m, 2m}
	InF-DH {60%, 6m, 2m}
	18000
	9000
	
	
	98.6%

	
	
	
	InF-DH {40%, 2m, 2m}
	InF-DH {40%, 3m, 5m}
	18000
	9000
	
	
	97.7%

	
	
	
	InF-SH {20%, 2m, 10m}
	InF-DH {40%, 2m, 2m}
	18000
	9000
	
	
	95.1%

	
	
	
	InF-DH {40%, 2m, 2m}
	InF-SH {20%, 2m, 10m}
	18000
	9000
	
	
	78%

	
	
	
	InF-DH {40%, 2m, 2m}& InF-SH {20%, 2m, 10m} mixed
	InF-SH {20%, 2m, 10m}
	18000
	9000
	
	
	97.8%

	
	
	
	InF-DH {40%, 2m, 2m}& InF-SH {20%, 2m, 10m} mixed
	InF-DH {40%, 2m, 2m}
	18000
	9000
	
	
	97.3%



Observation 21 : When the channel parameters of the inference dataset and the training dataset are different, AI/ML-based LOS/NLOS identification model provides great generalization performance of the intermediate LOS/NLOS Identification rate.

	· OPPO (R1-2211482)
Table 9. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: Different clutter settings
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR
	TOA
	Ideal TOA
	1 drop, 80,000 UEs per drop 
{60%, 6, 2}
Multi-TRP construction
	Another drop 
{40%, 4, 2}
	80,000
	80,000
	1.48M
	2.96 MFLOPs
	16.09

	Normalized CIR
	TOA
	Ideal TOA
	1 drop, 80,000 UEs per drop 
{40%, 4, 2}
Multi-TRP construction
	Another 1 drop 
{60%, 6, 2}
	80,000
	80,000
	1.48M
	2.96 MFLOPs
	8.88

	Normalized CIR
	TOA
	Ideal TOA
	5 drops, 80,000 UEs per drop 
{60%, 6, 2}
Multi-TRP construction
	Another 5 drops 
{40%, 4, 2}
	400,000
	400,000
	1.48M
	2.96 MFLOPs
	8.49

	Normalized CIR
	TOA
	Ideal TOA
	1 drop, 80,000 UEs per drop 
{60%, 6, 2}
Multi-TRP construction
	Another 1 drop 
{40%, 4, 2}
	400,000
	400,000
	1.48M
	2.96 MFLOPs
	6.66



Observation 5: For the InF-DH scenario, if the training and testing data sets for AI model training and testing are generated with different clutter settings, there will be large performance degradation for AI-based positioning.

	· CATT (R1-2211193)
Table 11: Evaluation results for AI/ML model deployed on UE/LMF-side, with model generalization, ResNet18
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Type: CIR;
Size:
18*1*256*2
	Type: ToA;
Size:
1*18
	ToA with 100% ground truth label
	InF-DH
{60%,6m,2m}

	InF-DH
{40%,2m,2m}

	20000
	1600
	12.7M
	4.42G FLOPs
	3.11m



Observation 11: When AI/ML model is trained and tested with different clutter parameters assumptions, e.g. training dataset with InF-DH {60%,6m,2m} and testing dataset with InF-DH {40%,2m,2m}, the intermediate result of ToA estimating and eventual result of horizontal positioning accuracy are degraded for AI/ML assisted positioning.

	· Xiaomi (R1-2211359)
Table 4 Evaluation results for AI-based ToA predication with model deployed on UE or NW side, without model generalization (different clutter parameter), ResNet
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*2 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.6，6，2}
	{0.4，2，2}
	70000
	10000
	21,285,650
	5.76GFlops
	7.1173

	18*256*2 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.4，2，2}
	{0.6，6，2}
	70000
	10000
	21,285,650
	5.76GFlops
	1.5413



Table 6 Evaluation results for AI-based ToA predication with model deployed on UE or NW side, with model generalization (different clutter parameter), ResNet
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*2 CIR
	18*1 UE TOA
	18*1 UE TOA
	Mix of
{0.6，6，2}
{0.4，2，2}
	{0.6，6，2}
	35000+35000
	10000
	21,285,650
	5.76GFlops
	0.6867

	18*256*2 CIR
	18*1 UE TOA
	18*1 UE TOA
	Mix of
{0.6，6，2}
{0.4，2，2}
	{0.4，2，2}
	35000+35000
	10000
	21,285,650
	5.76GFlops
	0.7974




	· Ericsson (R1-2210854)
Table 72. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {60%, 6m, 2m} and tested with various InF-DH clutter parameters and new drop.  No network synchronization error. Architectures of the ML model: 34 layers complex network.
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy at 90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	Time domain CIR, 
1x2x256  complex array
	ToA estimate
	Ideal

	{60%, 6m, 2m}
	{40%, 2m, 2m} 
	86,400  UE drops
	4000 UE drops
	32,553,234 complex parameters
	2,316,337,272 FLOPs
	4.792

	
	
	
	
	{40%,6m,2m}
	
	
	
	
	0.759

	
	
	
	
	{60%, 2m, 2m}
	
	
	
	
	1.634

	
	
	
	
	{60%, 6m, 2m} new drop
	
	
	
	
	11.308



Table 74. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained with mixed datasets in InF-DH {60%, 6m, 2m} and InF-DH {40%, 4m, 2m} and tested with various InF-DH clutter parameters.  No network synchronization error. Architectures of the ML model: 34 layers complex network.
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy at 90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	Time domain CIR, 
1x2x256  complex array
	ToA estimate
	Ideal

	{60%, 6m, 2m} and {40%, 2m, 2m}
	{40%, 2m, 2m} 
	86,400  UE drops (43200 UE drops for each)
	4000 UE drops
	32,553,234 complex parameters
	2,316,337,272 FLOPs
	0.392

	
	
	
	
	{40%,6m,2m}
	
	
	
	
	1.268

	
	
	
	
	{60%, 2m, 2m}
	
	
	
	
	0.68

	
	
	
	
	{60%, 6m, 2m}
	
	
	
	
	1.309



Table 105. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {60%, 6m, 2m} and tested with various InF-DH clutter parameters and new drop.  No network synchronization error. Architectures of the ML model: 18 layers complex network.
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
18x2x256  complex array

	ToA 
	Ideal

	{60%,6m, 2m}
	{40%, 2m, 2m} 
	86,400  UE drops
	4000 UE drops
	1,229,121 complex parameters
	86,127,185 FLOPs
	10.756

	
	
	
	
	
	{40%,6m,2m}
	
	
	
	
	0.752

	
	
	
	
	
	{60%, 2m, 2m}
	
	
	
	
	6.166

	
	
	
	
