
[bookmark: _Hlk47552872]3GPP TSG RAN WG1 #111                                                             R1-2210997
Toulouse, France, November 14th – 18th, 2022

Source:	vivo
Title:	Discussions on AI/ML framework
Agenda Item:	9.2.1
Document for:	Discussion and Decision
Introduction
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]At RAN1 #110bis, some agreements and conclusions have been made as in appendix D [1]. 
In this contribution, we further discuss the general aspects of AI/ML framework.

Zone/site specific model v.s. generic model development for two sided cases
As shown in the following agreement, zone/site specific model performance is studied. Also, evaluations on separate training and joint training in level y are provided for CSI cases.
	Agreement
Study potential specification impact needed to enable the development of a set of specific models, e.g., scenario-/configuration-specific and site-specific models, as compared to unified models.
Note: User data privacy needs to be preserved. The provision of assistance information may need to consider feasibility of disclosing proprietary information to the other side.
Agreement
Study various approaches for achieving good performance across different scenarios/configurations/sites, including
· Model generalization, i.e., using one model that is generalizable to different scenarios/configurations/sites
· Model switching, i.e., switching among a group of models where each model is for a particular scenario/configuration/site
1. [Models in a group of models may have varying model structures, share a common model structure, or partially share a common sub-structure. Models in a group of models may have different input/output format and/or different pre-/post-processing.]
· Model update, i.e., using one model whose parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. Fine-tuning is one example.



Relationship between collaboration level and zone specific model development 
As it is agreed that there are three methods to fight against the AI/ML generalization problem across different scenarios/configurations/sites, i.e., model generalization, model switching and model update. Generic model development is corresponding to model generalization, where one model is deployed for different zones. Zone specific model deployment is corresponding to model switching and model update, since different models or parameters are used in different zones.
In generic model development, network or UE collects a large number of training data from various scenarios/configurations/sites. Post-processing of the collected data is needed, such as noise filtering. According to our contribution [3], the ratio of the collected data from different scenarios/configurations/sites has considerable impacts on the AI/ML performance, and then this ratio may be adjusted to match the practical wireless environment. And then the AI/ML model is trained and deployed to network or UE. The generic model would be of high complexity and large storage overhead, to fit the different channel characteristic of various scenarios/configurations/sites. This generic model development can be based on either level y or level z. In level y, joint training or separate training can be used for two-sided model. In joint training or separate training, if there is no data sharing between the network vendor and UE vendor, the AI/ML model is trained by the data collected from one side, and then the AI/ML performance may be decreased. In level z, the trained model can be transferred from network to UE, since network can collect data from various UEs all the time and the AI/ML model is likely to be well trained.
In zone specific model deployment, network or UE collects training data from the target zone. Since the wireless channel condition is much simpler in this case, the number of collected training data would be much smaller and the AI/ML model may be simple and small, which has been verified in the following subsections. Also, the ratio adjustment of the collected data from different scenarios/configurations/sites would be not needed. In level y, when UE enters into a new zone, two-sided model may need joint training or separate training with the gNB in this new zone. Also, if the wireless channel condition changes larger than a threshold, which is very likely to happen, re-training is needed. In level z, UE only needs to use the AI/ML model transferred from network when current AI/ML model is no longer suitable, for both the new zone case and the channel condition changing case.
1. Collaboration level z can be used to facilitate zone specific model development.

Some initial results for field test
We provide some initial results for field test of CSI compression. The data is collected from actual 5G network and the collecting area is about 400m * 350m. About total outdoor 200000 samples are collected. The detailed parameters are provided in Table 2.2-1.
Table 2.2-1: Parameters of field test of CSI compression.
	Parameters
	Value

	Scenario
	Actual 5G network, about 400m * 350m collecting area.
About total outdoor 200000 samples.

	Carrier frequency
	3.45GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	8 antenna ports

	UE antenna
	4 antenna ports

	CSI payload
	About 150bits payload



There are 4 data collecting areas. Area A is flat ground in front of a building. Area B is the main road of the industrial park, with many tall trees and cars along the road. Area C is the road behind several buildings. Area D is the indoor scenario in a building. UE in the left part of the industrial park usually accesses to a different cell, compared with the right part of the industrial park. So, we focus on the right part of the industrial park and current areas are chosen.
[image: ]
Figure 2.2-1: The map of data collecting areas.
The SGCS results of eType II codebook and multiple AI/ML models are provide in the following. In Table 2.2-2, the AI/ML models are trained by the data in each area separately, and multiple AI/ML models are used. 
It is seen that the performance gaps between different AI/ML models are small. Even one layer MLP encoder can provide good performance, which is very simple and small. With much higher complexity, Transformer encoder has better performance than one layer MLP encoder, but the performance gain is small in Area A and Area B. Considering the performance and complexity, simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
Table 2.2-2: The SGCS results of multiple AI/ML models trained by the data in each area separately.
	
	AI with an area specific model (One layer MLP encoder) ~67kB
	AI with an area specific model (small CNN encoder) ~250kB
	AI with an area specific model (Transformer encoder) ~3.6MB

	Area A
	0.936
	0.9457
	0.955

	Area B
	0.9105
	0.9218
	0.9336

	Area C
	0.936
	0.9457
	0.955

	Area D-5th floor
	0.7977
	0.7955
	0.8157

	Area D-6th floor
	0.8616
	0.8685
	0.8713



From initial results for field test, performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical zone/site specific optimization. 

Some initial results for spatial consistency data
Here we consider using data where the channel has spatial consistency characteristics. Each UE generates random variables with spatial consistency based on its own geographic location at the T=0, both the cluster specific random variables and the correlation distance for spatial consistency procedure a follow 38.901. The detailed parameters are provided in Table 2.3-1.
Table 2.3-1: Parameters of spatial consistency data of CSI compression.
	Parameters
	Value

	Scenario
	UMa

	Channel model
	Uma 38.901 with spatial consistency

	Carrier frequency
	4GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	32 antenna ports
[Mg Ng P M N, Mp Np] = [1 1 2 8 8, 2 8]
= (0.8, 0.5) λ, +45°/-45° polarization

	UE antenna
	2 antenna ports
[Mg Ng P M N, Mp Np] = [1 1 2 1 1, 1 1]
= (0.8, 0.5) λ, 0°/+90° polarization

	BS receiver noise figure
	10

	UE receiver noise figure
	7

	UE distribution
	100% outdoor

	UE speed 
	30km/h

	Mechanic tilt
	180° in GCS (pointing to the ground)

	Beam set at TRxP
	Azimuth angle φi = [0], Zenith angle θj = [102].

	UE beam set
	Azimuth angle φi = [0], Zenith angle θj = [90]



Cell specific model is considered and then different AI/ML models are used for different cells. Simple AI/ML model, which is a one layer MLP encoder, and complex transformer encoder are evaluated in this simulation. It is seen that the performance of simple AI/ML model is similar to that of complex AI/ML model, similar as observed in field test results. Considering the performance and complexity, simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
Table 2.3-2: The SGCS results of multiple AI/ML models trained by the data in each area separately.
	
	AI with a cell specific model (One layer MLP encoder) ~285kB
	AI with a cell specific model (Transformer encoder) ~4.08MB

	Cell 0
	0.8345
	0.8895

	Cell 1
	0.8815
	0.9168

	Cell 2
	0.9132
	0.9412

	Cell 3
	0.9148
	0.9439

	Cell 4
	0.8718
	0.9049

	Cell 5
	0.9076
	0.9380

	Cell 6
	0.8698
	0.9072



From initial results for spatial consistency data, performance of simple model structure, e.g., one hidden layer full-connected encoder, can achieve good performance for zone/site specific operations.
 
Some initial results for ray tracing data
To better compare the performance of AI/ML model in level y and level z, we utilize a typical ray-tracing channel model [2] in our experiment.  The outdoor scenario map [2] is plotted in Figure 2.4-1.
[image: ]
Figure 2.4-1: Ray tracing map.
Specifically, we collect the channel from BS3 to UEs in user grid 1 (nearly LoS scenario) and user grid 2 (nearly NLoS scenario) respectively and all channels (~50,000 samples) in one experiment are collected in an area of 100m*35m, which is similar to a cell range. Other parameters with regarding to ray tracing could be referred to the official website [2]. The initial results are presented in Table 2.4-1.
Table 2.4-1: Results for per-cell (region) model in CSI compression.
	
	SGCS of General model*,**
	SGCS of per-cell model with Transformer structure**
	SGCS of per-cell model with one-layer fc structure**

	User grid 1 (LoS)
	0.841
	>0.99
	>0.99

	User grid 2
(NLoS)
	0.795
	>0.99
	>0.99


*General model is trained on channel data (~600,000 samples) collected from 21 cells generated from 38.901 model. 
**More simulation parameters: carrier frequency 3.5GHz, subcarrier spacing 15KHz, 13 subbands (10MHz, 4RBs/subband), 32 gNB antenna ([Mg Ng M N P; Mp Np] = [1 1 8 8 2; 2 8]), 4 UE antennas ([Mg Ng M N P; Mp Np] = [1 1 1 2 2; 1 2]), horizontal beam sweeping along x-axis, vertical beam sweeping along z-axis, 180bits payload.
Following observations are drawn on per-cell (region) model:
[bookmark: _Hlk118745925]From initial results for ray tracing based data generated with the map provided in [2], performance of simple model structure, e.g., one hidden layer full-connected encoder, can achieve good performance for zone/site specific operations.

