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Introduction
This contribution continues the discussion about evaluations for AI-CSI. In summary:
· The focus is on intermediate KPI in this contribution
· Evaluation results for Type 2 and Type 3 training
· Evaluation results for generalization Case 2 (Scenario including number of antenna ports and bandwidth configuration)
· An intermediate KPI where the performance over multiple layers/ranks are combined into two numbers, thus allowing for easier comparisons. 
· The terminologies of unmatched and unbalanced models are introduced. 
· A high resolution CSI reporting format is used in the evaluations to represent data for training
Remaining issues on evaluation methodologies (EVM)
EVM of Multi-vendor training 
Type 2 multi-vendor training
The following agreement was reached in RAN1#110-bis-e.
	Agreement
For the evaluation of Type 2 (Joint training of the two-sided model at network side and UE side, respectively), the following evaluation cases are considered for multi-vendors,
· Case 1 (baseline): Type 2 training between one NW part model to one UE part model
· Case 2: Type 2 training between one NW part model and M>1 separate UE part models
· Companies to report the AI/ML structures for the UE part model and the NW part model
· FFS Companies to report the dataset used at UE part models, e.g., whether the same or different dataset(s) are used among M UE part models
· Case 3: Type 2 training between one UE part model and N>1 separate NW part models
· Companies to report the AI/ML structures for the UE part model and the NW part model
· FFS Companies to report the dataset used at NW part models, e.g., whether the same or different dataset(s) are used among N NW part models
· FFS N NW part models to M UE part models
· FFS different quantization/dequantization methods between NW and UE
· FFS: whether/how to evaluate the case where the input/output types and/or pre/post-processing are not aligned between NW part model and UE part model
· FFS: companies to report the training order of UE-NW pair(s) in case of M UE part models and/or N NW part models
FFS: whether/how to report overhead



Although this agreement is an important step towards fully considering the multi-vendor reality that needs to be studied for the two-sided training, the most general approach is excluded, namely N>1 and M>1 case. This case would reflect the reality. 
Hence, in the most general case the joint multi-vendor training is performed between 1≤m≤ M UE/chipset vendors and 1≤n≤N gNB vendors (where N and M is the total number of vendors in the market for each case respectively). 
[bookmark: _Toc118726366]For both Type 2 and Type 3 training, also evaluate the case with N>1 and M>1 
To exemplify this case, assume the following joint-training setup with n=m=2, shown in Figure 1. In this training setup, two encoders are trained together with two decoders, in a common training session. Thus, a single forward pass can be described as follows:
· Both encoders take some input and produces their respective latent space.
· Both decoders decode these two latent-space messages, separately.
· This produces four different reconstructions, corresponding to the combinations (EncA – DecA), (EncA – DecC), (EncB – DecA), and (EncB – DecC.). The errors in these are measured with the same loss function, applied to each reconstruction individually.
· A joint loss is computed from these 4 losses.

Backpropagation can then be started from the joint loss, and can then traverse the whole computational graph, resulting in updates to all encoder and all decoder simultaneously.

[bookmark: _Hlk118186646][image: ]
[bookmark: _Ref118365752]Figure 1: A Type 1/Type 2 training scenario with 2 UE encoders and 2 NW decoders. The backpropagation starts from the “Joint loss”, which in our test is a combination of the mean loss and the maximum loss computed in the purple “Loss function”-boxes.
The figure can be generalized to a situation where the different encoders (corresponding to different UE/chipset vendors) take input from different channel databases. It is also possible to imagine that the different decoders (corresponding to different NW vendors) use different loss functions. However, both these generalizations come with further unanswered questions that’s need study, e.g., if the channels need to be consistent  for the training to be effective, or how to normalize the different individual loss functions that makes them comparable in the joint loss.
[bookmark: _Toc118726367]If Type 2 training is considered for multi- NW vendor training (N>1), study the impact of different channel databases used at the encoder inputs and how to align these; the possibility of using different loss functions at the decoders and how to align these; and how the joint loss should be designed in a heterogeneous training setup.
In a Type 2 training scenario like the one described above, the training session could be hosted by a secure and trusted third party. With a secure upload of the model architectures and a training session that is hosted on secure hardware and isolated from the outside world except for download of trained weights, to respective vendor, the proprietary aspects of the models as well as the integrity of the models could be protected. However, with less information available after training further hyperparameter-tuning will be more difficult.
[bookmark: _Toc118726368]Study security aspects of training two-sided models.
Type 3 multi-vendor training
The Type 3 training approach can straightforwardly lend itself to multi-vendor training, even to the case of n>1 and m>1. However, there are unanswered question around it that needs to be studied. We exemplify the situation by considering NW-first training according to the concluded procedure from RAN1#110-bis-e.
	Conclusion
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following procedure is considered for the sequential training starting with NW side training (NW-first training):
· Step1: NW side trains the NW side CSI generation part (which is not used for inference) and the NW side CSI reconstruction part jointly
· Step2: After NW side training is finished, NW side shares UE side with a set of information (e.g., dataset) that is used by the UE side to be able to train the UE side CSI generation part
· Step3: UE side trains the UE side CSI generation part based on the received set of information
· Other Type 3 NW-first training approaches are not precluded and reported by companies



