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Introduction
This contribution concerns the Agenda Item 9.2.3.1 Evaluation on AI/ML for BM management. A summary of past agreements can be found in Section 9.
The paper outline is as follows: 	
· Section 2: We share our views on the remaining evaluation methodology issues. 
· Section 3: We outline the simulation assumptions used for the evaluations in this paper.
· Section 4: We present results for AI/ML-based spatial beam prediction. 
· Section 5: We present results for AI/ML-based temporal beam prediction. 
Remaining issues on evaluation methodologies
As shown in [4], Section 3.2, the SSB/CSI-RS best beam statistics are highly skewed in the agreed simulation scenarios. For example, beams with azimuth angles pointing towards the horizon will occur more often than beams with other azimuth. AI/ML models can be trained to work well for common beams (e.g., beams on the horizon), and, potentially, ignore uncommon beams. One method for exploring the ability of AI/ML models to predict the uncommon beams is to visualize their performance on such rare events. For example, companies can provide tail percentiles (e.g., 99th percentile) when presenting L1-RSRP error results. One example for temporal beam prediction is provided in section 5.2. 
[bookmark: _Toc118722169]Evaluate more percentiles for the L1-RSRP error (e.g. 95th,99th percentile)
Simulation scenario
For the following discussion, we consider randomly dropped UEs in the 3GPP UMa scenario with 200 m inter-site distance, see appendix for details. We use spatially consistent channel model, and we fix a common random seed for the propagation conditions for all simulations (unless otherwise stated). The total number of UEs (samples) generated was typically in the order of 20000–30000 per sector (cell). About 90% of the samples were used to train AI/ML model for spatial beam prediction. The remaining channel samples were used for testing/inference. 
For the gNBs, SSB and CSI-RS beams were defined based on Table 1. No mechanical downtilt is used. We will use the following abbreviations for the gNB antenna array configurations:
· “4x8”: One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ

Cell selection: UEs were associated with their best gNB based on link gain. UE-side beamforming: Unless otherwise stated, we assume that the best UE-side Rx beam are used. That is, the SSB and CSI-RS L1-RSRPs were calculated assuming the best UE-side Rx beam. These RSRP values were then used as dataset for training and inference. Some evaluations will use additional assistance information to train the AI/ML beam prediction models, see later sections for more details.
The complete set of SSB beams and CSI RS beams, in terms of zenith and azimuth angles, is listed in Table 1. All beams are generated using linearly increasing phase across antennas, with same amplitude on all elements. The prediction target (Set A) is always the complete set of CSI-RS beams. The measurement sets (Set B) considered are illustrated in Figure 1 (4x8 gNB array). Set B beams are the same in training and inference unless otherwise stated.
[bookmark: _Ref111022483][bookmark: _Ref111191499]Table 1: gNB SSB and CSI-RS beam directions
	Array size (#elements)
	RS type
	#zenith × #azimuth = total #beams
	Beam width
	List of angles 


	4x8
	SSB
	2×4 = 8
	Half-wide1)
	Zenith angles [deg]: 75, 105
Azimuth angles [deg]: -45, -15, 15, 45

	
	CSI-RS
	4×8 = 32
	Narrow
	Zenith angles [deg]: 67.5, 82.5, 97.5, 112.5
Azimuth angles [deg]: -52.5, -37.5, -22.5, -7.5, 7.5, 22.5, 37.5, 52.5


1) Only half of the antenna elements in each dimension are used, i.e. a quarter of all antenna elements.
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[bookmark: _Ref83924636]Figure 1: Beam patterns for 4x8 gNB array, with filled circles indicating the Set B beams (4, 8, or 16).

Spatial beam prediction
In this section, we present our evaluation methodology and results for the spatial beam prediction sub use case.

Baseline description 
The baseline scheme uses the Set B beam sets defined by Figure 1 and Table 1. All beams in Set B are transmitted and reported. The baseline prediction is the best beam (Top-1) in Set B.
Spatial beam prediction description
Options for using beam prediction AI/ML models
The following three options for beam prediction have been considered in evaluations:
[bookmark: _Toc110878155]Option 1) AI/ML model predicts Top-1 beam


[bookmark: _Toc110878156]Option 2) AI/ML model predicts Top-K beams

For example, if Set B is SSB beams, we have the following steps:
P1. Measure the SSB beams
P1*. Predict a set of K CSI-RS beams
P2. Measure the K CSI-RS beams
Option 3) UE position-based prediction 

Use option 1 + UE location
As already mentioned, in the evaluations in this contribution, the UE is assumed to always select the best UE-side Rx beam, except in Section 4.3.1.2, where joint Rx/Tx beam prediction is investigated. Note that with K = 1, Option 2) reduces to Option 1).
Conventional beam prediction
The conventional beam prediction evaluated has the same structure as the AI/ML model Option 2 described in previous section. The difference is only in how the set of K CSI-RS beams for step P1* is determined. In the conventional scheme, every CSI-RS beam is given an association with its closest SSB beam in terms of beam angle difference (defined as squared zenith angle difference plus squared azimuth angle difference). The set of CSI-RS beams for step P1* is then all the CSI-RS beams associated with the best SSB beam found in step P1. With the SSB and CSI-RS patterns used in this contribution,  is always 4.
Neural network architectures
We use a neural network model with dense layers, and training is performed with a softmax cross-entropy loss function. Input normalization is based on scaling the beam RSRP values in dB per sample to yield the range 0.0 to 1.0 for RSRP values for each sample. Results also with a more complex neural network can be found in [5].
An overall description of our evaluation methodology and its complexity is provided in the Table 2. 

[bookmark: _Ref115343387]Table 2: AI/ML evaluation parameters, methodology, and complexity KPIs
	Parameters
	Potential Values

	Dataset description (Training/Test data)
	· Number of samples: Typically, in the order of 20000–30000 per sector (depending on scenario)
· Training on single sector, inference on same sector, unless otherwise stated

	Model validity area
	· Sector-specific training 

	Model description
	· Neural network, 2–3 dense layers, ReLU, dropout
· Model hyperparameters: learning rate 0.001–0.01

	Model input description
	· RSRP from SSB and/or CSI RS (one real value per measured beam unless otherwise stated), normalized based on min and max values per sample
· UE location assistance information (where explicitly stated)

	Model output description
	· Likeliness of beam being strongest beam, used to derive top-K beams

	Training methodology
	· Loss function: Softmax cross-entropy

	Model complexity KPIs
	· Number of parameters:1) ~1300 (TX prediction), ~19000 (joint TX/RX prediction)
· FLOPs for inference:1) ~2700 (TX prediction), ~37000 (joint TX/RX prediction)



1) For Set B with 8 SSB TX beams.
Results
[bookmark: _Ref115199518]Beam prediction KPIs
Based on agreements and discussion in previous sections, we report the following KPIs:
· Beam prediction accuracy (%) for Top-1 and Top-3 beams, with 0 dB margin and 1 dB margin
· We use the Option 2 interpretation of “Top-K”; that is, the beam prediction accuracy (%) is the percentage of the Top-1 genie-aided beam is one of the Top-K predicted beams.
· CDF of L1-RSRP difference for Top-1 (and in some cases also Top-3) predicted beams
· Average RSRP difference
· RS measurement overhead (for one UE)
In all cases, the RS transmission overhead is defined as N/M, where N is the number of beams (SSB and/or CSI-RS) that are transmitted in the beam finding procedure (sum of steps P1 and P2), and M is the total number of (CSI-RS) beams in Set A. 
For the AI/ML and baseline schemes,  is calculated as

