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Introduction
[bookmark: _Hlk101176897]AI/ML-based CSI feedback enhancement is one of the use cases in this study item. In the RAN WG1 109-e meeting, spatial-frequency domain CSI compression using two-sided AI/ML model (depicted in Fig. 1) is selected as one representative sub-use case.
Agreement 
For the evaluation of the AI/ML based CSI compression sub use cases, a two-sided model is considered as a starting point, including an AI/ML-based CSI generation part to generate the CSI feedback information and an AI/ML-based CSI reconstruction part which is used to reconstruct the CSI from the received CSI feedback information.
· At least for inference, the CSI generation part is located at the UE side, and the CSI reconstruction part is located at the gNB side.
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Fig. 1: The two-sided AI/ML model [1].

In the previous RAN WG1 110bis-e meeting, progresses are made from the aspects of baseline SLS EVM table, evaluation metrics, model finetuning, training collaboration levels in CSI compression, and the major EVM and AI/ML settings for the sub-use-case of CSI prediction [2]. In this paper, we show our views on the selection of the intermediate KPI for CSI compression, type 3 training, model finetuning, etc., and present our evaluation results.

Intermediate KPIs for CSI Compression
In the previous meeting, the intermediate KPI for the case of rank>1 was discussed, and the following agreement was made [2]. As an FFS, a down-selection should be made between two proposed formulae of the squared generalized cosine similarity (SGCS). 
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if the SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’ for rank>1 cases, at least Method 3 is adopted, FFS whether additionally adopt a down-selected metric between Method 1 and Method 2.
· Method 1: Average over all layers
· Method 2: Weighted average over all layers 

where  is the jth eigenvector of the target CSI at resource unit i and K is the rank.  is the  jth output vector of the output CSI of resource unit i. N is the total number of resource units.   denotes the average operation over multiple samples.  is an eigenvalue of the channel covariance matrix corresponding to .
· Method 3: SGCS is separately calculated for each layer (e.g., for K layers, K SGCS values are derived respectively, and comparison is performed per layer)
It is noticed from the agreement that the layers are weighted equally in Method 1, however, they are weighted according to their corresponding eigenvalue in Method 2. From our point of view, Method 2 is preferred. We present the reasons as follows.

First, from the mathematical perspective, the layers should be weighted differently. In particular, low ranks appear more frequently than high ones, which is due to the fact that the probability of scheduling UEs with a small number of layers is much bigger than more layers. In addition, the SGCS of a low layer is larger than that of a higher layer. So, the SGCSs of the lower layers, which are larger and appear more frequently than those of the higher layers, should be weighted larger in the (overall) SGCS. Method 2 is consistent with this observation, but not Method 1.

Second, the (overall) SGCS calculated according to Method 2 is more consistent with the throughput than that by Method 1. Specifically, increasing the precoding accuracy of low ranks (associated with large singular values) contributes larger than that of high ranks (associated with small singular values) to the gain of throughput. In Method 2, the SGCS of the layer with a larger singular value weights larger than the one with a smaller singular value. However, all layers are weighted equally in the SGCS formula. 

Given that Method 3 is adopted, we still need to adopt a down-selected metric between Method 1 and Method 2. In fact, Method 3 by itself is not enough as an intermediate KPI in some circumstances. A single number, rather than multiple ones, is preferred as an intermediate KPI at least in some scenarios. For example, consider the case that we want to compare the performance of two pairs of layer-common two-sided AI/ML model for the case that rank = 2. The SGCSs for the two layers are  and  for AI/ML model 1, and are  and  for AI/ML model 2, which satisfy . In this case, it is difficult to decide which of the two AI/ML models is better by Method 3 only. By using Method 2, AI/ML model 2 is regarded as superior compared to AI/ML model 1, which is consistent with the reasoning presented earlier. 

As a result, we have the following proposal.

Proposal-1: For the evaluation of the AI/ML based CSI feedback enhancement, if the SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’ for rank>1 cases, normalized weighted SGCS should be selected as an intermediate KPI,

where  is the jth eigenvector of the target CSI at resource unit i and K is the rank.  is the jth output vector of the output CSI of resource unit i. N is the total number of resource units.   denotes the average operation over multiple samples.  is an eigenvalue of the channel covariance matrix corresponding to .

