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Introduction
This contribution presents ETRI’s views on the other aspects on AI/ML for CSI feedback enhancement use case.

Discussion
CSI compression sub-use case
CSI compression is one of key sub use case of AI/ML for CSI feedback enhancement. In RAN1 #109-e, following AI model architecture for CSI compression is discussed [2]. In this section, we describe the auto encoder (AE)-based CSI feedback and the PCA-based CSI feedback as potential AI/ML models for the CSI compression sub use case.

AE based CSI compression
In the case of CSI compression using AI/ML models, AE (Auto Encoder), one of the deep learning techniques, has been studied to be effective in expressing MIMO channels [4]. However, since AE based CSI compression is a two-sided AI/ML model, where the model is divided into the NW and the UE, the feasibility on the AI/ML model training should be carefully studied. In this regard, at the RAN1 #110 meeting, the training collaboration method for a two-sided AI/ML model was discussed, and it was agreed to conduct a study on the following [3]:

	Agreement
In CSI compression using two-sided model use case, the following AI/ML model training collaborations will be further studied:
· Type 1: Joint training of the two-sided model at a single side/entity, e.g., UE-sided or Network-sided.
· Type 2: Joint training of the two-sided model at network side and UE side, repectively.
· Type 3: Separate training at network side and UE side, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE side and network side, respectively.
· Note: Joint training means the generation model and reconstruction model should be trained in the same loop for forward propagation and backward propagation. Joint training could be done both at single node or across multiple nodes (e.g., through gradient exchange between nodes).
· Note: Separate training includes sequential training starting with UE side training, or sequential training starting with NW side training [, or parallel training] at UE and NW
· Other collaboration types are not excluded.



Training collaboration between UE and NW
In the below, we present one possible solution of the training methodology for the AE based CSI compression. First, as shown in Table 1 below, dataset(s) for evaluating the two-sided AI/ML model (e.g., AE) for CSI feedback enhancement are created based on the CDL-A channel model. There are four independent dataset(s) as shown in Table 2 (e.g., dataset 1, dataset 2, dataset 3, and dataset 4). The dataset 1 and dataset 2 are used as data for training the AE in the gNB (Model 1) and the AE in the UE (Model 2), respectively. The dataset 3 is data shared between the gNB and the UE, and it is assumed that the UE can know the encoding result (e.g., latent variables) of dataset 3 with the encoder of the gNB. Lastly, dataset 4 is a test set to evaluate the performance of the two-sided AI/ML model, that is, when the encoder of the UE (Model 2 encoder) and the decoder of the gNB (Model 1 decoder) are combined.

Table 1. Simulation parameters of two-sided AI/ML model evaluation
	Parameter
	Value

	Carrier frequency
	2 GHz

	BWP
	52 RBs

	Subcarrier spacing
	15 kHz

	Subband/PRG size
	4 RBs

	Number of transmit antennas ()
	32

	Number of receive antennas ()
	1

	Number of layers
	1

	Delay profile
	CDL-A

	Delay spread
	30 ns

	Channel estimation
	Ideal 



Table 2. Datasets of two-sided AI/ML model evaluation
	Dataset
	Purpose
	Size

	Dataset 1
	Training set for AI/ML model at gNB
	1e4

	Dataset 2
	Training set for AI/ML model at UE
	1e4

	Dataset 3
	Alignment; Shared between gNB and UE
	5e3

	Dataset 4
	Test set for two-sided AI/ML model
	1e3



In order to assume the case where the two-sided AI/ML model has different structures, Model 1 and Model 2 are generated based on DNN (deep neural network) structure and CNN (convolutional neural network) structure, respectively. Model 1 consists of an encoder and a decoder with a hidden layer dimension of 128 and depth of 6, respectively. Model 2 consists of an encoder and a decoder with two convolutional layers and fully connected layers, respectively. Both Model 1 and Model 2 have a latent space of 16 dimensions, reducing the input data to 1/48 size. Figure 1 shows Model 1 and Model 2.
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1. Model 1 (NW-sided AI/ML model; DNN)
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1. Model 2 (UE-sided AI/ML model; CNN)
Figure 1. AI/ML models of two-sided AI/ML model evaluation

