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Introduction
This contribution presents ETRI’s views on the evaluation of AI/ML for CSI feedback enhancement use case for the AI/ML for NR Air Interface study [1].

	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
- Initial set of use cases includes: 
o	CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
o	Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
o	Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
…




Discussion
Evaluation methodologies for AI/ML for CSI feedback enhancement
In this section, we discuss evaluation methodologies for AI/ML for CSI feedback enhancement.

Quantization/dequantization
In RAN1 #110bis-e meeting, quantization/dequantization issues have been brought up, including: whether/how to handle different quantization/dequantization methods between NW and UE [8]. 

We can consider two output types of UE-side AI model as:
· Case 1 : A binary sequence of CSI payload
· Case 2 : An unquantized latent variable.

For Case 1, UE should have independently trained AI models with different output sizes (i.e., CSI payload sizes). 

For Case 2, UE should apply an additional quantization (binarifying) module to convert an unquantized latent variable to a binary sequence (CSI payload). Also, the dequantization module of gNB-side should be aligned with the quantization method of UE-side. As shown in Figure 1, a trained UE-side AI model can be applied for different CSI payload sizes using different quantization methods. For example, when the dimension of the latent variable is L, by applying Q bits scalar quantization method for each latent variable’s dimension, CSI payload size of Q*L bits can be generated and delivered to the gNB-side.
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[bookmark: _GoBack]Figure 1. Supporting various CSI payload sizes using quantization

Proposal 1: Study the UE-side AI/ML model with unquantized latent variable as an output and generating CSI payload using an additional quantization method on the unquantized latent variable for scalability regarding various CSI payload sizes.

Multiple ranks
In RAN1 #110bis-e meeting, an issue on how to set up AI/ML models for multiple ranks situation was brought up and discussed [8]. There were 4 options regarding the type of AI/ML models for multiple ranks as:
	· Option1 (rank specific): Separated AI/ML models are trained per rank value and applied for corresponding ranks to perform individual inference.
· Option2 (rank common): A unified AI/ML model is trained and applied for adaptive ranks to perform inference. 
· Option3 (layer specific): Separated AI/ML models are trained per layer value and applied for corresponding layers to perform individual inference.
· Option4 (layer common): A unified AI/ML model is trained and applied for each layer to perform individual inference.



In cases of rank or layer specific models (Option 1 or 3), multiple and independent AI/ML models for specific rank or layer values should be defined and trained.
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Figure 2. Applying a rank-common AI/ML model for rank-1/2 inputs
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Figure 3. Applying a layer-common AI/ML model for rank-2 input

In cases of rank and layer common models (Option 2 and 4), a common AI/ML model is applied to multiple rank values. As shown in Figure 2, a rank-common AI/ML model (UE-side model) can be applied to generate CSI payloads of both rank-1 and rank-2 inputs. Similar to the rank-common AI/ML model, a layer-common AI/ML model can also be applied to generate CSI payloads of different ranks. The difference of the layer-common AI/ML model to the rank-common AI/ML model is that the layer-common AI/ML model repetitively operates on per-layer inputs while the rank-common AI/ML model operates on the entire input (input of multiple layers). An example of the layer-common AI/ML model (UE-side model) generating CSI payloads of rank-2 inputs is in Figure 3.

When we consider the scalability of multiple ranks, AI/ML model with Option 2 and 4 are preffered.

Proposal 2: For the AI/ML based CSI compression sub use case with rank >= 1, study rank-common and layer-common AI/ML models with higher priority.

Training collaborations of two-sided AI/ML model
In RAN1 #110bis-e, conclusions of example procedure for training collaboration type 3 (separate training at network and UE sides) with sequential training has been made [7]. For training collaboration type 3, parallel training can also be considered. 

For parallel training of training collaboration type 3, it can be assumed that the dataset sharing is not a mandatory between network and UE sides. Network and UE sides can acquire the training dataset by its own method. Since the training is occur in UE and NW side parallely, there no distinction between ‘starting in UE side’ and ‘starting in NW side’ in training persepective.
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Figure 4. An example of parallel training procedure

Detailed procedure of the parallel training is presented as follows:
Step 1: The encoder is trained at UE or UE-side server using its own dataset. At the same time, the decoder is trained at NW using its own dataset. A regulation to have geometric similarities between different training entity (e.g., isometry regulation [9]) can be applied if needed.