Performance degradation for type 2 and type 3 training for CSI
In this subsection, we discuss the performance of joint training and separate training for level y.
For type 2 training, as shown in our companion contribution, it could be observed that there are certain level performance degradations for one common CSI reconstruction part to two/three CSI generation parts of different UEs. As the number of CSI generation parts increases, the performance degradation also enlarges. For the case with one common CSI generation part and multiple CSI reconstruction parts, it also suffers from some performance loss, which enlarges as the number of supported CSI reconstruction parts increases. Interestingly, the performance loss in common CSI generation part is generally lower than that in common CSI reconstruction part, which needs further study and verification.
[bookmark: _Ref115456456]For type 2 training for CSI, considering one common CSI generation part matching three CSI reconstruction parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.061, i.e., losing about 19% performance gain.
One major concern for joint training is the huge overhead of exchanged information. According to the procedure, the forward- and backward- propagation information should be exchanged each batch. Besides, the training data should also be exchanged during training to serve as the labels. The overall overhead could be roughly computed as 
Overhead ≈ # of epoch*(forward-propagation information + back-propagation information + input data)
Suppose the size of each forward- and backward-propagation sample is ~1/10 of the input (e.g., 13*32*2 floats are typically compressed into 50 floats without quantization), the total overhead could still be ten times of those for separate training and model transferring depending on the number of epochs. It is worth pointing out that there are still approaches to further reduce the overhead, but it is extremely challenging to reduce the over-the-air overhead to the similar level of separate training or model transfer.
Overhead in information exchange for training collaboration type 2 grows linearly with the number of iterations at training stage.
For type 3 separate training, also as shown in our companion contribution, the performance could reach that of joint training if the number of exchanged data samples is large enough, i.e., similar level to the scale of training data, and some key information of encoder and decoder is aligned, such as the quantization and dequantization method. In addition, we find that it is possible to train a pair of encoder and decoder subject to different structures, e.g., an MLP encoder and a Transformer decoder, to a reasonable performance. It is not necessary to fully align the model structure of encoder at UE and decoder at network. Finally, the quantization and dequantization methods play an important role in separate training. Our simulation shows that when the quantization approach at UE and dequantization approach at network do not match, there will be an unacceptable performance loss for the model. 
If the model structure is not aligned (e.g., dequantization method at decoder and the quantization method in encoder could not match), there will be an obvious performance loss compared with that in case where the dequantization and quantization method are matching.
It is possible for separate training collaborations to develop one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts. For sequential training starting with UE side training, it is trivial to realize one common CSI generation part to multiple CSI reconstruction parts of different networks, since it is natural for UEs to broadcast the input/output of the same CSI generation part to multiple gNBs. Supporting one common CSI reconstruction part to multiple CSI generation parts of different UEs is also not difficult. 
To this end, we try to verify the performance of this case. Consider UE-active separate training with three UEs, each of which uses different backbone structures for their CSI generation part, i.e., Transformer, CNN, and MLP. Each UE reports 10,000, 50,000, or 300,000 data samples for separate training, and the gNB combines all reported data to train the CSI reconstruction model. In this experiment, we consider separate training with one to one CSI generation/reconstruction part (assumed to exchange 300,000 data samples between UR and gNB) to serve as the baseline. Various combinations of amounts of reported samples are simulated.
Compared with one-to-one model, one common CSI reconstruction part to multiple CSI generation parts of different UEs demonstrates a degraded performance. Such degradation gets worse as the amount of exchanged data decreases. 
One common CSI reconstruction/generation part could be trained to match multiple CSI reconstruction/generation parts of different UEs in training collaboration type 3 at the cost of some performance loss.
Performance of one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts of different networks/UEs is affected by the amount of exchanged data from each network/UE.

Model transfer considerations and specification impact
In the last RAN1 meeting, the following agreement was achieved. 
	Working Assumption
· Define Level y-z boundary based on whether model delivery is transparent to 3gpp signalling over the air interface or not.
· Note: other procedures than model transfer/delivery are decoupled with collaboration level y-z
· Clarifying note: Level y includes cases without model delivery.


In this section, we will introduce model transfer considerations and specification impact.
Comparison between open format and proprietary format
In the following, we share our views on the comparison between open format and proprietary format.
Interoperability 
A transferred model works in a plug-and-pay manner for executable proprietary format and open format at least with parameter-only updating. For open format with parameter-only updating, current chipset already supports this manner without compiling and the new model can be used conveniently. 
Device capability for compiling and running the model
Typical devices do not have the ability to compile the AI/ML model. For executable images, UE does not need to compile the model format. For parameter-only model update, it is also not needed for the device to compile the model. Different UE devices will support different model structure and model complexity. For example, some UEs with high capability can support very large AI/ML models with newest AI/ML technologies, while some UEs with low capability only support small and simple AI/ML models. This is common constraint for both proprietary format and open format.
Hardware efficiency
AI/ML model with proprietary format is usually optimized according to UE hardware implementation. UE hardware would optimize part of AI/ML model structures, such as full-connected layers and convolutional layers. If AI/ML model with open format contains some other AI/ML model structures which are not optimized in UE hardware, the UE hardware efficiency for AI/ML model with open format would be lower than that with proprietary format. However, if AI/ML model with open format only contains simple model structures or with parameter-only update, its hardware efficiency would be the same as to proprietary format.
Proprietary information disclosure across vendors
Little proprietary information is disclosed across vendors when proprietary format is used. Open format may disclose more proprietary information. But if simple or well-known model structure is used, such issues do not exist.
Testability aspects
AI/ML model with proprietary format may only be tested on certain UE types. AI/ML model with open format can be tested on various UE types. Simulation platform can also be used to test AI/ML model with open format. Then higher testability is achieved by open format. Open format would facilitate the possibility of involving multiple vendors including UE vendor, network vendor, testing equipment vendors all easily involved for higher testability while proprietary format would not satisfy such multi-vendor operation scenarios.
Offline co-engineering efforts
Delivery model with proprietary format requires offline consensus among multiple vendors on how to use a proprietary file which is non-feasible in most cases. The performance of AI/ML model with proprietary format needs be tested offline across multiple vendors, to ensure that the AI/ML performance meet requirements. 
For open format, such offline co-engineering may not be needed since the vendors responsible for the development are well aware of how to use the developed models. As long as the other side can conduct the corresponding operation required by the open format model, the corresponding functionality would be achieved without any offline efforts.
Feasibility for deployment involving multiple vendors
For proprietary format, multiple UE vendors use their own AI/ML models, and network delivers the corresponding AI/ML model to the UE according to its vendor. For open format, multiple UE vendors can use different AI/ML models or same AI/ML model. The storage overhead of open format would be lower than that of proprietary format. Moreover, as discussed above, for cases involving testing equipment vendors, it would not be feasible to design test cases with proprietary format thus non-feasible for deployment involving multiple vendors. 
Flexibility for model update
The model update of proprietary format would need the replacement of whole image of the AI/ML model. Both model structure and parameters updating of open format may need the compiling of the updated AI/ML model, and the overhead will be large than proprietary format. Parameter-only updating of open format just need to update the parameters, where the replacement of whole image of the AI/ML model and the compiling of the updated AI/ML model are not needed, and then the overhead will be smaller than proprietary format. Another aspect is related whether additional offline effort is needed for model update. For cases where the model is developed at the network side and then deployed at the UE side, the network can deliver the updated model to UE flexibly. For proprietary format, the model delivery would need additional offline effort to change it to executable images. 
Model performance
It is hard to judge which format can achieve better model performance. AI/ML model with proprietary format is trained by the data of one UE vendor, while AI/ML model with open format can be trained by the data of multiple UE vendors and network vendors. AI/ML model with proprietary format can use newest AI/ML technologies and complex model structures, while AI/ML model with open format may use simple model structures.
If AI/ML model is transferred from one node to other, which entity guarantees performance, e.g., inference latency? 
The performance of AI/ML model with proprietary format is guaranteed by corresponding UE vendor, since the AI/ML model is generated and maintained by this UE vendor. Network vendor just store these proprietary AI/ML models. Network vendor and UE vendor would guarantee performance of AI/ML model with open format together, since the AI/ML model is generated and maintained by this network vendor, and UE will store and run this AI/ML model delivered from network.
Impact on other common KPIs (e.g., over-the-air overhead, inference complexity, training complexity, LCM related complexity and storage overhead, [latency]) 
It needs to be discussed case by case that which format is better on other common KPIs. The over-the-air overhead, inference complexity and training complexity are related to the size and complexity of AI/ML model itself. Training data size is also related to the training complexity, which is irrelevant to the model format. Open format would have lower LCM related complexity and storage overhead, since multiple vendors can share the same AI/ML model for one functionality and its performance is better to be estimated.
Specification effort
Open format needs more specification effort than proprietary format, since model description format needs to be specified. If AI/ML model with open format only contains simple model structures, the specification effort is largely reduced.
Summary
From the above discussion, it is seen that both open format and proprietary format have advantages and disadvantages.
Hence, we have the following proposal.
[bookmark: _Hlk118745995]Both open format and proprietary format have advantages and disadvantages. AI/ML model with open format that only contains simple model structures can obtain the most gain of open format and proprietary format.

Model transfer signaling
In the last RAN2 meeting, there are the following agreements by RAN2 regarding the model delivery:
	General FFS: AIML Model delivery to the UE may have different options, Control-plane (multiple subvariants), User Plane, can be discussed case by case.


To our understanding, both two CP-based and UP-based solutions have some advantages and disadvantages that can be summarized below in Table 3.2-1.
Table 3.2-1: Pros and Cons of CP-based and UP-based model transfer. 
	 
	Pros
	Cons

	CP-based model transfer
	- Benefits are foreseen if the network may timely transfer and update the model, especially when the model is per cell.
- [Less or no signaling impact for model registration.]
	- Study how to transfer the model, e.g., dedicated SRB and RRC message
- Study how to address the model size issue, in case of huge model size.

	UP-based model transfer
	-  Limited specification impact on RAN,
- Model transfer on DRB, thus the existing RRC signaling transfer is not affected.
	- Potentially new SA2 design, e.g. IMS server-like solution.
- [Extra signaling of model registration.]
- The model is transferred from a server via UPF, thus more latency. 
- Even if the model is trained by the RAN node, the model cannot be transferred to UE directly.


  
To facilitate the discussion of solutions for the model transfer, further specific requirements on model transfer, such as typical model size, frequency of model transfer, latency, ciphering and integrity protection requirements, etc. may be required. Besides, the model size may be quite huge for specific use cases. For CP-based model transfer, the model transfer may greatly impact the transfer of traditional control signaling, which causes the degradation of system performance. New radio bearer may need to be introduced. 
For UP-based solution, there are multiple scenarios in SA WGs for reference, e.g., IMS voice, UP-based positioning. These solutions mainly address how to establish and manage the connection between the UE and the network. For IMS, dedicated bearer and QoS flow (5QI=5) need to be established. With a similar solution, the model can be transferred between UE and the network in the form of data after the PDU session and bearer are established.
RAN1 concludes typical model size, frequency of model transfer and latency requirement and send LS to RAN2 and SA2 to study the feasible solutions for model transfer.