Finetuning
In the previous meeting, the following agreement regarding the AI/ML model finetuning for CSI feedback enhancement is made [2].

Agreement
For the evaluation of the potential performance benefits of model fine-tuning of CSI feedback enhancement which is optionally considered by companies, the following case is taken 
· The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Company to report the fine-tuning dataset setting (e.g., size of dataset) and the improvement of performance

In this section, we evaluate the performance benefits of mode finetuning according to this agreement. In particular, link-level simulations are performed. We show that there is a significant performance gain of using finetuning, which is close to the performance of joint training. Then we study the amount of data needed for finetuning.

3.1 Finetuning for a Jointly Trained Model
The Performance of Finetuning
We describe our simulation setting as follows. A pair of two-sided AI/ML model is trained using a training dataset composed by the right singular vectors of the channel matrix of a CDL-C-300-10 channel, where the notation CDL-C-- means a CDL-C channel with delay spread  and Doppler’s shift . We then use a dataset composed by the right singular vectors of the channel matrix of a CDL-C-30-10 channel to do finetuning. The inference is performed by the dataset of same type of that of the finetuning dataset, but is independently drawn from the finetuning dataset.

When the size of finetuning dataset is 40K, the performance of finetuning is shown in Fig. 2. The simulation parameters are summarized in Table 8 in Appendix A. According to Fig. 2, a negligible performance degradation is observed in finetuning, compared to the performance of the jointly trained AI/ML model on CDL-C-30-10 channel.
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Fig. 2. The performance of finetuning.

The Size of Data for Finetuning
We test the performance of AI/ML model finetuning using various sizes of dataset, which is shown in Fig. 3. The simulation procedure is the same as that presented above. It is observed that the performance of the AI/ML model finetuning depends on the size of dataset. It is also observed that the performance of a finetuned AI/ML model is better than that trained from randomly initialized AI/ML model parameters when there is only a limited amount of data available for training/finetuning. This is illustrated by the green and black curves in Fig. 3. Specifically, the green curve means that finetuning is performed on an AI/ML model trained by a dataset featured by CDL-C-300-10 of size 5K. The black curve means that an AI/ML model is trained using a dataset of size 5K. It is shown in Fig. 3 that the performance of the former is better than that of the latter.

We have the following observation and proposal.

Observation-1: The performance of AI/ML model finetuning depends on the size of dataset. Specifically, a better performance is achieved when the size of dataset is increased.

Observation-2: The performance of a finetuned AI/ML model is better than that trained from randomly initialized AI/ML model parameters when there is only a limited amount of data available for training/finetuning.

Proposal-2: For the evaluation of AI/ML model finetuning, the size of dataset needed should be further studied. In particular, the trade-off between the finetuning performance and the dataset size should be further studied.
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Fig. 3. The performance of AI/ML model finetuning with different sizes of dataset.

3.2 Finetuning for a Separately Trained Model
3.2.1 Using High Resolution Codebook Quantization
We describe our simulation setting as follows. Two pairs of two-sided AI/ML models, namely AI/ML model pair A and AI/ML model pair B are trained based on the training dataset from the scenarios of CDL-C-30-10 and CDL-C-300-10 channels, respectively. The AI/ML-based CSI generation part of the AI/ML model pair A, namely Encoder A, is finetuned using a dataset  drawn from the CDL-C-300-10 channel, and the updated encoder is called Encoder A’. Then the performance of the pair of AI/ML model, which is composed by Encoder A’ and the AI/ML-based CSI reconstruction part of the AI/ML model pair B, namely Decoder B, is tested using a dataset  drawn independently from the CDL-C-300-10 channel.

We present the datasets used for finetuning () and inference (). The dataset for inference is composed by the right singular vectors of the channel matrices of CDL-C-300-10 channels. The dataset for finetuning is composed by the quantized version of the right singular vectors of the channel matrices of CDL-C-300-10 channels. Specifically, the approach of quantization is high resolution codebook quantization using Rel-16 type II-like method with new parameter values. In this paper, we choose two sets of new parameter values, which are presented in Table 1.