Next, to support compatibility between Model 1 and Model 2, we evaluate the effect of applying the Procrustes transformation based on shared dataset (e.g., dataset 3) information. Specifically, assuming that the UE can know the latent dataset X, which is the result of encoding dataset 3 with the Model 1 encoder, the Procrustes transformation was derived to make the latent dataset Y, which is the result of encoding dataset 3 with the Model 2 encoder, close to X on the distance (e.g., Frobenius norm) [5]. In our evaluation results, it was observed that the Procrustes transformation, which is derived from the shared dataset (e.g., dataset 3), is also validly applied to the test set (e.g., dataset 4). Figure 2 visualizes the manifold formed when the test set (e.g., dataset 4) is encoded with the Model 1 encoder, the Model 2 encoder, and the Model 2 encoder w/ Procrustes transformation, respectively. Table 3 also shows the performance when the Model 2 encoder and Model 1 decoder are combined. The reference is the performance of the Model 1 encoder and the Model 1 decoder combined. As KPIs, NMSE (normalized mean square error) and GCS (generalized cosine similarity) were derived, and it can be seen that Model 2 encoder w/ Procrustes transformation shows performance close to the reference.
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1. Manifold of Model 1 encoder
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1. Manifold of Model 2 encoder
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1. Manifold of Model 2 encoder w/ Procrustes transformation
Figure 2. Manifolds of two-sided AI/ML model: w/ Procrustes transformation

Table 3. KPI of two-sided AI/ML model: w/ Procrustes transformation
	Case
	NMSE
	GCS

	Model 1 encoder + Model 1 decoder
	0.0105
	0.9953

	Model 2 encoder + Model 1 decoder
	1.4548
	0.4381

	Model 2 encoder w/ Procrustes transformation + Model 1 decoder
	0.0362
	0.9865



To increase the compatibility between two different models, it is also possible to apply regulations. In addition to the above evaluation, we applied isometry regularization to each of the Model 1 and the Model 2 to make the AE have scaled isometry properties [6]. If the AE has scaled isometry, the distance between two data in the input/output space is preserved as the scaled distance in the latent space. Therefore, the manifold formed in the latent space learns the geometric characteristics of input/output data, and models trained with statistically similar data can form geometrically similar manifolds. It should be noted that isometry regulation does not require interaction between the NW and the UE, and can be performed independently on each node. Figure 3 visualizes the manifold formed when the test set (e.g., dataset 4) is encoded with the Model 1 encoder, the Model 2 encoder, and the Model 2 encoder w/ Procrustes transformation, respectively when each model is trained with isometry regulation. Table 4 also shows the performance when the Model 2 encoder and Model 1 decoder are combined when each model is trained with isometry regulation. The reference is the performance of the Model 1 encoder and Model 1 decoder combined. As KPIs, NMSE and GCS were derived, and it can be seen that Model 2 encoder w/ Procrustes transformation under isometry regulation shows performance almost same with the reference.
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1. Manifold of Model 1 encoder
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1. Manifold of Model 2 encoder
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1. Manifold of Model 2 encoder w/ Procrustes transformation
Figure 3. Manifolds of two-sided AI/ML model: w/ Procrustes transformation; w/ isometry regulation

Table 4. KPI of two-sided AI/ML model: w/ Procrustes transformation; w/ isometry regulation
	Case
	NMSE
	GCS

	Model 1 encoder + Model 1 decoder
	0.0099
	0.9955

	Model 2 encoder + Model 1 decoder
	1.2201
	0.4956

	Model 2 encoder w/ Procrustes transformation + Model 1 decoder
	0.0099
	0.9954



Observation 1: AE based CSI compression can be trained separately at gNB and UE side in parallel when proper transformation and/or regulation is applied.