Model structures in model transfer
It is agreed in last meeting that 3GPP signaling is used for model transfer. There are two options of 3GPP signaling for model transfer. One is control plane based solution, and the other is user plane based solution.  In CP-based solution, model transfer is over SRB, and is point-to-point between UE and RAN node/CN entity. In UP-based solution, model transfer is over DRB, and is point-to-point between UE and server via UPF.
If arbitrary AI/ML is transferred from network to UE, there is possibility that UE can not compile this AI/ML model into executable format, since some complexity AI/ML structures or new AI/ML techniques may be not supported by UE. UE can only compile certain AI/ML structures.
From current simulation results and field test results in Section 2 and our other contributions [3], it is seen that simple model structures, such as full-connected network or CNN, are good enough for typical per single cell or multiple cell operations.
Performance of simple model structures, such as full-connected layers or convolutional layers, are good enough for typical per single cell or multiple cell operations.
Except activation function, full-connected layers or convolutional layers only contain addition and multiplication operations, which are very easy to run and have been supported in current UE chipset. The code of one full-connected layer can be written into the matrix multiplication of weight matrix and input vector of this layer, and then the result of matrix multiplication is added with bias vector. The operations are matrix dimension or vector dimension, which can be calculated parallel. The hardware design and optimization will be largely simplified and there will be no compiling problem if only full-connected layers or convolutional layers are used.
Simple model structures, such as full-connected layers or convolutional layers, have been supported in current UE chipset and will not require compiling on the device. 
Another concern in model transfer is the model proprietorship. There are two key aspects of AI/ML models, where one aspect is model structure and the other aspect is model parameters. If full-connected layers or convolutional layers are used, the privacy of the model structure is not so important since these models have been widely used for a lot of areas. Thus, simple model structures also have low proprietorship risk for model transfer.
Simple model structures, such as those with full-connected layers or convolutional layers, have low proprietorship risk for model transfer.
From the above analysis, simple model structures have good performance, low complexity and already supported in current UE chipset
The most important spec impact of model transfer is the model delivery format. There are many options for public format, some of which are listed in the following.
· Current AI/ML frameworks chosen by two sides. Currently, there are many AI/ML frameworks, such as such as TensorFlow, PyTorch and Caffe. Two sides can choose one of them to describe the AI/ML model.
· One public format for model description, such as ONNX (Open Neural Net Exchange, ‘https://onnx.ai/’). ONNX aims to support a common intermediate representation for AI/ML model transmission for both deep learning and machine learning. It is developed as a common data format but not an AI framework or a development tool, so it can be compatible with any AI framework including TensorFlow, PyTorch and so on. With the help of ONNX, all developers can choose their own tools to develop their models and load other models in different framework.
· New format for model description defined by 3GPP. However, 3GPP public format will take great efforts and may not be considered in this release.
All these mentioned public formats have 
Study the following public formats for model transfer.
· Executable but public format;
· Current AI/ML frameworks chosen by two sides; 
· One public format for model description, such as ONNX;
· New format for model description defined by 3GPP.	

Model transfer capability
To support collaboration level z, UE should have model transfer capability. Model transfer is one of the key tools to resolve AI/ML generalization problem. Then the AI/ML model, which fits the current wireless environment, can be transferred from the network to UE, to improve the system performance. The model transfer procedure includes the following steps from UE perspective.
· Receive the new AI/ML from the network. Since the signal for transmitting the new AI/ML model is similar to the data signal, UE always has the capability of this step.
· Decode the information of the new AI/ML model. The information of the new AI/ML model has been encoded by the network, to better describe the AI/ML model with lower overhead. Some popular AI/ML frameworks can be used as the encoder and decoder, such as TensorFlow, PyTorch and Caffe. The AI/ML model information decoding can be done in UE baseband chipset or UE AP. Currently, this has been already supported by typical UE AP implementations, for several popular AI/ML frameworks. Other options can also work well. One option is reusing the public format for model description, such as ONNX, and another option is introducing a new format for model description defined by 3GPP. 
· Load the new AI/ML model in the chipset. After decoding the AI/ML model information, it is time to load the new AI/ML model and use it in the chipset. Whether the AI/ML model structure is changed or not has a considerable impact on the UE capabilities.
· The AI/ML model structure is not changed. Only model parameters need to be updated in this situation. The new model parameters are sent to the AI/ML module and then just replace the old model parameters. Recompilation may be not needed here. This has been already supported by nowadays typical chipset implementations. The premise is that UE and network have aligned the AI/ML model structure offline or online before usage.
· The AI/ML model structure is changed. Dependent on how much the model structure is changed, recompilation may be needed. Also, the changed model structure should be supported by UE. For example, if UE only supports full-connected layers and convolutional layer, the new AI/ML model can only be made of full-connected layers and convolutional layer.
Based on the above analysis, we have the following proposal on model transfer capability.
The following aspects need to be studied for model transfer capability:
· Whether UE supports model structure update or only model parameter update
· Which AI/ML model description format UE supports.

Discussion on model registration, model delivery and model ID
Understanding on model registration and model ID/functionality based operations 
In previous meeting, there is extensive discussion on model registration but no consensus was aligned between companies. Some questions were raised by the FL and expect inputs from companies. In this section we provide our views on these questions. The factors that need to be considered at least include the following:
· Which side maintains the model, including initial model development and model management;
· Whether the model is one sided or two sided.
What is the mechanism by which the network or UE becomes aware of the existence of a new AI/ML model?
· If the model is developed by the network, the applicable condition of the model would be aware to the network side and thus the model management responsibility mainly lies at the network side. For this work mode, the model is delivered from the network side to UE side thus the alignment of existence of a new AI/ML model would possibly be needed on whether to initiate model delivery. Model ID would need to be defined for this case.
· If the model is developed by the UE, the applicable condition of the model would be aware to the UE side mainly. 
· If model management responsibility is also at UE side, the need for aligned understanding of a new AI/ML model seems unnecessary. Functionality based alignment could be used for this case, the two sides could just be aligned that a new model exists but does not need to be use an explicit ID.
· If model management responsibility is at the network side, there is also need for the two sides to align on the model ID for the purpose of e.g., switching model of the UE side based on monitoring results. 
· For cases where two sides jointly develop a model, the existence of a model may need alignment in case the joint development of the model is specified.
For aligned understanding on whether a new model exists or not, model ID based operation is needed for the following three case:
· where the model is developed at the network side and run by the UE side.
· where the model is developed at the UE side and managed by the network side.
· Two sided models are jointly developed by the UE side and network side.
For aligned understanding on whether a new model exists or not, functionality based alignment can be used for the case where the model is developed and managed at the UE side.
What is the mechanism, when required, by which the network and the UE refer to the same AI/ML model unambiguously during AI/ML collaboration and LCM?
· For the case that the model is developed at the network side and run by the UE side: 
· Model ID is optionally needed for the two sides to be aligned on which model the other side refers to;
· There are also cases where model ID is not needed for this case, for example, alignment based on other meta information e.g., the applicable conditions where such models are applied, or a generic model is used for all cases; 
· For the case that the model is developed at the UE side and managed by the network side, similar as above, this model ID is optionally needed and beneficial for alignment between two sides. However, for cases where a generic model is developed or meta-info-based implicit model switch, such ID may not be needed.  
· For the case that the model is developed and managed by the UE side: If the same model functionality is focused, the network and the UE refer to the same AI/ML model.
· For the case that two sided models are jointly developed by the UE side and network side, model   ID is needed for alignment between the two parties. 
[bookmark: _Hlk118746077]For the purpose of referring to the same AI/ML model unambiguously during AI/ML collaboration and LCM, model ID based operation is optionally needed and beneficial for the following three cases:
· The model is developed at the network side and run by the UE side.
· The model is developed at the UE side and managed by the network side.
· [bookmark: _Hlk118746097]Two sided models are jointly developed by the UE side and network side.
[bookmark: _Hlk118746130]For the purpose of referring to the same AI/ML model unambiguously during AI/ML collaboration and LCM, functionality based alignment can be used for the case where the model is developed and managed at the UE side.
What is the mechanism by which the network knows whether the UE has a given AI/ML model and/or if the UE is capable of running inference with a given AI/ML model or functionality?
· The model is developed at the network side and run by the UE side: If new AI/ML model is delivery from network to UE, network will know that UE has this delivered AI/ML model. Before model delivery, UE would report its AI/ML capability so that network can choose the suitable AI/ML model. During this procedure, the ID would need to be aligned between two sides.
· The model is developed at the UE side and managed by the network side: UE would register its AI/ML models with model ID and assistance information, so that network knows that the UE has the registered AI/ML models. It is known by network that UE is at least capable of running inference with the registered AI/ML models.
· Two sided models are jointly developed by the UE side and network side: Before joint deployment, the UE capability will be known by network or network can assume that UE can run the joint deployed AI/ML model. After joint deployment, network knows that UE has this new AI/ML model.
· The model is developed and managed the UE side: UE would register its AI/ML models with model functionality. For the wireless conditions that are covered by the model functionality of the registered AI/ML models, network can assume that the UE has an AI/ML model for these conditions and can run this AI/ML model. For the wireless conditions that are not covered, network may assume that the UE has no AI/ML model for these conditions.
For the purpose of aligning whether the other side has a given model, model ID is optionally needed and beneficial for the following three cases:
· The model is developed at the network side and run by the UE side.
· The model is developed at the UE side and managed by the network side.
· Two sided models are jointly developed by the UE side and network side.
For the purpose of referring to the same AI/ML model unambiguously during AI/ML collaboration and LCM, functionality based alignment can be used for the case where the model is developed and managed at the UE side.
For the purpose of aligning whether UE can run a specific model, model ID is not needed. 
What is the model registration for and what additional role may the model registration play in LCM, what is the relationship with UE capability report?
· For the case that the model is developed at the network side and run by the UE side: model registration may serve the purpose of letting the other side know whether a model exists in UE side or not.  Based on UE capability report, the AI/ML model is selected by network and delivered to the UE. A model ID is assigned when the AI/ML model is delivered from network to UE. Network can use this model ID to manage other LCM aspects, such as model selection, model switching, and model monitoring. It is possible 
· For the case that the model is developed at the UE side and managed by the network side: In model registration, UE registers it AI/ML models to network. And model ID is assigned by network after the model registration. UE capability is reported before model registration. Later on, model management is also based on the ID aligned in the registration procedure.
· For the case that two sided models are jointly developed by the UE side and network side: model registration may serve the purpose of letting the other side know whether a model exists in UE side or not. UE capability is reported before joint development so that network can choose the suitable joint development configuration.
· The model is developed and managed the UE side: Since there is no model ID in this option, model selection and model switching would be done by UE implementation. Model registration may not be needed for this case. Capability report may serve the purpose of letting the other side know whether the UE can run AI/ML based operation or not. Network may assume that UE has only one model for one certain functionality. Model activation, model deactivation and fall back can be done at functionality level.
Model registration mainly serve the purpose of letting the other side know whether it has a specific model to run. 