Proposal 3: For the evaluation of Type 3 (Separate training at NW side and UE side), the following procedure is considered for the parallel training:
· Step 1: The encoder is trained at UE or UE-side server using its own dataset. At the same time, the decoder is trained at NW using its own dataset. A regulation to have geometric similarities between different training entity (e.g., isometry regulation [9]) can be applied if needed.


Initial evaluation results on CSI compression sub use case
In this section, we provide initial evaluation results on CSI compression sub use case based on LLS (link level simulations).

Evaluation assumption
For evaluation of AI/ML based CSI compression sub use case, the wireless channel data generated using the LLS for AI/ML based CSI compression sub use case. The parameters used for the LLS are provided in Table 1.

Table 1. Parameters for the LLS
	Parameter
	Value

	Carrier frequency
	2 GHz

	BWP
	48 RBs

	Subcarrier spacing
	15 kHz

	Subband/PRG size
	4 RBs

	Number of transmit antennas ()
	32

	Number of receive antennas ()
	4

	Number of layers
	1

	Delay profile
	CDL-C

	Delay spread
	30ns, 300ns

	Channel estimation
	Ideal 




Autoencoder based AI model for CSI compression
For AI/ML based CSI compression sub use case, AI model at UE (Encoder) gets a wireless channel information as the input and generates compressed feedback information as the output and AI model at gNB (Decoder) gets compressed feedback information as the input and generates the original wireless channel information as the output. 

Autoencoder architecture is deployed for the evaluation of CSI compression. The architecture of Autoencoder is in Figure 5.
[image: ]
Figure 5. Architecture of the Autoencoder

We set subband eigenvectors as input of Encoder and output of Decoder in the evaluation. Number of latent variables are M and and Q bits are used to represent each latent variable, i.e. size of CSI feedback information is MQ bits.

The Encoder and Decoder in Autoencoder architecture are deployed using neural networks and design choices of the neural networks can be made with considerations of performance and complexity. In [3], CsiNet is presented for Autoencoder structure for compression and reconstruction of the wireless channel information in time delay and angular spread domain. We use neural network structure of encoder and decoder in [3] and have made several modifications for the alignment with input, latent and output formats. Figure 6 shows the modified CsiNet model for AI/ML based CSI compression. 
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Figure 6. Modified CsiNet model for AI/ML based CSI compression

In order to train the AI Model, training samples are collected by the LLS. The parameters of AI Model and training are in Table 2. 
Table 2. Parameters of AI Models
	Parameter
	Value

	Total number of samples
	5e4

	Portion of validation samples
	0.1

	Batch size
	256

	Total number of epoches
	512

	Learning algorithm
	Adam

	Learning rate
	0.001




PCA based AI model for CSI compression
For AI/ML based CSI compression sub use case, another type of two-sided AI model besides Autoencoder, PCA (Principal Component Analysis) based AI Model, can also be considered for CSI compression sub-use case. The architecture of the PCA based AI model is in Figure 7.
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Figure 7. PCA based AI Model for CSI compression

AI/ML model for restoration 
For PCA based AI model for CSI compression, restoration is performed at the last stage of the Decoder. The restoration is to remove noises of the reconstructed channel data, where the noises are induced during downsampling, dimension reduction, and quantization. Many choices can be made for designing neural network (NN) for the restorations. For example, Multi-layer Perceptron (MLP), Convolutional Neural Networks (CNN), and many other NN architectures can be used for the restoration.

We use Transformer network architecture for the restoration NN in the Decoder. Transformer network is one of Recurrent Neural Network (RNN) and RNNs can process variable length of data sequences. The restoration NN in Decoder gets (reconstructed) eigenvectors of subbands as an input sequence and puts restored eigenvectors of subbands as an output sequence. 

Evaluation results on reconstruction performances
To see potential benefits of using AI/ML for CSI compression sub use case, we use an intermediate performance metric of SGCS (squared generalized cosine similarity) as 

, where  and  are original and reconstructed eigenvector(s) of subband  and denotes averaging over multiple samples. We use Rel-16 enhanced type 2 codebook as a reference and evaluates the performance of using the AI model for CSI compression compared to the reference scheme.

The evaluation results of the AI Model compared to eTypeII codebook in terms of SGCS with CDL-C channel model with 30ns delay spread is in Table 3.