Note that this can be seen as a worst-case estimate, since if there are multiple UEs in a cell, they may have overlap between their respective top-K sets, and transmissions of top-K beams in step P2 may then be shared between UEs. Also, if Set B uses CSI-RS beams, some of the top-K beams may have been transmitted already during P1 and need not be repeated. Note that the baseline scheme used does not employ a multi-step procedure, and hence effectively has K = 1.
For the conventional scheme, the number of CSI-RS beams associated with a Set B SSB beam is fixed to  and Set B is the full set of SSB beams, i.e.  and hence .
As mentioned above, we trained one model for each sector (cell) in the network. Performance varies somewhat from sector to sector depending on shadow fading etc, and we show results for one representative sector.
ML KPIs TX-beam prediction
ML KPI results for 4x8 gNB array are provided in Table 3 and Figure 2, for a representative sector in the network. Table 3 shows the beam prediction accuracy (with 0 dB and 1 dB margins) along with corresponding beam transmission overhead. Figure 2 provides CDFs over the differences between RSRP for the predicted beam and the RSRP for the optimal beam, over all UEs in a cell, for various scenarios and schemes.
The results show that AI/ML schemes can outperform the baseline/conventional schemes. For example, from Table 3, it can be seen that in a scenario with 100% outdoor users, the trained AI/ML model can with just 25% overhead (using 8 SSB beams in Set B vs. 32 CSIRS beams in Set A) predict the Top-1 beam for 97% of the users with a 1dB margin, while the baseline schemes reach only about 68% correct predictions at twice the overhead. The corresponding CDFs can be seen in Figure 2(a). 
The prediction problem can be expected to be more challenging for scenarios with many indoor UEs. This is confirmed in Table 3 and Figure 2(b). Although the Top-3 schemes can give good prediction accuracy, they lead to larger overhead (9% more overhead) comparing to the Top-1 schemes. It also shows that the conventional scheme in the current beam pattern has very good performance, which is because the conventional scheme with 8 SSB beams could be regarded as 8 SSB beams with Top-4 scheme.  
[bookmark: _Toc118704664][bookmark: _Toc118705232][bookmark: _Toc118705487][bookmark: _Toc118722159]In outdoor scenarios, AI/ML can reduce beam spatial-domain beam prediction overhead substantially while maintaining good accuracy for 4x8 (32 beams in Set A). 
[bookmark: _Toc118722160]In scenarios with primarily indoor UEs, spatial-domain beam predication is more challenging.
[bookmark: _Toc118722161]With the adopted beam pattern, the conventional scheme could have very good performance which significantly outperforms the baseline schemes and have similar performance as AI/ML schemes.  


[bookmark: _Ref110880393]Table 3: Beam-finding accuracy and overhead, 4x8 gNB array
	
Scheme 1)
	Beam accuracy [%]
	Meas. overhead N/M [%]

	
	100% outdoor
	80%/20% in/outdoor
	

	
	0 dB margin
	1 dB margin
	0 dB margin
	1 dB margin
	

	AI/ML, 8 SSB (Top-1)
	94.1
	97.1
	79.2
	86.7
	25

	AI/ML, 8 SSB (Top-3)
	99.5
	99.7
	96.8
	98.4
	34

	AI/ML, 8 CSI-RS (Top-1)
	96.5
	98.4
	75.2
	82.1
	25

	AI/ML, 8 CSI-RS (Top-3)
	99.7
	99.8
	95.8
	97.3
	34

	AI/ML, 16 CSI-RS (Top-1)
	98.4
	99.7
	89.6
	96.5
	50

	AI/ML, 16 CSI-RS (Top-3)
	99.9
	99.9
	98.9
	99.6
	59

	Baseline, 8 CSI-RS
	28.7
	37.1
	26.5
	37.3
	25

	Baseline, 16 CSI-RS
	57.4
	68.1
	46.1
	63.3
	50

	Conventional, 8 SSB
	97.7
	99.1
	94.6
	97.6
	38


1) “n SSB” / ”n CSI-RS” indicates the type and number of beams in Set B in accordance with Figure 1. Complete beam sets are given by Table 1. 
[image: ] [image: ] 
(a) 									(b)
[bookmark: _Ref115201413][bookmark: _Ref115344263]Figure 2: RSRP difference CDF, for 4x8 array, for (a) 100% outdoor UEs and (b) 80%/20% in/outdoor UEs. 


[bookmark: _Ref115102623]ML-specific KPIs for joint TX/RX beam prediction
In this section, we investigate joint TX/RX beam prediction, and compare it with a reference case where the optimal UE beam is assumed like in previous sections (i.e. where the UE implicitly is assumed to scan all of its RX beams for each TX beam, and only report the best value).
For the joint TX/RX prediction, we evaluate the following configuration:
· Set A consists of 32 TX CSI-RS beams and 4 RX CSI-RS beams, i.e. Set A consists of 32 × 4 = 128 TX/RX beam pairs.
· Set B consists of 16 TX/RX beam pairs defined as follows: There are 8 TX SSB beams defined in accordance with Figure 1, and 4 RX beams (2 per UE panel), but each RX beam is only used to measure 4 of the TX SSB beams, i.e. in total there are 4 x 4 = 16 TX/RX beam pairs measured. 
For a Top-1 scheme, this leads to RS measurement overhead 16/128 » 12%.
For the reference case, we consider a configuration with the same number of Set A beams and the same number of TX beams in Set B (i.e. 8), but assume that the UE scans all its RX beams for each TX beam in Set B, like in Section 4.3.1.1. For a Top-1 scheme, this leads to RS overhead (8 x 4)/128 = 25%, i.e. twice as high as for joint prediction. The results are illustrated in Table 4 and Figure 3, and show that although there is significant performance degradation from joint TX/RX compared to TX-only prediction with always optimal RX beam, performance remains quite good.
[bookmark: _Toc118722162]Joint TX/RX prediction can give quite good performance while significantly reducing RS overhead compared to measurements of all RX beams for each TX beam in Set B.

[bookmark: _Ref115110212]Table 4: Joint TX/RX beam prediction, 4x8 gNB array, 100% outdoor, Top-1
	Scheme
	Beam accuracy [%]
	RS measurement overhead N/M [%]

	
	0 dB margin
	1 dB margin
	

	AI/ML, 8 TX SSB, TX prediction
	93.7
	97.6
	25%

	AI/ML, 8 TX SSB, joint TX/RX prediction
	90.4
	95.1
	12%



[image: ]
[bookmark: _Ref115110191]Figure 3: RSRP difference CDF, for 4x8 array, with or without joint TX/RX prediction. 

Variable number of beams in Set B (reduced reporting) 
	Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference), FFS:
· Opt A: Set B is changed following a set of pre-configured patterns 
· Opt B: Set B is randomly changed among pre-configured patterns 
· Opt C: Set B is randomly changed among Set A beams (pairs) 
· The number of beams(pairs) in Set B can be fixed or variable
· Note: BM-Case1 and BM-Case2 may be considered for different option. 
· Other options are not precluded. 



In this section, we investigate variable number of beams in Set B, focusing on the case where a fixed set of beams is measured, but the number of reported beams for NW-sided model inference is variable due to pre-processing of measurements at the UE-side. The objective is to see to what extent the reporting overhead can be reduced while maintaining good accuracy.
We consider a scheme with gNB-side inference where the UE measures a fixed set of beams, but only reports beams with RSRP exceeding a certain threshold relative to the strongest beam, i.e., only beams with an RSRP at most X dB below the RSPR of the strongest measured beam are reported. This is valuable as it reduces reporting overhead. Figure 4 shows results with X = 10 dB and X = 15 dB, for the measured set consisting of CSI-RS, in comparison with the case where all measured beams are reported. The average reporting overhead reduction obtained in simulations is indicated in the legend but note that the number of reported beams may vary significantly between UEs. As can be seen, despite the rather large reporting overhead reduction (up to almost 83%), in case of Top-1, performance degradation for X=10 dB is acceptable, and in case of X=15 dB (70% reporting reduction), even negligible. And for the Top-3, the performance degradation is hardly noticeable. 
[bookmark: _Toc118722163]By allowing variable number of reported beams via UE pre-processing of measurements, the reporting overhead can be substantially reduced with little performance degradation.


[image: ]
[bookmark: _Ref110879900]Figure 4: RSRP difference CDF, for 4x8 array, 100% outdoor, Top-1, for different average number of reported beams. 
UE assistance information
As was shown in [4], the UE location is strongly correlated with the best beam. This correlation is particularly strong for outdoor UEs. It is, therefore, of interest to make use of UE location as assistance information. It was further shown in our last contribution [5], that including the UE location can, e.g, reduce the L1-RSRP error for the 96th percentile from about 2.5 dB to less than 1 dB. 