Model ID based registration and model delivery
In the above subsection, the procedure and model ID based registration has been discussed. Its relationships to other LCM aspects are also investigated. From the above discussion, we have the following proposal. 
For model ID based registration and delivery, there is some other information need to be registered and delivered based on above procedure. In Model ID based registration, the following information is exchanged:
· Model ID;
· Whether UE side has the model identified by the ID;
· Whether a new model need to be registered.
In Model ID based delivery, the following information need to be exchanged:
· Model ID;
· Meta info: General model description, General model functionality, input/output information;
· Model management related information: Validity criteria, such as its suitable scenarios, configurations, or sites;
AI/ML model includes two main parts, where one part is model structure and the other part is model parameters. Considering this aspect, model ID based registration can be further split in the following.
· A new model registered with new model structure. This new model would need compiling or this new model is delivered as an executable image. It should be verified that UE hardware is capable of running this new model.
· A new model registered with new model parameters but without model structure change. No compiling is needed. UE can use the old AI/ML model with the same model structure, and only need to update the model parameters. The model deployment gap would be smaller than that with new model structure.
Different model ID based delivery types can be considered: 
· A new model delivered to the UE with new model structure.
· A new model delivered to the UE with new model parameters but without model structure change. 

Functionality based operation
For model functionality based operation, no model ID is reported or assigned, and UE or network selects the suitable AI/ML model for current wireless conditions according to the model functionality. Wireless conditions would include the network antenna configuration, the UE antenna configuration, carrier frequency, SNR and so on. The content of model functionality needs to be aligned by network and UE. The essential information needed for alignment of model functionality between network and UE should studied.
Study the essential information needed for alignment of model functionality between network and UE. 
There are some options for model functionality based operation, which are shown in the following.
· UE has only one AI/ML model for one model functionality. If a new AI/ML model is transferred from network to UE, UE has to use this new AI/ML model.
· UE has only multiple AI/ML models for one model functionality. The model selection or model switching among these AI/ML models is done by UE through implementation. If a new AI/ML model is transferred from network to UE, UE can add this AI/ML model into the AI/ML model groups and this new AI/ML model may not be used.
The above two options for model functionality based registration are transparent to network. 
Consider the following options for the model functionality based operation:
· UE has only one AI/ML model for one model functionality. 
· UE has only multiple AI/ML models for one model functionality. 

Discussion on model selection, activation, deactivation, switching, and fallback
The problems of model selection, activation, deactivation, switching, and fallback are different for different use case. In beam management, UE or network can do the beam prediction in space domain or time domain. If beam prediction is done at UE, UE can monitor the AI/ML performance and decide the activation and deactivation of the AI/ML model, or network monitors the AI/ML performance and indicates UE to activate or deactivate the AI/ML model. If beam prediction is done at network, it is more likely that network monitors the AI/ML performance and decide the activation and deactivation of the AI/ML model.
In CSI compression, the AI encoder is running at UE and the AI decoder is running at network. If the AI encoder is delivered from network to UE, network has the whole picture of the AI/ML model and it is more convenient that network indicates UE to activate or deactivate the encoder, or deliver another encoder to UE. If AI decoder is delivered from UE to network, it would be better that UE is dominant in this part. If the AI encoder and AI decoder are paired by separate training or joint training, both network and UE can make the decision with the assistance of the other side.
Model selection, activation, deactivation, switching, and fallback can be studied per use case.
Previously, the following agreement was achieved. 
	Agreement
Study LCM procedure on the basis that an AI/ML model has a model ID with associated information and/or model functionality at least for some AI/ML operations when network needs to be aware of UE AI/ML models
FFS: Detailed discussion of model ID with associated information and/or model functionality.
FFS: usage of model ID with associated information and/or model functionality based LCM procedure
FFS: whether support of model ID
FFS: the detailed applicable AI/ML operations


Also, as discussed in Section 4, LCM can be divided into model ID based operation and model functionality based operation. According to the assistance information, model ID based registration can be further divided into three types. Using model ID based operation, model ID can be used for network to indicate the exact AI/ML model that is to be selected, activated, deactivated and switched. If all AI/ML models are deactivated, UE has to fallback to non-AI method. Also, network can direct indicate UE to fallback.
Using model functionality based operation, there is no model ID and network only knowns whether UE at least has an AI/ML model for this wireless condition. Then network can indicate UE to enable or disable the AI/ML function, and then UE does model activation, model deactivation or fallback. But network does not know how many AI/ML models UE have for this wireless condition. Network can indicate UE that the wireless conditions have been changed, and model selection and model switching are done by UE implementation.  
If model ID based operation is used, model ID can be used for network to indicate the exact AI/ML model that is to be selected, activated, deactivated and switched.
If model functionality based operation is used, model selection and switching is done by UE through implementation, while model activation, deactivation, and fallback can be control by network using the indication of the model functionality.
Model selection, activation, deactivation, and switching procedure can be triggered in the following cases: i) any performance degradation observed for the undergoing model during regular performance monitoring; ii) significant changes in UEs’ wireless environment due to mobility, handover, or other reasons; iii) unsatisfying performance of legacy non-AI mechanism over a long time-window. Specifically, it can be a consensus that performance degradation will trigger a model selection procedure to check whether there are better models for the current situation, and it is likely that significant changes in UE’s environments usually indicate a potential performance degradation for the undergoing model. Besides, we believe that an unsatisfying performance of legacy non-AI mechanism can also trigger a model selection procedure to switch from legacy mechanism to AI/ML based solutions to achieve better system performance. Fallback can be triggered when the performance of legacy non-AI mechanism is better than AI mechanism over a long time-window.
Study event triggered model selection, activation, deactivation, switching, and fallback
If the AI/ML models inference operation is on UE and the model on/off related operations are initiated by network, there would be unavoidable latency. One part of the latency is caused by the transmission of performance monitoring KPIs from UE to network. Another part of the latency comes from the signaling transmission from network to UE. To avoid the latency, some event trigged mechanisms can be studied. For example, network can define a fallback event and send the trigger condition to UE. During the performance monitoring, UE finds that the fallback condition has been satisfied, then the AI/ML is deactivated and non-AI module is used instead. It is seen that the fallback operation is faster in event trigged mechanisms than that in signaling based mechanisms.
Different types of performance monitoring, i.e., periodic, semi-persistence, aperiodic and event triggered, can work together to achieve high monitoring accuracy with low overhead. For example, periodic monitoring with long period is used to monitor the long term AI/ML model performance. Some event, for example, that the AI/ML model performance is being pool for a certain period of time, can be defined to trigger short term AI/ML model performance monitoring, such as aperiodic monitoring or semi-persistence monitoring with short period.
Moreover, different types of events can be defined for different purposes. For model switch, the event can be like that the performance of one unused AI/ML model has been better than currently used AI/ML model for a certain period of time. For model fallback, the event would be like that the performance of the non-AI algorithm has been better than currently used AI/ML model for a certain period of time.
Different types of performance monitoring, i.e., periodic, semi-persistence, aperiodic and event triggered, can work together for model selection, activation, deactivation, switching, and fallback. For event triggered performance monitoring, different types of events can be defined for different purposes.
Network may obtain the AI/ML calculation capability of UE through UE AI/ML capability report. If the AI/ML model structure is known by network, or the AI/ML model complexity has been reported during model registration, network can have an estimation of UE’s free AI/ML calculation resource. Based on this estimation, model selection, activation, deactivation, switching, and fallback can be indicated by network to make sure that UE’s AI/ML calculation resource is enough for all current working AI/ML models.
However, there are gaps (as indicated by previous conclusion) between actual complexity and the complexity evaluated using TOP/FLOP/MACs due to the platform- dependency and implementation (hardware and software) optimization solutions. One possible way is for the UE to dynamically report whether it has enough calculation power to run a specific model indicated by the network side.
Study the mechanism for dynamic UE reporting of whether it has enough resources to run AI/ML models.

Discussion on performance monitoring
In the last RAN1 meeting, the following agreement was achieved. 
	Agreement
Study AI/ML model monitoring for at least the following purposes: model activation, deactivation, selection, switching, fallback, and update (including re-training).
FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)

Agreement
Study at least the following metrics/methods for AI/ML model monitoring in lifecycle management per use case:
0. Monitoring based on inference accuracy, including metrics related to intermediate KPIs
0. Monitoring based on system performance, including metrics related to system peformance KPIs
0. Other monitoring solutions, at least following 2 options.
2. Monitoring based on data distribution
0. Input-based: e.g., Monitoring the validity of the AI/ML input, e.g., out-of-distribution detection, drift detection of input data, or something simple like checking SNR, delay spread, etc.
0. Output-based: e.g., drift detection of output data
2. Monitoring based on applicable condition
Note: Model monitoring metric calculation may be done at NW or UE

Agreement
Study performance monitoring approaches, considering the following model monitoring KPIs as general guidance
· Accuracy and relevance (i.e., how well does the given monitoring metric/methods reflect the model and system performance)
· Overhead (e.g., signaling overhead associated with model monitoring)
· Complexity (e.g., computation and memory cost for model monitoring)
· Latency (i.e., timeliness of monitoring result, from model failure to action, given the purpose of model monitoring)
· FFS: Power consumption
· Other KPIs are not precluded.
Note: Relevant KPIs may vary across different model monitoring approaches.
FFS: Discussion of KPIs for other LCM procedures

Agreement
Study various approaches for achieving good performance across different scenarios/configurations/sites, including
· Model generalization, i.e., using one model that is generalizable to different scenarios/configurations/sites
· Model switching, i.e., switching among a group of models where each model is for a particular scenario/configuration/site
1. [Models in a group of models may have varying model structures, share a common model structure, or partially share a common sub-structure. Models in a group of models may have different input/output format and/or different pre-/post-processing.]
· Model update, i.e., using one model whose parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. Fine-tuning is one example.