Table 1. The parameters of Rel-16 type II-like method for finetuning dataset construction.
	
	
	
	
	
	
	
	Reference Amplitude (bit)
	Difference Amplitude (bit)
	Phase (bit)
	Total Bit Number
	SCGS in CDL-C-300-10

	Parameter Set #1
	6
	7
	0.5
	0.5
	13
	1
	4
	4
	4
	449
	0.8387

	Parameter Set #2
	12
	13
	0.95
	0.5
	13
	1
	4
	4
	4
	1579
	0.9609



The simulation parameters are summarized in Table 8 in Appendix A. The size of the dataset for finetuning is 40K. The performance is measured by SGCS, and is presented in Fig. 4.
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Fig. 4. The performance of finetuning from an AI/ML model trained in the scenario of CDL-C-30-10 channel, which is compared with that of the jointly trained two-sided AI/ML model and Rel-16 type II codebook for the scenario of CDL-C-300-10.

It is noticed from Fig. 4 that the SGCS achieved by finetuning is very close to that of the jointly trained AI/ML model, which is much better than that of Rel-16 type II codebook. We have the following observations and proposal.

Observation-3: There is a huge penalty of the performance if the AI/ML-based CSI generation part and the AI/ML-based CSI reconstruction part are mismatched in the sense that they are trained using the datasets from different scenarios.

Observation-4: The performance of the finetuning is very similar to that of joint training in terms of the SGCS.

Observation-5: For finetuning, an excellent performance can be achieved by the dataset composed by the high-resolution codebook quantization, i.e., Rel-16 type II-like method with new parameter values, of the right singular vectors of the spatial-frequency-domain channel matrix.

Proposal-3: High-resolution codebook quantization of the right singular vectors of the spatial-frequency-domain channel matrix, e.g., Rel-16 type II-like method with new parameter values, can be used in the dataset construction for finetuning.

3.2.2 Comparison With Finetuning Using Right Singular Vectors
In this subsection, we compare the finetuning performance obtained from using Rel-16 type II-like method and true right singular vectors of channel matrices. The result is shown in Fig. 5. It is observed that the performance of finetuning using those two types of data are almost the same.

Observation-6: The performance of finetuning are almost the same from using right singular vectors of channel matrices and their high-resolution codebook quantization, e.g., Rel-16 type II-like method with new parameter values.

It is also noticed from Fig. 5 that the performance varies for different amount of finetuning data used. Specifically, a better performance is obtained when a larger amount of data is used than a small amount of data used for finetuning. We further study this problem in the next subsection.
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Fig. 5. Comparison of the performances of finetuning using Rel-16 type II-like method and right singular vectors of channel matrices.

[bookmark: _Hlk118724376]We analyze the overhead reduction. As discussed above, 449 bits are consumed for each codebook vector with parameters in Table 1, which is approximately 56 bytes. However, according to the antenna configuration and the number of subbands as summarized in Table 8, a total number of 3328 bytes is needed to represent a right singular vector in floating-point numbers. By using codebook-based dataset, only  overhead is consumed compared to the dataset of right singular vectors, but only with a minor performance degradation in terms of the SGCS. 

We have the following observation and proposal.

Observation-7: It is observed that there is a significant overhead reduction of transferring a codebook-based dataset than a dataset composed by channel vectors of floating-point numbers for separate training. So, it is worth to study codebook-based quantization method in order to achieve a low-overhead dataset transferring in separate training.

Proposal-4: In order to achieve a low-overhead dataset transferring in separate training, the codebook-based quantization approach should be further studied.

3.2.3 The Size of Dataset for Finetuning
We study the size of dataset needed for finetuning. Specifically, we evaluate the relationship between the finetuning performance, and the amount of data needed.

We repeat the simulation performed in the previous subsection for various sizes of the finetuning dataset. The performance measured by SGCS is depicted in Fig. 6.
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Fig. 6. The performance of finetuning for various dataset sizes.

