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[bookmark: _Hlk102058846]Introduction
In RAN#94-e [1], the study item for AI/ML has been approved for NR Air Interface. In this contribution, we discuss evaluation methodology, KPI and target scenarios for AI/ML beam management and provide preliminary evaluation results for AI/ML aided beam prediction.      
Discussions
Evaluation methodology
For AI/ML, need of specification enhancements should be well justified with appropriate baseline and KPIs with proper target scenarios. In addition, complex specification enhancements should be avoided unless benefits are justified. In this section, we provide our views on evaluation methodologies including baseline, KPIs and Target scenarios for AI/ML aided beam management.
Baseline 
Discussion on levels of inter-node coordination and information exchange is the most important aspect for evaluation as different levels of coordination and information exchange generally provide different levels of performance benefits. In RAN#93-e [2] and RAN#94-e [3], the following levels of inter-node coordination and information exchange were provided during the discussion.
	0a) No collaboration framework: AI/ML algorithms purely implementation based and not requiring air-interface changes.

0b) No collaboration framework with modified Air-Interface catering to efficient implementation-based AI/ML algorithms.

1) Inter-node assistance to improve the respective nodes’ AI/ML algorithms. This would apply to UEs getting assistance from gNBs (for training, adaptation, etc.) and vice-versa. This level does not require model exchange between network nodes. 

2) Joint ML operation between UEs and gNBs. This level requires AI/ML model instruction or exchange between network nodes.



It should be noted that legacy beam management with Rel-17 without AI/ML algorithms is not an appropriate baseline as implementation-based AI/ML operation is available for UE and gNB implementations. On the other hand, implementation based AI/ML algorithm (level 0a)) could be an appropriate baseline to accurately evaluate the benefits of AI/ML with specification enhancements as implementation based AI/ML algorithm shows actual achievable performance without specification enhancements. 
Observation 1: Legacy beam management with Rel-17 without AI/ML algorithms is not an appropriate baseline as implementation-based AI/ML operation is available for UE and gNB implementations.
Proposal 1: ‘No collaboration framework: AI/ML algorithms purely implementation based and not requiring air-interface changes’ could be an appropriate baseline to accurately evaluate the benefits of AI/ML with specification enhancements.

Verification of the generalization performance
In RAN1#110bis-e [5], the following working assumption has been made on verification of the generalization performance: 
	Working Assumption
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.

Agreement
· For BM Case-1 and BM Case 2, to verify the generalization performance of an AI/ML model over various scenarios/configurations, the set of scenarios/configurations are considered focusing on one or more of the following aspects as a starting point:
· Scenarios
· Various deployment scenarios 
· Various outdoor/indoor UE distributions 
· Various UE mobility 
· Configurations
· Various UE parameters 
· Various gNB settings 
· [Various Set B of beam(pairs)]
· Other aspects of scenarios/configurations are not precluded
· The selected scenarios/configurations for generalization verification may consider the AI model inference node (e.g., @UE or @gNB) and use case (e.g., BM-Case1, or BM-Case2)
· Companies to report the selected scenarios/configurations for generalization verification
· Note: other approaches for achieving good generalization performance for AI/ML-based schemes are not precluded.



In general, AI/ML models provide expected functionality and benefits for inference when statistical characteristics of input for inference are aligned with statistical characteristics of input for training. Given that, it is preferred to use AI/ML models with the identical statistical characteristics. However, application of AI/ML model trained in one implementation to another implementation is an attractive option considering various scenarios in practical implementations. Having said that, evaluation of generalizability of AI/ML models for beam management generalization would be one important aspect for studying benefits of AI/ML models for beam management. As shown in the above, the working assumption include 4 cases for evaluating generalization.
· Case 1: This is to apply identical scenarios and configurations for both training and inference. Having said that, Case 1 can be used as a baseline to compare generalization performance of AI/ML models for beam management.  
· Case 2: Case 2 can be a basic scenario for evaluating generalization of AI/ML for beam management. For different scenarios and configurations, various parameters such as mobility, channel models and indoor/outdoor can be considered.
· Case 2A: This case is to update the trained AI/ML with a data set from different scenarios and configurations. At this stage, we don’t see clear motivation to support Case 2A. 
· Case 3: This case is to support training and inference with a data set for mixed scenarios. Although the data set is acquired from multiple scenarios, if the traninig data set and the inference data set are from a same set of scenarios, we don’t see clear difference between Case 1 and Case 3. 
Proposal 2: For verification of generalization performance, confirm Case 1 and Case 2 and further study Case 2A and Case 3.