Agreement
The following are additionally considered for the initial list of common KPIs (if applicable) for evaluating performance benefits of AI/ML
· Clarification on inference complexity
· Note: Inference complexity includes complexity for pre- and post-processing.
· LCM related complexity and storage overhead
· Storage/computation/latency for training data collection.
· Storage/computation/latency for training and model update
· Storage/computation/latency for model monitoring.
· Storage/computation/latency for other LCM procedures, e.g., model activation, deactivation, selection, switching, fallback operation.
· FFS: Power consumption, latency (e.g., Inference latency)


For CSI compression, it has been agreed that SGCS between reconstructed CSI and target CSI would serve as one of the basic KPIs for model inference accuracy, which means that directly measuring SGCS could be a baseline monitoring method. For positioning, the positioning accuracy can be used for direct positioning monitoring, while the error of intermediate positioning information, e.g., TDOA, can be used for indirect poisoning monitoring. The beam accuracy between predicted beam quality and actual beam quality can be used for intermediate KPIs in the beam prediction in space domain and time domain.
Study intermediate KPIs of performance monitoring case by case.
System performance KPIs can also be used to monitor the performance of AI/ML models. Typical system performance KPIs include throughput, BLER, hypothetical BLER, NACK/ACK, etc. Conventionally, throughput and BLER are calculated at network side, while NACK/ACK is determined after CRC at UE side and will be reported to NW. By monitoring instantaneous or averaged system performance KPIs and comparing them with historical results, network or UE could infer whether the current AI/ML model is outdated or not, which could avoid the overhead of sharing CSI measurements or any models. 
However, compared with intermediate KPIs, system performance KPIs are usually affected by more factors, such as user distribution, channel condition, inter-cell interference, scheduling strategies, etc., indicating that it is more difficult to judge whether an observed system performance degradation is caused by an outdated AI/ML model or some other reasons. In addition, fluctuations of system performance KPIs are usually severer than those for intermediate KPIs due to various time-varying factors. Therefore, a longer time window is usually considered to guarantee a stable result, which may increase the latency of such kind of monitoring methods.
It is difficult to use system KPIs for performance monitoring to judge whether and which AI/ML models cause the system performance degradation. 
The monitoring of data distribution is another method of performance monitoring. Take the input distribution based monitoring as an example. During training phase, each trained model will be assigned with an applicable input distribution according to its training dataset. The applicable input distribution may be quantitatively described by a series of measurable variables, e.g., the range or CDF of delay spread or angular spread of estimated channel information. After that, we can compute a hard or soft index indicating how a coming CSI measurement suits the input for current model. Once there are too many input samples not suitable for the current model in a certain period of time, a performance degradation can be foreseen. More advanced drifting detection on data distribution can be considered to improve the accuracy of the above monitoring methods. 
One of the most attractive advantages of monitoring based on data distribution is the convenience in computing monitoring results, e.g., drifting detection on input data distribution does not require sharing data/models between network and UE or calculating system level KPIs over a long time window. However, the cost comes from two aspects: 1) overhead in describing applicable conditions for models; 2) monitoring accuracy could be sacrificed as a drifting in applicable condition, which does not necessarily lead to a model performance degradation. In other words, monitoring based on applicable conditions may cause false alarms. Therefore, we believe that the feasibility of monitoring based on data distribution and applicable conditions should be further evaluated and discussed.
Study the overhead and accuracy of performance monitoring based on data distribution.
The measurement of performance KPIs can be instantaneous, short term or long term. Instantaneous performance KPIs shows the exact AI/ML performance of current input sample. Short term performance KPIs indicate the AI/ML performance for a certain period of time, e.g., 1 min or longer, and shows how AI/ML works in certain scenario. The long term performance KPIs may need the measurement of hours, days or even weeks. The generalized AI/ML performance can be evaluated by the long term performance KPIs. From this perspective, intermediate KPIs can be used as instantaneous performance KPIs, data distribution KPIs is suitable for short term performance KPIs, and system performance KPIs is appropriate for long term performance KPIs.
Study the instantaneous, short term and long term measurement of the performance KPIs.
Similar to legacy CSI report, AI/ML performance monitoring can be indicated by network, along with the monitoring configuration. The monitoring period and resource can be configured by network. Also, UE can initiate the performance monitoring of its AI/ML models, and the performance KPIs can be reported to network by sending the report request. Moreover, event triggered performance monitoring is a good choice if the event is well designed and the unnecessary monitoring overhead can be reduced. The UE autonomous performance monitoring would be transparent to network and network can not guarantee the AI/ML performance, since network would not obtain the monitoring KPIs and does not know whether monitoring is working or not.
Study the UE-initiated, event triggered and NW-indicated performance monitoring.

Discussion on Data collection
UE can collect large number of data samples through newly defined RS or legacy RS. Some data processing may be used to improve the validity of the collected samples, such as noise filtering and sample selection. After the data processing, the collected data samples need to be reported from UE to network.
There are several ways of collected data, i.e., L1, L2 and L3 reporting. L1 collected data reporting would be similar to legacy CSI reporting. Newly defined CSI reporting or enhanced legacy CSI reporting can be used. Take beam management as an example. The beam qualities of most 4 beams are included in legacy beam reporting, while AI/ML beam L1 reporting may include all the measured beams. Current L3 beam reporting is also not suitable for data collection, since the number of reported beams is limited and the beam qualities have been filtered through L3 filtering.
Study L1, L2 and L3 reporting of collected data.
Legacy CSI information has been reported from UE to gNB. The positioning related information is collected from UEs to LMF. The data for AI/ML can be reported to gNB or other 3GPP entities, such as LMF, NWDAF and OAM. Some of the interactions between these entities may go beyond the scope of RAN1. But common understanding of what these interactions are like may well impact RAN1 discussion on the framework and use cases.
Study options for interactions between different entities for data collection, e.g., the interactions between UE, gNB, LMF, NWDAF, etc. 
To collect data from real world, there are several ways as below. These different ways of data collection would have different overheads and latencies.
· Direct collection of data. 
· The data is collected at one entity and then exchanged between multiple entities. 
· Overhead of this collection would be large since size of the raw data would be huge.  Sometimes direct collection of data would be of very high cost, if possible. Rewarding in actors for reinforcement learning can also be viewed as direct collection of data. Overhead of such data collection would be relatively small.
· Latency of this way of data collection can be small if the data is collected in real time very few samples interval. 
· Collection of processed data or data characteristics. 
· For example, distribution information for the channel can be collected and exchanged between entities. Based on the characteristics, the data is re-generated at different entities. 
· Overhead of the collection can be small but may cause performance degradation if not properly designed.
· Latency of this way of data collection would be dependent on how many samples are needed for the compression.
Study the following two kinds of data collection from overhead and latency perspective. 
· Direct collection of raw data over air-interface
· Techniques to reduce data collection overhead should also be studied
· Collection of data characteristics/statistics over air interface
Some assistance information would be needed for data collection. First, general description of collected data can be reported, such as purpose, size and configuration. Different purposes result in different types and format of collected data. For example, the beam qualities are collected for beam management and the estimation of CSI-RS channels are collected for CSI compression or CSI prediction.
Second, UE hardware information can be reported, such as antenna information, so that network can further split the collected data. For example, the beam qualities of one UE panel containing 16 antenna elements can be separated from data of one UE panel containing 8 antenna elements.
Third, environment information can be reported, such as cell ID, scenario ID and SNR. UE may report the data collected in a long period, which may contain the data of multiple cells, different scenarios and large range of SNRs. With the cell ID or scenario ID, AI/ML model for a small area or certain scenario can be trained, and then flexible model selection or model switching can be used to improve the generalization performance. SNR information can also be used for model selection or model switching, if AI/ML model per SNR range has been trained. Also, SNR information can be used as assistance information for model inference.
Study the following assistance information for data collection:
· [bookmark: _Hlk118279340]General description of collected data, such as purpose, size and configuration;
· UE hardware information (meta data), such as antenna information;
· Environment information, such as cell ID, scenario ID and SNR.
To report a large number of collected data samples, there are two options. The first option is to report large number of samples in one report with low reporting frequency. UE needs to store a large number of samples on the chipset or memory, which may be not supported by all types of UEs. The second option is to report small number of samples in one report with high reporting frequency. Compared with the first option, the requirement of UE storage capability is lower but the reporting overhead may be higher.
Study the two following reporting formats for a large number of collected data samples:
· Large number of samples in one report with low reporting frequency;
· Small number of samples in one report with high reporting frequency.
In legacy CSI framework, only one sample is reported in one time. A lot of work has been done to compress the information of one sample. However, there may be multiple samples in one report. How to compress the information of multiple samples has not been studied before. It is clear that there is more redundancy in the report containing multiple samples, compared with the report having one sample. Then this topic is worth of studying.
Study the data compression for multiple samples in collected data reporting.
Collected data reporting can be periodic, semi-persistence, aperiodic and event triggered. Different types of collected data reporting have different purposes. The periodic collected data reporting is used for common data collection and the frequency can be low. When a UE with new antenna information has accessed this cell, or a UE has moved to a place that most UEs have not moved through, a semi-persistence or aperiodic collected data reporting can be indicated by network. When the SNR or speed of UE has been changed for a large value, event triggered collected data reporting can be used to record the samples which are largely different from previous samples.
Study the periodic, semi-persistence, aperiodic and event triggered collected data reporting.
Different from the synthetic data generated by SLS or LLS, the real world data suffers from noise and interference. Complex estimation algorithm can only reduce but not eliminate the impact of noise and interference. Also, the perfect labels can not be collected in most use case.
Study how to overcome the impact of noisy or imperfect labels.
Different UE capabilities would be needed for the expected pre-processing, data storage, feature extraction and report for data collection. Some UEs may have the ability to collect a large amount of data while others would be limited. Depending on the reference point definition, some UEs may leave some interfaces for collection in the corresponding reference point while others may not. These should also be discussed in UE capability.
Study ways for UE to report its capability for data collection regarding expected pre-processing, data storage, feature extraction and report for data collection.

Discussion on model training and model update
Model training or model updating is another key tool to fight against the AI/ML generalization problem, in addition to model transfer. It is known that AI/ML is a technology of data and the AI/ML model is memorizing the features of the training set. For some unseen samples with new features, the performance of AI/ML model is unpredictable. By collecting or transferring the unseen samples, the AI/ML model can be updated to adapt to the new environment.
There are mainly three categories of model training as follows.
· Transparent model training using its own collected data. In this category, UE can collect some samples in real network from time to time, considering its power consumption and data service. Then using these collected samples, the one-sided model of UE can be fine-tuned to alleviate the generalization problem.
· Model training for one-sided model with the assistance of other sides. In this category, network can send some assistance information to UE, to assist the AI/ML model training. Network can collect a large number of samples and select some representative samples from them. The number of the selected samples is much smaller, while they represent the main features of the environment nearby. The assistance of other sides will speed up the AI/ML model training.
· Model training for two-sided model with the assistance of other sides. In this category, the training of two-sided model is considered. Taking CSI compression as an example, the encoder of UE can not be trained without the assistance of network, since the loss of encoder output is not available for UE. There are two methods of two-sided model training. One is joint training and the other is separate training. In joint training, the label and the gradient information are exchanged between two sides, with high frequency but a small amount of information in each time. In separate training, the input and the output of the encoder or decoder are exchanged between two sides, with low frequency but a large amount of information in each time.
Since the capability of model training is challenging from UE side. It is expected that the model training would need some offline effort based on computing resources from UE. These offline efforts can also be dimensioned from UE capability perspective, e.g., time needed for model training. Size of dataset would also need to be considered for model training. 
Based on the above analysis, we have the following proposal on model training capability.
Study the feasibility and necessity of defining model training capability, regarding latency of model training, dataset size for model training, etc.
There are two options for model transfer. One option is to transfer both model structure and parameters, and the other option is to transfer only model parameters. Then similar to model transfer, model updating has similar two options, where one option is only parameters updating and the other option is both structure and parameters updating. Only parameters updating can be considered as finetuning and the model updating gap would be small, since only the values of model parameters need to be modified. Both structure and parameters updating may need the compiling and then the updating gap will be larger.
Study different requirements of two different kinds of model updating.
· Only parameters updating
· Both structure and parameters updating 
[bookmark: _GoBack]Consider the CSI prediction use case. If the predicted future CSI is on the time occasion of a CSI measurement, finetuning is available for the AI-based CSI prediction. The starting and stopping condition/policy of finetuning should be clarified. How to determine the finetuning parameters, e.g., the pre-trained model, finetunable network layer, learning rate, batch size and epoch number, may introduce some specification impacts. The followed-by event, e.g., model switch, model set update, data set update, furthermore, may introduce some specification impacts as well.
Study impact of finetuning on other LCM aspects