Table 3. SGCS of eTypeII and AI Models (CDL-C, 30ns)
	Case
	SGCS

	eTypeII, 49 bits
	0.783

	AE based AI Model, 48 bits (M=12, Q=4)
	0.841

	PCA based AI Model, 48 bits
	0.842

	eTypeII, 87 bits
	0.886

	AE based AI Model, 86 bits (M=43, Q=2)
	0.93

	PCA based AI Model, 86 bits
	0.904



The result with CDL-C channel model with 300ns delay spread is in Table 4.

Table 4. SGCS of eTypeII and AI Models (CDL-C, 300ns)
	Case
	SGCS

	eTypeII, 49 bits
	0.552

	AI Model, 48 bits (M=12, Q=4)
	0.602

	PCA based AI Model, 48 bits
	0.703

	eTypeII, 87 bits
	0.613

	AI Model, 86 bits (M=43, Q=2)
	0.799

	PCA based AI Model, 86 bits
	0.762



Observation 1: With an Autoencoder using a previously developed neural network structure, CsiNet, there are significant improvements in terms of SGCS compared to the baseline (eTypeII) in CSI compression sub use case.


Initial evaluation results on generalization performances
In RAN1 #110, agreements for verifying generalization performances on various scenarios/configurations are made as follow [6].

	Agreement
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.

Agreement
For CSI enhancement evaluations, to verify the generalization performance of an AI/ML model over various scenarios, the set of scenarios are considered focusing on one or more of the following aspects as a starting point:
· Various deployment scenarios (e.g., UMa, UMi, InH)
· Various outdoor/indoor UE distributions for UMa/UMi (e.g., 10:0, 8:2, 5:5, 2:8, 0:10)
· Various carrier frequencies (e.g., 2GHz, 3.5GHz)
· Other aspects of scenarios are not precluded, e.g., various antenna spacing, various antenna virtualization (TxRU mapping), various ISDs, various UE speeds, etc.
· Companies to report the selected scenarios for generalization verification

Agreement
For CSI enhancement evaluations, to verify the generalization/scalability performance of an AI/ML model over various configurations (e.g., which may potentially lead to different dimensions of model input/output), the set of configurations are considered focusing on one or more of the following aspects as a starting point:
· Various bandwidths (e.g., 10MHz, 20MHz) and/or frequency granularities, (e.g., size of subband)
· Various sizes of CSI feedback payloads, FFS candidate payload number
· Various antenna port layouts, e.g., (N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)
· Other aspects of configurations are not precluded, e.g., various numerologies, various rank numbers/layers, etc.
· Companies to report the selected configurations for generalization verification
· Companies are encouraged to report the method to achieve generalization over various configurations to achieve scalability of the AI/ML input/output, including pre-processing, post-processing, etc.



In this section, we provide some initial evaluation results on generalization performances on following various configuration:
· Various bandwidths
· Various frequency granularity
· Various CSI payload sizes.

Various bandwidths
We consider various bandwidths and evaluates the performances. We assume same evaluation environment as in the Section 2.2.1. To train AI/ML models for various configurations, datasets are gathered from following different configurations.

Table 5. Datasets for various bandwidths
	Datasets
	Configurations

	Dataset #1
	12 subbands (48 RBs of BW)

	Dataset #2
	6 subbands (24 RBs of BW)



Because the shape of dataset #1 and #2 are different and to train or make inference for the various configurations using an AI/ML model, it is required to support different sizes of input for the AI/ML model. Moreover, generating different size of outputs (e.g., proportional to the input size) is required. These make restrictions on neural network designs for CSI compression, e.g., MLP based architecture cannot support neither different sizes of input nor different sizes of output.

Observation 2: For operation of AI/ML model over various bandwidths (or subband sizes), it is required that the AI/ML model to support variable sizes of input and output.

The autoencoder (AE) based AI model in the section 2.2.2 is a modified Csinet and does not support variable sizes of input because the model contains several dense (fully-connected) layers whose input and output dimension is predetermined and cannot be changed after the model definition. Besides, the PCA based AI/ML model in the section 2.2.3 supports various sizes of input and output because the restoration NN is based on Transformer network which can get and generate variable lengths of sequences. 