KPIs
In RAN1#110bis-e [5], the following agreements and working assumptions have been made on possible KPI options: 
	Agreement
· The options to evaluate beam prediction accuracy (%):
· Top-1 (%): the percentage of “the Top-1 genie-aided beam is Top-1 predicted beam”
· Top-K/1 (%): the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
· Top-1/K (%) (Optional): the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Where K >1 and values can be reported by companies.

Agreement 
· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam considers the following options 
· Option A, the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B, the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams

Agreement 
· For DL Tx-Rx beam pair prediction, the definition of Top-1 genie-aided Tx-Rx beam pair considers the following options:
· Option A: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx and Rx beams
· Option B: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams

Working Assumption
For both BM-Case1 and BM-Case 2, the following table is adopted as working assumption for reporting the evaluation results.

Table X. Evaluation results for [BM-Case1 or BM-Case2] without model generalization for [DL Tx beam prediction or Tx-Rx beam pair prediction or Rx beam prediction]
	
	Company A
	……

	Assumptions
	Number of [beams/beam pairs] in Set A
	
	

	
	Number of [beams/beam pairs] in Set B
	
	

	
	Baseline scheme
	
	

	AI/ML model
input/output
	Model input
	
	

	
	Model output
	
	

	Data Size
	Training
	
	

	
	Testing
	
	

	AI/ML model
	[Short model description]
	
	

	
	Model complexity
	
	

	
	Computational complexity
	
	

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	[KPI A]
	
	

	
	
	[KPI B]
…
	
	

	
	[L1-RSRP Diff]
	[Average L1-RSRP diff]
…
	
	

	
	[System performance]
	[RS overhead Reduction (%)/
RS overhead]
	
	

	
	
	[UCI report]
	
	

	
	
	[UPT]
…
	
	



To report the following in table caption: 
· Which side the model is deployed
Further info for the columns:
· Assumptions
· Number of beams/beam pairs in Set A
· Number of beams/beam pairs in Set B
· Baseline scheme, e.g., Option 1 (exhaustive beam sweeping), Option 2(based on measurements of Set B), or baseline described by companies
· Other assumptions can be added later based on agreements
· Model input: input type(s)
· Model output: output type(s), e.g., the best DL Tx and/or Rx beam ID, and/or L1-RSRPs of N beams(pairs) 
· Dataset size, both the size of training/validation dataset and the size of test dataset
· Short model description: e.g., CNN, LSTM
· Model complexity, in terms of “number of model parameters” and/or size (e.g. Mbyte)”, and 
· Computational complexity in terms of FLOPs
· Evaluation results: agreed KPIs, with AI/ML / with baseline scheme (if applicable)
Note: To report other simulation assumptions, if any.

Working assumption
· For the evaluation of the overhead for BM-Case1, further study the following two metrics for potential down selection:
· Option A: RS overhead reduction, FFS for potential down selection:
· Option 1: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· where M is the total number of beams (pairs) to be predicted 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme 
· Companies report the assumption on beam sweeping
· Option 3: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· where M is the total number of beams (pairs) to be predicted 
· FFS the following alternatives consider different targets (e.g., beam or beam pair) for prediction: 
· Alt1: P is the number of Top-K selected beams (pairs) for beam sweeping (if applicable)
· Alt2: P is the number of Top-K selected beams (pairs) not in Set B for beam sweeping (if applicable)
· Alt3: P is the number of beams used for beam sweeping to get the best Rx beam (if applicable)
· Companies report the assumption on beam sweeping
· Other options can be reported by companies 
· Option B: RS overhead, FFS for potential down selection:
· Option 1: RS OH = N, 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· Option 2: RS OH = N + P 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· FFS the following alternatives consider different targets (e.g., beam or beam pair) for prediction: 
· Alt1: P is the number of Top-K selected beams (pairs) for beam sweeping (if applicable)
· Alt2: P is the number of Top-K selected beams (pairs) not in Set B for beam sweeping (if applicable)
· Alt3: P is the number of beams used for beam sweeping to get the best Rx beam (if applicable)
· Companies report the assumption on beam sweeping
· Other options can be reported by companies