	
	{60%, 6m, 2m} new drop
	
	
	
	
	14.014


	II
	
	
	
	
	{40%, 2m, 2m} 
	
	
	4,884,345 complex parameters
	328,859,463 FLOPs
	11.336

	
	
	
	
	
	{40%,6m,2m}
	
	
	
	
	0.501

	
	
	
	
	
	{60%, 2m, 2m}
	
	
	
	
	5.954

	
	
	
	
	
	{60%, 6m, 2m} new drop
	
	
	
	
	16.432








Generalization aspect: different scenarios
	· HW/HiSi (R1-2210889)
Observation 22 : When the model is trained under the InF-DH scenario but inferred under the InF-SH scenario, the performance deteriorates significantly. But when trained under the InF-SH scenario but inferred under the InF-DH scenario, the AI/ML-based LOS/NLOS identification model provides great generalization performance of the intermediate LOS/NLOS Identification rate.
Observation 23 : When the mixed training dataset consists of samples with the same scenarios as the inference dataset, the performance of the intermediate LOS/NLOS Identification rate is improved under both scenarios’ inference.

	· CATT (R1-2211193)
Table 13: Evaluation results for AI/ML model deployed on UE/LMF-side, with model generalization, ResNet18
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Type: CIR;
Se
18*1*256*2
	Type: ToA;
Size:
1*18
	ToA with 100% ground truth label
	InF-DH{60%,6m,2m}
	InF-SH{20%,10m,2m}
	20000
	1600
	12.7M
	4.42G FLOPs
	6.894m






Generalization aspect: network synchronization error
	· HW/HiSi (R1-2210889)
Observation 9 : When the model is trained without network synchronization error but inferred with the added network synchronization error randomly distributed with the standard deviation value T_1 = 50ns, AI/ML-based fingerprint positioning model provides poor generalization performance. 
Observation 10 : When the model is both trained and inferred with the added network synchronization error randomly distributed with the standard deviation value T_1 = 50ns, the positioning performance is improved compared with trained without error. 
Observation 11 : When the model is both trained and inferred with the added network synchronization error randomly distributed with mixed T_1 = 0&30&40&50ns, the positioning performance is improved compared with trained without error. The larger synchronization error the network have, the poorer positioning performance they will have.

	· OPPO (R1-2211482)
Table 13. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: NW synchronization error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR
	TOA
	Ideal TOA
	1 drop w/o NW sync error
{60%, 6, 2}
80,000 UEs per drop 
Multi-TRP construction
	1 drop w/ NW sync error
{60%, 6, 2}
80,000 UEs per drop 
	80,000
	80,000
	1.48M
	2.96 MFLOPs
	27.85

	Normalized CIR
	TOA
	Ideal TOA
	10 drops w/o NW sync error
{60%, 6, 2}
80,000 UEs per drop 
Multi-TRP construction
	10 drops w/ NW sync error
{60%, 6, 2}
80,000 UEs per drop 

	800,000
	800,000
	1.48M
	2.96 MFLOPs
	33.62




	· CATT (R1-2211193)
Table 10: Evaluation results for AI/ML model deployed on UE/LMF-side, without model generalization, ResNet18
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Type: CIR;
Size:
18*1*256*2
	Type: ToA;
Size:
1*18
	ToA with 100% ground truth label
	with network synchronization error
	with network synchronization error
	20000
	1600
	12.7M
	4.42G FLOPs
	0.7m



Observation 10: For AI/ML assisted positioning with network synchronization error, the intermediate result of ToA estimating is 1.74ns@90% and the eventual result is 0.7m@90% of CDF percentile of horizontal accuracy.
Proposal 3: In IIoT scenario, for AI/ML assisted positioning, AI/ML model has ability to overcome the network synchronization error to improve positioning accuracy.
Table 12: Evaluation results for AI/ML model deployed on UE/LMF-side, with model generalization, ResNet18
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Type: CIR;
Size:
18*1*256*2
	Type: ToA;
Size:
1*18
	ToA with 100% ground truth label
	w/o network synchronization error
	w/ network synchronization error
	20000
	1600
	12.7M
	4.42G FLOPs
	12.8m



Observation 12: When AI/ML model is trained and tested with different network synchronization assumptions, e.g. training dataset with perfect network synchronization and testing dataset with network synchronization error, the intermediate result of ToA estimating and eventual result of horizontal positioning accuracy are seriously degraded for AI/ML assisted positioning.

	· Xiaomi (R1-2211359)
Table 10 Evaluation results for AI-based ToA predication with model deployed on UE or NW side, without model generalization (AI/ML model is trained by data set with ideal network synchronization and tested by data set with 100ns network synchronization error), ResNet
	Model input
	Model output
	Label
	Clutter param & network synchronization error
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*2 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.6，6，2}
0ns error
	{0.6，6，2}
100ns error
	70000
	10000
	21,285,650
	5.76GFlops
	12.7748

	18*256*2 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.4，2，2}
0 ns error
	{0.4，2，2} 
100ns error
	70000
	10000
	21,285,650
	5.76GFlops
	15.4699



Table 12 Evaluation results for AI-based ToA predication with model deployed on UE or NW side, with model generalization (AI/ML model is trained by data set with 100ns network synchronization error and tested by data set with 100ns network synchronization error), ResNet
	Model input
	Model output
	Label
	Clutter param & network synchronization error 
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*2 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.6，6，2}
100 ns error
	{0.6，6，2}
100 ns error
	70000
	10000
	21,285,650
	5.76GFlops
	1.0916

	18*256*2 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.4，2，2}
100 ns error
	{0.4，2，2}
100 ns error 
	70000
	10000
	21,285,650
	5.76GFlops
	1.7108




	· Ericsson (R1-2210854)
Table 55. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {40%, 2m, 2m} with no network synchronization errors, and tested with InF-DH {40%, 2m, 2m} and a range of network synchronization errors. Architecture II (9 layers: 6 Conv1D layers, 3 Dense layers).
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	II
	Time domain CIR, 
1x2x256  complex array

	(1). LoS/NLoS classification
(2). ToA estimate
	Ideal

	{40%, 2m, 2m}
	{40%,2m,2m}, T1=0ns
	5400 UE drops
	4000 UE drops
	36,512 complex parameters
	16,998,966 FLOPs
	0.062

	
	
	
	
	
	{40%,2m,2m}, T1=2ns
	
	
	
	
	0.997

	
	
	
	
	
	{40%,2m,2m}, T1=6ns
	
	
	
	
	2.926

	
	
	
	
	
	{40%,2m,2m}, T1=20ns
	
	
	
	
	9.2

	
	
	
	
	
	{40%,2m,2m}, T1=50ns
	
	
	