Proposal 1: For AI/ML based CSI compression sub use case in NR air interface, study AE based CSI compression including:
· Transformation to align different latent space(s) (e.g., Procrustes transformation)
· Regulation to have geometric similarities between different latent space(s) (e.g., isometry regulation)

When AE-based CSI compression is performed with parallel training (e.g., training collaboration type 3), as mentioned above, it may be necessary to share a dataset (e.g., dataset 3) for aligning the manifolds of AI/ML models between the gNB and the UE. In the previous experiment, the size of the shared dataset was set large enough (e.g., 5e3) to ensure compatibility between AI/ML models trained in parallel, but the size of the shared dataset can be further optimized when considering the resource overhead for dataset sharing in the commercial network. Table 5 below shows the GCS performance of the proposed method (e.g., Procrustes transformation and isometry regulation) according to the size of the shared dataset. According to the experimental results, it was shown that the proposed scheme can have almost same GCS performance with the reference (e.g., Model 1 encoder + Model 1 decoder) with only 50 of shared data.

Table 5. KPI of two-sided AI/ML model: w/ varying shared dataset size
	Case
	Size of shared dataset
	NMSE
	GCS

	Model 1 encoder + Model 1 decoder
	-
	0.0099
	0.9955

	Model 2 encoder + Model 1 decoder
	-
	1.2201
	0.4956

	Model 2 encoder w/ Procrustes transformation + Model 1 decoder
	5e3
	0.0099
	0.9954

	
	5e2
	0.0125
	0.9944

	
	5e1
	0.0248
	0.9906

	
	5e0
	1.0880
	0.5869



Observation 2: When AE based CSI compression is trained separately at gNB and UE side in parallel, the size of shared dataset required for alignment between AI/ML models can be significantly smaller compared to the overall training dataset size.

PCA based CSI compression
Another type of AI model besides AE, PCA (Principal Component Analysis) based AI Model, can also be considered for CSI compression sub use case. The architecture of the PCA based CSI compression is in Figure 4.
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Figure 4. PCA based CSI compression

In PCA-based CSI compression, the dimensionality reduction of the encoder is performed using PCA, which is different from the AE, which uses deep learning for dimensionality reduction. In the below, we present detailed procedure for the PCA based CSI compression.

Encoder (CSI compression)
Encoder of the PCA based AI model gets wireless channel information, eigenvector(s), as input data and generates compressed information, CSI feedback information, as output data. Encoder of the PCA based AI model is composed of following functions:

· Downsampling (if applied)
· Downsampling can be applied to reduce amount of data to be processed. For example, compressing eigenvectors of a portion of subbands can be done instead of compressing all subbands’ eigenvectors.
· Dimension reduction (PCA)
· Dimension reduction is to transform high dimensional eigenvector(s) data into low dimensional latent variables. Low dimensional latent variables are desirable to be uncorrelated for efficient encodings. AI/ML techniques can be applied in the dimension reduction function. PCA is a well-known ML based linear dimension reduction technique which transform high dimensions of original data into uncorrelated lower dimensions. Transformation using PCA is in Figure 5.
· Quantization.
· Quantization is to map the latent variables (eigenvectors in lower dimensional) in floating point to the limited length of binary variables for feedback through the feedback data transmission. Many design choices can be made, for example, uniform quantization can be applied for binarization.
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Figure 5. Transformation (dimension reduction) using PCA

Decoder (channel information recovery)
Decoder of the PCA based AI model gets received CSI feedback information in binary sequences as input data and generates recovered wireless channel information, eigenvector(s), as output data. Decoder part of the PCA based AI model is composed of following functions:

· Dequantization
· Dequantization is an inverse process of the quantization in the encoder, which is to convert received CSI feedback information in form of a binary sequence to the latent variables in floating points. 
· Reconstruction
· Reconstruction is also an inverse process of the dimension reduction in the encoder, which is to reconstruct the high dimensional eigenvector(s) from the latent variables. When the dimension reduction in the encoder is conducted by using PCA, inverse PCA is conducted to reconstruct the eigenvector(s).
· Restoration (including upsamping).
· Restoration has following purposes:
· Upsampling (if downsampling is applied in the encoder)
· Noise reduction
, where the upsampling is to predict missed information by the downsampling process in the encoder. A simple upsampling technique can be the interpolation filtering. Besides to the information loss by the downsampling, the dimension reduction and quantization induce noises on the reconstructed eigenvector(s). By performing restoration, such noises can be reduced. Restoration can rely on the deep neural networks, such as DNN, CNN, Transformer, and many mores.