[bookmark: _Toc118722164]UE location as assistance information can substantially improve prediction performance for outdoor UEs.
Impact from measurement errors 
All evaluations in previous sections have been performed under the assumption of no RSRP measurement errors. However, there are always measurement errors in the UE. Excerpts from 3GPP TS 38.133 on UE L1RSRP measurement requirements are shown in the following table.
[image: Table

Description automatically generated]
The above values are defined for SSB based L1-RSRP, however, the same values are specified for CSI-RS based L1-RSRP to be found in the TS 38.133.
To exemplify the impact of RSRP measurement errors, evaluations with varying level of errors have been performed, also the same values agreed for CSI-RS. According to the discussion in RAN4 for determining the L1-RSRP accuracy requirement, the contributing elements for agreed above range consist of 4dB RF impairments, 1dB fading condition, and other factors like additive noise at the receiver side. RF impairment model is composed of different elements, including I/Q imbalance, Quantization noise, Phase noise, Filters/Ripple noise, RF PA distortion noise. Adding fading and additive thermal noise at receiver on top of this, for the sake of simplicity and counting for many different types of noise factors, we assume Normal distribution for modelling the RF impairments in our evaluations. The variance of normal distribution is set so that the 95% of the density function lay within the specified accuracy range in the evaluations. we also provide the results with RF impairments modelled as uniformly distributed random offsets in the dB domain. 
[bookmark: _Toc115446146][bookmark: _Toc115446185][bookmark: _Toc115446222][bookmark: _Toc115446452][bookmark: _Toc118722170]For beam prediction evaluations consider providing the results with measurement accuracy noise modelled as additive gaussian noise with 95% of the density function within the measurement accuracy range, and/or uniformly distributed noise 
Furthermore, the errors are independently selected for each gNB beam, according to the following:
· During training: Errors were applied to model input as well as to targeted model output (ground truth).
· During inference: Errors were applied to model input but not to targeted model output (ground truth).
In Figure 5, evaluation results for different distributions and noise ranges are provided. We can observe that although for measurement inaccuracy error up to 2dB the results can be tolerable with 1dB deviation margin from measurements without error at 95%. For 4dB and 6dB inaccuracy error we can have up to 4dB and 7dB degradation in performance at 95%. Thus, such measurement errors can have a significant impact on performance and need to be considered for realistic evaluations. It may also be necessary to further discuss UE measurement accuracy modelling, e.g., correlations between errors for different gNB beams. It may be helpful for the network to have better knowledge of the accuracy of the UE measurements.

[image: Chart

Description automatically generated] 
[bookmark: _Ref115439999]Figure 5: L1-RSRP error when having imperfections in model input and ground truth due to measurement noise

[bookmark: _Toc118722171]Study the impact of measurement imperfections on model performance for the considered beam prediction use cases.
The natural solution to this problem is to tighten the require on measurement accuracy. However, this may not be applied to the legacy UEs, so to mitigate this issue, different capability of UEs could be defined with different measurement accuracy. In this way, the ML algorithm can take into account the level of L1-RSRP measured value when training the ML model, e.g. RSRP values that have higher accuracy can get higher importance when calculating the training loss metric. 
[bookmark: _Toc115446149][bookmark: _Toc115446188][bookmark: _Toc115446225][bookmark: _Toc115446455][bookmark: _Toc118722172]Consider the following to mitigate the L1-RSRP measurement inaccuracy impact in ML based beam prediction
0. [bookmark: _Toc118722173]RAN4 to explore possibility to tighten requirements on L1-RSRP measurement accuracy
0. [bookmark: _Toc118722174]Define different UE capability based on their capability in fulfilling a measurement accuracy requirement. 

[bookmark: _Ref115203946]Generalization evaluations 
Results of model generalization where the AI/ML model is trained in one cell (i.e., sector) which is 1 out of 21 cells (i.e., 7 sites) and used for beam prediction in another cell in the network (without additional training) are shown in Table 4 and Table 5. The 4x8 gNB antenna array configuration with 32 CSI-RS beams is used to generate the dataset for training, testing and inference. 
Table 6 in Appendix shows the performance when the model is trained and tested using the data from the same sector (from sector [0] to sector [20]) with 90% for training and 10% for testing. It is found that the performance significantly depends on the selection of Set B and the sector used for training. For example, the performance for different sectors varies from 2% (16-32 CSI-RS beams) to 14% (4-8 CSI-RS beams) when considering 100% outdoor UE with the deployment of UMa. Similar findings can be seen when considering 80%/20% in/outdoor UEs with the deployment of UMa.

Table 4 presents the generalization performance when the model is tested in different sectors in comparison to the training with the same scenarios, i.e., training the model using the data from one of the sectors and performing the inference in different sectors. The detailed performance for each sector can be found in Table 6 in Appendix. From the Table 4, the model trained using the data from sector [5] is used to perform the inference for different sectors. It is shown that, for a given selected Set B, the performance heavily depends on the data from which sector. Therefore, it is important to know the sector information used for training and testing. 

	Top 1/Top 3 
(1 dB margin)
	Train model based on the data from sector [5] to 
perform the inference in different sectors within the same scenario

	Dataset
	Set B
	Max
	Min
	Mean

	UMa
100% Outdoor
	4-8
SSB
	0.921/
0.995
	0.681/
0.903
	0.788/
0.970

	
	8-8
SSB
	0.970/
0.998
	0.819/
0.942
	0.903/
0.986

	
	4-32
CSI-RS
	0.564/
0.922
	0.240/
0.572
	0.350/
0.720

	
	8-32
CSI-RS
	0.985/
0.998
	0.778/
0.898
	0.848/
0.960

	
	16-32
CSI-RS
	0.997/
1.000
	0.857/
0.951
	0.949/
0.985

	Dataset
	Set B
	Max
	Min
	Mean

	UMa
80%/20%
In/outdoor
	4-8
SSB
	0.759/
0.950
	0.639/
0.904
	0.690/
0.928

	
	8-8
SSB
	0.868/
0.984
	0.831/
0.971
	0.845/
0.977

	
	4-32
CSI-RS
	0.407/
0.796
	0.280/
0.664
	0.321/
0.715

	
	8-32
CSI-RS
	0.817/
0.972
	0.729/
0.935
	0.756/
0.956

	
	16-32
CSI-RS
	0.968/
0.997
	0.922/
0.986
	0.940/
0.991


[bookmark: _Ref118502048][bookmark: _Ref118502428]Table 45: Generalization evaluations of the inference in different sectors.
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(a) 									(b)
[bookmark: _Ref118743111][bookmark: _Ref118502080]Figure 6: RSRP difference CDF, for 4x8 array, selecting 16 out of 32 CSI-RS beams as Set B, performing the inference in different scenarios for (a) model trained based on the dataset with 100% outdoor UEs and (b) model trained based on the dataset with 80%/20% in/outdoor UEs


Table 5 presents the generalization performance when the model is tested in different scenarios (i.e., various deployment scenarios and various outdoor/indoor UE distributions) in comparison to the training, where the model trained based on the data in sector [5] is selected to perform the inference, and the data in sector [0] is selected for inference. One example of 16-32 CSI-RS beams can be found in Figure 6. 

It is shown that it is more challenging to use a model trained based on 100% UE distribution to perform the inference of the scenario with 80%/20% In/outdoor UE distribution. However, the performance is much better if using a model trained based on 80%/20% In/outdoor UE distribution to perform the inference of the scenario with 100% UE distribution. Therefore, the model training should ensure a mix of various UE deployments. 

When considering the different ISDs for training and testing (i.e., ISD=200 and ISD=500 for training and testing, respectively), the performance degrades when the model is trained only using the data generated by one deployment scenario (i.e., ISD=200) and perform the inference in another deployment scenario (i.e., ISD=500). Therefore, the model training would benefit from a mix of various deployment scenarios in terms of generalizing to different ISD.