	
	22.149


Table 56. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {40%, 2m, 2m} with network synchronization error STD T1=25ns, and tested with InF-DH {40%, 2m, 2m} and a range of network synchronization errors. Architecture II (9 layers: 6 Conv1D layers, 3 Dense layers).
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	II
	Time domain CIR, 
1x2x256  complex array

	(1). LoS/NLoS classification
(2). ToA estimate
	Ideal

	{40%, 2m, 2m}
	{40%,2m,2m}, T1=0ns
	5400 UE drops
	4000 UE drops
	36,512 complex parameters
	16,998,966 FLOPs
	0.126

	
	
	
	
	
	{40%,2m,2m}, T1=2ns
	
	
	
	
	1.096

	
	
	
	
	
	{40%,2m,2m}, T1=6ns
	
	
	
	
	2.945

	
	
	
	
	
	{40%,2m,2m}, T1=20ns
	
	
	
	
	9.1

	
	
	
	
	
	{40%,2m,2m}, T1=50ns
	
	
	
	
	21.459






Generalization aspect: UE/gNB RX and TX timing error
	· HW/HiSi (R1-2210889)
Observation 12 : When the model is trained without UE timing error but inferred with the added UE timing error randomly distributed with the standard deviation value T_1 = 10ns, the AI/ML-based fingerprint positioning model provides poor generalization performance. 
Observation 13 : When the model is both trained and inferred with the added UE timing error randomly distributed with T_1 = 10ns, the positioning performance is improved compared with trained without error. 
Observation 14 : When the model is both trained and inferred with the added UE timing error randomly distributed with mixed T_1 = 0&10&20&30ns, the positioning performance is improved compared to when trained without error.

	· OPPO (R1-2211482)
Table 15. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: UE timing error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR
	TOA
	Ideal TOA
	1 drop w/o NW UE timing
{60%, 6, 2}
80,000 UEs per drop 
Multi-TRP construction
	1 drop w/ NW UE timing
{60%, 6, 2}
80,000 UEs per drop 
	80,000
	80,000
	1.48M
	2.96 MFLOPs
	26.79

	Normalized CIR
	TOA
	Ideal TOA
	10 drops w/o UE timing error
{60%, 6, 2}
80,000 UEs per drop 
Multi-TRP construction
	10 drops w/ UE timing error
{60%, 6, 2}
80,000 UEs per drop 
	800,000
	800,000
	1.48M
	2.96 MFLOPs
	39.73




	· Ericsson (R1-2210854)
Table 52. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {40%, 2m, 2m} with no network synchronization errors, and tested with InF-DH {40%, 2m, 2m} and a range of UE timing errors. Architecture II (9 layers: 6 Conv1D layers, 3 Dense layers).
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	II
	Time domain CIR, 
1x2x256  complex array

	(1). LoS/NLoS classification
(2). ToA estimate
	Ideal

	{40%, 2m, 2m}
	{40%,2m,2m}, T1=0ns
	5400 UE drops
	4000 UE drops
	36,512 complex parameter
	16,998,966 FLOPs
	0.072

	
	
	
	
	
	{40%,2m,2m}, T1=2ns
	
	
	
	
	0.384

	
	
	
	
	
	{40%,2m,2m}, T1=6ns
	
	
	
	
	0.445

	
	
	
	
	
	{40%,2m,2m}, T1=20ns
	
	
	
	
	1.619

	
	
	
	
	
	{40%,2m,2m}, T1=50ns
	
	
	
	
	9.827



Table 53. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {40%, 2m, 2m} with network synchronization error STD T1=25ns, and tested with InF-DH {40%, 2m, 2m} and a range of UE timing errors. Architecture II (9 layers: 6 Conv1D layers, 3 Dense layers).
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	II
	Time domain CIR, 
1x2x256  complex array

	(1). LoS/NLoS classification
(2). ToA estimate
	Ideal

	{40%, 2m, 2m}
	{40%,2m,2m}, T1=0ns
	5400 UE drops
	4000 UE drops
	36,512 complex parameters
	16,998,966 FLOPs
	0.072

	
	
	
	
	
	{40%,2m,2m}, T1=2ns
	
	
	
	
	0.357

	
	
	
	
	
	{40%,2m,2m}, T1=6ns
	
	
	
	
	0.342

	
	
	
	
	
	{40%,2m,2m}, T1=20ns
	
	
	
	
	0.402

	
	
	
	
	
	{40%,2m,2m}, T1=50ns
	
	
	
	
	2.553



Table 54. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {40%, 2m, 2m} with network synchronization error STD T1=50ns, and tested with InF-DH {40%, 2m, 2m} and a range of UE timing errors. Architecture II (9 layers: 6 Conv1D layers, 3 Dense layers).
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	II
	Time domain CIR, 
1x2x256  complex array

	(1). LoS/NLoS classification
(2). ToA estimate
	Ideal

	{40%, 2m, 2m}
	{40%,2m,2m}, T1=0ns
	5400 UE drops
	4000 UE drops
	36,512 complex parameters
	16,998,966 FLOPs
	0.067

	
	
	
	
	
	{40%,2m,2m}, T1=2ns
	
	
	
	
	0.329

	
	
	
	
	
	{40%,2m,2m}, T1=6ns
	
	
	
	
	0.3

	
	
	
	
	
	{40%,2m,2m}, T1=20ns
	
	
	
	
	0.336

	
	
	
	
	
	{40%,2m,2m}, T1=50ns
	
	
	
	
	0.653






Additional generalization aspect: SNR mismatch

	· Ericsson (R1-2210854)

Table 50. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {40%, 2m, 2m} and 23 dBm UE transmit power and tested with the same InF-DH clutter parameters and 13 dBm and 3 dBm UE transmit powers.  No network synchronization error. Two architectures of the ML model: Model I (6 layers: 3 Conv1D layers, 3 Dense layers) and Model II (9 layers: 6 Conv1D layers, 3 Dense layers)
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
1x2x256  complex array

	(1). LoS/NLoS classification
(2). ToA estimate
	Ideal

	{40%, 2m, 2m} 23dBm UE TX pow.
	{40%, 2m, 2m} 23dBm UE TX pow.
	5400 UE drops
	4000 UE drops
	35,447 complex parameters
	7,283,790 FLOPs
	0.109

	
	
	
	
	
	{40%, 2m, 2m} 13dBm UE TX pow.
	
	
	
	
	0.109

	
	
	
	
	
	{40%, 2m, 2m} 3dBm UE TX pow.
	
	
	
	
	0.117

	II
	
	
	
	
	{40%, 2m, 2m} 23dBm UE TX pow.
	
	
	36,512 complex parameters
	16,998,966 FLOPs
	0.062

	
	
	
	
	
	{40%, 2m, 2m} 13dBm UE TX pow.
	