Training of the PCA based AI Model
Training of the PCA based AI model is divided into two parts:

· Training the encoder of the PCA based AI model (dimension reduction)
· For the PCA for dimension reduction process in the encoder, UE should perform PCA using the training samples of eigenvector(s) and get principal components of the eigenvector(s), or receive principal components from the other entity (e.g., gNB).
· Training the decoder of the PCA based AI model (reconstruction and restoration).
· For the inverse PCA for reconstruction process in the decoder, gNB should also perform PCA using the training samples of eigenvector(s) to get principal components of the eigenvector(s), or receive principal components from the other entity (e.g., UE).
· For the restoration process in Decoder, gNB should train the neural network for restoration using the training samples of eigenvector(s) to get the upsampled clean eigenvector(s). To train the neural network for restoration, training entity should preprocess the input data (eigenvector(s)) using downsampling, dimension reduction, quantization, dequantization, and reconstruction. The output of preprocessing is reconstructed downsampled (if applied) eigenvector(s) and this is input of the neural network for restoration. Target of the neural network for restoration is clean and full channel data input (eigenvector(s)). The training process is in the Figure 6.

 [image: ]
Figure 6. Training the restoration neural network

For the training of the PCA based AI Model, joint training of the model at a single side (Type 1) is possible. When the model is trained at gNB-side, gNB can get principal components for both PCA and inverse PCA using the dataset. The restoration NN can also be trained at the gNB-side as in the Figure 6. For the PCA operation of the encoder, the principal components need to be delivered to the UE-side from the gNB-side. In addition to the joint training at a single side, separate training at network (gNB) side and UE side (Type 3) in parallel is also possible to train the PCA based AI model. In the separate training, principal components are obtained at the gNB-side and the restoration NN also trained at the gNB-side. Independent to the gNB-side, principal components can also be obtained by the UE-side. When the dataset for training is shared between gNB and UE sides, UE and gNB sides may get identical principal components. Is is important to note that sharing same dataset at gNB and UE sides is not mandatory. In other words, UE and gNB-sides may get similar principal components whenever the distribution of dataset is similar, by the property of PCA.

Observation 3: PCA based CSI compression can either be trained jointly at a single side (gNB or UE sides) or separately at gNB and UE sides in parallel.

Proposal 2: For AI/ML model-based CSI compression sub use case in NR air interface, study PCA based CSI compression.

Other sub-use cases
In our view, one another important sub-use case for AI/ML for CSI feedback enhancement is CSI prediction in time domain. The main objective of CSI prediction is to overcome CSI mismatches by UE’s mobility and/or channel aging which is between CSI measurement and actual transmission time.

Proposal 3: For AI/ML for CSI feedback enhancement, study time-domain CSI prediction as another sub-use case.

[image: ]
Figure 7. AI/ML models for time-domain CSI prediction sub-use case

Conclusion
In this contribution, ETRI’s views on other aspects of AI/ML framework for CSI feedback enhancement use case were shown and the following proposals and observations were made:

Observation 1: AE based CSI compression can be trained separately at gNB and UE side in parallel when proper transformation and/or regulation is applied.

[bookmark: _GoBack]Observation 2: When AE based CSI compression is trained separately at gNB and UE side in parallel, the size of shared dataset required for alignment between AI/ML models can be significantly smaller compared to the overall training dataset size.

Observation 3: PCA based CSI compression can either be trained jointly at a single side (gNB or UE sides) or separately at gNB and UE sides in parallel.

Proposal 1: For AI/ML model-based CSI compression sub use case in NR air interface, study AE based CSI compression including:
· Transformation to align different latent space(s) (e.g., Procrustes transformation)
· Regulation to have geometric similarities between different latent space(s) (e.g., isometry regulation)

Proposal 2: For AI/ML model-based CSI compression sub use case in NR air interface, study PCA based CSI compression.

Proposal 3: For AI/ML for CSI feedback enhancement, study time-domain CSI prediction as another sub-use case.
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