It is also found that for various UE distribution, the performance varies according to the considered deployment scenario (i.e., UMa or UMi). For instance, for 100% Outdoor UE distribution, the performance degrades if the model is trained based on the deployment scenario (i.e., UMa) and the inference is done in a different deployment scenario (i.e., UMi). However, for 80%/20% In/outdoor UE distribution, the performance does not always depend on the deployment scenario (UMa or UMi) if different deployment scenarios are considered for training and inference. Therefore, it is not clear the impact of deployment scenario (UMa or UMi) for 80%/20% In/outdoor UE distribution, which needs further investigations. 

Therefore, it is important to have proper model monitoring procedures in place to detect the deployment scenarios and UE distribution when the inference is used to for the target cell. 


	100% Outdoor UE

	Description
	Top 1/Top 3 
(1 dB margin)
	4-8 SSB
	8-8 SSB
	4-32
CSI-RS
	8-32
CSI-RS
	16-32
CSI-RS
	Note

	Same UE Distribution
Same Deployment
Same ISD
	Out (UMa) -> Out (UMa)
ISD=200 -> ISD=200
	0.841
/
0.975
	0.914
/
0.990
	0.415
/
0.848
	0.889
/
0.978
	0.963
/
0.992
	

	Same UE Distribution
Same Deployment
Different ISD
	Out (UMa) -> Out (UMa)
ISD=200 -> ISD=500
	0.759
/
0.931
	0.835
/
0.948
	0.381
/
0.730
	0.793
/
0.938
	0.910
/
0.969
	

	Same UE Distribution
Different Deployment
Same ISD
	Out (UMa) -> Out (UMi)
ISD=200  -> ISD=200
	0.754
/
0.928
	0.832
/
0.964
	0.246
/
0.704
	0.776
/
0.933
	0.914
/
0.972
	

	Same UE Distribution
Different Deployment
Different ISD
	Out (UMa) -> Out (UMi)
ISD=200  -> ISD=500
	0.757
/
0.939
	0.812
/
0.961
	0.360
/
0.709
	0.798
/
0.949
	0.883
/
0.972

	

	Different UE Distribution
Same Deployment
Same ISD
	Out (UMa) -> Inout (UMa)
ISD=200 -> ISD=200
	0.698
/
0.907
	0.783
/ 0.940
	0.318
/
0.686
	0.722
/
0.913
	0.848
/
0.952
	

	Different UE Distribution
Same Deployment
Different ISD
	Out (UMa) -> Inout (UMa)
ISD=200 -> ISD=500
	0.685
/
0.888
	0.758
/
0.931
	0.306
/
0.660
	0.705
/
0.908
	0.831
/
0.945
	

	Different UE Distribution
Different Deployment
Same ISD
	Out (UMa) -> Inout (UMi)
ISD=200 -> ISD=200
	0.682
/
0.896
	0.775
/
0.942
	0.291
/
0.663
	0.700
/
0.903
	0.852
/
0.955
	

	Different UE Distribution
Different Deployment
Different ISD
	Out (UMa) -> Inout (UMi)
ISD=200 -> ISD=500
	0.719
/
0.909
	0.780
/
0.945
	0.326
/
0.694
	0.720
/
0.927
	0.854
/
0.964
	

	80%/20% In/outdoor UE

	Description
	Top 1/Top 3 
(1 dB margin)
	4-8 SSB
	8-8 SSB
	4-32
CSI-RS
	8-32
CSI-RS
	16-32
CSI-RS
	Note

	Same UE Distribution
Same Deployment
Same ISD
	Inout (UMa) -> Inout (UMa)
ISD=200 -> ISD=200
	0.713
/
0.938
	0.855
/
0.981
	0.330
/
0.735
	0.773
/
0.963
	0.952
/
0.994
	

	Same UE Distribution
Same Deployment
Different ISD
	Inout (UMa) -> Inout (UMa)
ISD=200 -> ISD=500
	0.745
/
0.943
	0.857
/
0.982
	0.337
/
0.755
	0.762
/
0.956
	0.950
/
0.994
	

	Same UE Distribution
Different Deployment
Same ISD
	Inout (UMa) -> Inout (UMi)
ISD=200 -> ISD=200
	0.709
/
0.936
	0.852
/
0.982
	0.277
/
0.686
	0.741
/
0.948
	0.947
/
0.993
	

	Same UE Distribution
Different Deployment
Different ISD
	Inout (UMa) -> Inout (UMi)
ISD=200 -> ISD=500
	0.789
/
0.964
	0.859
/
0.987
	0.341
/
0.766
	0.767
/
0.966
	0.965
/
0.997
	

	Different UE Distribution
Same Deployment
Same ISD
	Inout (UMa) -> Out (UMa)
ISD=200 -> ISD=200
	0.782
/
0.957
	0.892
/
0.986
	0.390
/
0.826
	0.909
/
0.989
	0.983
/
0.999
	

	Different UE Distribution
Same Deployment
Different ISD
	Inout (UMa) -> Out (UMa)
ISD=200  -> ISD=500
	0.778
/
0.961
	0.874
/
0.989
	0.395
/
0.798
	0.825
/
0.971
	0.963
/
0.997
	

	Different UE Distribution
Different Deployment
Same ISD
	Inout (UMa) -> Out (UMi)
ISD=200   -> ISD=200
	0.743
/
0.952
	0.875
/
0.981
	0.225
/
0.692
	0.761
/
0.945
	0.953
/
0.993
	

	Different UE Distribution
Different Deployment
Different ISD
	Inout (UMa) -> Out (UMi)
ISD=200   -> ISD=500
	0.791
/
0.973
	0.867
/
0.989
	0.372
/
0.769
	0.809
/
0.977
	0.966
/
0.998
	

	Note: Train the model using the data in Sector [5] and perform the inference in different scenarios using the data in Sector [0] 



[bookmark: _Ref118742928][bookmark: _Ref118502137]Table 56: Generalization evaluations of various deployment scenarios and various outdoor/indoor UE distributions for the setting with 4x8 gNB array

Observation 1 [bookmark: _Toc118722165]With identical antenna configuration, initial evaluations indicates that a model trained in one cell is found to be generalized well while the performance heavily depends on the sector is selected for the inference. 
Observation 2 [bookmark: _Toc118722166]Generalization results indicate the importance of having model monitoring procedures that detects issues when a model trained in one cell is used in another.
Temporal TX-beam prediction	
In this section, the objective for a trained Neural Network (NN) is to predict the CSI-RS beam that is most likely to have the maximum L1-RSRP value, from the L1-RSRPs (either CSI-RS or SSB) measured at the observation time instances. 
Evaluation description
The assumed CSI report periodicity is 40ms and at each reporting time instance there are 32 CSI-RS and 8 SSB L1-RSRPs from each UE. The NN’s inputs at training and inference are the L1-RSRPs selected from  the first 3 consecutive time instances, numbered as {0,1,2}, such that the observation duration T1=3*40ms=120ms. The labels for the overall best CSI-RS beam at the time instance {3} serve as the NN’s outputs at training. 
  [image: ]        [image: ]                   Figure 7a) Beam grid for CSI-RS ad SSB
Figure 7b) Percentage of occasions the CSI-RS beam is strongest 


Figure 7a shows the beam grid, i.e., azimuth and zenith angle combinations, for the assumed single panel gNB antenna configuration. The following are defined wrt the beam grid in Figure 7a.
· Set A: The set with all the 32 CSI-RS L1-RSRP values, i.e., |Set A|=32.
· Set B: The set of beam indices (either SSB or CSI-RS), that are measured in T1 and serve as NN’s input. The overall best beam, i.e., the beam with the maximum L1-RSRP value, may or may not be present in Set B. Depending on the complexity requirement, more than one Set B can be formed. Few alternatives include,  
· Alt 1: Set B ≠ Set A. |Set B|=8, 
· Alt 2: Set B ⊆ Set A. |Set B|= 16, 8 or 4,
· Alt 3: Set B = Set A. |Set B|=32.	
Alt 1 corresponds to the SSB based training while Alt 2 and Alt 3 correspond to CSI-RS based training.