	
	
	
	0.062

	
	
	
	
	
	{40%, 2m, 2m} 3dBm UE TX pow.
	
	
	
	
	0.072



Table 71. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {60%, 6m, 2m} and 23 dBm UE transmit power and tested with the same InF-DH clutter parameters and 13 dBm and 3 dBm UE transmit powers.  No network synchronization error. Architectures of the ML model: 34 layers complex network.
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz.pos. accuracy at 90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	Time domain CIR, 
1x2x256  complex array

	ToA estimate
	Ideal

	{60%, 6m, 2m} 23dBm UE TX pow.
	{60%, 6m, 2m} 23dBm UE TX pow.
	86,400  UE drops
	4000 UE drops
	32,553,234 complex parameters
	2,316,337,272 FLOPs
	0.744

	
	
	
	
	{60%, 6m, 2m} 13dBm UE TX pow.
	
	
	
	
	0.746

	
	
	
	
	{60%, 6m, 2m} 3dBm UE TX pow.
	
	
	
	
	0.744



Table 104. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {60%, 6m, 2m} and 23 dBm UE transmit power and tested with the same InF-DH clutter parameters and 13 dBm and 3 dBm UE transmit powers.  No network synchronization error. Architectures of the ML model: 18 layers complex network.
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
18x2x256  complex array

	ToA estimate
	Ideal

	{60%, 6m, 2m} 23dBm UE TX pow.
	{60%, 6m, 2m} 23dBm UE TX pow.
	86,400  UE drops
	4000 UE drops
	1,229,121 complex parameters
	86,127,185 FLOPs
	0.653

	
	
	
	
	
	{60%, 6m, 2m} 13dBm UE TX pow.
	
	
	
	
	0.717

	
	
	
	
	
	{60%, 6m, 2m} 3dBm UE TX pow.
	
	
	
	
	1.965

	II
	
	
	
	
	{60%, 6m, 2m} 23dBm UE TX pow.
	
	
	4,884,345 complex parameters
	328,859,463 FLOPs
	0.436

	
	
	
	
	
	{60%, 6m, 2m} 13dBm UE TX pow.
	
	
	
	
	0.439

	
	
	
	
	
	{60%, 6m, 2m} 3dBm UE TX pow.
	
	
	
	
	0.785



Observation 2	Distributed ML models that estimate ToAs independently at different TRPs achieve more robustness against operating SNR mismatch from that assumed during model training than centralized ML models. The centralized ML models either jointly estimate ToAs (AI/ML assisted appraoch) or generate UE position directly (direct AI/ML approach) are more sensitive to operating SNR mismatch.
Proposal 5	Investigate the impact of operating SNRs on the performance of each AI/ML approaches/constructions in the study item.



Evaluation of model fine-tuning / re-training
	· vivo (R1-2211002)

5.2.1.	Model fine-tuning across drops
Table 20	Evaluation results of  fine-tuning for AI/ML model deployed on UE or Network side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal TOA. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	0%
	Drop1
	/
	Drop2
	25k
	0
	1k
	44M*18
	1.45G*18
	2.76

	CIR
	TOA
	0%
	Drop1
	Drop2
	Drop2
	25k
	1k
	1k
	44M*18
	1.45G*18
	1.97


Observation 18:	Fine-tuning the model with small amounts of samples from an unseen scenario can achieve significantly positioning accuracy improvement when the pre-trained model is transferred to a new drop for AI/ML assisted positioning.
5.2.2.	Model fine-tuning across scenarios
Table 21	Evaluation results of  fine-tuning for AI/ML model deployed on UE or Network side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	0%
	DH
	/
	HH
	25k
	0
	1k
	44M *18
	1.45G*18
	>10

	CIR
	TOA
	0%
	HH
	/
	DH
	25k
	0
	1k
	44M *18
	1.45G*18
	>10

	CIR
	TOA
	0%
	DH
	HH
	HH
	25k
	1k
	1k
	44M *18
	1.45G*18
	0.28

	CIR
	TOA
	0%
	DH
	SH
	SH
	25k
	1k
	1k
	44M *18
	1.45G*18
	0.38



Observation 20:	Model fine-tuning is suitable for the following tasks:
•	The source domain and the target domain are greatly similar, such as with different synchronization error.
•	The target domain is easy to fit, such as TOA estimation of LOS path.
Proposal 11:	Both data efficiency and target performance could be considered as reference to determine the sample size for model fine-tuning

	· CATT (R1-2211193)
Table 14: Evaluation results for AI/ML model deployed on UE/LMF-side, with model fine-tuning for clutter parameter, ResNet18
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Type:C0ir
Size:18*1*256*2
	Type:ToA
Size1*18
	ToA with 100% ground truth label
	clutter param:
{60%,6m,2m}
	clutter param:{40%,2m,2m}
	clutter param:{40%,2m,2m}
	20000
	1600
	1600
	12.7M
	4.42G FLOPs
	1.8m



Table 15: Evaluation results for AI/ML model deployed on UE/LMF-side, with model fine-tuning network synchronization error , ResNet18
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Type:CIR
Size:18*1*256*2
	Type:ToA
Size:1*18
	ToA with 100% ground truth label
	w/o network synchronization error
	w/ network synchronization error
	w/ network synchronization error
	20000
	1600
	1600
	12.7M
	4.42G FLOPs
	1.31m



Table 16: Evaluation results for AI/ML model deployed on UE/LMF-side, with model fine-tuning for different InF scenarios, ResNet18
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Type:CIR
Size:18*1*256
	Type:ToA
Size:1*18
	ToA with 100% ground truth label
	InF-DH{60%,6m2m}
	InF-SH{20%,10m,2m}
	InF-SH{20%,10m,2m}
	20000
	1600
	1600
	12.7M
	4.42G FLOPs
	3.46m




	· Xiaomi (R1-2211359)
Table 8 Evaluation results for AI-based ToA predication with model deployed on UE or NW side, with model generalization (with fine-tuning), ResNet
	Model input
	Model output
	Label
	Clutter parameter 
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	18*256*2 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.6，6，2}
	{0.4，2，2}
	{0.4，2，2}
	70000
	5000
	10000
	21,285,650
	5.76GFlops
	1.5325

	18*256*2 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.4，2，2}
	{0.6，6，2}
	{0.6，6，2}
	70000
	5000
	10000
	21,285,650
	5.76GFlops
	0.8494



Table 14 Evaluation results for AI-based ToA predication with model deployed on UE or NW side, with model generalization (with fine-tuning), ResNet
	Model input
	Model output
	Label
	Clutter param & network synchronization error
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	18*256*2 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.6，6，2} , 0ns error 
	{0.6，6，2} , 100 ns error
	{0.6，6，2} , 100 ns error
	70000
	5000
	10000
	21,285,650
	5.76GFlops
	4.4925