If  NW-side vendors train, in parallel, according to Step 1 and then generate their respective set of information in Step 2, then the UE side can collect multiple of these  for  and train the encoder on a combination of all of these. Thus, in principle, the UE side can now in Step 3 train an encoder that works with all these NW-side decoders. 
Moreover, the description is applicable to  UE-side vendors, in parallel. However, complications arise when further analyzing the UE-side training task in Step 3. Specifically, if the NW-side vendors worked independently in Step 1 and Step 2, then there are no guarantees that, e.g.,  and  from different NW-side vendors 1 and 2 are compatible in the sense that the same input provides the same output from the encoder (even if the dataset representation format is standardized). Unique vendor and/or model IDs will make the data sets consistent in some way, model switching being one option, but the effect on the required model size and complexity is unknown. Moreover, if these IDs are used to solve consistency problems among the collected data set, then they also need to be available at inference. The problems are analogous in UE-first training.
[bookmark: _Toc118726369]Study the need for and how to mitigate problems with inconsistencies among transferred datasets from multiple vendors in Type 3 sequential training.
 “Unmatched models” and “unbalanced models”
Previous meeting there were some results on unmatched models. A discussion point is how do we define unmatched models? In theory, the universal approximation theorem basically tells us that it is rather a question of model size, since larger NN models could recover from “unmatched” assumptions. But for smaller and practical (?) models this discussion is of importance.  
Different approaches can be taken here when it comes to the NN in the encoder and decoder. In our view, an unmatched model pair is when different architectures {CNN, ResNet, Transformer,..} is used at the encoder and decoder respectively. 
[bookmark: _Toc118726370]Unmatched models are defined as the case when decoder and encoder use different Neural Network architectures (e.g. CNN and Transformer respectively).
In addition to this, there could also be the case that the same architecture is used while the number of FLOPS of the encoder and decoder is significantly different. This can have impact on the observed performance e.g. for generalization and for multi-vendor training aspects. The question has multiple dimension that should be taken into account in any conclusions. For example, 
· In Type 2 training, the differences in sizes between the encoder and decoder. It is unclear if, e.g., the NW-side decoder side is able/have to compensate for a small UE-side encoder, by being much larger.
· In Type 3 training, in addition to the size difference between the encoder and decoder, there is a potential size difference between the first trained model (e.g., the decoder trained by the UE-side) and the second trained model (e.g., the decoder trained by the NW-side). For example, if the first trained model is large it may define a complicated mapping which may be difficult to approximate with a small model, potentially requiring the NW to implement a large model. This phenomenon we believe may have been observed and reported later in this paper.
· Last, there is an additional dimension in multi-vendor training where the size difference internally between the different encoders/decoders may have an effect. E.g.,
· In Type 2 multi-vendor training can the presence of a small encoder in the training session hamper the results for all participating models?
· In Type 3 multi-vendor training, can the presence of a large model in the first-training result in that the second training becomes a more difficult task?

Hence, to be able to discuss these matters we make the following definition of unbalanced models:
[bookmark: _Toc118726371]Unbalanced two sided models are defined as when two ML-models have significantly (>4x) different sizes of their Neural Network architectures in terms of FLOPS and/or number of parameters. Unbalanced models are further categorized into “encoder heavy” and “decoder heavy” when the two models in question are an encoder and a decoder.

Companies are encouraged to investigate the performances of encoder vs decoder heavy models and first vs second heavy models as well as balanced models especially for Type 3 training and for Type 2 training with the relation to UE first vs NW first training and the multi-vendor training cases. 
Questions to answer is whether there is any difference between encoder and decoder heavy architectures when it comes to generalization and multi-vendor training and performance. 
Further consideration on model labels
In an attempt to clarify the discussion around generalizations and different training methods, we will separate the notion of architecture from ML-models. An architecture is the exact compute graph, defining the types of layers, their sizes, and their connections. Hence, the architecture also defines the number of parameters, as well as the number of FLOPs. An ML-model is an architecture with a corresponding set of trained parameters. When describing architectures and ML-models, we will use the following convention:
· We will use a base-name corresponding to what the goal is. For CSI compression it is usually Encoder or Decoder.
· We will use capital letters to denote architectures, using the same letter for encoder and decoder if there has been any effort in tuning hyper parameters of these to make them work together. For example, Encoder A and Decoder A.
· We will combine the architecture description with a number to define a (complete) AI/ML-model with trained parameters. We use the same number to indicate that the models are trained in a common session, i.e., Type 1 or Type 2 training.

Encoder A (EncA) and Decoder A (DecA) are the encoder- and decoder architectures presented in [6]. Moreover, the trained ML-models Encoder A1 (EncA1) and Decoder A1 (DecA1) have slightly fine-tuned parameters, as compared to that paper. The complete autoencoder for CSI compression EncA1 – DecA1 is going to serve as a baseline for many of the experiments.

Intermediate KPI finalization
On the intermediate KPI, RAN1 have now agreements on single and multi-layer cases where for the multi-layer case, SGCS is separately calculated for each layer (e.g., for K layers, K SGCS values are derived respectively, and comparison is performed per layer). The insights given by the per layer SGCS is low. 
It is useful to have a single intermediate KPI metric that captures the performance for a multi-rank transmission and this is the intention with Method 1 and 2 (average and weighted average) discussed in the previous meeting. Neither of these is a good choice as they have no interpretation that is related to the actual performance of the multi-layer PDSCH reception. The SGCS doesn’t reflect the impact of the error in the precoder on the spectral efficiency. Moreover, there is a need to separately handle the vector ordering problem when using KPI for noisy channels. Hence, Method 1 and 2 should not be pursued further. 
Instead, the Relative Achievable Rate (RAR) (defined below) is a single metric for multi-rank transmission that have better physical motivations, avoids the ordering problem and is a better proxy for SU-MIMO capacity. 

The Relative Achievable Rate (RAR), is defined as follows for rank L and SNR point :

where 
·  is the complex channel matrix for RB 
·  is the total number of RBs,
·  is the reported precoding matrix for RB ,
·  is the optimal (SVD-based) precoding matrix for RB ,
·  is the number of MIMO layers the KPI is evaluated for, 
·  is the SNR-value;
· and the outer expectation  is taken over a distribution of MIMO channels.