Figure 7b shows the beam grid for the optimal CSI-RS L1-RSRP, taken at each time instance, over all the users (~70k users). For the assumed setup, the CSI-RS beams above the elevation angle 82.5 degrees are most likely to be picked, which is about 91%. Based on the visualization of Figure 7b, various fixed beam subset selections for Set B, may be selected.
Results
An all outdoor UMa scenario is considered here. Each randomly dropped user is moving in a straight line in a random direction. It is assumed that each UE always uses its best beam. 
Except for the input layer, which changes with Set B, the to be trained model retains the hidden layers and the output layer for various cases considered here. The NN functions as a classifier, hence the output layer is length 32 softmax output vector. The NN’s input size is (Nip, 3), where Nip is the number of selected L1-RSRPs as explained above.
For performance evaluation, the main considered KPI is the mean absolute L1-RSRP difference, at the predicting time instance. Two cases are separately considered for this, 
1) difference between the overall best beam of Set A and best predicted beam (labelled as model in the Figures below),
2) difference between the overall best beam of Set A and best beam of Set B at time instance {2} (labelled as baseline in the Figures below), i.e., the baseline assumes that the best Set B beam at time instance {2} is carried over as the best beam at prediction instance. 

Another metric, which is the CDF of the mean absolute L1-RSRP difference, is also plotted for the above-mentioned baseline and the model. Towards the performance evaluation wrt to the KPIs, models for Alt 1, Alt 2, Alt 3 are separately trained and tested. For Alt 2, a 16-beam fixed pattern with L1-RSRP values taken from the top 2 rows of Figure 7 is considered.
The actual L1-RSRP value at the predicted beam index and the prediction time instance is used as the L1-RSRP value for the model. Similarly for the baseline, the actual L1-RSRP is read at the carried forward beam index.
[image: ]
Figure 8), Comparison of the trained models and the corresponding baseline various Set-Bs at different prediction time instances {3, 6, 8}. UMa, 30 km/h, no UE rotation. 


In Figure 8, by keeping the duration T1 unchanged, prediction is done separately at the time instances {3, 6, 8}, which correspond to the time duration for the best beam evaluation T2 = 40ms,160ms, 240ms respectively. T2 is varied relative to the T1 of training. For a given inputs from Set B (16, 32 CSI-RS beams and 8 SSB beams), a loss of approx. 0.3 to 0.5dB is observed with successive considered T2. The trained model performs reasonably well, if a tolerance of 1dB is allowed in the prediction error. The trained model in any case is better than the baseline. 

[image: ]    [image: ]
      Figure 9a). Comparison of the trained models and the baseline for various Set-Bs at the  prediction time instances 3 (T2=40ms). UMa, 30 km/h, no UE rotation
Figure 9b). 99th and 95th percentiles for the plots in Figure 9a.

Figure 8 shows a metric that reflects the average performance. For a better understanding of the performance deviation from the optimal, the instantaneous prediction values need to be considered. For this, the cdf of the predicted L1-RSRPs is shown in Figure 9a and the corresponding 95 percentile (for 5 %worst UEs), 99 percentiles (for 1% worst UEs) are shown in Figure 9b. 
For various Set Bs, the 5% worst UEs have a performance deviation of 1.7dB to 3dB, while the 1% worst UEs suffer from a higher deviation of 5.7dB to 9.9dB. The large L1-RSRP error in the lower percentiles may motivate TX-beam prediction for UEs with high reliability requirements, in order to mitigate a large drop in signal quality. 
 [image: ]
 Figure 10). Comparison of the trained models for various Set-Bs at the prediction time instance 3 (T2=40ms) and different scenarios.

In addition to the straight-line movement, UE’s rotation about its own axis and UE’s velocity are also important considerations for studying L1/L2 mobility. For this, a UE rotation of 60 degrees /sec (=10 rotations / minute) and an increased UE velocity to 60km/h were separately included to the UMa scenario of Figure 8. Figure 10 provides the comparison that these cases. Since the assumption of the UE using its best RX beam has been made, there is no large performance difference between (30km/h, 0deg/sec) and (30km/h, 60deg/sec). Further, the increased UE velocity from 30km/h to 60km/h may lead to an increased number of beam switches over both training and prediction time windows. This likely manifests to a performance loss in (60km/h, 0deg/sec) when compared to (30km/h, 0deg/sec). In conclusion the following two major observations are made:
[bookmark: _Toc118722167]The observed prediction performance improvement over baseline when number of beams in set B is <=16 is mainly due to the spatial domain prediction ability 
[bookmark: _Toc118722168]With set A equal to set B and having 30/60 km/h straight line moving UEs with/without rotation, AI/ML temporal TX beam prediction at T2=40ms, 160ms , 240ms shows limited gain over baseline method due to the slow variations in the propagation.
Conclusions
In the previous sections we made the following observations: 
Observation 1	In outdoor scenarios, AI/ML can reduce beam spatial-domain beam prediction overhead substantially while maintaining good accuracy for 4x8 (32 beams in Set A).
Observation 2	In scenarios with primarily indoor UEs, spatial-domain beam predication is more challenging.
Observation 3	With the adopted beam pattern, the conventional scheme could have very good performance which significantly outperforms the baseline schemes and have similar performance as AI/ML schemes.
Observation 4	Joint TX/RX prediction can give quite good performance while significantly reducing RS overhead compared to measurements of all RX beams for each TX beam in Set B.
Observation 5	By allowing variable number of reported beams via UE pre-processing of measurements, the reporting overhead can be substantially reduced with little performance degradation.
Observation 6	UE location as assistance information can substantially improve prediction performance for outdoor UEs.
Observation 7	With identical antenna configuration, initial evaluations indicates that a model trained in one cell is found to be generalized well while the performance heavily depends on the sector is selected for the inference.
Observation 8	Generalization results indicate the importance of having model monitoring procedures that detects issues when a model trained in one cell is used in another.
Observation 9	The observed prediction performance improvement over baseline when number of beams in set B is <=16 is mainly due to the spatial domain prediction ability
Observation 10	With set A equal to set B and having 30/60 km/h straight line moving UEs with/without rotation, AI/ML temporal TX beam prediction at T2=40ms, 160ms , 240ms shows limited gain over baseline method due to the slow variations in the propagation.
Based on the discussion in the previous sections we propose the following:
Proposal 1	Evaluate more percentiles for the L1-RSRP error (e.g. 95th,99th percentile)
Proposal 2	For beam prediction evaluations consider providing the results with measurement accuracy noise modelled as additive gaussian noise with 95% of the density function within the measurement accuracy range, and/or uniformly distributed noise
Proposal 3	Study the impact of measurement imperfections on model performance for the considered beam prediction use cases.
Proposal 4	Consider the following to mitigate the L1-RSRP measurement inaccuracy impact in ML based beam prediction
a.	RAN4 to explore possibility to tighten requirements on L1-RSRP measurement accuracy
b.	Define different UE capability based on their capability in fulfilling a measurement accuracy requirement.
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Appendix: Simulation Assumptions
[bookmark: _Ref118502017][bookmark: _Ref111030355]Table 6: Evaluations of training and inference using the data from the same sector for the setting with 4x8 gNB array
	Top 1/Top 3 
(1 dB margin)
	UMa, 100% outdoor UEs
4x8 gNB, ISD=200m
with 1 dB margin
	UMa, 80%/20% in/outdoor UEs
4x8 gNB, ISD=200m
with 1 dB margin

	
	SSB beams 
(8 beams)
	CSI-RS beams
(32 beams)
	SSB beams 
(8 beams)
	CSI-RS beams
(32 beams)

	
	4-8
	8-8
	4-32
	8-32
	16-32
	4-8
	8-8
	4-32
	8-32
	16-32

	Sector [0]
	0.902
/0.994
	0.964
/1.000
	0.538
/0.918
	0.964
/0.994
	0.994
/0.999
	0.753
/0.948
	0.877
/0.988
	0.375
/0.787
	0.819
/0.975
	0.953
/0.997