	18*256*2 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.4，2，2} 0ns error
	{0.4，2，2}
100 ns error
	{0.4，2，2}
100 ns error
	70000
	5000
	10000
	21,285,650
	5.76GFlops
	7.5060




	· Ericsson (R1-2210854)
Table 73. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {60%, 6m, 2m}, then fine-tuned with InF-DH {40%, 2m, 2m}, and tested with various InF-DH clutter parameters.  No network synchronization error. Architectures of the ML model: 34 layers complex network
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model complexity
	Computation complexity
	AI/ML

	Time domain CIR, 
1x2x256  complex array

	ToA estimate
	Ideal

	{60%, 6m, 2m}
	{40%, 2m, 2m} 
	{40%, 2m, 2m} 
	86,400  UE drops
	1000  UE drops
	4000 UE drops
	32,553,234 complex parameters
	2,316,337,272 FLOPs
	2.114

	
	
	
	
	
	{40%,6m,2m}
	
	
	
	
	
	6.206

	
	
	
	
	
	{60%, 2m, 2m}
	
	
	
	
	
	3.469

	
	
	
	
	
	{60%, 6m, 2m}
	
	
	
	
	
	6.624



Table 106. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {60%, 6m, 2m}, then fine-tuned with InF-DH {40%, 2m, 2m}, and tested with various InF-DH clutter parameters.  No network synchronization error. Architectures of the ML model: 18 layers complex network
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
18x2x256  complex array

	ToA estimate
	Ideal

	{60%, 6m, 2m}
	{40%, 2m, 2m} 
	{40%,2m,2m} 
	86,400  UE drops
	1000  UE drops
	4000 UE drops
	1,229,121 complex parameters
	86,127,185 FLOPs
	4.852

	
	
	
	
	
	
	{40%,6m,2m}
	
	
	
	
	
	4.733

	
	
	
	
	
	
	{60%,2m,2m}
	
	
	
	
	
	4.478

	
	
	
	
	
	
	{60%,6m,2m}
	
	
	
	
	
	4.75

	II
	
	
	
	
	
	{40%,2m,2m} 
	
	
	
	4,884,345 complex parameters
	328,859,463 FLOPs
	4.283

	
	
	
	
	
	
	{40%,6m,2m}
	
	
	
	
	
	2.755

	
	
	
	
	
	
	{60%,2m,2m}
	
	
	
	
	
	3.446

	
	
	
	
	
	
	{60%,6m,2m}
	
	
	
	
	
	2.759






Evaluation of issues related to ground truth labels
	· Nokia (R1-2212331)
[image: ]
Fig. 2: LOS/NLOS detection accuracy versus required labelled data volume in training between two approaches, random data labelling and on-demand labelling 

Table 2: Model information and evaluation results for AI/ML model for on-demand labelling and random labelling. 
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Required training data size to reach accuracy at 82%

	
	
	
	
	Training
	Test
	Model complexity
	Computational complexity
	AI/ML

	CIR from 1 BS
	Classification 0/1
	LOS (1) / NLOS (0)
	40%
	10K including evaluation
	2K 
	0.31M
	4.33M flops
	680 (red line in Fig. 2)

	
	Degree of classification confidence
	
	
	
	
	
	
	

	CIR from 1 BS
	Classification 0/1
	LOS (1) / NLOS (0)
	40%
	10K including evaluation
	2K 
	0.24M
	2.38M flops
	2010 (blue line in Fig. 2)







Other evaluation results
Robustness to time varying changes
	· Qualcomm (R1-2212112)
Observation 19: The ML-assisted soft information reporting using single-TRP approach has good robustness to zone-specific time varying changes.

[image: Chart, line chart
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Figure 21. CDF of horizontal positioning error for ML-based soft information reporting across time varying changes in a specific zone.



Comparison direct AI/ML positioning approach and AI/ML assisted approach

	· Qualcomm (R1-2212112)
[bookmark: _Ref118479639]Table 12 Horizontal positioning accuracies (m) for InF-DH with (60%, 6m, 2m) clutter, when training and testing on the same drop
	Approach
	90%tile error (m)

	Direct AI/ML (RFFP)
	2.77             

	AI/ML-assisted (ML-based soft information reporting)
	5.10

	Classical (RANSAC)
	>20



[bookmark: _Ref118479641]Table 13 Generalization performance across homogeneous inter-site changes (i.e., Type 2 generalization) for InF-DH with (60%, 6m, 2m) clutter, when training and testing on different drops
	Approach
	90%tile error (m)

	Direct AI/ML (RFFP)
	12.33

	AI/ML-assisted (ML-based soft information reporting)
	5.74

	Classical (RANSAC)
	>20



[bookmark: _Ref118479642]Table 14 Robustness of performance to zone-specific changes (i.e., Type 3 time varying changes)
	Setting
	Approach
	90%tile error (m)

	Direct AI/ML (RFFP)
	Train and test on odd clusters
	2.74

	
	Train on mixed clusters, test on odd clusters while removing up to two random odd clusters and adding up to two random even ones
	3.17

	AI/ML-assisted (ML-based soft information reporting)
	Train and test on odd clusters
	6.23

	
	Train on odd clusters, test on even clusters
	6.54




Observation 20: Direct AI/ML methods may be better suited for scenarios where model switching is possible, or for scenarios where devices operate only within a given premises (e.g., AGVs in a factory), while AI/ML-assisted methods may be better suited for scenarios where a common model is required for different scenarios.




1st round discussion
Based on the evaluation results submitted by companies, for AI/ML assisted approach, the model can have excellent generalization performance under certain environmental change (e.g., different drops) or implementation imperfection (e.g., network synchronization). For example, models with output of LOS/NLOS indicator or ToA performs well even though the model is trained in one drop, and tested in a different drop. Thus, it is useful for RAN1 to distinguish the areas where a given model has good generalization performance, and the areas where a given model has poor good generalization performance. Furthermore, it is useful to identify the scenarios where model fine-tuning is effective/necessary.

Proposal 9.6-1 
For AI/ML assisted approach, for each model design (e.g., input, output, single-TRP vs multi-TRP), identify the generalization aspects where the model has good generalization performance (i.e., without mixed training dataset or model fine-tuning), and where the model has poor generalization performance (i.e., need to use mixed training dataset or model fine-tuning). 
	
	Company

	Support
	CAICT, HW/HiSi,CMCC, CATT

	Not support
	



	Company
	Comments

	ZTE
	If the intention is to further study proposed issues, this proposal may not be necessary as companies are already doing this way.