Specifically, Rel16 eType-II parameter combination 3 shows gain over parameter combination 1, for layer 3 and 4 in the order of 110% – 145% in SGCS, but only in the order of 4% – 8% in RAR. The latter is, clearly, a better indication of the expected throughput improvement in SU-MIMO.
[bookmark: _Toc118707587][bookmark: _Toc118724407][bookmark: _Toc118726349]For layers 3 and 4, gains in SGCS over baseline may severely overestimate expected gains. However, gains in RAR for Rank 3 and 4 are closer to expected gain in user throughput.
Moreover, while SGCS is defined per layer of PDSCH, RAR is defined per PDSCH as a whole, i.e. across the scheduled layers. This means that SGCS based intermediate KPI for all layers must always be produced and presented. 
In addition, since the SGCS is agreed to be evaluated per layer, there is a complication when comparing with the Rel.16 baseline, since the compression of e.g. the first layer of the Rel.16 baseline depends on the rank. Hence for SGCS first layer compared with baseline, it is unclear whether this should be compared with all the four “first layer” variants in the baseline.
[bookmark: _Toc118707588][bookmark: _Toc118724408][bookmark: _Toc118726350]The Rel.16 eType-II baseline SGCS depends on the rank, hence it’s unclear which rank to assume when computing baseline SGCS for the first layer. 
[bookmark: _Toc118707589][bookmark: _Toc118724409][bookmark: _Toc118726351]The agreed per layer SCGS based multi-rank intermediate KPI defeats the purpose of a simple intermediate KPI as KPI becomes both layer and rank specific 
For RAR on the other hand, the metric includes the performance of all layers in a single metric (up to the selected rank). Hence, presenting RAR only for a single rank or possibly rank 2 and 4 would still capture combinations of gains/deterioration for all different layers. 
Furthermore, RAR based KPI for rank 2 and 4 are suited to represent the commonly used ranks for MU-MIMO and SU-MIMO respectively and these two metrics are sufficient to capture the multi-layer aspects of the intermediate KPI. 
Hence, we propose:
[bookmark: _Toc118726372]As an intermediate KPI for rank>1 PDSCH, adopt the Relative Achievable Rate (RAR) as defined above, evaluated at the SNR point  .

[bookmark: _Toc118726373]Use mean RAR for Ranks 2 and 4 over a baseline as an intermediate KPI for rank>1 PDSCH.

On presenting genie-results as upper bound
A question raised in the previous meeting is whether there is need to provide results on ideal CSI, which is used as an upper bound to see how much margin current AI/ML models are to the ideal optimized performance. This provides insights of the AI/ML technology as a whole, and the potential of the technology similar to providing the Shannon bound for channel coding evaluations. 
This is not commonly used within the MIMO topic, but as we are exploring new terrain in this SI, it is useful to compare with such ideal upper bound as well as the lower bound (legacy CSI). 
In addition, this metric can identify differences in how companies are performing the evaluations, i.e. for calibration (although a calibration campaign will not be carried out). An ideal eigenvector is a subband ideal eigenvector and the subband sizes agreed in the previous meeting can be used. 
[bookmark: _Toc118726374]Companies are encouraged to provide optional genie based upper bound performance metrics obtained using ideal CSI per subband. 
On the definition of payload in evaluations
How to align the payload was discussed in the previous meeting. In our view, there is no need to make complicated approximations, the actual used average payload can readily be estimated from the system level simulation, both for the baseline and the AI/ML based enhancement. 
The direct comparison between baseline and enhancement may not be possible since the average payload is not directly controllable by the simulator settings. However, this is not new and can be handled by plotting a graph with performance vs CSI payload at multiple UCI payload/AI model configurations.
[bookmark: _Toc118726375]For the CSI payload size calculation, payload size for each CSI report from the UE in the SLS is logged and the average payload (across all ranks) is obtained from this log.
In addition to this, it is beneficial for understanding if the proponent also log the rank and present the reported rank selection statistics, to avoid that the scheduler is biasing towards e.g. low or high rank and skew the results. 
[bookmark: _Ref118298232]The difficulties in drawing conclusions based on trained models
The area of AI/ML-model training is highly experimental. On the theoretical side we again mention the universal approximation theorem, which basically tells us that it is rather a question of model size than if it is possible. Nevertheless, the required model sizes may be so large that they are impractical to train, at least today with existing HW, and training techniques. The experimental nature of the field relates to if one can find models and training methods that can solve the practical problem at hand, in this case efficient methods for CSI compression. While a successful training is a clear indication that it is possible, given the practical constraints, an unsuccessful training is not a proof that it is not possible. Nevertheless, multiple failed experiments may provide basis for a reasonable hypothesis claiming that something is not possible, given the practical constraints. But those constraints are important to document.
[bookmark: _Toc118707591][bookmark: _Toc118724410][bookmark: _Toc118726352]One failed training or a single ML-model with poor performance is not a proof that and implementation is not possible.
[bookmark: _Toc118707592][bookmark: _Toc118724411][bookmark: _Toc118726353]To build trust in the results it is important that enough information about model architecture, dataset, and training situation is provided.
We illustrate the argumentation above with the following experiment. We train Encoder A together with two new architectures, Decoder F and Decoder G. These two share the same overall architecture, and are an enlargements of the architecture Decoder A. The only difference is that architecture F has more, and deeper skip connections compared to architecture G. The situation is not decoder heavy according to the definition above, but without further analysis it would have been easy/convenient to blame the poor performance of EncA6 – DecG6 on the size difference. However, the successful training of EncA5 – DecF5 illustrates that it was likely the architecture DecG that was wrong.
Table 1 Mean SGCS on test set – Larger decoder models
	Algorithm
	Layer 1

	EncA1 – DecA1
	0.751

	EncA5 – DecF5
	0.752

	EncA6 – DecG6
	0.624


Table 2 Mean RAR on test set – Larger decoder models
	Algorithm
	Rank 1

	EncA1 – DecA1
	0.799

	EncA5 – DecF5
	0.800

	EncA6 – DecG6
	0.696



[bookmark: _Toc118707593][bookmark: _Toc118724412][bookmark: _Toc118726354]It is not only the size and the backbone that dictates the performance. Also seemingly small changes to the architecture may significantly change the performance.