	Sector [1]
	0.840
/0.982
	0.959
/0.992
	0.656
/0.915
	0.928
/0.993
	0.984
/0.998
	0.695
/0.907
	0.845
/0.975
	0.360
/0.724
	0.757
/0.943
	0.945
/0.995

	Sector [2]
	0.866
/0.989
	0.960
/0.998
	0.516
/0.830
	0.950
/0.994
	0.989
/1.000
	0.699
/0.919
	0.867
/0.979
	0.358
/0.694
	0.800
/0.966
	0.944
/0.991

	Sector [3]
	0.880
/0.991
	0.960
/0.997
	0.424
/0.853
	0.967
/0.998
	0.995
/0.999
	0.705
/0.942
	0.848
/0.982
	0.374
/0.731
	0.801
/0.968
	0.963
/0.995

	Sector [4]
	0.882
/0.993
	0.959
/0.998
	0.556
/0.898
	0.939
/0.997
	0.994
/0.999
	0.716
/0.934
	0.857
/0.982
	0.398
/0.781
	0.784
/0.963
	0.961
/0.997

	Sector [5]
	0.921
/0.995
	0.969
/0.997
	0.556
/0.925
	0.986
/0.997
	0.995
/0.998
	0.759
/0.951
	0.868
/0.986
	0.407
/0.798
	0.817
/0.970
	0.970
/0.997

	Sector [6]
	0.918
/0.993
	0.970
/0.998
	0.617
/0.907
	0.958
/0.994
	0.994
/1.000
	0.692
/0.915
	0.857
/0.980
	0.352
/0.747
	0.775
/0.957
	0.945
/0.995

	Sector [7]
	0.909
/0.995
	0.974
/0.998
	0.631
/0.923
	0.970
/0.996
	0.995
/1.000
	0.715
/0.946
	0.869
/0.983
	0.395
/0.768
	0.797
/0.964
	0.961
/0.996

	Sector [8]
	0.911
/0.978
	0.961
/0.996
	0.604
/0.915
	0.950
/0.993
	0.987
/0.998
	0.723
/0.928
	0.855
/0.982
	0.402
/0.772
	0.800
/0.965
	0.956
/0.995

	Sector [9]
	0.858
/0.994
	0.971
/0.996
	0.451
/0.847
	0.977
/0.995
	0.994
/0.999
	0.709
/0.934
	0.855
/0.979
	0.366
/0.741
	0.812
/0.967
	0.953
/0.995

	Sector [10]
	0.800
/0.981
	0.935
/0.995
	0.482
/0.843
	0.946
/0.993
	0.987
/0.998
	0.729
/0.941
	0.867
/0.984
	0.376
/0.747
	0.795
/0.964
	0.959
/0.997

	Sector [11]
	0.802
/0.968
	0.948
/0.997
	0.497
/0.833
	0.947
/0.994
	0.981
/0.999
	0.712
/0.944
	0.868
/0.979
	0.350
/0.738
	0.804
/0.970
	0.956
/0.995

	Sector [12]
	0.938
/0.995
	0.971
/0.997
	0.745
/0.957
	0.936
/0.998
	0.991
/0.999
	0.722
/0.921
	0.854
/0.975
	0.395
/0.755
	0.786
/0.968
	0.936
/0.993

	Sector [13]
	0.896
/0.990
	0.963
/0.996
	0.682
/0.899
	0.959
/0.995
	0.993
/1.000
	0.694
/0.932
	0.859
/0.980
	0.399
/0.764
	0.788
/0.963
	0.961
/0.997

	Sector [14]
	0.904
/0.994
	0.978
/0.999
	0.596
/0.923
	0.976
/0.998
	0.996
/0.999
	0.694
/0.923
	0.862
/0.984
	0.332
/0.728
	0.774
/0.957
	0.945
/0.994

	Sector [15]
	0.863
/0.992
	0.965
/0.996
	0.581
/0.891
	0.952
/0.995
	0.991
/0.999
	0.703
/0.938
	0.844
/0.977
	0.358
/0.723
	0.779
/0.959
	0.945
/0.995

	Sector [16]
	0.885
/0.990
	0.958
/0.996
	0.654
/0.891
	0.948
/0.991
	0.982
/0.999
	0.727
/0.931
	0.858
/0.982
	0.397
/0.753
	0.781
/0.952
	0.949
/0.996

	Sector [17]
	0.876
/0.986
	0.951
/0.999
	0.652
/0.921
	0.963
/0.995
	0.989
/0.999
	0.692
/0.934
	0.861
/0.984
	0.391
/0.755
	0.794
/0.969
	0.956
/0.995

	Sector [18]
	0.893
/0.997
	0.977
/0.999
	0.462
/0.858
	0.982
/0.999
	0.998
/1.000
	0.704
/0.928
	0.863
/0.985
	0.363
/0.758
	0.804
/0.960
	0.953
/0.997

	Sector [19]
	0.891
/0.995
	0.978
/0.999
	0.524
/0.907
	0.974
/0.995
	0.998
/1.000
	0.729
/0.939
	0.861
/0.983
	0.395
/0.770
	0.789
/0.966
	0.950
/0.996

	Sector [20]
	0.894
/0.989
	0.959
/0.997
	0.571
/0.900
	0.953
/0.996
	0.990
/0.998
	0.749
/0.945
	0.867
/0.983
	0.398
/0.798
	0.807
/0.965
	0.962
/0.996

	Max
	0.938
/0.997
	0.978
/1.000
	0.745
/0.957
	0.986
/0.999
	0.998
/1.000
	0.759
/0.951
	0.877
/0.988
	0.407
/0.798
	0.819
/0.975
	0.970
/0.997

	Min
	0.800
/0.968
	0.935
/0.992
	0.424
/0.830
	0.928
/0.991
	0.981
/0.998
	0.692
/0.907
	0.844
/0.975
	0.332
/0.694
	0.757
/0.943
	0.936
/0.991

	Mean
	0.882
/0.990
	0.963
/0.997
	0.571
/0.893
	0.958
/0.995
	0.991
/0.999
	0.715
/0.933
	0.860
/0.982
	0.378
/0.754
	0.793
/0.963
	0.953
/0.995



[bookmark: _Ref118501965]Table 7: Generalization evaluations of the inference in different sectors
	Top 1/Top 3 
(1 dB margin)
	Train model based on the data from sector [5] to 
perform the inference in different sectors with the same scenario

	Dataset
	Set B
	[0]
	[1]
	[2]
	[3]
	[4]
	[5]
	[6]
	[7]
	[8]
	[9]
	[10]
	[11]

	UMa
Outdoor
	4-8
SSB
	0.841/
0.975
	0.681/
0.903
	0.714/
0.970
	0.721/
0.959
	0.827/
0.977
	0.921/
0.995
	0.771/
0.972
	0.848/
0.984
	0.833/
0.952
	0.800/
0.989
	0.729/
0.957
	0.711/
0.945

	
	8-8
SSB
	0.914/
0.990
	0.819/
0.942
	0.911/
0.991
	0.820/
0.980
	0.905/
0.989
	0.970/
0.998
	0.903/
0.989
	0.927/
0.992
	0.908/
0.962
	0.922/
0.994
	0.856/
0.978
	0.854/
0.965

	
	4-32
CSI-RS
	0.415/
0.848
	0.321/
0.749
	0.290/
0.597
	0.313/
0.641
	0.382/
0.785
	0.564/
0.922
	0.305/
0.675
	0.353/
0.831
	0.240/
0.683
	0.307/
0.669
	0.292/
0.572
	0.297/
0.651

	
	8-32
CSI-RS
	0.889/
0.978
	0.778/
0.898
	0.889/
0.962
	0.840/
0.966
	0.818/
0.942
	0.985/
0.998
	0.820/
0.953
	0.798/
0.970
	0.856/
0.959
	0.899/
0.984
	0.788/
0.928
	0.802/
0.933

	
	16-32
CSI-RS
	0.963/
0.992
	0.857/
0.951
	0.943/
0.980
	0.944/
0.988
	0.954/
0.991
	0.997/
1.000
	0.948/
0.992
	0.972/
0.991
	0.925/
0.970
	0.977/
0.996
	0.917/
0.975
	0.906/
0.952