	LG
	The meaning of the proposal seems unclear to our understaning. 

	OPPO
	Not clear what’s the motivations of this proposal since these aspects should be investigated for all AI mechanisms including both direct AI/ML positioning and AI/ML assisted positioning. 

	Nokia/NSB
	We tend to agree with ZTE that perhaps this agreement is not required.

	Qualcomm
	We prefer the following modified version:
For AI/ML assisted approach, for each model design (e.g., input, output, single-TRP vs multi-TRP), identify the generalization aspects where the model has good generalization performance (i.e., without model switching, mixed training dataset or model fine-tuning), and where the model has poor generalization performance (i.e., need to use model switching, mixed training dataset or model fine-tuning). 



Proposal 9.6-2 
For AI/ML assisted approach, for each model design (e.g., input, output, single-TRP vs multi-TRP), identify the generalization aspects where model fine-tuning is necessary.
	
	Company

	Support
	CAICT, HW/HiSi,CMCC, CATT

	Not support
	



	Company
	Comments

	LG
	The meaning of the proposal seems unclear to our understaning. 

	OPPO
	Since proposal 9.6-1 has already mentioned “(i.e., need to use mixed training dataset or model fine-tuning)”, proposal 9.6-2 maybe not needed.
Moreover, there are various ways to improve the generalization performance, e.g., the model switching. Why do we need to only focus on fine-tuning. 

	Nokia/NSB
	Similar comments as above.

	Qualcomm
	Please consider the following modified version:
For AI/ML assisted approach, for each model design (e.g., input, output, single-TRP vs multi-TRP), identify the generalization aspects where model switching or model fine-tuning is necessary.



3rd/4th round discussion
Corresponding to the high-level observation made in 2nd round for direct AI/ML positioning, here we discuss the high-level observation for AI/ML assisted positioning. Again the intention is not to write observation texts for TR. The goal is to demonstrate that AI/ML assisted positioning is valuable to pursue, especially to those that do not follow the discussion closely.
Specific to the observations below:
· For {40%, 2m, 2m}: <0.4m is based on Huawei/HiSi (R1-2210889) when LOS/NLOS is model output. Better accuracy (e.g., <0.1m) can be achieved if using more complex evaluation (e.g., {LOS/NLOS indicator, ToA} as model output, see Ericsson (R1-2210854)).
· For {60%, 6m, 2m}, the observation mirrors that for direct AI/ML positioning.
HW/HiSi (R1-2210889)
Table 6. Evaluation results for AI/ML model deployed on network-side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%) 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	18000
	9000
	582
	192K
	0.353




Observation 9.7-1
AI/ML assisted positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods when the generalization aspects are not considered.
· For InF-DH with clutter parameter setting {40%, 2m, 2m}, evaluation results submitted to RAN1#111 indicate that the AI/ML assisted positioning can achieve horizontal positioning accuracy of <0.4m at CDF=90%, as compared to >9m for conventional positioning method. 
· For InF-DH with clutter parameter setting {60%, 6m, 2m}, evaluation results submitted to RAN1#111 indicate that the AI/ML assisted positioning can achieve horizontal positioning accuracy of <1m at CDF=90%, as compared to >15m for conventional positioning method. 

	
	Company

	Support
	vivo

	Not support
	



	Company
	Comments

	Qualcomm
	The description of the proposal is too general. It needs to mention what flavor of AI/ML assisted positioning has been considered for each observation (i.e., single TRP input same model, single TRP input N models, multi-TRP input model) and the type of model output.

	vivo
	As clarified by FL yesterday, given this proposed observation is not to be captured to the TR, we think a general statement is fine. 



For the following two proposals discussed in 1stxxx round, some companies ask for the purpose of this study. The background of the two proposals is, several companies (e.g., Qualcomm, vivo, Ericsson) have observed that AI/ML assisted approach is much more robust than direct AI/ML approach. For example, preliminary evaluation indicated that the AI/ML model in the AI/ML timing error, etc. Thus it’s useful to identify where the robustness holds, where it does not. 

Proposal 9.7-2 
For AI/ML assisted approach, for a given AI/ML model design (e.g., input, output, single-TRP vs multi-TRP), identify the generalization aspects where the model has good generalization performance (i.e., without mixed training dataset, model fine-tuning, or model switching), and where the model has poor generalization performance (i.e., need to use mixed training dataset, model fine-tuning, or model switching). 

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	
	



Proposal 9.7-3 
For AI/ML assisted approach, for a given AI/ML model design (e.g., input, output, single-TRP vs multi-TRP), identify the generalization aspects where model fine-tuning or model switching is necessary.

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	
	




Template for reporting evaluation results 

	· Qualcomm (R1-2212112)

Proposal 3: Enhance the template for reporting AI/ML positioning evaluation results to include model switching (e.g., number of models).
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [short model description] 
	Model input
	Model output
	Label
	Model switching (# of models)
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	
	Train
	Test
	Train
	test
	Model complexity 
	Computation complexity
	AI/ML

	
	
	
	
	
	
	
	
	
	
	






Proposals for online discussion 
Proposals from 1st round for online discussion

Proposal 4.2-1
Study how AI/ML positioning accuracy is affected by: user density for training dataset.
Note: if the distribution of UE location follows grid distribution, then user density for training dataset is equivalently reflected by the width of the square grid.

Proposal 5.1-1
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.
· Note: Additional processing complexity is incurred in model implementation when N’t (N’t < Nt) samples need to be selected. 

Proposals from 2nd round and offline session
Proposal 5.2-1
For reporting the model input dimension NTRP * Nport * Nt:
· If the model input is CIR, then each input value of CIR is a complex number, i.e. it contains two real values, either {real, imaginary} or {magnitude, phase}.
· If the model input is PDP, then each input value of PDP is a real value.

Proposal 5.2-2
At least for model inference of AI/ML assisted positioning, evaluate and report the AI/ML model output, including (a) the type of information (e.g., ToA, RSTD, AoD, AoA, LOS/NLOS indicator) to use as model output, (b) soft information vs hard information, (c) whether the model output can reuse existing measurement report (e.g., NRPPa, LPP). 

Proposal 6.5-1
For AI/ML assisted positioning, evaluate the three constructions:
· Single-TRP, same model for N TRPs
· Single-TRP, N models for N TRPs
· Multi-TRP (i.e., one model for N TRPs)
Note: Individual company may evaluate one or more of the three constructions.

Proposal 7.2-1
For AI/ML assisted approach, study the performance of model monitoring metrics where the metrics are obtained from model output.

Proposal 8.7-1 
For direct AI/ML positioning method, investigate the impact of the amount of fine-tuning data on the positioning accuracy of the fine-tuned model.
· The fine-tuning data is the training dataset from the target deployment scenario.