The model EncA5 – DecF5 has similar performance as EncA1 – DecA1, and converged in around 1500 – 2000 epoch, whereas EncA6 – DecG6 did not achieve good performance after 6000 epochs on the same dataset.
[bookmark: _Ref118293459]Performance of high-resolution transfer of target CSI and NW data collection
The transfer of CSI for training requires the UE to report a high resolution CSI to the NW. The intention is to use if for NW side training of models in type 1 or for NW trains first in Type 3. See the discussion in our companion contribution [7], Section 3.4.2. For the type 2 training, this is needed to convey the target CSI from the UE to the NW. Hence, depending on the training type, there is a need for a study on the high resolution CSI report.  Although this report has a large payload, it has no strict latency requirements (as opposed to the in-operation CSI report) and its transfer can be delayed. 
Ground truth reporting using classical non-AI based compression has been evaluated using the following steps:
1. Data is collected at the NW by ground truth reporting of CSI from UE using either
a. a new high resolution eType-II based reporting format (non-AI) based on ParComb5 but with unquantized (Float32) linear combination coefficients ()
b. a new eType-II model (see below) (non-AI)
c. a new compressed full-channel reporting format (beam-delay) (non-AI)
2. Training is performed using the collected data and assuming Type 2 approach with matched and balanced NN models (i.e. same architecture, same FLOPS) 
3. Performance of the trained model is assessed using intermediate KPIs

The models for the results presented in this paper have been trained on data on the format a. 
The other high-resolution targets in the list above are not used for training in this contribution but are further evaluated using intermediate KPI, by comparing the eigenvectors (or extracted eigenvectors) with the true ones. For the new eType-II format (b), the selected SD and FD basis vectors on the UE side are assumed to be known at the NW (ideal signalling from UE to NW), together with their complete linear combination coefficients (i.e., no quantization is applied). 
The pre-processing parameters for the cases b and c are as follows:
b. New eType-II model (Eigenvector feedback):
·  ,
· the covariance matrix is averaged over 4 RBs to produce covariance matrices for 13 subbands,
·  (yielding ),
· , ,
· Oversampling factor 4 in both horizontal and vertical domain
· Unquantized (Float32) linear combination coefficients ()

c. Compressed full-channel feedback:
·  , ,
· , ,
· Oversampling factor 4 in both horizontal and vertical domain
· Unquantized (Float32) linear combination coefficients ()
Note that the Float32 format results in 64 bits per coefficient for complex values.
From the tables below we see that the performance of the new formats is good. Format c was also evaluated in system level simulations in the previous meeting [5], and the results are in line with the RAR KPI.
Table 3 Mean SGCS on test set – high-resolution targets
	Algorithm
	Representation
	Layer 1
	Layer 2
	Layer 3
	Layer 4

	Unquantized PC5 (a)
	8247 bits 
	0.874
	0.778
	0.606
	0.482

	New eType-II model (b)
	41014 bits
	0.972
	0.952
	0.900
	0.858

	Compressed Full H (c)
	65598 bits
	0.978
	0.962
	0.908
	0.862



Table 4 Mean RAR on test set – high-resolution targets
	Algorithm
	Representation
	Rank 2
	Rank 4

	Unquantized PC5 (a)
	8247 bits 
	0.884
	0.876

	New eType-II model (b)
	41014 bits
	0.972
	0.968

	Compressed Full H (c)
	65598 bits
	0.978
	0.973



The signalling overhead for the corresponding data collection format is computed as follows, for a 10 MHz carrier:
a. Unquantized PC5 overhead: 2058 bits per layer plus an additional 15 bits that are common for all layers. These are distributed as  bits for the unquantized (Float32) linear combination coefficients and  bits for the tap selection, per layer; as well as  bits for wide-beam selection common for all collected layers.
b. New eType-II model: 10,249 bits per layer plus an additional 18 bits that are common for all layers. These are distributed as  bits for the unquantized (Float32) linear combination coefficients and  bits for the tap selection, per layer; as well as  bits for wide-beam selection common for all collected layers.
c. New compressed full-channel reporting format (high resolution but beam-delay reduced): 65,598 bits for a 4-Rx-port UE. These are distributed as  bits for the unquantized (Float32) linear combination coefficients, as well as an additional  bits for the tap selection and  bits for the beam reduction.
d. Raw channel: 425,984 bits originating from the raw complex values as bits.

[bookmark: _Toc118707594][bookmark: _Toc118724413][bookmark: _Toc118726355]The trained AEs presented in this contribution are trained on simulation data collected in the “unquantized PC5” format. Hence, the presented results indicates that it is possible to train ML-models for CSI feedback based on UE-collected data with a reasonably low overhead.