Observation 3: The PCA based AI/ML for CSI compression can be designed to support various bandwitdth (or subband sizes).

When the AI/ML model can support various number of subbands, it is also desirable to generate various size of CSI feedback payload to the number of subbands. It is quite natural to have larger amount of compressed data with larger input data, and also for vice versa. However, the amount of compressed data might not be simple proportional to the number of input subbands, because there are common information shared among subbands.
 
The PCA based AI model can generate two types of CSI feedback payload, which are wideband CSI and subbands’ CSI information. In our evaluation, 30 bits are for wideband information and 14 bits are for each subband information. In Encoder, downselecting 1/3 of subbands is applied. By using this configuration, the PCA based AI model generates 86 bits CSI feedback payload for 12 subbands, and 58 bits CSI feedback payload for 6 subbands.

We train the PCA based AI model as following 3 cases:
· Case 1: Train the AI model using Dataset #1 only
· Case 2: Train the AI model using Dataset #2 only
· Case 3: Train the AI model using both of Dataset #1 (50%) and Dataset #2 (50%).
Then, we evaluate the performances of 12 subbands (same configuration with Dataset #1) using the AI models in each case. Following table shows the evaluation result with CDL-C channel model with delay spread of 30ns.

Table 6. Evaluation result of various number of subbands (CDL-C, 30ns of DS)
	AI Model training
	SGCS

	Case 1
	0.904

	Case 2
	0.895

	Case 3
	0.9



Observation 4: In evaluation of AI/ML for CSI compression over various bandwidths, both PCA based AI models trained using datasets of smaller bandwidth (Case 2) and mixed datasets (Case 3) achieve almost same performance of the model trained using the dataset of target configuration (Case 1) in channel with low delay spread (30ns).

The result with CDL-C channel model with delay spread of 300ns is in following table.

Table 7. Evaluation result of various number of subbands (CDL-C, 300ns of DS)
	AI Model training
	SGCS

	Case 1
	0.761

	Case 2
	0.729

	Case 3
	0.759



Observation 5: In evaluation of AI/ML for CSI compression over various bandwidths, a PCA based AI models trained using mixed datasets (Case 3) achieve almost same performance of the model trained using the dataset of target configuration (Case 1) in channel with high delay spread (300ns).


Various frequency granularity
We consider various frequency granularity and repeat the similar evaluation as in the previous section. We generate datasets to train AI/ML model for CSI compression with considering following different configurations.

Table 7. Datasets for various frequency granularity
	Datasets
	Configurations

	Dataset #1
	12 subbands (48 RBs of BW, 4 RBs per subband)

	Dataset #2
	6 subbands (48 RBs of BW, 8 RBs per subband)



Similar to the evaluation on the various bandwidths, the PCA based AI/ML model can be designed to support various frequency granularities by the property of the restoration NN (Transformer), i.e., restoration NN is based on Transformer network which can get and generate variable lengths of input and output sequences. 

Observation 6: The PCA based AI/ML for CSI compression can be designed to support various frequency granularity.

We train the PCA based AI model as following 3 cases:
· Case 1: Train the AI model using Dataset #1 only
· Case 2: Train the AI model using Dataset #2 only
· Case 3: Train the AI model using both of Dataset #1 (50%) and Dataset #2 (50%).
Then we evaluate the performances of 4 RBs of subband size (same configuration with Dataset #1).

Table 8. SGCS of PCA based AI Models for evaluation of various frequency granularities
	AI Model training
	SGCS

	Case 1
	0.904

	Case 2
	0.902

	Case 3
	0.899



Observation 7: In evaluation of AI/ML for CSI compression over various frequency granularities, both PCA based AI models trained using datasets of smaller subband size (Case 2) and mixed datasets (Case 3) achieve almost same performance of the model trained using the dataset of target configuration (Case 1).

Various CSI feedback payload sizes
We consider various CSI feedback payload sizes and repeat similar evaluations in the previous sections. For consideration of various CSI feedback payload sizes, datasets (input) of AI/ML model can be identical. However, to support different CSI feedback payload size using an AI/ML model, Encoder need to generate various sizes of CSI feedback payloads for a fixed size of input data. As well as Encoder, Decoder also required to generate a fixed size of output data by getting various sizes of CSI feedback payload. One simple way to achieve this is by quantizations. For example, the AE based AI Model can generates 86 bits of CSI feedback payload by quantizing 43 output nodes of Encoder by 2 bits each output. By changing quantization bit lengths of each output node of Encoder, the AI Model can generate different payload sizes.