It is observed from Fig. 6 that the finetuning performance differs for various sizes of finetuning dataset, but are similar for the two levels of high-resolution codebook quantization. Specifically, the larger the size of dataset is, the better the performance of AI/ML model finetuning is. It is also observed that it might be enough to quantize the channel vector to 449 bits for this specific channel of interest. We should further study the codebook quantization, where the performance saturates, i.e., a trade-off between the performance of finetuning and the overall bits required in the finetuning dataset. As a result, we have the following observations and proposals.

Proposal-5: For the AI/ML model finetuning using the dataset composed by high resolution codebook quantization, study the quantization method which achieves a good trade-off between the performance of finetuning and the overall bits required in the finetuning dataset.

3.2.4 New Parameter Values for High Resolution Codebook Quantization
In the previous meeting, it is agreed to study high resolution quantization methods for ground-truth CSI, including scalar quantization, codebook quantization, and others [2].

Agreement
For evaluating the performance impact of ground-truth quantization in the CSI compression, study high resolution quantization methods for ground-truth CSI, e.g., including at least the following options
· High resolution scalar quantization, e.g., Float32, Float16, etc.
FFS select one of the scalar quantization resolutions as baseline
· High resolution codebook quantization, e.g., R16 Type II-like method with new parameters
FFS new parameters
· Other quantization methods are not precluded

In this paper, we focus on the method of high-resolution codebook quantization. In particular, we study the new parameter values for Rel-16 type II-like method.

The Rel-16 type II codebook is determined by various parameters, which are the numbers of spatial-domain DFT beams () and frequency-domain DFT beams (), the numbers of subband () and PMI-subband (), the quantization of reference amplitude, difference amplitude and phase, etc.

The effects of various parameters are shown in Tables 2—5. The required bit numbers are highlighted in blue, and the SGCS of the quantized and ground-truth right singular vectors are highlighted in green. It is observed that the SGCS are increased more noticeably by adding more spatial-domain DFT beams than frequency-domain DFT beams. In addition, the difference amplitude is effective of increasing the SGCS by comparing the results in Table 2 and Table 4. We have the following observation and proposal.

Observation-8: The number of spatial-domain DFT beams and the quantization of difference amplitude are two useful parameters for increasing the accuracy of the Rel-16 type II-like high resolution codebook quantization with new parameter values. 

Proposal-6: The choice of parameter values, aiming at achieving a high accuracy and low quantization bit numbers, should be further studied for the dataset collection for the AI/ML model finetuning using high-resolution codebook quantization.

Table 2. The effect of various choices on the parameter , when the difference amplitude is quantized to 3 bits.
	
	
	
	
	Reference Amplitude
	Difference Amplitude
	phase
	bit
	SGCS

	5
	7
	0.5
	0.5
	4
	3
	4
	345
	0.8631

	6
	7
	0.5
	0.5
	4
	3
	4
	408
	0.883

	7
	7
	0.5
	0.5
	4
	3
	4
	472
	0.8949

	8
	7
	0.5
	0.5
	4
	3
	4
	535
	0.9036

	9
	7
	0.5
	0.5
	4
	3
	4
	598
	0.9095

	10
	7
	0.5
	0.5
	4
	3
	4
	661
	0.9142

	11
	7
	0.5
	0.5
	4
	3
	4
	724
	0.9168

	12
	13
	0.95
	0.5
	4
	3
	4
	1424
	0.9212



Table 3. The effect of various choices on the parameter , when the difference amplitude is quantized to 4 bits.
	
	
	
	
	Reference Amplitude
	Difference Amplitude
	phase
	bit
	SGCS

	4
	7
	0.5
	0.5
	4
	4
	4
	306
	0.8375

	5
	7
	0.5
	0.5
	4
	4
	4
	379
	0.8699

	6
	7
	0.5
	0.5
	4
	4
	4
	449
	0.8917

	7
	7
	0.5
	0.5
	4
	4
	4
	520
	0.9057

	8
	7
	0.5
	0.5
	4
	4
	4
	590
	0.9163

	9
	7
	0.5
	0.5
	4
	4
	4
	660
	0.9247

	10
	7
	0.5
	0.5
	4
	4
	4
	730
	0.9319

	12
	13
	0.95
	0.5
	4
	4
	4
	1579
	0.9762



Table 4. The effect of various choices on the parameter , when the difference amplitude is quantized to 3 bits.
	