[bookmark: _Ref118706884]Training performance for Type 1 baseline
In this section we  provide baseline results were the reference AE, consisting of the pair Encoder A1 and Decoder A1 (EncA1 – DecA1) is compared against Rel16 eType-II parameter combinations 1, 2, and 3. The test is done on a test set coming from the same scenario/configuration as the training data, but that is not seen in the training. When different training schemes are tested below, these are tested against the pair EncA1 – DecA1, i.e., a complete ML model consisting of architecture “A” and jointly trained parameters “1”. In most cases, the numbers are also directly relatable to the values for the classical baselines in Table 5 and Table 6.
Note that in the row of the EncA1 – DecA1, the improvement in percentage over Rel 16 eType-II PC1 is also provided.
[bookmark: _Ref118707150][bookmark: _Ref118706766]Table 5 Mean SGCS on test set – baseline comparison with Rel16 eType-II
	Algorithm
	Layer 1
	Layer 2
	Layer 3
	Layer 4

	Rel16 eType-II PC1
	0.723
	0.550
	0.156
	0.101

	Rel16 eType-II PC2
	0.761
	0.590
	0.215
	0.127

	Rel16 eType-II PC3
	0.802
	0.682
	0.331
	0.248

	EncA1 – DecA1
	0.751 (+3.9%)
	0.610 (+11%)
	0.347 (+122%)
	0.260 (+157%)


[bookmark: _Ref118707152][bookmark: _Ref118706778]Table 6 Mean RAR on test set – baseline comparison with Rel16 eType-II
	Algorithm
	Rank 1
	Rank 2
	Rank 3
	Rank 4

	Rel16 eType-II PC1
	0.781 (62 bit)
	0.760 (113 bit)
	0.664 (100 bit)
	0.714 (111 bit)

	Rel16 eType-II PC2
	0.810 (91 bit)
	0.781 (169 bit)
	0.728 (156 bit)
	0.763 (167 bit)

	Rel16 eType-II PC3
	0.840 (111 bit)
	0.826 (207 bit)
	0.719 (187 bit)
	0.745 (207 bit)

	EncA1 – DecA1
	0.799 (66 bit)
(+2.3%)
	0.786 (111 bit)
(+3.4%)
	0.744 (99 bit)
(+12%)
	0.764 (127bit)
(+7.0%)



[bookmark: _Toc118707595]The presented AE, EncA1 – DecA1 has performance gains over eType-II parameter combination 1. Specifically, for layers 1 and 2 the gains are 2%-3% in RAR, and for layers 3 and 4 the gains are 7% – 12% in RAR. 
[bookmark: _Toc118724415][bookmark: _Toc118726357]The gains for EncA1 – DecA1 over eType-II ParComb 1 is 3.4% in rank-2 mean RAR and 7.0% in rank-4 mean RAR, hence the performance of using AI-CSI tends to be larger at higher rank PDSCH transmission compared to lower rank. 
The AE consisting of the jointly trained pair EncA1 – DecA1 is an upper bound of performance since both encoder and decoder is trained by the same entity, and hence used as a reference in later parts of the paper, by comparison with this AE absolute gains over baseline can be inferred.
Generalization performance 
In this section we present a set of different Case 2 generalizations from the agreement:
	Agreement
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two




Specifically, this means that we are testing the AE consisting of the pair EncA1 – DecA1, trained on data from Dense Urban (see the appendix for full details), on scenarios and configurations it has not seen in training. Note that the naming convention used as the naming suggests, this AE is exactly the same as the above-mentioned one, with exactly the same trained parameters.
Generalization across scenarios (Issue B)
[bookmark: _Ref118318851]Generalization from Dense Urban @ 2 GHz to UMi @ 4 GHz
The models are trained on Dense urban at 2 GHz (see Appendix 9.3) and data is represented in the unquantized PC5 representation, see Section 3. In this test the data comes from an Urban Micro scenario with carrier frequency 4 GHz. Comparing to the baseline we see a slight drop in nominal values for rank-2 mean RAR and rank-4 mean RAR for EncA1 – DecA1. However, when compared as gains over eType-II ParComb 1, the gains are slightly increased, to is 4.0% gains in rank-2 mean RAR and 8.3% in rank-4 mean RAR. The nominal values for the intermediate KPIs are presented in the following tables..
Table 7 Mean SGCS on test set – UMi at 4 GHz test
	Algorithm
	Layer 1
	Layer 2
	Layer 3
	Layer 4

	Rel16 eType-II PC1 (on baseline test set)
	0.723
	0.550
	0.156
	0.101

	EncA1 – DecA1 (on baseline test set)
	0.751 (+3.9%)
	0.610 (+11%)
	0.347 (+122%)
	0.260 (+157%)

	Rel16 eType-II PC1 (on Umi@4GHz test set)
	0.700
	0.530
	0.163
	0.104

	EncA1 – DecA1 (on Umi@4GHz test set)
	0.733 (+4.7%)
	0.595 (12%)
	0.347 (113%)
	0.266 (158%)



Table 8 Mean RAR on test set – UMi at 4 GHz test
	Algorithm
	Rank 2
	Rank 4

	Rel16 eType-II PC1 (on baseline test set)
	760
	714

	EncA1 – DecA1 (on baseline test set)
	0.786 (+3.4%)
	0.764 (+7.0%)

	Rel16 eType-II PC1 (on Umi@4GHz test set)
	0.745
	0.700

	EncA1 – DecA1 (on Umi@4GHz test set)
	0.775 (+4.0%)
	0.758 (+8.3%)




[bookmark: _Toc118707597][bookmark: _Toc118724416][bookmark: _Toc118726358]The presented model generalizes well from Dense Urban 2 GHz trained models to Urbans Micro 4 GHz test, that is, simultaneously, to a both a different carrier frequency and deployment/scenario not seen in training (Case 2).