Proposal 3.2.2-1
For the RAN1#110bis agreement on the calculation of model complexity, the FFS are resolved with the following update:
	
	Model complexity to support N TRPs

	Single-TRP, same model for N TRPs
	
When the model is at UE-side, where 
 is the model complexity for one TRP and the same model is used for N TRPs.
FFS: if the model is at network-side

	Single-TRP, N models for N TRPs
	When the model is at UE-side,

Where  is the model complexity for the i-th AI/ML model.
FFS: if the model is at network-side


Note: The reported model complexity above is intended for inference and may not be directly applicable to complexity of other LCM aspects.

Proposal 8.7-2 
Observation: Direct AI/ML positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods when the generalization aspects are not considered.
· For example, for InF-DH with clutter parameter setting {60%, 6m, 2m}, evaluation results submitted to RAN1#111 indicate that the direct AI/ML positioning can achieve horizontal positioning accuracy of <1m at CDF=90%, as compared to >15m for conventional positioning method. 
· For exemplary evaluation results, see Ericsson (R1-2210854), HW/HiSi (R1-2210889), vivo (R1-2211002), CATT (R1-2211193), Xiaomi (R1-2211359), OPPO (R1-2211482), China Telecom (R1-2211529), Qualcomm (R1-221212), CMCC (R1-2211676), MediaTek (R1-2212230).

Proposals from 3rd round discussion

Proposal 2.3-1
For AI/ML based positioning, company optionally evaluate the impact of the following issues on the positioning accuracy of the AI/ML model. The simulation assumptions reflecting these issues are up to companies.
· SNR mismatch (i.e., SNR when training data are collected is different from SNR when model inference is performed).
· Time varying changes (e.g., mobility of clutter objects in the environment)

Proposals from 4th round and offline discussion

Offline conclusion 3.3.1-1:
Companies describe how their computational complexity values are obtained. 
· It is out of 3GPP scope to consider computational complexity values that have platform-dependency and/or use implementation (hardware and software) optimization solutions.

Observation 9.7-1
AI/ML assisted positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods when the generalization aspects are not considered.
· For InF-DH with clutter parameter setting {40%, 2m, 2m}, evaluation results submitted to RAN1#111 indicate that the AI/ML assisted positioning can achieve horizontal positioning accuracy of <0.4m at CDF=90%, as compared to >9m for conventional positioning method. 
· For InF-DH with clutter parameter setting {60%, 6m, 2m}, evaluation results submitted to RAN1#111 indicate that the AI/ML assisted positioning can achieve horizontal positioning accuracy of <1m at CDF=90%, as compared to >15m for conventional positioning method. 

Proposal 5.3-1
At least for direct AI/ML positioning, evaluate and report the AI/ML model input, including:
· the preprocessing/formulation of the input data (e.g., the normalization of CIR), 
· the dimension of model input (including study the reduction of input dimension), 
· whether the model input can reuse existing measurement report (e.g., NRPPa, LPP).

Proposal 9.7-2 
For AI/ML assisted approach, for a given AI/ML model design (e.g., input, output, single-TRP vs multi-TRP), identify the generalization aspects where the model has good generalization performance (i.e., without mixed training dataset, model fine-tuning, or model switching), and where the model has poor generalization performance (i.e., need to use mixed training dataset, model fine-tuning, or model switching). 

Proposal 9.7-3 
For AI/ML assisted approach, for a given AI/ML model design (e.g., input, output, single-TRP vs multi-TRP), identify the generalization aspects where model fine-tuning or model switching is necessary.

Observation 8.8-1 
Positioning accuracy of direct AI/ML positioning deteriorates when the ML model is trained with dataset of one drop and tested with dataset of a different drop, compared to when the same drop is used for training and inference. 
· Companies have provided initial evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning.
· Better training dataset construction: The training dataset is composed of data from multiple drops, which include data from the same drop as the test dataset. 
· Model fine-tuning: the model is re-trained with a small dataset from the same drop as the test dataset.

Observation 8.8-2 
Positioning accuracy of direct AI/ML positioning deteriorates when the ML model is trained with dataset of one clutter parameter setting (e.g., InF-DH {60%, 6m, 2m}) and tested with dataset of a different clutter parameter setting (e.g., InF-DH {40%, 2m, 2m}), compared to when the same clutter parameters are applied for training and inference. As the clutter parameter setting of training dataset deviates further from that of training, worse positioning accuracy is observed. 
· Companies have provided initial evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning.
· Better training dataset construction: The training dataset is composed of data from multiple clutter parameter settings, which include clutter parameter setting of the test dataset. 
· Model fine-tuning: the model is re-trained with a small dataset from the same clutter parameter setting as the test dataset.

Conclusion
The following decisions were made at RAN1#111 for AI/ML based positioning.
AI 9.2.4.1
Agreement
Study how AI/ML positioning accuracy is affected by: user density/size of the training dataset.
Note: details of user density/size of training dataset to be reported in the evaluation.

Agreement
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
1. If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.


Agreement
For reporting the model input dimension NTRP * Nport * Nt:
1. If the model input is CIR, then each input value of CIR is a complex number, i.e. it contains two real values, either {real, imaginary} or {magnitude, phase}.
1. If the model input is PDP, then each input value of PDP is a real value.

Agreement
At least for model inference of AI/ML assisted positioning, evaluate and report the AI/ML model output, including (a) the type of information (e.g., ToA, RSTD, AoD, AoA, LOS/NLOS indicator) to use as model output, (b) soft information vs hard information, (c) whether the model output can reuse existing measurement report (e.g., NRPPa, LPP). 

Agreement
For AI/ML assisted positioning, evaluate the three constructions:
1. Single-TRP, same model for N TRPs
1. Single-TRP, N models for N TRPs
1. Multi-TRP (i.e., one model for N TRPs)
Note: Individual company may evaluate one or more of the three constructions.

Agreement
For AI/ML assisted approach, study the performance of model monitoring metrics at least where the metrics are obtained from inference accuracy of model output.

Agreement
For both direct and AI/ML assisted positioning methods, investigate at least the impact of the amount of fine-tuning data on the positioning accuracy of the fine-tuned model.
1. The fine-tuning data is the training dataset from the target deployment scenario.


Agreement
For the RAN1#110bis agreement on the calculation of model complexity, the FFS are resolved with the following update:
	
	Model complexity to support N TRPs

	Single-TRP, same model for N TRPs
	
where 
 is the model complexity for one TRP and the same model is used for N TRPs.


	Single-TRP, N models for N TRPs
	
Where  is the model complexity for the i-th AI/ML model.