	
	
	
	Reference Amplitude
	Difference Amplitude
	phase
	bit
	SGCS

	4
	8
	0.6
	0.5
	4
	3
	4
	315
	0.8407

	4
	9
	0.65
	0.5
	4
	3
	4
	351
	0.8464

	4
	10
	0.7
	0.5
	4
	3
	4
	386
	0.8504

	4
	11
	0.8
	0.5
	4
	3
	4
	421
	0.8531

	4
	12
	0.9
	0.5
	4
	3
	4
	454
	0.8552

	4
	13
	0.95
	0.5
	4
	3
	4
	486
	0.8568



Table 5. The effect of various choices on the parameter , when the difference amplitude is quantized to 4 bits.
	
	
	
	
	Reference Amplitude
	Difference Amplitude
	phase
	bit
	SGCS

	4
	8
	0.6
	0.5
	4
	4
	4
	346
	0.847

	4
	9
	0.65
	0.5
	4
	4
	4
	386
	0.8541

	4
	10
	0.7
	0.5
	4
	4
	4
	425
	0.8595

	4
	11
	0.8
	0.5
	4
	4
	4
	464
	0.8637

	4
	12
	0.9
	0.5
	4
	4
	4
	501
	0.8672

	4
	13
	0.95
	0.5
	4
	4
	4
	537
	0.87



AI/ML Model Generalization
In the previous meetings, the following agreements were made [2,3]. Some evaluation results for AI/ML model generalization of payload were given in our previous contribution [4]. In this paper, we present the evaluation results for AI/ML model generalization of payload using the EVM given in [1,3]. We also present our views about the clarification of the concept of model generalization and model switch.

Agreement (RAN1 #110, 9.2.2.1)
For CSI enhancement evaluations, to verify the generalization/scalability performance of an AI/ML model over various configurations (e.g., which may potentially lead to different dimensions of model input/output), the set of configurations are considered focusing on one or more of the following aspects as a starting point:
· Various bandwidths (e.g., 10MHz, 20MHz) and/or frequency granularities, (e.g., size of subband)
· Various sizes of CSI feedback payloads, FFS candidate payload number
· Various antenna port layouts, e.g., (N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)
· Other aspects of configurations are not precluded, e.g., various numerologies, various rank numbers/layers, etc.
· Companies to report the selected configurations for generalization verification
· Companies are encouraged to report the method to achieve generalization over various configurations to achieve scalability of the AI/ML input/output, including pre-processing, post-processing, etc.
Agreement (RAN1 #110bis-e, 9.2.1)
Study various approaches for achieving good performance across different scenarios/configurations/sites, including
· Model generalization, i.e., using one model that is generalizable to different scenarios/configurations/sites
· Model switching, i.e., switching among a group of models where each model is for a particular scenario/configuration/site
· [Models in a group of models may have varying model structures, share a common model structure, or partially share a common sub-structure. Models in a group of models may have different input/output format and/or different pre-/post-processing.]
· Model update, i.e., using one model whose parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. Fine-tuning is one example.

We repeat the three schemes for the generalization of payload in Figs. 7—9. The detailed description of these three schemes can be found in our previous contribution [4].
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Fig. 7. Generalization of payload by truncators.
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Fig. 8. Generalization of payload by FCLs.
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Fig. 9. Generalization for payload by FCL, single-encoder-single-decoder case.

We perform link-level simulation to evaluate the performance of the proposed three generalization schemes and baseline.  The simulation parameters are summarized in Table 8 in Appendix A according to the EVM agreed [1,3].  According to Fig. 10, it is observed that the performances of the three models are almost the same for both scenarios, which is also very similar to the baseline performance. We have the following observations based on the evaluation results.

Observation-9: The performances of the generalization of payload are very similar in terms of the SGCS, no matter whether the structure of the AI/ML model is composed by a single encoder and a single decoder with proper pre-processing/post-processing, or a single encoder and multiple decoders with proper pre-processing/post-processing. 