For KPIs, the following aspects should be considered to accurately evaluate benefits for AI/ML beam aided management.
· System performance related KPIs 
· Although beam prediction accuracy related KPIs (e.g., Avg. L1-RSRP difference) provide brief information on beam selection, beam prediction accuracy related KPIs do not provide overall insight on actual benefits considering the following aspects:
· Impact on system performance
· Obviously, a best beam with X% better L1-RSRP does not imply that system performance is enhanced with X%. The performance benefit could be smaller or larger based on channel characteristics of the selected beam. Having said that, specification enhancements should be justified based on actual system performance benefits such as throughputs not based on beam related KPIs such as L1-RSRP difference.
· Overhead for RS transmission and UE reporting
· One of the main benefits for spatial domain prediction is reducing RS overheads to support exhaustive searching for all beams. In addition, AI/ML based beam prediction can reduce required UE reporting overheads by predicting an optimized beam not deciding an optimized beam based on UE reporting. As beam prediction related KPIs only show L1-RSRP difference or beam selection probability, there’s no way to reflect the reduced overhead for RS transmission and UE reporting via spatial domain prediction.
· UE throughput considering RS overhead reduction 
· For system performance related KPIs, Avg. and 5% UE throughput should be used for evaluation. Other KPIs such as RS overhead reduction does not provide actual insight. For example, Y% RS overhead reduction does not mean Y% performance gain and actual performance can be worse if the gain from RS overhead reduction is smaller than the performance loss from beam selection.
· Metrics for RS overhead evaluation
· As shown in the above, RS overhead reduction and RS overhead were agreed as working assumption for further study. 
· For RS overehead reduction, 3 options were proposed as metrics. Although Option 1 and 2 can be considered as metrics for beam management with/without additional beam sweeping, Option 3 is not clear enough as only AI/ML model based beam management requires additional overhead.
· For RS overhead, the metric was defined based on number of beam not actual RS overheads. The metric for RS overhead reduction can be defined by using number of beams by assuming AI/ML based beam management and baseline use same RE overheads per beam. However, number of beams does not reflect actual RS overheads. In addition, RS overhead is not a metric for evaluation, but assumption for evaluation. 
· UCI report
· As well as RS overhead, UCI report overhead is not a metric for evaluation, but assumption for evaluation. Having said that, UCI report should be revised to UCI report overhead reduction. 
· Beam information related KPIs
· As discussed, beam information related KPI is not a measure to evaluate actual performance benefits from AI/ML based beam prediction, however, beam information related KPI can be used as a temporal measure to have an insight as beam information related KPI requires less computational overhead for evaluation. As shown in the above, three options for evaluating beam predicition accuracy has been agreed in RAN1#110bis-e [5].
· Average L1-RSRP difference of Top-1 predicted beam
· Difference between estimated L1-RSRP and actual L1-RSRP could be a good option to identify potential benefits of AI/ML aided beam prediction in addition to the approved options for beam prediction accuracy. 
· Definition of Top-1 genie-aided Tx beam and Tx-Rx beam pair
· In RAN1#110bis-e [5], two options were agreed for the definition of Top-1 genie-aided beam/beam pair. The first option is to consider all Tx and Rx beams, but the second option is to consider only specific Rx beam(s). For option 2, if the genie aided beam is from specific Rx beam(s), evaluated metrics such as beam accuracy does not reflect actual benefits from AI/ML based beam prediction and misleads interpretation of evaluation metric for AI/ML based beam prediction.
 