	
	
	[12]
	[13]
	[14]
	[15]
	[16]
	[17]
	[18]
	[19]
	[20]
	Max
	Min
	Mean

	
	4-8
SSB
	0.768/
0.972
	0.783/
0.973
	0.791/
0.983
	0.713/
0.964
	0.801/
0.969
	0.852/
0.983
	0.819/
0.987
	0.825/
0.988
	0.807/
0.976
	0.921/
0.995
	0.681/
0.903
	0.788/
0.970

	
	8-8
SSB
	0.950/
0.994
	0.917/
0.991
	0.945/
0.995
	0.883/
0.994
	0.875/
0.985
	0.932/
0.992
	0.929/
0.997
	0.918/
0.996
	0.905/
0.987
	0.970/
0.998
	0.819/
0.942
	0.903/
0.986

	
	4-32
CSI-RS
	0.383/
0.778
	0.466/
0.801
	0.327/
0.699
	0.324/
0.598
	0.317/
0.658
	0.455/
0.790
	0.386/
0.702
	0.301/
0.739
	0.316/
0.738
	0.564/
0.922
	0.240/
0.572
	0.350/
0.720

	
	8-32
CSI-RS
	0.823/
0.944
	0.841/
0.970
	0.843/
0.963
	0.810/
0.947
	0.820/
0.953
	0.898/
0.983
	0.852/
0.981
	0.876/
0.981
	0.879/
0.972
	0.985/
0.998
	0.778/
0.898
	0.848/
0.960

	
	16-32
CSI-RS
	0.948/
0.988
	0.954/
0.991
	0.957/
0.996
	0.953/
0.993
	0.933/
0.977
	0.971/
0.992
	0.966/
0.996
	0.973/
0.996
	0.966/
0.988
	0.997/
1.000
	0.857/
0.951
	0.949/
0.985

	

	Dataset
	Set B
	[0]
	[1]
	[2]
	[3]
	[4]
	[5]
	[6]
	[7]
	[8]
	[9]
	[10]
	[11]

	UMa
80%/20%
In/outdoor
	4-8
SSB
	0.713/
0.938
	0.644/
0.912
	0.664/
0.919
	0.639/
0.925
	0.707/
0.929
	0.759/
0.950
	0.643/
0.913
	0.708/
0.935
	0.709/
0.922
	0.684/
0.937
	0.700/
0.934
	0.667/
0.924

	
	8-8
SSB
	0.855/
0.981
	0.834/
0.974
	0.846/
0.974
	0.832/
0.978
	0.840/
0.980
	0.868/
0.984
	0.848/
0.971
	0.846/
0.979
	0.843/
0.975
	0.842/
0.978
	0.846/
0.979
	0.850/
0.977

	
	4-32
CSI-RS
	0.330/
0.735
	0.296/
0.676
	0.305/
0.671
	0.298/
0.664
	0.355/
0.746
	0.407/
0.796
	0.280/
0.677
	0.341/
0.743
	0.308/
0.727
	0.318/
0.699
	0.323/
0.710
	0.292/
0.688

	
	8-32
CSI-RS
	0.773/
0.963
	0.729/
0.935
	0.767/
0.952
	0.760/
0.966
	0.743/
0.959
	0.817/
0.972
	0.741/
0.950
	0.733/
0.960
	0.738/
0.951
	0.769/
0.961
	0.761/
0.958
	0.752/
0.960

	
	16-32
CSI-RS
	0.952/
0.994
	0.922/
0.986
	0.931/
0.990
	0.946/
0.994
	0.947/
0.992
	0.968/
0.997
	0.923/
0.990
	0.947/
0.992
	0.936/
0.988
	0.951/
0.994
	0.948/
0.993
	0.942/
0.990

	
	
	[12]
	[13]
	[14]
	[15]
	[16]
	[17]
	[18]
	[19]
	[20]
	Max
	Min
	Mean

	
	4-8
SSB
	0.705/
0.923
	0.672/
0.924
	0.658/
0.904
	0.661/
0.929
	0.728/
0.925
	0.686/
0.929
	0.688/
0.927
	0.724/
0.938
	0.736/
0.943
	0.759/
0.950
	0.639/
0.904
	0.690/
0.928

	
	8-8
SSB
	0.840/
0.975
	0.843/
0.976
	0.831/
0.973
	0.841/
0.977
	0.847/
0.976
	0.851/
0.980
	0.834/
0.976
	0.854/
0.982
	0.853/
0.980
	0.868/
0.984
	0.831/
0.971
	0.845/
0.977

	
	4-32
CSI-RS
	0.341/
0.723
	0.337/
0.721
	0.295/
0.673
	0.288/
0.683
	0.320/
0.727
	0.347/
0.722
	0.310/
0.722
	0.306/
0.745
	0.345/
0.768
	0.407/
0.796
	0.280/
0.664
	0.321/
0.715

	
	8-32
CSI-RS
	0.748/
0.954
	0.758/
0.958
	0.739/
0.947
	0.754/
0.949
	0.729/
0.951
	0.761/
0.959
	0.759/
0.954
	0.766/
0.959
	0.776/
0.962
	0.817/
0.972
	0.729/
0.935
	0.756/
0.956

	
	16-32
CSI-RS
	0.929/
0.987
	0.938/
0.991
	0.925/
0.987
	0.935/
0.992
	0.939/
0.990
	0.938/
0.991
	0.935/
0.991
	0.948/
0.994
	0.949/
0.993
	0.968/
0.997
	0.922/
0.986
	0.940/
0.991




Table 9: Evaluation scenario
	[bookmark: _In-sequence_SDU_delivery]Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz
· SCS: 120 kHz

	Deployment
	200m ISD,
· 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	· For spatial domain beam prediction, 3km/h
· For time domain beam prediction: 30km/h (baseline), 60km/h (optional)
· Other values are not precluded

	UE distribution
	· FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded.
 
· For spatial domain beam prediction: FFS:
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	·         [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline]
·         [Four panels: (M, N, P, Mg, Ng) = (4, 8, 2, 2, 2), (dV, dH) = (0.5, 0.5) λ. (dg,V, dg,H) = (2.0, 4.0) λ as optional]
·         Other assumptions are not precluded.
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,2)]
·         2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
·         Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	Companies to explain beam correspondence assumptions (in accordance to the two types agreed in RAN4)

	Link adaptation
	Based on CSI-RS

	Traffic Model
	FFS:
· Option 1: Full buffer
· Option 2: FTP model
Other options are not precluded

	Inter-panel calibration for UE
	Ideal, non-ideal following 38.802 (optional) – Explain any errors

	Control and RS overhead
	Companies report details of the assumptions

	Control channel decoding
	Ideal or Non-ideal (Companies explain how it is modelled)

	UE receiver type
	MMSE-IRC as the baseline, other advanced receiver is not precluded

	BF scheme
	Companies explain what scheme is used

	Transmission scheme
	Multi-antenna port transmission schemes
Note: Companies explain details of the using transmission scheme.

	Other simulation assumptions
	Companies to explain serving TRP selection
Companies to explain scheduling algorithm

	Other potential impairments
	Not modelled (assumed ideal).
If impairments are included, companies will report the details of the assumed impairments

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB




[bookmark: _Ref118265264]Appendix: Summary of agreements
RAN1#110, August 2022
Agreement
 The Following updated based on the agreements in RAN 1 #109-e is adopted
	Parameters
	Values

	UE distribution

	· FFS 10 UEs per sector/cell for system performance related KPI (if supported) [e.g,, throughput] for full buffer traffic (if supported) evaluation (model inference). 
· X UEs per sector/cell for system performance related KPI for FTP traffic (if supported) evaluation (model inference). 
· 
· Other values are not precluded 
· Number of UEs per/sector per cell during data collection (training/testing) is reported by companies if relevant
· More UEs per sector/cell for data generation is not precluded. 