[bookmark: _Ref118407546]Generalization to different antenna spacing for Dense Urban
In RAN1#109 the following antenna configurations were agreed.
	Companies need to report which option(s) are used between
-          32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ
-          16 ports: (8,4,2,1,1,2,4), (dH,dV) = (0.5, 0.8)λ
Other configurations are not precluded.


The model is trained on the agreed 32-port layout, and in this test we use a test set generated with a different vertical antenna element spacing, specifically (dH,dV) = (0.5, 0.3)λ. The carrier frequency and other parameters (see appendix) was the same as in the training dataset. . Comparing to the baseline we see a slight increase in nominal values for rank-2 mean RAR and rank-4 mean RAR for EncA1 – DecA1. However, that is true for the baseline as well, and when compared as gains over eType-II ParComb 1, the gains are slightly increased, to is 3.5% gains in rank-2 mean RAR and 7.3% in rank-4 mean RAR. The nominal values for the intermediate KPIs are presented in the following tables.
Table 9 Mean SGCS on test set – Dense Urban with (dH,dV) = (0.5, 0.3)λ
	Algorithm
	Layer 1
	Layer 2
	Layer 3
	Layer 4

	Rel16 eType-II PC1 (on baseline test set)
	0.723
	0.550
	0.156
	0.101

	EncA1 – DecA1 (on baseline test set)
	0.751 (+3.9%)
	0.610 (+11%)
	0.347 (+122%)
	0.260 (+157%)

	Rel16 eType-II PC1 (on antenna spacing test set)
	0.723
	0.556
	0.168
	0.109

	EncA1 – DecA1 (on antenna spacing test set)
	0.752 (+4.0%)
	0.614 (+10%)
	0.352 (+110%)
	0.265(+143%)


Table 10 Mean RAR on test set – Dense Urban with (dH,dV) = (0.5, 0.3)λ
	Algorithm
	Rank 2
	Rank 4

	Rel16 eType-II PC1 (on baseline test set)
	760
	714

	EncA1 – DecA1 (on baseline test set)
	0.786 (+3.4%)
	0.764 (+7.0%)

	Rel16 eType-II PC1 (on antenna spacing test set)
	0.765
	0.723

	EncA1 – DecA1 (on antenna spacing test set)
	0.792 (+3.5%)
	0.776 (+7.3%)




[bookmark: _Toc118707598][bookmark: _Toc118724417][bookmark: _Toc118726359]The presented model generalizes well for Dense Urban at 2 GHz scenario to the different vertical antenna element spacing 0.3 vs 0.8 lambda respectively. 

Generalization across configurations (Issue C)
[bookmark: _Ref118293591]Generalization with respect to bandwidth
Depending on architecture, a Case-2 generalization with respect to bandwidth may be challenging due to the possible changes in input dimensions of the data. However, the configurable pre-processing relieves this problem since the eigenvectors can be computed on a coarser frequency granularity, which effectively results in the same input dimensions for both a 10 MHz carrier and a 20 MHz carrier. This may result in a data drift but as we will see this is manageable by the presented model.
There was an agreement during RAN1#110-bis-e on the granularity for calculation of intermediate KPIs, which we apply to both the SGCS and the RAR computations.
	Agreement
In the evaluation of the AI/ML based CSI feedback enhancement, for the calculation of intermediate KPI, the following is considered as the granularity of the frequency unit for averaging operation 
· For 15kHz SCS: For 10MHz bandwidth: 4 RBs; for 20MHz bandwidth: 8 RBs
· For 30kHz SCS: For 10MHz bandwidth: 2 RBs; for 20MHz bandwidth: 4 RBs
· Note: Other frequency unit granularity is not precluded and reported by companies




However, it seems likely that this agreement favours a frequency averaging kind of pre-processing solution, as availability of AI-reported precoding vectors at any other frequency unit granularity will likely provide worse match with what is called “ground truth”. Such effect was, e.g., presented and argued around in [7], where availability of eigenvectors at finer and coarser frequency granularity than “ground truth” resulted in worse KPI performance. 
The effect is more prominent in an idealized situation where the noise-free channel is available, whereas in practice, the potential processing gain in the computation may be needed to get an accurate eigenvector. Nevertheless, another effect is the absolute results for the test on 20 MHz is not directly comparable with the 10 MHz case, since these do not share the same “ground truth”. Comparisons must be done as improvement over a baseline. We compare the gains of EncA1 – DecA1 over eType-II ParComb 1 and observe that the gains are slightly decreased, to is 2.6% gains in rank-2 mean RAR and 6.7% in rank-4 mean RAR. The nominal values for the intermediate KPIs are presented in the following tables.
[bookmark: _Toc118707599][bookmark: _Toc118724418][bookmark: _Toc118726360]A Case-2 generalization to different bandwidth may be challenging since in can affect the input dimension to the model. However, we see that the configurable pre-processing can handle this, allowing for good generalization performance.
[bookmark: _Toc118707600][bookmark: _Toc118724419][bookmark: _Toc118726361]Because of the frequency averaging, the nominal values of the intermediate KPIs for the 20 MHz case are not directly comparable with the 10 MHz case. However, the comparison can be done as improvement over baseline.