Observation 2: Beam information related KPI is not a measure to evaluate actual performance benefits from AI/ML based beam prediction, however, beam information related KPI can be used as a temporal measure to have an insight as beam information related KPI requires less computational overhead for evaluation.
Observation 3: Specification enhancements should be justified based on actual system performance benefits such as throughputs not based on beam related KPIs such as L1-RSRP difference.
Observation 4: The motivation of Option 3 () for RS overhead reduction is not clear there’s no need to support additional beam sweeping only for AI/ML based beam prediction.
Observation 5: Although RS overhead reduction can be defined by using number of beams by assuming AI/ML based beam management and baseline use same RE overheads perbeam, number of beams does not reflect actual RS overheads.
Observation 6: RS overhead is not a metric for evaluation, but assumption for evaluation.
Observation 7: UCI report overhead is not a metric for evaluation, but assumption for evaluation.

Proposal 3: Support system performance related KPIs as mandatory KPIs.
· Support Avg. and 5% UE tput for system performance KPIs.
Proposal 4: Approve the working assumption on the evaluation of the RS overhead without Option 3 for Option A and Option B.
Proposal 5: RS overhead and UCI report are reported as assumptions not as evaluation results.
Proposal 6: Define RS overhead by using actual RE overheads not using number of beams.
Proposal 7: Support beam information related KPIs as optional for temporal measures.
· Support average L1-RSRP difference of Top-1 predicted beam in addition to the agreed options for beam prediction accuracy (%).

Evaluation scenarios
In RAN1#110bis-e [5], the following agreements have been made for spatial/temporal domain beam prediction:
	Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference), FFS:
· Opt A: Set B is changed following a set of pre-configured patterns 
· Opt B: Set B is randomly changed among pre-configured patterns 
· Opt C: Set B is randomly changed among Set A beams (pairs) 
· The number of beams(pairs) in Set B can be fixed or variable
· Note: BM-Case1 and BM-Case2 may be considered for different option. 
· Other options are not precluded. 
· 



Based on the above agreements, the following discussions are provided on the evaluation scenarios.
· CSI-RS/SSB as RS resources
· As most of implemenations are using SSB for beam management to reduce RS overheads, utilization of SSB can be assumed as default RS resources. CSI-RS can be used as optional if preferred. 
· Set B is a subset of Set A
· As using same beamwidth for all channels and signals is a general implementation within a frequency range, using a subset of Set A as Set B is a reasonable option if Set A and Set B are utilized in a same frequency range. This is especially beneficial when Set A and Set B are in an identical frequency range. However, it is difficult to use a subset of Set A considering different beamwidths in different frequency ranges.
[image: ]
Figure 1. Example of ‘Set B is a subset of Set A’ for BM-Case1
· Set A and Set B are different
· As discussed, utilizing different beams is not a general option for different FRs. However, it is difficult to apply Alt.1 considering different beamwidths in different frequency ranges. In addition, it should be noted that utilization of wide beam information from a low frequency range has great potential as a low frequency range is more reliable and utilization of wide beam requires much less time and frequency resources for beam management. In our view, association between different frequency ranges should be supported for both between FR1 and FR2-1 and between FR2-1 and FR2-2. 
· Conventional scheme to obtain performance KPIs
· In this case, current specification for beam management should be used. For example, gNB prediction based on up to 4 UE reported best beams (i.e., CRIs) with L1-RSRP/SINR among Set B can be used for beam prediction. In addition, UL SRS based beam prediction method can be considered.Number of beams in Set B 
· Number of beams in Set B should be decided and reported by each company.

[bookmark: _Hlk111143983]Observation 8: As using same beamwidth for all channels and signals is a general implementation within a frequency range, using a subset of Set A as Set B is a reasonable option if Set A and Set B are utilized in a same frequency range. 
Observation 9: It is difficult to use a subset of Set A considering different beamwidths for beam management between different frequency ranges.
Observation 10: Utilization of wide beam information from a low frequency range has great potential as a low frequency range is more reliable and utilization of wide beam requires much less time and frequency resources for beam management.
Proposal 8: As most of implementations are using SSB for beam management to reduce RS overheads, utilization of SSB can be assumed as default RS resources. CSI-RS can be used as optional if preferred.
Proposal 9: Support ‘Set B is a subset of Set A’ when Set A and Set B are utilized in a same frequency range for both temporal/spatial domain prediction.
Proposal 10: Support ‘Set A and Set B are different’ when Set A and Set B are utilized in different frequency ranges for both temporal/spatial domain prediction.
Proposal 11: AI/ML based beam management based on association between different frequency ranges should supported for both between FR1 and FR2-1 and between FR2-1 and FR2-2.
Proposal 12: For conventional scheme to obtain performance KPIs, current specification for beam management (i.e., up to 4 CRIs with L1-RSRP/SINR or SRS based prediction) should be considered. 
Proposal 13: Number of beams in Set B should be decided and reported by each company.