Note: The reported model complexity above is intended for inference and may not be directly applicable to complexity of other LCM aspects.

Observation
Direct AI/ML positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods when the generalization aspects are not considered.
1. For InF-DH with clutter parameter setting {60%, 6m, 2m}, evaluation results submitted to RAN1#111 indicate that the direct AI/ML positioning can achieve horizontal positioning accuracy of <1m at CDF=90%, as compared to >15m for conventional positioning method. 

Agreement
For AI/ML based positioning, company optionally evaluate the impact of at least the following issues related to measurements on the positioning accuracy of the AI/ML model. The simulation assumptions reflecting these issues are up to companies.
1. SNR mismatch (i.e., SNR when training data are collected is different from SNR when model inference is performed).
1. Time varying changes (e.g., mobility of clutter objects in the environment)
1. Channel estimation error


Conclusion
Companies describe how their computational complexity values are obtained. 
1. It is out of 3GPP scope to consider computational complexity values that have platform-dependency and/or use implementation (hardware and software) optimization solutions.

Observation
AI/ML assisted positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods when the generalization aspects are not considered.
1. For InF-DH with clutter parameter setting {40%, 2m, 2m}, evaluation results submitted to RAN1#111 indicate that the AI/ML assisted positioning can achieve horizontal positioning accuracy of <0.4m at CDF=90%, as compared to >9m for conventional positioning method. 
1. For InF-DH with clutter parameter setting {60%, 6m, 2m}, evaluation results submitted to RAN1#111 indicate that the AI/ML assisted positioning can achieve horizontal positioning accuracy of <1m at CDF=90%, as compared to >15m for conventional positioning method. 

Note: how to capture the observation(s) into TR is separate discussion.



Agreement
1. For AI/ML assisted approach, for a given AI/ML model design (e.g., input, output, single-TRP vs multi-TRP), identify the generalization aspects where model fine-tuning/mixed training dataset/model switching  is necessary.


AI 9.2.4.2
Agreement
For the study of benefit(s) and potential specification impact for AI/ML based positioning accuracy enhancement, one-sided model whose inference is performed entirely at the UE or at the network is prioritized in Rel-18 SI.


Agreement
Regarding AI/ML model inference, to study and provide inputs on potential specification impact (including necessity and applicability of specifying AI/ML model input and/or output) at least for the following aspects for each of the agreed cases (Case 1 to Case 3b) in AI/ML based positioning accuracy enhancement
1. Types of measurement as model inference input
0. new measurement
0. existing measurement
1. UE is assumed to perform measurement as model inference input for Case 1, Case 2a and Case 2b; TRP is assumed to perform measurement as model inference input for Case 3a and Case 3b
1. Report of measurements as model inference input to LMF for LMF-side model (Case 2b and Case 3b)
1. For AI/ML assisted positioning, new measurement report and/or potential enhancement of existing measurement report as model output to LMF for UE-assisted (Case 2a) and NG-RAN node assisted positioning (Case 3a)
1. Assistance signaling and procedure to facilitate model inference for both UE-side and Network-side model
3. New and/or enhancement to existing assistance signaling
3. Note: whether such assistance signaling and procedure can be applied to other aspect(s) of AI/ML model LCM can also be discussed


Agreement
Regarding data collection for AI/ML model training for AI/ML based positioning, 
1. The following options of entity and mechanisms to generate ground truth label are identified for further study
4. For direct AI/ML positioning, ground truth label is UE location
0. PRU with known location
0. UE generates location based on non-NR and/or NR RAT-dependent positioning methods
0. LMF generates UE location based on positioning methods
0. LMF with known PRU location
0. Note: user data privacy needs to be preserved
4. For AI/ML assisted positioning, ground truth label is one or more of the intermediate parameter(s) corresponding to AI/ML model output
1. PRU generates label directly or calculates based on measurement/location 
1. UE generates label directly or calculates based on measurement/location
1. Network entity generates label directly or calculates based on measurement/location
1. The following options of entity to generate other training data at least measurement corresponding to model input are identified for further study
5. For UE-based with UE-side model (Case 1) and UE-assisted positioning with UE-side (Case 2a) or LMF-side model (Case 2b)
0. PRU 
0. UE
5. For NG-RAN node assisted positioning with Network-side model (Case 3a and Case 3b)
1. TRP
5. Note: other options of entity to generate other training data are not precluded
1. Note: Existing PRU definition is in 38.305



Agreement
Regarding data collection for AI/ML model training for AI/ML based positioning, study benefits, feasibility and potential specification impact (including necessity) for the following aspects
1. Request/report of training data
7. Ground truth label
7. Measurement corresponding to model input
7. Associated information of ground truth label and/or measurement corresponding to model input
1. Assistance signaling and procedure to facilitate generating training data
8. Reference signal (e.g., PRS/SRS) configuration(s) and configuration identifier
8. Assistance information, e.g., between LMF and UE/PRU, for label calculation/generation, and label validity/quality condition, etc.
8. Note1: whether such assistance signaling and procedure can be applied to other aspect(s) of AI/ML model LCM can also be discussed
1. Note2: Study may consider different entity to generate training data as well as different types of training data when applicable
1. Note3: study considers both of the following cases when applicable
10. when the training entity is the same entity to generate training data
10. when the training entity is not the same entity to generate training data

Agreement
1. Regarding AI/ML model monitoring for AI/ML based positioning, to study and provide inputs on feasibility, potential benefits (if any) and potential specification impact at least for the following aspects
1. At least the following are identified for further study as potential data for calculating monitoring metric
12. If monitoring based on model output
0. E.g. , estimated UE location corresponding to model output for direct AI/ML positioning, estimated intermediate parameter(s) corresponding to model output for AI/ML assisted positioning, ground truth label corresponding to model inference output for both direct and AI/ML assisted positioning
12. If monitoring based on model input
1. E.g., measurement corresponding to model inference input
12. Note1: other type of potential data for model monitoring is not precluded
12. Note2: combination of one or more type of potential data for monitoring is not precluded
1. If a given type of data is necessary for calculating monitoring metric, study whether and if so
13. How an entity can be used to provide the given type of data for calculating monitoring metric
0. Companies are requested to report their assumption of the entity (or entities) used to provide the given type of data for calculating monitoring metric for each case
13. Potential signalling for provisioning of the given type of data for calculating associated monitoring metric
13. Potential assistance signaling and procedure to facilitate an entity providing data for calculating monitoring metric
13. Potential UE-network interaction
3. E.g., model monitoring decision indication between UE and network

Agreement
For AI/ML based positioning accuracy enhancement, direct AI/ML positioning and AI/ML assisted positioning are selected as representative sub-use cases.
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