Table 11 Mean SGCS on test set – 20 MHz test and trained on 10 MHz data (Case 2)
	Algorithm
	Layer 1
	Layer 2
	Layer 3
	Layer 4

	Rel16 eType-II PC1 (on baseline test set)
	0.723
	0.550
	0.156
	0.101

	EncA1 – DecA1 (on baseline test set)
	0.751 (+3.9%)
	0.610 (+11%)
	0.347 (+122%)
	0.260 (+157%)

	
	
	
	
	

	Rel16 eType-II PC1 (on 20MHz test set)
	0.706
	0.533
	0.155
	0.104

	EncA1 – DecA1 on 20MHz test set)
	0.727 (+3.0%)
	0.580 (+8.8%)
	0.331 (+114%)
	0.246 (+137%)



Table 12 Mean RAR on test set – 20 MHz test and trained on 10 MHz data (Case 2)
	Algorithm
	Rank 2
	Rank 4

	Rel16 eType-II PC1 (on baseline test set)
	760
	714

	EncA1 – DecA1 (on baseline test set)
	0.786 (+3.4%)
	0.764 (+7.0%)

	Rel16 eType-II PC1 (on 20MHz test set)
	0.756
	0.716

	EncA1 – DecA1 on 20MHz test set)
	0.776 (+2.6%)
	0.764 (+6.7%)




[bookmark: _Toc118707601][bookmark: _Toc118724420][bookmark: _Toc118726362]The pre-processing allows for easy reconfiguration and generalization of the AI/ML-model, and the improvements over baseline for 20 MHz bandwidth are almost the same as for the 10 MHz case for which training data was provided. 

Training performance for Type 2

In this section, the multi-NW and multi-UE vendor training setup is investigated. Hence, we train 2 UE encoder jointly with 2 NW decoders (i.e. (n=2, m=2)), as depicted in Figure 1. The architecture EncB is a modification of EncA, and similarly DecC is a modification of DecA. 
Both the new architectures have a different number of fully connected layers, different sizes of those, and different layout in terms of skip-connections compared to the “A”-architectures. Moreover, both the new architectures are larger than the previous ones, while still producing balanced models according to the definition above. The labelling, i.e., “B” and “C” is in accordance with the naming convention above and reflects that no effort was spent on testing hyperparameters to get a good match. 
The design started from the architectures EncA and DecA, which both received what seemed like “suitable modifications” and then the training was tested. The joint loss used was a combination of the mean and maximum loss of the 4 individual losses. The performance of the 4 different AEs consisting of the 4 different pairings are compared against the reference AE, consisting of EncA1 – DecA1. The results are presented in Table 13 and Table 14. We see that the results on the intermediate KPIs are about the same.
[bookmark: _Ref118648003]Table 13 Mean SGCS on test set – Type 2 multi-vendor training (n=2, m=2)
	Algorithm
	Layer 1
	Layer 2

	EncA1 – DecA1 (reference pair)
	0.751
	0.610

	EncA2 – DecA2
	0.744
	0.601

	[bookmark: _Hlk118645902]EncA2 – DecC2
	0.740
	0.598

	EncB2 – DecA2
	0.744
	0.598

	EncB2 – DecC2
	0.740
	0.596



[bookmark: _Ref118648005]Table 14 Mean RAR on test set – Type 2 multi-vendor training (n=2, m=2)
	Algorithm
	Rank 1
	Rank 2

	EncA1 – DecA1 (reference pair)
	0.799
	0.786

	EncA2 – DecA2
	0.793 (-0.8%)
	0.779 (-0.9%)

	EncA2 – DecC2
	0.790 (-1.1%)
	0.776 (-1.2%)

	EncB2 – DecA2
	0.793 (-0.8%)
	0.778 (-1.0%)

	EncB2 – DecC2
	0.789 (-1.2%)
	0.776 (-1.2%)



When comparing the best performing encoder-decoder pair with the worst performing encoder-decoder pair we see that, in this experiment, they have about the same performance on the intermediate KPIs. This was also observed in the individual losses when training, albeit the loss does not exactly correspond to the intermediate KIPs. Moreover, by tracking which pair had the lowest loss and which had the highest, and the corresponding values of those individual losses, we could observe that the best/worst pair was not the same across all epochs, and that the gap between the individual losses closed rather quickly. 
[bookmark: _Toc118707602][bookmark: _Toc118724421][bookmark: _Toc118726363]The tested Type 2 joint training of two UE encoders and two NW decoders, that can be paired in any combination, worked well with only a slight (about 1%) degradation compared to the reference pair. All pairs have about the same performance. 

Training performance for Type 3
In Type 3 training, the part that trains first, e.g., the NW, is facing a compression problem in Step 1, to train an encoder and a decoder. In contrast, the part that trains second faces a regression problem in Step 2. The task is to learn a (partially) defined mapping that fits with the first parts trained result, e.g., to train an encoder that matches a decoder trained by an NW-vendor in NW-first training.
In both the experiments below, the so called “set of information (e.g., dataset)” was defined as a dataset consisting of 138,000 samples generated by Encoder A1, i.e., a set of (Input/Target, Quantized Latent Space). In the NW trains first approach this represents the mapping that is supposed to be implemented by the UE-side. In the UE trains-first approach, the dataset was simply “transposed”, i.e., interpreted as (Quantized Latent Space, Input/Target). This dataset is split into a training set and a test set, the well-known technique to allow unbiased monitoring of performance and detection of potential overfitting.
[bookmark: _Ref118293814]Performance of NW trains first approach
In this approach we imposed a loss function on the latent space during Step2. The loss was the NMSE between the quantized encoder output in the complex plane and the target interpreted as a point in the complex plane. In this test the quantization was matched and thus the target interpretation was always assumed to be correct. The architecture Encoder D is similar to Encoder A, but with an additional convolutional layer and larger fully connected layers. Hence, Encoder D is larger than Encoder A.
Table 15 Mean SGCS on test set – NW-first training
	Algorithm
	Layer 1
	Layer 2
	Layer 3
	Layer 4