	UE Antenna Configuration
	· Antenna setup and port layouts at UE: [1,2,1,4,2,1,1], 2 panels (left, right)
· [Panel structure: (M,N,P) = (1,4,2)]
(a) panels (left, right) with (Mg, Ng) = (1, 2) as baseline
· Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams





Agreement
The Following updated based on the agreements in RAN 1 #109-e is adopted
	Parameters
	Values

	UE Speed
	· For spatial domain beam prediction, 3km/h
· For time domain beam prediction: 3km/h(optional), 30km/h (baseline), 60km/h (optional), 90km/h (optional), 120km/h (optional)
· Other values are not precluded

	UE distribution
	· For spatial domain beam prediction: 
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor


	
Agreement
· If UE orientation is modeled, it can be independently modeled from UE moving trajectory model. 
· This is not precluded that UE orientation coupled with UE moving trajectory model. 
Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· FFS on the beams of Set B
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each report/measurement during training and/or inference) 
· FFS on fixed or variable number of beams (pairs)
· FFS on the details 
· Other options are not precluded. 
· FFS on the number of beams (pairs) in Set B
· Note: This does not preclude the alternative that Set B is different from Set A.
Agreement
· To evaluate the performance of AI/ML in beam management at least for NW side beam prediction, UCI report overhead can be further studied as one of KPI options. 
· FFS: number of UCI reports and UCI payload size
RAN1#110bis-e, October 2022
Working Assumption
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.
Conclusion
· For system performance related KPI (if supported) evaluation (model inference), companies report either of the following traffic model:
· Option 1: Full buffer
· Option 2: FTP model with detail assumptions (e.g., FTP model 1, FTP model 3)
Agreement
· BS antenna configuration: 
· antenna setup and port layouts at gNB: (4, 8, 2, 1, 1, 1, 1), (dV, dH) = (0.5, 0.5) λ
· Other assumptions are not precluded
· BS Tx power for evaluation: 
· 40dBm (baseline)
· Other values (e.g. 34 dBm) are not precluded and can be reported by companies
· UE antenna configuration (Clarification of agreement in RAN 1 #110): 
· antenna setup and port layouts at UE: (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right) 
· Other assumptions are not precluded
Agreement
· For the evaluation of both BM-Case1 and BM-Case2, 32 or 64 downlink Tx beams (maximum number of available beams) at NW side. 
· Other values, e.g., 256, etc, are not precluded and can be reported by companies.
· For the evaluation of both BM-Case1 and BM-Case2, 4 or 8 downlink Rx beams (maximum number of available beams) per UE panel at UE side. 
· Other values, e.g., 16, etc, are not precluded and can be reported by companies.
Agreement
· The options to evaluate beam prediction accuracy (%):
· Top-1 (%): the percentage of “the Top-1 genie-aided beam is Top-1 predicted beam”
· Top-K/1 (%): the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
· Top-1/K (%) (Optional): the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Where K >1 and values can be reported by companies.
Agreement 
· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam considers the following options 
· Option A, the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B, the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams
Agreement
· For BM Case-1 and BM Case 2, to verify the generalization performance of an AI/ML model over various scenarios/configurations, the set of scenarios/configurations are considered focusing on one or more of the following aspects as a starting point:
· Scenarios
· Various deployment scenarios 
· Various outdoor/indoor UE distributions 
· Various UE mobility 
· Configurations
· Various UE parameters 
· Various gNB settings 
· [Various Set B of beam(pairs)]
· Other aspects of scenarios/configurations are not precluded
· The selected scenarios/configurations for generalization verification may consider the AI model inference node (e.g., @UE or @gNB) and use case (e.g., BM-Case1, or BM-Case2)
· Companies to report the selected scenarios/configurations for generalization verification
· Note: other approaches for achieving good generalization performance for AI/ML-based schemes are not precluded.
Working Assumption
For both BM-Case1 and BM-Case 2, the following table is adopted as working assumption for reporting the evaluation results.
Table X. Evaluation results for [BM-Case1 or BM-Case2] without model generalization for [DL Tx beam prediction or Tx-Rx beam pair prediction or Rx beam prediction]
	
	Company A
	……

	Assumptions
	Number of [beams/beam pairs] in Set A
	
	

	
	Number of [beams/beam pairs] in Set B
	
	

	
	Baseline scheme
	
	

	AI/ML model
input/output
	Model input
	
	

	
	Model output
	
	

	Data Size
	Training
	
	

	
	Testing
	
	

	AI/ML model
	[Short model description]
	
	

	
	Model complexity
	
	

	
	Computational complexity
	
	

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	[KPI A]
	
	

	
	
	[KPI B]
…
	
	

	
	[L1-RSRP Diff]
	[Average L1-RSRP diff]
…
	
	

	
	[System performance]
	[RS overhead Reduction (%)/
RS overhead]
	
	

	
	
	[UCI report]
	
	

	
	
	[UPT]
…
	
	



To report the following in table caption: 
· Which side the model is deployed
Further info for the columns:
· Assumptions
· Number of beams/beam pairs in Set A
· Number of beams/beam pairs in Set B
· Baseline scheme, e.g., Option 1 (exhaustive beam sweeping), Option 2(based on measurements of Set B), or baseline described by companies
· Other assumptions can be added later based on agreements
· Model input: input type(s)
· Model output: output type(s), e.g., the best DL Tx and/or Rx beam ID, and/or L1-RSRPs of N beams(pairs) 
· Dataset size, both the size of training/validation dataset and the size of test dataset
· Short model description: e.g., CNN, LSTM
· Model complexity, in terms of “number of model parameters” and/or size (e.g. Mbyte)”, and 
· Computational complexity in terms of FLOPs
· Evaluation results: agreed KPIs, with AI/ML / with baseline scheme (if applicable)
Note: To report other simulation assumptions, if any.
Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference), FFS:
· Opt A: Set B is changed following a set of pre-configured patterns 
· Opt B: Set B is randomly changed among pre-configured patterns 
· Opt C: Set B is randomly changed among Set A beams (pairs) 
· The number of beams(pairs) in Set B can be fixed or variable
· Note: BM-Case1 and BM-Case2 may be considered for different option. 
· Other options are not precluded. 
Working assumption
· For the evaluation of the overhead for BM-Case1, further study the following two metrics for potential down selection:
· Option A: RS overhead reduction, FFS for potential down selection:
· Option 1: [image: ][image: ]
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· where M is the total number of beams (pairs) to be predicted 
· Option 2: [image: ][image: ]
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme 
· Companies report the assumption on beam sweeping
· Option 3: [image: ][image: ]
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· where M is the total number of beams (pairs) to be predicted 
· FFS the following alternatives consider different targets (e.g., beam or beam pair) for prediction: 
· Alt1: P is the number of Top-K selected beams (pairs) for beam sweeping (if applicable)
· Alt2: P is the number of Top-K selected beams (pairs) not in Set B for beam sweeping (if applicable)
· Alt3: P is the number of beams used for beam sweeping to get the best Rx beam (if applicable)
· Companies report the assumption on beam sweeping
· Other options can be reported by companies 
· Option B: RS overhead, FFS for potential down selection:
· Option 1: RS OH = N, 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· Option 2: RS OH = N + P 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· FFS the following alternatives consider different targets (e.g., beam or beam pair) for prediction: 
· Alt1: P is the number of Top-K selected beams (pairs) for beam sweeping (if applicable)
· Alt2: P is the number of Top-K selected beams (pairs) not in Set B for beam sweeping (if applicable)
· Alt3: P is the number of beams used for beam sweeping to get the best Rx beam (if applicable)
· Companies report the assumption on beam sweeping
· Other options can be reported by companies

Agreement
· At least for BM-Case 2, consider the following assumptions for evaluation
· Periodicity of time instance for each measurement/report in T1:
· 20ms, 40ms, 80ms, [100ms], 160ms, [960ms]
· Other values can be reported by companies.
· Number of time instances for measurement/report in T1 can be reported by companies.
· Time instance(s) for prediction can be reported by companies.

Measure beams in Set B, predict Top-1 beam in Set A


Select final/data beam as Top-1 beam in Set A


Measure beams in Set B, predict Set A


Measure Top-K beams from Set A


Select final/data beam based on meas. on Top-K beams
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