Observation-10: The performance of the generalization of payload, in terms of the SGCS, are very similar to the baseline scheme, where the two-sided AI/ML model is composed by an encoder and a decoder only, without pre-processing/post-processing.
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Fig. 10. The performance for the generalization of payload.

We note that a similar performance is achieved by various structures, which may or may not include pre-processing and/or post-processing. So the issue of how an AI/ML model is defined should be studied in the configuration-wise generalization. Specifically, it should be clarified that whether the pre-processing and/or post-processing are counted as a part of the AI/ML model. In other words, there is a need to clarify whether a common backbone with different input/output format and/or different pre-/post-processing should be regarded as an approach of model generalization or model switch. As a result, we have the following proposal.

Proposal-7: For the generalization/scalability of an AI/ML model over various configurations, it should be clarified:
Case 1. Models share a common backbone with added model-specific layers should be counted as one model in model generalization evaluation or multiple models in model switch.
Case 2.  Models share a common backbone with different input/output format and/or different pre-/post-processing should be counted as one model in model generalization evaluation or multiple models in model switch.

From our point of view, it is preferred that the pre-/post-processing are counted as part of an AI/ML model. So a common backbone with different input/output format and/or different pre-/post-processing should be regarded as an approach of model generalization, rather than a model switch method.

Proposal-8: The pre-/post-processing are suggested to be counted as part of an AI/ML model for the generalization/scalability of an AI/ML model over various configurations.

Since the performances of the configuration-wise generalization/scalability are similar in terms of the SGCS, other KPIs may be needed for the evaluation purpose. The complexity related KPIs may be relevant.

Proposal-9: The KPIs for the generalization/scalability of an AI/ML model should be further studied. In particular, both the performance-related KPI and the complexity-related KPI are suggested to be used.

Proposal-10: It is suggested that the comparison of the model complexity of baseline and generalization schemes can be taken as a KPI. As an example, the ratio of the model complexity of the baseline approach over that of the generalization scheme.


A. Evaluation Methodologies and Simulation Parameters
In the previous meeting, the frequency granularity for computing the intermediate KPI for CSI compression using two-sided AI/ML model is agreed [2] for the purpose of calibrating the performance of both AI/ML-based and legacy codebook-based approaches among companies.

Agreement
In the evaluation of the AI/ML based CSI feedback enhancement, for the calculation of intermediate KPI, the following is considered as the granularity of the frequency unit for averaging operation 
· For 15kHz SCS: For 10MHz bandwidth: 4 RBs; for 20MHz bandwidth: 8 RBs
· For 30kHz SCS: For 10MHz bandwidth: 2 RBs; for 20MHz bandwidth: 4 RBs
· Note: Other frequency unit granularity is not precluded and reported by companies

The parameters for link-level simulation used in this paper are summarized in Table 8.

Table 8. Simulation parameters.
	Parameter
	Value


	Duplex, Waveform
	FDD, OFDM

	BS Antenna Element Number (
	32: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	UE Antenna Element Number ()
	4: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	UE Speed
	3 km/h

	Channel Estimation
	Realistic Channel Estimation

	Rank per UE
	1

	SNR
	10 dB

	Channel Model
	CDL-C

	Data size
	80000 for training, 4000 for testing.

	Bandwidth
	10 MHz

	RB Number
	52

	Sub-Band Number
	13

	Carrier Frequency
	2 GHz

	Sub-Carrier Spacing
	15 kHz

	Delay Spread
	30 ns
	300 ns



B. The Details of The Two-Sided AI/ML Model
In this appendix, we present the details of the two-sided AI/ML model we use in our evaluation.

The structure of the two-sided AI/ML model is depicted in Fig. 11. The number of parameters in the AI/ML model is 10.86M, and the computational complexity is 137.96M FLOPS.
[image: 图表, 图示, 箱线图

描述已自动生成]
Fig. 11. The two-sided AI/ML model used in the simulations.