Discussion on model inference operation
In the study of CSI compression, beam and location, assistance information can be used to improve the model inference performance. For example, the network transmit beam pattern can be used to improve the model inference at UE in the beam management. Also, the speed is useful for model inference in both channel prediction and beam prediction in time domain.
Study the assistance information needed for model inference.
Computation power at the UE side is growing fast in recent years. Figure 9-1 shows the AI capability of NPU in mobile phones in recent years. The capacity of one typical NPU used in current mobile phone is 22.5T operations (OPs) per second. One OP denotes one addition or one multiplication. From 2017Q1, the capacity of typical NPU in mobile phone is growing very fast year by year. This trend is expected to continue for the coming years.
[image: ]
Figure 9-1: The growing capacity of NPU in mobile phone.
Typical physical layer modules have strict requirements for latency. The latency of AI/ML operation should be within several milliseconds, otherwise, the AI model would not be applicable for air interface use cases. Since latency is highly correlated with complexity, they are discussed together in this subsection. For this important issue, we have collected some latency information from the area of image processing. Figure 9-2 shows the inference performance of typical AI models for image and video in typical chipsets. The latency of the AI models in Figure 9-2 is about 0.9ms~5.1ms. The AI models for air interface would be much simpler than the listed AI models and the latency of AI models for air interface will be much smaller. Then AI models for air interface would be likely to meet the latency requirement.

Figure 9-2: The latency of typical AI models for image and video in typical chipsets.
[bookmark: _Hlk118746353]Initial test of typical models for latency on typical chipsets in Figure 9-2 shows that the latency for neural network operation latency on UE are within the range of interest for air interface applications.
Study ways for UE to report its capability for latencies with respect to the model inference.
Float point is usually used in study and initial evaluation. Fixed point is usually used in implementation, where the parameters of AI model are transformed to integer value and the complexity could be reduced. Some kinds of hardware only support fixed point.
For float point or fixed point, there are also different levels of bits used for one number. It is clear that the overhead of 32 bits is twice of 16 bits, and 4 times of 8 bits. Considering the overhead reduction of model transfer, low quantization level would be better than high quantization level. The actual complexities of different quantization levels would be slightly different from the overhead, due to the practical hardware design and AI model structure. 

Figure 9-3: The latency ratio of typical AI models of different quantization levels in one typical chipset, compared to CPU-FP32 of AI model 4.

Figure 9-4: The power consumption ratio of typical AI models of different quantization levels in one typical chipset, compared to CPU-FP32 of AI model 4.
Some evaluation results of different quantization levels are shown in Figure 9-3 and 9-4. INT8 denotes integer value with 8 bits, FP16 denotes float point value with 16 bits. The performance of NPU-INT8 is about 1.8 times of NPU-FP16, 4.8~17 times of GPU-FP32, and 4.5~17 times of CPU-FP32. INT8 is suitable for service with high complexity and power consumption, such as photographing and video. FP16 is suitable for service with high accuracy and low power consumption, such as pixel-wise image processing.
Quantization of the model has impacts on latency performance. 
Quantization of the model has impacts on power consumption.
Study UE capability on supported quantization levels.

Discussion on generalization performance
At the last meeting, it was agreed that:
	Agreement
Study various approaches for achieving good performance across different scenarios/configurations/sites, including
· Model generalization, i.e., using one model that is generalizable to different scenarios/configurations/sites
· Model switching, i.e., switching among a group of models where each model is for a particular scenario/configuration/site
1. [bookmark: _Hlk117699105][Models in a group of models may have varying model structures, share a common model structure, or partially share a common sub-structure. Models in a group of models may have different input/output format and/or different pre-/post-processing.]
· Model update, i.e., using one model whose parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. Fine-tuning is one example.


In model switching, there are a group of models for one functionality where each model is for a particular scenario/configuration/site. It is convenient that the models in one group share a common model structure. First, the models in one group are designed to solve similar problems with different conditions. A common model structure is enough, since model update or finetuning has been proved to work well in the generalization problem, where the model structure remains the same and only parameters are changed. Second, the overhead and delay of changing parameters would be much lower than changing both model structure and parameters.
Models in a group of models are expected to share a common model structure.
To make sure that one model is generalizable to different scenarios/configurations/sites, this model would be of high complexity and large storage overhead. Also, the training data samples should cover the channel characteristics of all these scenarios/configurations/sites. When this model works in a total new scenario/configuration/site, its performance is unexpectable.
Model generalization requires AI/ML models with high complexity, large size and large amount of training samples.
Another option is model switching, which means that UE needs to store a large number of AI/ML models. When the scenario/configuration/sites change, UE can select the proper AI/ML model among a group of models. If there are N1 scenarios, N2 configurations and N3 sites, UE needs to store N1*N2*N3 AI/ML models for just one functionality. The storage overhead may be unaffordable.
Model switching requires a large number of stored AI/ML models.
Model updating is another option to improve the AI/ML generalization performance. If the AI/ML model is not suitable for current scenario/configuration/site, UE can collect training data by itself or network. Using the collected data, UE can update its AI/ML model. It is clear that the data collecting needs extra time and storage. The training procedure needs extra computation resource and time. 
Model updating requires extra storage, computation resource and time.
If model transfer is used together with model switching, UE does not need to store so many AI/ML models. If UE enters into a new scenario/configuration/site and does not have a proper AI/ML model, network can transfer a suitable AI/ML model to UE. The cost of storage, computation resource and time would acceptable.
Study the model transfer aided model switching for achieving good performance across different scenarios/configurations/sites.

Initial consideration on RAN4 aspects
For RAN4 tests on AI/ML over air interface, there would be two general principles.
· Focus on performance/functionality of model inference test. AI/Model training is done offline before test is conducted. No model training and model update during the test.
· Different methodologies need to be considered for one- and two-sided models
Non-AI algorithms are based on communication theories and then have strong physical meanings. Their performances on communication systems are robust and predictable to some extent. 
AI/ML algorithms are based on machine learning and have weak physical meanings. They could work very well on scenarios similar to the scenario that generates training data. But if the scenarios for test is different from the scenario where the training data is generated, the performance would degrade. The channel conditions of real environment are complex and diversified. It is necessary in RAN4 to discuss whether and how to test the generalization performance of AI/ML algorithms.
Discussion is needed on whether and how to test generalization performance, e.g., how to guarantee a model tested is effective in real deployment.
For UE side only AI/ML model test framework, AI/ML inference is similar to the legacy UE internal algorithm. Then similar test procedure could be used in this case. Candidate sub-use cases are CSI prediction combined with legacy codebook, spatial domain beam prediction, and temporal beam prediction. 
Two-sided AI/ML model test framework is very challenging from a test feasibility perspective. Candidate sub-use cases are CSI compression using two-sided model, and joint CSI prediction and CSI compression. It should be discussed how TE could be involved considering different collaboration levels.  could TE/UE train the paired AI/ML model. Separated training or joint training is used to train the two-sided model, but model training and model updating are not preferred in RAN4 test. Would it be feasible for TE to implement a paired model emulating gNB side model, especially would it be feasible to be used to verify performance in practical NW to some extent? These issues should be fully discussed in RAN4.
Paired model for TE/UE is challenging for RAN4 test for two-sided AI/ML model.