Evaluation assumptions
This section provides our views on evaluation assumptions based on the agreed evaluation assumptions.
· Traffic model
· For beam information related KPIs, no traffic model is needed to be defined as UE is measuring reference signals not decoding actual PDSCHs.
· For system performance related KPIs, FTP traffic should be used to reflect practical traffics for the evaluation. 
· For FTP traffic model, FTP model 1 is not an appropriate option as FTP model generates a new UE for each packet. In this case, successful spatial/temporal domain beam prediction is not possible due to lack of the information. Between FTP model 2 and 3, FTP model 3 according to a Poisson process with arrival rate λ is preferred.
· UE distribution
· For full buffer traffic (if supported), 10 UEs per sector/cell was agreed. For FTP traffic, if number of UEs is increased and small number of packets arrive for each UE, then it is difficult to efficiently evaluate benefits from AI/ML based beam prediction. Given the situation, it is preferred to keep the same number of UEs per cell with the number for full buffer traffic with 50% and 70% RUs.
· For spatial domain beam prediction, two options were discussed for UE distribution. The first option was to support 80% indoor UEs and 20% outdoor UEs as defined in TR38.901 and the second option was to support 100% outdoor UEs. For time domain prediction, evaluation 100% outdoor UEs could be a reasonable option as baseline UE mobility assumption is 30km/h, however, applying 100% outdoor UEs for 3km/h is not a reasonable evaluation assumption. 

Proposal 14: For traffic model, support the following evaluation assumptions:
· For beam information related KPIs, no traffic model is needed to be defined as UE is only measuring reference signals not decoding actual PDSCHs.
· For system performance related KPIs, FTP traffic should be used to reflect practical traffics for the evaluation. 
· For FTP traffic model, FTP model 3 is preferred as generating a new UE for each packet (FTP model 1) is not appropriate for evaluating benefits from AI/ML based beam prediction. 
Proposal 15: For UE distribution, support the following evaluation assumptions:
· For FTP traffic model, 10 UEs per cell/sector with 50% and 70% RUs is preferred. 
· 80% outdoor UEs and 20% indoor UEs for spatial domain beam prediction as defined in TR 38.901 (Option 1).

Evaluation results
Spatial Prediction
In this section, we provide evaluation results of beam prediction based on partial RSRP measurements. Out of 115 beams per sector,50%/66% of the RSRP measurements are missing. The missing RSRP measurements are to be estimated using the available 50%/33% of received RSRP values. Table 1 shows Root Mean Square Error (RMSE) for estimated RSRP values when compared to the actual values. 
Table 1: Root Mean Square Error (RMSE) between AIML-estimated RSRPs and actual RSRPs
	Scenario
	50% Missing
	66% Missing

	100 % Outdoor UEs
	0.4273 dB
	0.7425 dB

	20% Outdoor UEs
80% Indoor UEs
	0.2888 dB
	0.5543 dB



As the % of missing RSRP measurement increases, RSRP estimation is evaluated by using a smaller number of input RSRP values which results in a higher estimation error.
In addition, Figures 1 and 2 provide accuracy of AIML-based, optimal beam selection, and baseline (beam selection based on available beams only without RSRP estimation) for two deployment scenarios (i.e., 100% Outdoor UEs, 80% Indoor UEs) with the following definition:
· Optimal: An optimal beam with the highest RSRP value based on actual RSRP values of the whole 115 beams.
· AIML-based: A beam with the highest RSRP value based on estimated RSRP values by AI/ML of the whole 115 beams.
· Baseline: A beam with the highest RSRP value based on measured RSRP values of the 50%/33% of 115 beams.
· [bookmark: _Hlk111134000]In this evaluation, we introduced error margin to observe meaningful accuracy of AIML-based beam selection. Based on the error margin, the best beam selected by AI was counted as misdetection only when the RSRP of the selected beam differs from the optimal beam obtained from actual RSRP values by a value greater than the error margin. In Figures 1 and 2, AIML-based beam selection achieves more than 95% selection accuracy when error margin is larger than 0.5 dB by consuming 50% or 33% of the measurement overhead of the exhaustive measurement and it also shows better accuracy when the error margin is low. In addition, AIML-based RSRP estimation always outperforms the baseline, especially when less RSRP measurements are available.
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Figure 2 Accuracy of AI-based spatial beam prediction with error margin (80% Indoor UEs)
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[bookmark: _Hlk111134308]Figure 3: Accuracy of AI-based spatial beam prediction with error margin (100% Outdoor UEs)