Conclusions
Observation-1: The performance of AI/ML model finetuning depends on the size of dataset. Specifically, a better performance is achieved when the size of dataset is increased.

Observation-2: The performance of a finetuned AI/ML model is better than that trained from randomly initialized AI/ML model parameters when there is only a limited amount of data available for training/finetuning.

Observation-3: There is a huge penalty of the performance if the AI/ML-based CSI generation part and the AI/ML-based CSI reconstruction part are mismatched in the sense that they are trained using the datasets from different scenarios.

Observation-4: The performance of the finetuning is very similar to that of joint training in terms of the SGCS.

Observation-5: For finetuning, an excellent performance can be achieved by the dataset composed by the high-resolution codebook quantization, i.e., Rel-16 type II-like method with new parameter values, of the right singular vectors of the spatial-frequency-domain channel matrix.

Observation-6: The performance of finetuning are almost the same from using right singular vectors of channel matrices and their high-resolution codebook quantization, e.g., Rel-16 type II-like method with new parameter values.

Observation-7: It is observed that there is a significant overhead reduction of transferring a codebook-based dataset than a dataset composed by channel vectors of floating-point numbers for separate training. So, it is worth to study codebook-based quantization method in order to achieve a low-overhead dataset transferring in separate training.

Observation-8: The number of spatial-domain DFT beams and the quantization of difference amplitude are two useful parameters for increasing the accuracy of the Rel-16 type II-like high resolution codebook quantization with new parameter values.

Observation-9: The performances of the generalization of payload are very similar in terms of the SGCS, no matter whether the structure of the AI/ML model is composed by a single encoder and a single decoder with proper pre-processing/post-processing, or a single encoder and multiple decoders with proper pre-processing/post-processing. 

Observation-10: The performance of the generalization of payload, in terms of the SGCS, are very similar to the baseline scheme, where the two-sided AI/ML model is composed by an encoder and a decoder only, without pre-processing/post-processing.

Proposal-1: For the evaluation of the AI/ML based CSI feedback enhancement, if the SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’ for rank>1 cases, normalized weighted SGCS should be selected as an intermediate KPI,

where  is the jth eigenvector of the target CSI at resource unit i and K is the rank.  is the  jth output vector of the output CSI of resource unit i. N is the total number of resource units.   denotes the average operation over multiple samples.  is an eigenvalue of the channel covariance matrix corresponding to .

Proposal-2: For the evaluation of AI/ML model finetuning, the size of dataset needed should be further studied. In particular, the trade-off between the finetuning performance and the dataset size should be further studied.

Proposal-3: High-resolution codebook quantization of the right singular vectors of the spatial-frequency-domain channel matrix, e.g., Rel-16 type II-like method with new parameter values, can be used in the dataset construction for finetuning.

Proposal-4: In order to achieve a low-overhead dataset transferring in separate training, the codebook-based quantization approach should be further studied.

Proposal-5: For the AI/ML model finetuning using the dataset composed by high resolution codebook quantization, study the quantization method which achieves a good trade-off between the performance of finetuning and the overall bits required in the finetuning dataset.

Proposal-6: The choice of parameter values, aiming at achieving a high accuracy and low quantization bit numbers, should be further studied for the dataset collection for the AI/ML model finetuning using high-resolution codebook quantization.

Proposal-7: For the generalization/scalability of an AI/ML model over various configurations, it should be clarified:
Case 1. Models share a common backbone with added model-specific layers should be counted as one model in model generalization evaluation or multiple models in model switch.
Case 2.  Models share a common backbone with different input/output format and/or different pre-/post-processing should be counted as one model in model generalization evaluation or multiple models in model switch.

Proposal-8: The pre-/post-processing are suggested to be counted as part of an AI/ML model for the generalization/scalability of an AI/ML model over various configurations.

Proposal-9: The KPIs for the generalization/scalability of an AI/ML model should be further studied. In particular, both the performance-related KPI and the complexity-related KPI are suggested to be used.

Proposal-10: It is suggested that the comparison of the model complexity of baseline and generalization schemes can be taken as a KPI. As an example, the ratio of the model complexity of the baseline approach over that of the generalization scheme.