Conclusions
1. Collaboration level z can be used to facilitate zone specific model development.
1. From initial results for field test, performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical zone/site specific optimization.
From initial results for spatial consistency data, performance of simple model structure, e.g., one hidden layer full-connected encoder, can achieve good performance for zone/site specific operations.
From initial results for ray tracing based data generated with the map provided in [2], performance of simple model structure, e.g., one hidden layer full-connected encoder, can achieve good performance for zone/site specific operations.
For type 2 training for CSI, considering one common CSI generation part matching three CSI reconstruction parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.061, i.e., losing about 19% performance gain.
Overhead in information exchange for training collaboration type 2 grows linearly with the number of iterations at training stage.
If the model structure is not aligned (e.g., dequantization method at decoder and the quantization method in encoder could not match), there will be an obvious performance loss compared with that in case where the dequantization and quantization method are matching.
One common CSI reconstruction/generation part could be trained to match multiple CSI reconstruction/generation parts of different UEs in training collaboration type 3 at the cost of some performance loss.
Performance of one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts of different networks/UEs is affected by the amount of exchanged data from each network/UE.
Both open format and proprietary format have advantages and disadvantages. AI/ML model with open format that only contains simple model structures can obtain the most gain of open format and proprietary format.
RAN1 concludes typical model size, frequency of model transfer and latency requirement and send LS to RAN2 and SA2 to study the feasible solutions for model transfer.
Performance of simple model structures, such as full-connected layers or convolutional layers, are good enough for typical per single cell or multiple cell operations.
Simple model structures, such as full-connected layers or convolutional layers, have been supported in current UE chipset and will not require compiling on the device. 
Simple model structures, such as those with full-connected layers or convolutional layers, have low proprietorship risk for model transfer.
Study the following public formats for model transfer.
· Executable but public format;
· Current AI/ML frameworks chosen by two sides; 
· One public format for model description, such as ONNX;
· New format for model description defined by 3GPP.	
The following aspects need to be studied for model transfer capability:
· Whether UE supports model structure update or only model parameter update
· Which AI/ML model description format UE supports.
For aligned understanding on whether a new model exists or not, model ID based operation is needed for the following three case:
· where the model is developed at the network side and run by the UE side.
· where the model is developed at the UE side and managed by the network side.
· Two sided models are jointly developed by the UE side and network side.
For aligned understanding on whether a new model exists or not, functionality based alignment can be used for the case where the model is developed and managed at the UE side.
For the purpose of referring to the same AI/ML model unambiguously during AI/ML collaboration and LCM, model ID based operation is optionally needed and beneficial for the following three cases:
· The model is developed at the network side and run by the UE side.
· The model is developed at the UE side and managed by the network side.
· Two sided models are jointly developed by the UE side and network side.
For the purpose of referring to the same AI/ML model unambiguously during AI/ML collaboration and LCM, functionality based alignment can be used for the case where the model is developed and managed at the UE side.
For the purpose of aligning whether the other side has a given model, model ID is optionally needed and beneficial for the following three cases:
· The model is developed at the network side and run by the UE side.
· The model is developed at the UE side and managed by the network side.
· Two sided models are jointly developed by the UE side and network side.
For the purpose of referring to the same AI/ML model unambiguously during AI/ML collaboration and LCM, functionality based alignment can be used for the case where the model is developed and managed at the UE side.
For the purpose of aligning whether UE can run a specific model, model ID is not needed. 
Model registration mainly serve the purpose of letting the other side know whether it has a specific model to run. 
For model ID based registration and delivery, there is some other information need to be registered and delivered based on above procedure. In Model ID based registration, the following information is exchanged:
· Model ID;
· Whether UE side has the model identified by the ID;
· Whether a new model need to be registered.
In Model ID based delivery, the following information need to be exchanged:
· Model ID;
· Meta info: General model description, General model functionality, input/output information;
· Model management related information: Validity criteria, such as its suitable scenarios, configurations, or sites;
Different model ID based delivery types can be considered: 
· A new model delivered to the UE with new model structure.
· A new model delivered to the UE with new model parameters but without model structure change. 
Study the essential information needed for alignment of model functionality between network and UE. 
Consider the following options for the model functionality based operation:
· UE has only one AI/ML model for one model functionality. 
· UE has only multiple AI/ML models for one model functionality. 
Model selection, activation, deactivation, switching, and fallback can be studied per use case.
If model ID based operation is used, model ID can be used for network to indicate the exact AI/ML model that is to be selected, activated, deactivated and switched.
If model functionality based operation is used, model selection and switching is done by UE through implementation, while model activation, deactivation, and fallback can be control by network using the indication of the model functionality.
Study event triggered model selection, activation, deactivation, switching, and fallback
Different types of performance monitoring, i.e., periodic, semi-persistence, aperiodic and event triggered, can work together for model selection, activation, deactivation, switching, and fallback. For event triggered performance monitoring, different types of events can be defined for different purposes.
Study the mechanism for dynamic UE reporting of whether it has enough resources to run AI/ML models.
Study intermediate KPIs of performance monitoring case by case.
It is difficult to use system KPIs for performance monitoring to judge whether and which AI/ML models cause the system performance degradation. 
Study the overhead and accuracy of performance monitoring based on data distribution.
Study the instantaneous, short term and long term measurement of the performance KPIs.
Study the UE-initiated, event triggered and NW-indicated performance monitoring.
Study L1, L2 and L3 reporting of collected data.
Study options for interactions between different entities for data collection, e.g., the interactions between UE, gNB, LMF, NWDAF, etc. 
Study the following two kinds of data collection from overhead and latency perspective. 
· Direct collection of raw data over air-interface
· Techniques to reduce data collection overhead should also be studied
· Collection of data characteristics/statistics over air interface
Study the following assistance information for data collection:
· General description of collected data, such as purpose, size and configuration;
· UE hardware information (meta data), such as antenna information;
· Environment information, such as cell ID, scenario ID and SNR.
Study the two following reporting formats for a large number of collected data samples:
· Large number of samples in one report with low reporting frequency;
· Small number of samples in one report with high reporting frequency.
Study the data compression for multiple samples in collected data reporting.
Study the periodic, semi-persistence, aperiodic and event triggered collected data reporting.
Study how to overcome the impact of noisy or imperfect labels.
Study ways for UE to report its capability for data collection regarding expected pre-processing, data storage, feature extraction and report for data collection.
Study the feasibility and necessity of defining model training capability, regarding latency of model training, dataset size for model training, etc.
Study different requirements of two different kinds of model updating.
· Only parameters updating
· Both structure and parameters updating
Study impact of finetuning on other LCM aspects
Study the assistance information needed for model inference.
Initial test of typical models for latency on typical chipsets in Figure 9-2 shows that the latency for neural network operation latency on UE are within the range of interest for air interface applications.
Study ways for UE to report its capability for latencies with respect to the model inference.
Quantization of the model has impacts on latency performance. 
Quantization of the model has impacts on power consumption.
Study UE capability on supported quantization levels.
Models in a group of models are expected to share a common model structure.
Model generalization requires AI/ML models with high complexity, large size and large amount of training samples.
Model switching requires a large number of stored AI/ML models.
Model updating requires extra storage, computation resource and time.
Study the model transfer aided model switching for achieving good performance across different scenarios/configurations/sites.
Discussion is needed on whether and how to test generalization performance, e.g., how to guarantee a model tested is effective in real deployment.
Paired model for TE/UE is challenging for RAN4 test for two-sided AI/ML model.

References
[bookmark: _Ref101427648]Chair's notes of RAN1#110bis, October 10-19, 2022.
A. Alkhateeb, “DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications,” in Proc. of The Information Theory and Applications Workshop (ITA), San Diego, CA, Feb. 2019. Codes and instructions available at ‘https://deepmimo.net/’.
vivo, R1- 2210998, “Evaluation on AI/ML for CSI feedback enhancement”,  RAN1 #111, November 14th – 18th, 2022.
[bookmark: _Ref102033778]vivo, “Dataset for AI CSI feedback”, https://commonbox.vivo.xyz/s/VkhgUFG2hhd.
[bookmark: _Ref102074620]vivo, “Dataset For AI CSI Prediction”, https://commonbox.vivo.xyz/s/1qv4tjQ5efk.
vivo, “Dataset for beam management”, https://commonbox.vivo.xyz/s/gMEadbdyFtd.
vivo, “Dataset for AI Positioning”, https://commonbox.vivo.xyz/s/UQnWAcqp2DL.

Appendix A: Analysis for zone/site specific model update   
One of the key issues for lifecycle management is how often the model needs to be updated. In this section, we have some preliminary analysis on the granularities of model update.
In most cases, the parametric model defines a distribution and we simply use the principle of maximum likelihood. This means we use the cross-entropy between the training data and the model’s predictions as the cost function, as described

where  is the input data vector,  is the known data vector (or label),  is the coefficient vector or the weight vector, acquired by the training procedure, all in a given AI neural network.
It is worthwhile noting that, the training set associated with any input pair of  can be expressed as

In such a procedure, accordingly, the AI model can be trained by means of the off-line training manner under the condition of the statistic wireless channel model and can be considered as a universal AI model for any UE or gNB uses.
However, the channel factors influenced by gNB are comparatively stable, while the channel factors influenced by UE are unpredictable, with respect to the antenna direction and location. In addition, the channel model utilized for performance evaluation mainly refers to TR 38.901, where the long-term channel factors such as receive antenna field patterns (i.e., AoA and ZoA), receive antenna location vector, transmit antenna field patterns (i.e., AoD and ZoD), and transmit antenna location vector update statically, while the short-term channel factors such as Doppler frequency update dynamically. Consequently, therefore, a universal AI model purely trained by a statistic wireless channel model may be not feasible in terms of the complexity of neural network and the overall AI-based system performance. Somewhat UE assistance mechanism in addition to cell-based training model may be necessary.
Thanks to the unique wireless channel behaviors, we believe that the training set can be possibly divided into  training subsets relying on the long-term statistic channel parameters. If we assume that the -th subset is associated with the parameter of , the training set can be represented as

where  can be seen as the assisted parameter vector, , and the -th training subset can be expressed as
;			for	  .
If the subset  and subset are completely independent, i.e., , for , and the distribution  associated with the parameter of is approximated as

Then, the cross-entropy between the training data and the model’s predictions can be

If the parameter vector of  is given, the cross-entropy in the training procedure for the parametric model with the pre-known  can be individually represented as
                                    Eq. 1
where , and  is the total number of training models.
It is worthwhile noting that, the AI models can be trained by means of offline manner and utilized by each UE accordingly. This does imply that each AI-model can be seen as a sub model, and the K sub models form a cell-specific AI model which can be operated by all the UEs if connected with the corresponding gNB.
As one specific example, by geographically dividing the network area, AI models associated with different areas can be distinguished and the related tasks associated with AI models would be limited. This results in the improvement of the accuracy and effectiveness of the AI model, and the reduction of the complexity of AI neural networks. To achieve the above purpose, the network may perform regional division of geographic coordinates through a zone identification (i.e., Zone-ID). The network determines the network coverage area related to the maximum communication range  according to the geographic location of the gNB, which is further divided into multi-zones represented by Zone-ID. As illustrated in Figure B-1, the size of each zone with  is configurable according to the use-cases and the deployed scenarios, where  is the zone length and  is the zone width. During the AI model training procedure, the training dataset can be distinguished by the Zone-ID in the network coverage area. Therefore, the trained AI model behaves the characteristics of the zone indicated by Zone-ID.
Therefore, the training procedure for the parametric model with the pre-known parameter, , can be individually trained as formulated in Eq. 1, where  is the Zone-ID within the maximum communication range .
It is worthwhile noting that this type of AI model training process can be completed by either the UE or by the network.
[image: ]
Figure A-1: Schematic diagram of distinguishing AI models based on geographic information
By dividing different orientations of the network, alternatively, AI models associated with different orientations from gNB can be distinguished and the related tasks associated with AI models can be limited. This also results in the improvement of the accuracy and effectiveness of the AI model and the reduction of the complexity of AI neural networks.
As illustrated in Figure B-1, the area covered by the network is divided into  orientations (or azimuths), and each orientation forms a pie-shaped directional sub area, denoted by , where  is the ID of the gNB and  is the subregion-orientated index. Optionally, the widths of the pie-shaped sub regions formed by the orientation of each sub region could be the same or different and determined by high-level configuration. More specifically, each sub region orientation can be regarded as an orientated beam (i.e., directional beamforming), where the orientated beam width is . During the AI model training procedure, if the gNB or UE can roughly acquire the geographic location of the UE or the AoA/DoA associated with the gNB, the AI training dataset can be distinguished by the orientation of each sub region. In such a case, the gNB or UE only uses the data related to the orientation of the sub region to train the AI model, which behaves the orientation features.
Therefore, the training procedure for the parametric model with the pre-known parameter, , can be individually trained as formulated in Eq. 1, where  is the subregion-orientated index within the maximum communication range .
It is worthwhile noting that this type of AI model training process can be completed by either the UE or by the network as well.
[image: ]
Figure A-2: Schematic diagram of distinguishing AI models based on direction information

Appendix B: Introduction of ONNX
ONNX (Open Neural Net Exchange, ‘https://onnx.ai/’) aims to support a common intermediate representation for AI model transmission for both deep learning and machine learning. It is developed as a common data format but not an AI framework or a development tool, so it can be compatible with any AI framework including TensorFlow, PyTorch and so on. In the design of ONNX, model structure and weights are sequenced by Protobuf. It defines an extensible computation graph with nodes with operators and handles all weights as inputs or outputs. It also defines the standard data types.
In ONNX, the computation graph is composed of some nodes and each node has several inputs and outputs. All the tensors are identified by its name. The same input name of node A and output name of node B means node A and B are connected. All weights are also identified by their names and corresponding to some nodes as inputs or outputs. Then the computation graph is constructed with the input name and the output name of each node.
With the help of ONNX, all developers can choose their own tools to develop their models and load other models in different framework. And now, ONNX is supported in many frameworks, tools and even some hardwires officially. Since ONNX does not impose restriction on operators, the same construct or function can be transformed to different combinations of nodes for different developers. All developers can have their specific transition code, which means it can be enhanced further to support other destinations like security.