[bookmark: _Hlk111134375]Observation 11: AI aided beam selection achieves more than 95% selection accuracy when error margin is larger than 0.5 dB by consuming 50%/33% of the measurement overhead for the exhaustive measurement.
Observation 12: AIML-based RSRP estimation always outperforms the baseline especially when less RSRP measurements are available as it achieves a higher selection accuracy by 35% when error margin is 0.5 dB.
Temporal Prediction
In this section, we provide evaluation results of temporal beam prediction of prediction window frames based on past RSRP measurements obtained during observation window frames. RSRP measurements of observation window frames are obtained at time instants (T1, T2, T3, …, Ti, Ti+1, Ti+2, …), where Ti+1 – Ti = 160 ms. A transformer-based deep learning model is trained to capture temporal correlations between elements in a sequence beam information from the observation window.
In this section, we compare two prediction approaches. 
· Regression-based approach (AIML-based Regression): The transformer-based deep learning model is trained to predict the RSRP values of the beams in the prediction window frames. The best beam in each of the prediction window frames is selected as the beam with highest predicted RSRP.
· Classification-based approach (AIML-based Classification): The transformer-based deep learning model is trained to predict the best beam in each of the prediction window frames.  
We consider an observation window consisting of 3 frames and a prediction consisting of 2 frames. We compare the best beam prediction accuracy after using the two aforementioned approaches. Accuracy results are summarized in Table 2.
Table 2: Prediction Accuracy of AIML-based Regression and AIML-based Classification
	Approach
	1st Frame of Prediction Window
	2nd Frame of Prediction Window

	
	Top-1 Accuracy
	Top-5/1 Accuracy
	Top-1/5 Accuracy
	Top-1 Accuracy
	Top-5/1 Accuracy
	Top-1/5 Accuracy

	AIML-based Classification
	99.37%
	100%
	100%
	99.33%
	99.99%
	100%

	AIML-based Regression
	93.25%
	100%
	99.99%
	92.91%
	100%
	100%

	Linear Regression
	96.79%
	100%
	100%
	93.35%
	100%
	100%



Table 3 shows Root Mean Square Error (RMSE) for estimated RSRP values when compared to the actual values. 
Table 3: Root Mean Square Error (RMSE) between AIML-estimated RSRPs and actual RSRPs for AIML-based regression and linear regression
	Approach
	All Prediction Window
	1st Frame of Prediction Window
	2nd Frame of Prediction Window