Observation 8: The AE based AI Model for CSI compression can generate various CSI feedback payload sizes by controlling quantization bit lengths.

The PCA based AI Model can further change payload sizes by controlling number of reduced dimensions to represent the input data (e.g., eigenvector) and number of bits to quantize each dimension. For example, an input eigenvector can be reduced to 4 dimensions and quantized using 4, 4, 2 and 2 bits for each dimensions, respectively, then 12 bits of CSI payload can be generated.

Observation 9: The PCA based AI Model for CSI compression can generate various CSI feedback payload sizes by controlling dimension reduction and quantizations.

We train the PCA based AI model as following 3 cases:
· Case 1: Train the AI model using 156 bits of CSI feedback payload (max. 12 dimensions)
· Case 2: Train the AI model using 86 bits of CSI feedback payload (max. 8 dimensions)
· Case 3: Train the AI model using both of 156 bits (50%) and 86 bits (50%) of CSI feedback payload
And we evaluate the performances of 156 bits of CSI feedback payload.

Table 9. SGCS of PCA based AI Models for evaluation of various CSI feedback payload sizes
	AI Model training
	SGCS

	Case 1
	0.952

	Case 2
	0.888

	Case 3
	0.949



Observation 10: In evaluation of AI/ML for CSI compression over various CSI feedback payload sizes, a PCA based AI model trained with the mixed dataset (Case 3) achieves almost same performance of a model trained with the dataset of target configuration (Case 1).



Conclusion
In this contribution, ETRI’s views on evaluation on AI/ML for CSI feedback enhancement were shown and the following proposals and observations were made:

Proposal 1: Study the UE-side AI/ML model with unquantized latent variable as an output and generating CSI payload using an additional quantization method on the unquantized latent variable for scalability regarding various CSI payload sizes.

Proposal 2: For the AI/ML based CSI compression sub use case with rank >= 1, study rank-common and layer-common AI/ML models with higher priority.

Proposal 3: For the evaluation of Type 3 (Separate training at NW side and UE side), the following procedure is considered for the parallel training:
· Step 1: The encoder is trained at UE or UE-side server using its own dataset. At the same time, the decoder is trained at NW using its own dataset. A regulation to have geometric similarities between different training entity (e.g., isometry regulation [9]) can be applied if needed.

Observation 1: With an Autoencoder using a previously developed neural network structure, CsiNet, there are significant improvements in terms of SGCS compared to the baseline (eTypeII) in CSI compression sub use case.

Observation 2: For operation of AI/ML model over various bandwidths (or subband sizes), it is required that the AI/ML model to support variable sizes of input and output.

Observation 3: The PCA based AI/ML for CSI compression can be designed to support various bandwitdth (or subband sizes).

Observation 4: In evaluation of AI/ML for CSI compression over various bandwidths, both PCA based AI models trained using datasets of smaller bandwidth (Case 2) and mixed datasets (Case 3) achieve almost same performance of the model trained using the dataset of target configuration (Case 1) in channel with low delay spread (30ns).

Observation 5: In evaluation of AI/ML for CSI compression over various bandwidths, a PCA based AI models trained using mixed datasets (Case 3) achieve almost same performance of the model trained using the dataset of target configuration (Case 1) in channel with high delay spread (300ns).

Observation 6: The PCA based AI/ML for CSI compression can be designed to support various frequency granularity.

Observation 7: In evaluation of AI/ML for CSI compression over various frequency granularities, both PCA based AI models trained using datasets of smaller subband size (Case 2) and mixed datasets (Case 3) achieve almost same performance of the model trained using the dataset of target configuration (Case 1).

Observation 8: The AE based AI Model for CSI compression can generate various CSI feedback payload sizes by controlling quantization bit lengths.

Observation 9: The PCA based AI Model for CSI compression can generate various CSI feedback payload sizes by controlling dimension reduction and quantizations.

Observation 10: In evaluation of AI/ML for CSI compression over various CSI feedback payload sizes, a PCA based AI model trained with the mixed dataset (Case 3) achieves almost same performance of a model trained with the dataset of target configuration (Case 1).
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