References
[1] 3GPP SR RP-221347: “Status report for study on AI/ML for NR air interface”, Jun. 2022.
[2] 3GPP “RAN1 chair’s notes (v17)”, RAN WG1 #110bis-e, Oct. 2022.
[3] 3GPP “RAN1 chair’s notes (v21)”, RAN WG1 #110, Toulouse, France, Aug. 2022.
[4] 3GPP R1-2209011, “Evaluations on AI/ML for CSI feedback enhancement,” Fujitsu, Oct. 2022.
image3.jpeg
Squared Generalized Cosine Similarity

—a— Finetuning 40K
—e— Finetuning 10K
—— Finetuning 5K
~=— Finetuning 2K
—o— Finetuning 1K
—«— Training 5K

S
©

0.85

0'850 100 150 200 250 300

Bit Number




image4.jpeg
Squared Generalized Cosine Similarity

0.9
0.8
0.7 |
0.6
—o— Encoder B & Decoder B
051 —#— Encoder A’ & Decoder B (1579 bit) | |
’ —o— Encoder A’ & Decoder B (449 bit)
—&— Rel-16 Type II Codebook
0.4 —— Encoder A & Decoder B
50 100 150 200 250 300

Bit Number




image5.jpeg
2 0.95
=
=S
£ 09
n
2
‘7 0.85| B
Q
&)
T 08
% 2 —a— Right Singular Vectors (10K)
= sl . ——R16 Type II-Like 1579 bits (10K) | |
£ of —e— R16 Type II-Like 449 bits (10K)
&) -a-  Right Singular Vectors (1K)
?: 0.7 - - R16 Type II-Like 1579 bits (1K)
g -e- R16 Type II-Like 449 bits (1K)
% 0.65 :
50 100 150 200 250 300

Bit Number




image6.jpeg
0.95

Squared Generalized Cosine Si
=)
%
T

|

50 100 150 200 250 300
Bit Number

(a) High resolution codebook quantization: 449 bit.




image7.jpeg
0.95

Squared Generalized Cosine Si
=)
%
T

|

50 100 150 200 250 300
Bit Number

(b) High resolution codebook quantization: 1579 bit.




image8.jpeg
Inputs

Truncation #1
(Or No Truncation)

ay bit CSI

Encoder

as bit CSI

Decoder #1

Outputs

N

Truncation #2

Truncation #3

ag bit CSI

Decoder #2

Outputs

L

Decoder #3

Outputs

.





image9.jpeg
Inputs

Fully Connected
Layer #1

ay bit CSI

Encoder

Fully Connected
Layer #2

Decoder #1

Outputs

Fully Connected
Layer #3

ay bit CSI Outputs
Decoder #2

ag bit CSI Outputs
Decoder #3f———





image10.jpeg
Inputs

Fully Connected
Layer #1

a; bit CSI

Encoder

Fully Connected
Layer #2

as bit CSI

Fully Connected
Layer #4

Fully Connected
Layer #3

ag bit CSI

Fully Connected
Layer #5

Outputs

Deo

cder

Fully Connected
Layer #6





image11.jpeg
0.98

0.96

0.94

—e— Bascline
0.92 —e— Truncators
—— FCLs

—e— FCL pairs

Squared Generalized Cosine Si

0.9, = 5 F
50 100 150 200 250 300
Bit Number
(a) CDL-C-30-10.




image12.jpeg
Squared Generalized Cosine Si

0.95

08

—e— Bascline
—e— Truncators
——  FCLs

—e— FCL pairs

100

|
150 200 250
Bit Number
(b) CDL-C-300-10.

300




image13.png




image1.jpeg
Inputs

AT/ML-Based CSI
Generation Part

CSI

AI/ML-Based CSI
Reconstruction Part

Recovered

Channels




image2.jpeg
300

50
g e
=)
54

E
H 2 =
v &
2 E B
EE||a
2
o
S
X
=
0
~—i
o
- 13
o |
=

0 D~ © 0 -

& S S 3 S

= = o I IS

AJLTR[IUIIG OUISO)) POZI[RIOUSL) paTenbg

Bit Number