Appendix C: Power consumption
Power consumption is one of the key parameters in current chipsets and much work has been done for power saving. If AI models largely increase power consumption, the commercialization of AI algorithm in air interface would be not a good deal.
The actual power consumptions of typical AI models are listed in Table C-1. From the discussion of power saving, the UE power consumption model for FR1 is shown in Table C-2, in which the basic unit would be assumed as 5 mA. It is seen that the power consumptions of complex AI models are comparable with typical physical layer operations. Power consumption for typical neural network operation on typical chipsets are at the same level of power consumption as for SSB or CSI-RS processing or PDCCH decoding.
Table C-1: The actual power consumptions of typical AI models in typical chipsets.	
	
	Electron current (mA)

	AI Model 2 (1.14 GOPs)
	291

	AI Model 4 (11.5 GOPs)
	420





Table C-2: UE power consumption model for FR1 from the discussion of power saving.
	Power state
	Relative power

	Deep sleep
	1*5 (Optional: 0.5)

	Light sleep
	20*5

	Micro sleep
	45*5

	PDCCH-only
	100*5

	SSB or CSI-RS proc
	100*5

	PDCCH+PDSCH
	300*5

	UL
	250*5 (0dBm)
700*5 (23dBm)









Performance of model is not directly related to FLOPs, but specifically tuned for models. Even with the similar FLOPs, the performance may be drastically different. For example, as shown in Figure C-1, the complexity of AI model 1 is 77.2% of AI model 2, and then the expected latency of AI model 1 is 77.2% of AI model 2. However, the actual latency of AI model 1 is 152% of AI model 2 in Chipset 2. For another example, the complexity of AI model 2 is 9.9% of AI model 4, while the power consumption of AI model 2 is 69.3% of AI model 4.

Figure C-1: The complexity and latency comparison between AI models.


Appendix D: Agreement from previous meeting
Some agreements and conclusions have been made in previous meeting.
	Working Assumption
· Define Level y-z boundary based on whether model delivery is transparent to 3gpp signalling over the air interface or not.
· Note: other procedures than model transfer/delivery are decoupled with collaboration level y-z
· Clarifying note: Level y includes cases without model delivery.

Agreement
Clarify Level x/y boundary as:
· Level x is implementation-based AI/ML operation without any dedicated AI/ML-specific enhancement (e.g., LCM related signalling, RS) collaboration between network and UE.
(Note: The AI/ML operation may rely on future specification not related to AI/ML collaboration. The AI/ML approaches can be used as baseline for performance evaluation for future releases.)

Agreement
Study LCM procedure on the basis that an AI/ML model has a model ID with associated information and/or model functionality at least for some AI/ML operations when network needs to be aware of UE AI/ML models
FFS: Detailed discussion of model ID with associated information and/or model functionality.
FFS: usage of model ID with associated information and/or model functionality based LCM procedure
FFS: whether support of model ID
FFS: the detailed applicable AI/ML operations

Agreement
For model selection, activation, deactivation, switching, and fallback at least for UE sided models and two-sided models, study the following mechanisms:
· Decision by the network 
· Network-initiated
· UE-initiated, requested to the network
· Decision by the UE
· Event-triggered as configured by the network, UE’s decision is reported to network
· UE-autonomous, UE’s decision is reported to the network
· UE-autonomous, UE’s decision is not reported to the network
FFS: for network sided models
FFS: other mechanisms

Conclusion
Data collection may be performed for different purposes in LCM, e.g., model training, model inference, model monitoring, model selection, model update, etc. each may be done with different requirements and potential specification impact.
FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)

Agreement
Study potential specification impact needed to enable the development of a set of specific models, e.g., scenario-/configuration-specific and site-specific models, as compared to unified models.
Note: User data privacy needs to be preserved. The provision of assistance information may need to consider feasibility of disclosing proprietary information to the other side.

Agreement
Study the specification impact to support multiple AI models for the same functionality, at least including the following aspects:
-	Procedure and assistance signaling for the AI model switching and/or selection
FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)

Agreement
Study AI/ML model monitoring for at least the following purposes: model activation, deactivation, selection, switching, fallback, and update (including re-training).
FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)

Agreement
Study at least the following metrics/methods for AI/ML model monitoring in lifecycle management per use case:
0. Monitoring based on inference accuracy, including metrics related to intermediate KPIs
0. Monitoring based on system performance, including metrics related to system peformance KPIs
0. Other monitoring solutions, at least following 2 options.
2. Monitoring based on data distribution
0. Input-based: e.g., Monitoring the validity of the AI/ML input, e.g., out-of-distribution detection, drift detection of input data, or something simple like checking SNR, delay spread, etc.
0. Output-based: e.g., drift detection of output data
2. Monitoring based on applicable condition
Note: Model monitoring metric calculation may be done at NW or UE

Agreement
Study performance monitoring approaches, considering the following model monitoring KPIs as general guidance
· Accuracy and relevance (i.e., how well does the given monitoring metric/methods reflect the model and system performance)
· Overhead (e.g., signaling overhead associated with model monitoring)
· Complexity (e.g., computation and memory cost for model monitoring)
· Latency (i.e., timeliness of monitoring result, from model failure to action, given the purpose of model monitoring)
· FFS: Power consumption
· Other KPIs are not precluded.
Note: Relevant KPIs may vary across different model monitoring approaches.
FFS: Discussion of KPIs for other LCM procedures

Agreement
Study various approaches for achieving good performance across different scenarios/configurations/sites, including
· Model generalization, i.e., using one model that is generalizable to different scenarios/configurations/sites
· Model switching, i.e., switching among a group of models where each model is for a particular scenario/configuration/site
1. [Models in a group of models may have varying model structures, share a common model structure, or partially share a common sub-structure. Models in a group of models may have different input/output format and/or different pre-/post-processing.]
· Model update, i.e., using one model whose parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. Fine-tuning is one example.

Agreement
The following are additionally considered for the initial list of common KPIs (if applicable) for evaluating performance benefits of AI/ML
· Clarification on inference complexity
· Note: Inference complexity includes complexity for pre- and post-processing.
· LCM related complexity and storage overhead
· Storage/computation/latency for training data collection.
· Storage/computation/latency for training and model update
· Storage/computation/latency for model monitoring.
· Storage/computation/latency for other LCM procedures, e.g., model activation, deactivation, selection, switching, fallback operation.
· FFS: Power consumption, latency (e.g., Inference latency)

Conclusion
This RAN1 study considers ML TOP/FLOP/MACs as KPIs for computational complexity for inference. However, there may be a disconnection between actual complexity and the complexity evaluated using these KPIs due to the platform- dependency and implementation (hardware and software) optimization solutions, which are out of the scope of 3GPP.



The latency (ms) of typical AI models for image and video in typical chipsets

Chipset 1	
AI Model 1 
(0.88 GTOPs)	AI Model 2 
(1.14 GTOPs)	AI Model 3 
(4.39 GTOPs)	AI Model 4
 (11.5 GTOPs)	1.1001100110011	1.1299435028248588	2.0491803278688527	1.8214936247723132	Chipset 2	
AI Model 1 
(0.88 GTOPs)	AI Model 2 
(1.14 GTOPs)	AI Model 3 
(4.39 GTOPs)	AI Model 4
 (11.5 GTOPs)	1.3698630136986301	0.90009000900090008	3.3003300330033003	2.6315789473684208	Chipset 3	
AI Model 1 
(0.88 GTOPs)	AI Model 2 
(1.14 GTOPs)	AI Model 3 
(4.39 GTOPs)	AI Model 4
 (11.5 GTOPs)	1.5105740181268883	1.5105740181268883	3.3670033670033668	5.1020408163265305	
The latency (ms) 




The latency ratio of typical AI models of different quantization levels

NPU-INT8	
AI Model 2 
(1.14 GTOPs)	AI Model 4 
(11.5 GTOPs)	0.02	5.9171597633136092E-2	NPU-FP16	
AI Model 2 
(1.14 GTOPs)	AI Model 4 
(11.5 GTOPs)	3.2051282051282048E-2	0.11764705882352941	GPU-FP32	
AI Model 2 
(1.14 GTOPs)	AI Model 4 
(11.5 GTOPs)	9.6153846153846159E-2	1	CPU-FP32	
AI Model 2 
(1.14 GTOPs)	AI Model 4 
(11.5 GTOPs)	9.0090090090090086E-2	1	
The latency ratio




The power consumption ratio of typical AI models of different quantization

NPU-INT8	
AI Model 2 
(1.14 GTOPs)	AI Model 4 
(11.5 GTOPs)	2.0593080724876441E-3	1.029654036243822E-2	NPU-FP16	
AI Model 2 
(1.14 GTOPs)	AI Model 4 
(11.5 GTOPs)	6.1779242174629318E-3	3.130148270181219E-2	GPU-FP32	
AI Model 2 
(1.14 GTOPs)	AI Model 4 
(11.5 GTOPs)	1.9769357495881382E-2	0.23929159802306421	CPU-FP32	
AI Model 2 
(1.14 GTOPs)	AI Model 4 
(11.5 GTOPs)	0.10378912685337727	1	
The power consumption ratio




The complexity and latency comparison between AI models

AI Model 1 (0.88 GTOPs)	
Complexity	Latency in Chipset 2	Latency in Chipset 3	0.77200000000000002	1.522	1	AI Model 2 (1.14 GTOPs)	
Complexity	Latency in Chipset 2	Latency in Chipset 3	1	1	1	



image1.png




image2.png
30m

22m

0m 26m 12m 18m ! I
(o &

2

34m

an

€ pup 195

-
)

E
(5 OE

! 22m
(=g




image3.png
NPU Capacity (TOPs)
= o8

[

The growing capacity of NPU in mobile phone

2017Q4 2018Q4 2019Q4 2020Q4 2021Q4
Date




image4.emf
Training

Zone

gNB-n

UE


image5.emf
gNB-n

Directional

Sub-area, 