	AIML-based Regression
	0.1682 dB
	0.1652 dB
	0.1711 dB

	Linear Regression
	0.2608 dB
	0.1633 dB
	0.3583 dB



Observation 13: AIML-based classification has a higher accuracy in predicting the best beam in the future prediction window frames.
Observation 14: AIML-based regression has a lower RMSE than linear regression and a lower rate of decay with predicting RSRP values in further future frames. 
Summary
In this contribution, we discuss evaluation methodology, KPI and target scenarios for AI/ML beam management and provide preliminary evaluation results for AI/ML aided beam prediction. From the discussions, we made the following observations and proposals:
Observation 1: Legacy beam management with Rel-17 without AI/ML algorithms is not an appropriate baseline as implementation-based AI/ML operation is available for UE and gNB implementations.
Observation 2: Beam information related KPI is not a measure to evaluate actual performance benefits from AI/ML based beam prediction, however, beam information related KPI can be used as a temporal measure to have an insight as beam information related KPI requires less computational overhead for evaluation.
Observation 3: Specification enhancements should be justified based on actual system performance benefits such as throughputs not based on beam related KPIs such as L1-RSRP difference.
Observation 4: As using same beamwidth for all channels and signals is a general implementation within a frequency range, using a subset of Set A as Set B is a reasonable option if Set A and Set B are utilized in a same frequency range. 
Observation 4: The motivation of Option 3 () for RS overhead reduction is not clear there’s no need to support additional beam sweeping only for AI/ML based beam prediction.
Observation 5: Although RS overhead reduction can be defined by using number of beams by assuming AI/ML based beam management and baseline use same RE overheads perbeam, number of beams does not reflect actual RS overheads.
Observation 6: RS overhead is not a metric for evaluation, but assumption for evaluation.
Observation 7: UCI report overhead is not a metric for evaluation, but assumption for evaluation.
Observation 8: As using same beamwidth for all channels and signals is a general implementation within a frequency range, using a subset of Set A as Set B is a reasonable option if Set A and Set B are utilized in a same frequency range. 
Observation 9: It is difficult to use a subset of Set A considering different beamwidths for beam management between different frequency ranges.
Observation 10: Utilization of wide beam information from a low frequency range has great potential as a low frequency range is more reliable and utilization of wide beam requires much less time and frequency resources for beam management.
Observation 11: AI aided beam selection achieves more than 95% selection accuracy when error margin is larger than 0.5 dB by consuming 50%/33% of the measurement overhead for the exhaustive measurement.
Observation 12: AIML-based RSRP estimation always outperforms the baseline especially when less RSRP measurements are available as it achieves a higher selection accuracy by 35% when error margin is 0.5 dB.
Observation 13: AIML-based classification has a higher accuracy in predicting the best beam in the future prediction window frames.
Observation 14: AIML-based regression has a lower RMSE than linear regression and a lower rate of decay with predicting RSRP values in further future frames. 

Proposal 1: ‘No collaboration framework: AI/ML algorithms purely implementation based and not requiring air-interface changes’ could be an appropriate baseline to accurately evaluate the benefits of AI/ML with specification enhancements.
Proposal 2: For verification of generalization performance, confirm Case 1 and Case 2 and further study Case 2A and Case 3.
Proposal 3: Support system performance related KPIs as mandatory KPIs.
· Support Avg. and 5% UE tput for system performance KPIs.
Proposal 4: Approve the working assumption on the evaluation of the RS overhead without Option 3 for Option A and Option B.
Proposal 5: RS overhead and UCI report are reported as assumptions not as evaluation results.
Proposal 6: Define RS overhead by using actual RE overheads not using number of beams.
Proposal 7: Support beam information related KPIs as optional for temporal measures.
· Support average L1-RSRP difference of Top-1 predicted beam in addition to the agreed options for beam prediction accuracy (%).
Proposal 8: As most of implementations are using SSB for beam management to reduce RS overheads, utilization of SSB can be assumed as default RS resources. CSI-RS can be used as optional if preferred.
Proposal 9: Support ‘Set B is a subset of Set A’ when Set A and Set B are utilized in a same frequency range for both temporal/spatial domain prediction.
Proposal 10: Support ‘Set A and Set B are different’ when Set A and Set B are utilized in different frequency ranges for both temporal/spatial domain prediction.
Proposal 11: AI/ML based beam management based on association between different frequency ranges should supported for both between FR1 and FR2-1 and between FR2-1 and FR2-2.
Proposal 12: For conventional scheme to obtain performance KPIs, current specification for beam management (i.e., up to 4 CRIs with L1-RSRP/SINR or SRS based prediction) should be considered. 
Proposal 13: Number of beams in Set B should be decided and reported by each company.
Proposal 14: For traffic model, support the following evaluation assumptions:
· For beam information related KPIs, no traffic model is needed to be defined as UE is only measuring reference signals not decoding actual PDSCHs.
· For system performance related KPIs, FTP traffic should be used to reflect practical traffics for the evaluation. 
· For FTP traffic model, FTP model 3 is preferred as generating a new UE for each packet (FTP model 1) is not appropriate for evaluating benefits from AI/ML based beam prediction. 
Proposal 15: For UE distribution, support the following evaluation assumptions:
· For FTP traffic model, 10 UEs per cell/sector with 50% and 70% RUs is preferred. 
· 80% outdoor UEs and 20% indoor UEs for spatial domain beam prediction as defined in TR 38.901 (Option 1).
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Appendix
Evaluation assumptions
	Parameter
	 Values

	Carrier Frequency
	30 GHz

	Bandwidth
	80 MHz

	Subcarrier Spacing
	120 kHz 

	Deployment
	2-tier model with wrap-around (7 sites, 3 sectors/cells per site) with ISD = 200 m

	Channel model
	5G-UMa (TR 38.901)

	UE Model Parameters 

	UE Noise Figure
	10 dB

	UE Antenna Configuration
	(M, N, P, Mg, Ng) = (1, 4, 2, 1, 1), dH = 0.5λ

	UE Dropping (Spatial Prediction)
	· Scenario #1: 100% Outdoor UEs 
· Scenario #2: 20% Outdoor UEs and 80% Indoor UEs
· UE Speed: 3 Km/h

	UE Dropping (Temporal Prediction)
	· 100% Outdoor UEs
· UE Speed: 30 Km/h

	UE mobility modeling (Temporal Prediction)
	Procedure A from Section 7.6.3.2 in TR38.900 

	UE Antenna Height
	1.5 m

	gNB Model Parameters 

	gNB TX power
	23 dBm

	gNB Antenna Configuration
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), dH=dV=0.5λ

	gNB Antenna Radiation Pattern
	3-sector (120 degrees apart from each other)

	gNB Antenna Height
	25 m



AI/ML Spatial Prediction Parameters
	Data Description

	Complete Dataset Description (RSRP_Actual)
	Each sample includes 115 RSRP measurements for beams from one sector to one UE

	Input Dataset Description
(RSRP_Input)
	Each sample includes 50%/33% of the RSRP measurements from complete dataset

	Output Dataset Description
(RSRP_Estimate)
	The complete set of RSRP measurements after estimating the missing 50%/66% of the RSRP measurements from the input dataset

	Beams Description
	115 beams per sector per TRP. Beams are generated from the combination of beams at 23 azimuth angles and 5 elevations angles

	Number of Samples
	22,050 Samples

	Size of Training (Testing) Set
	80% (20%) of the dataset 

	Validation
	5-fold cross-validation

	ML Model Parameters

	Model Description
	A regression model to estimate each of the missing RSRP measurements given the available RSRP measurements in the input dataset  

	Model Parameters
	Linear regression model with bias, linear terms, pure quadratic terms, and interaction quadratic terms 

	Evaluation
	· Actual Best Beam per sample = argmax(RSRP_Actual)
· Estimated Best Beam per sample = argmax(RSRP_Estimate)
· RSRP_Loss = |RSRP_Actual(Actual Best Beam) – RSRP_Actual(Estimated Best Beam)|
· When (RSRP_Loss > Error Margin), this is counted as best beam misdectection
· Accuracy = (Number of Samples - Number of Best Beam Misdetections) / Number of Samples 




AI/ML Temporal Prediction Parameters
	Data Description

	Complete Dataset Description
	Each sample includes 64 RSRP measurements for beams from one sector to one UE

	Input Dataset Description
(Observation Window)
	RSRP measurements from observation window frames at time instants (Ti, Ti+1, Ti+2, …), where Ti+1 – Ti = 160 ms

	Output Dataset Description
(Prediction Window)
	Best beam

	Beams Description
	64 beams per sector per TRP. Beams are generated from the combination of beams at 16 azimuth angles and 4 elevations angles

	Number of Samples
	40K to 85K Samples

	Size of Training (Testing) Set
	70%, 10%, 20% of the dataset 

	ML Model Parameters

	Model Description
	A transformer-based model to predict the best beam in each time frame of the prediction window  

	Model Parameters
	 

	Evaluation Metrics
	· Top-K/1 Accuracy: If the best genie-predicted beam is among the top-K model-predicted beams
· Top-1/K Accuracy: If the best model-predicted beam is among the top-K genie-predicted beams
· Accuracy within X dB: If the best model-predicted beam is within X dB from the top-1 genie-predicted beam
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