	EncA1 – DecA1 (reference pair)
	0.751
	0.610
	0.347
	0.260

	EncD3 – DecA1
	0.749
	0.609
	0.347
	0.261


[bookmark: _Ref111204130]Table 16 Mean RAR on test set – NW-first training
	Algorithm
	Rank 2
	Rank 4

	EncA1 – DecA1 (reference pair)
	0.786
	0.764

	EncD3 – DecA1
	0.785
	0.765



[bookmark: _Toc118707603][bookmark: _Toc118724422][bookmark: _Toc118726364]For Type 3 sequential training, the tested NW-first training approach worked well, with no noticeable performance difference compared to Type 1 joint training.
[bookmark: _Ref118293896]Performance of UE trains first approach
In this approach we used the same loss on the output in Step2, as used in Step1. Which is an idealization since the NW-vendor may not know what loss the UE-vendor used to train the original model. The architecture Decoder E is similar to Decoder A, but with an additional transpose convolutional layer, and larger but fewer fully connected layers. Hence, Decoder E is smaller than Decoder A. The situation is encoder heavy  according to the definition in Section 2.1.3 above with a approximately 9 time parameter difference. This could be the source of the observed deterioration, but further investigation is needed to verify that conclusion.
Table 17 Mean SGCS on test set – UE-first training
	Algorithm
	Layer 1
	Layer 2
	Layer 3
	Layer 4

	EncA1 – DecA1 (reference pair)
	0.751
	0.610
	0.347
	0.260

	EncA1 – DecE4
	0.739
	0.599
	0.339
	0.253


Table 18 Mean RAR on test set – UE-first training
	Algorithm
	Rank 2
	Rank 4

	EncA1 – DecA1 (reference pair)
	0.786
	0.764

	EncA1 – DecE4
	0.778
	0.760




[bookmark: _Toc118707604][bookmark: _Toc118724423][bookmark: _Toc118726365]For Type 3 sequential training, the tested UE-first training approach worked well, with only a slight (about 1%) degradation compared to Type 1 joint training.

Conclusion
Here follows a list of observations made in this contribution:
Observation 1	For layers 3 and 4, gains in SGCS over baseline may severely overestimate expected gains. However, gains in RAR for Rank 3 and 4 are closer to expected gain in user throughput.
Observation 2	The Rel.16 eType-II baseline SGCS depends on the rank, hence it’s unclear which rank to assume when computing baseline SGCS for the first layer.
Observation 3	The agreed per layer SCGS based multi-rank intermediate KPI defeats the purpose of a simple intermediate KPI as KPI becomes both layer and rank specific
Observation 4	One failed training or a single ML-model with poor performance is not a proof that and implementation is not possible.
Observation 5	To build trust in the results it is important that enough information about model architecture, dataset, and training situation is provided.
Observation 6	It is not only the size and the backbone that dictates the performance. Also seemingly small changes to the architecture may significantly change the performance.
Observation 7	The trained AEs presented in this contribution are trained on simulation data collected in the “unquantized PC5” format. Hence, the presented results indicates that it is possible to train ML-models for CSI feedback based on UE-collected data with a reasonably low overhead.
Observation 8	The gains for EncA1 – DecA1 over eType-II ParComb 1 is 3.4% in rank-2 mean RAR and 7.0% in rank-4 mean RAR, hence the performance of using AI-CSI tends to be larger at higher rank PDSCH transmission compared to lower rank.
Observation 9	The presented model generalizes well from Dense Urban 2 GHz trained models to Urbans Micro 4 GHz test, that is, simultaneously, to a both a different carrier frequency and deployment/scenario not seen in training (Case 2).
Observation 10	The presented model generalizes well for Dense Urban at 2 GHz scenario to the different vertical antenna element spacing 0.3 vs 0.8 lambda respectively.
Observation 11	A Case-2 generalization to different bandwidth may be challenging since in can affect the input dimension to the model. However, we see that the configurable pre-processing can handle this, allowing for good generalization performance.
Observation 12	Because of the frequency averaging, the nominal values of the intermediate KPIs for the 20 MHz case are not directly comparable with the 10 MHz case. However, the comparison can be done as improvement over baseline.
Observation 13	The pre-processing allows for easy reconfiguration and generalization of the AI/ML-model, and the improvements over baseline for 20 MHz bandwidth are almost the same as for the 10 MHz case for which training data was provided.
Observation 14	The tested Type 2 joint training of two UE encoders and two NW decoders, that can be paired in any combination, worked well with only a slight (about 1%) degradation compared to the reference pair. All pairs have about the same performance.
Observation 15	For Type 3 sequential training, the tested NW-first training approach worked well, with no noticeable performance difference compared to Type 1 joint training.
Observation 16	For Type 3 sequential training, the tested UE-first training approach worked well, with only a slight (about 1%) degradation compared to Type 1 joint training.

Based on the discussion in the previous sections we propose the following:
Proposal 1	For both Type 2 and Type 3 training, also evaluate the case with N>1 and M>1
Proposal 2	If Type 2 training is considered for multi- NW vendor training (N>1), study the impact of different channel databases used at the encoder inputs and how to align these; the possibility of using different loss functions at the decoders and how to align these; and how the joint loss should be designed in a heterogeneous training setup.
Proposal 3	Study security aspects of training two-sided models.
Proposal 4	Study the need for and how to mitigate problems with inconsistencies among transferred datasets from multiple vendors in Type 3 sequential training.
Proposal 5	Unmatched models are defined as the case when decoder and encoder use different Neural Network architectures (e.g. CNN and Transformer respectively).
Proposal 6	Unbalanced two sided models are defined as when two ML-models have significantly (>4x) different sizes of their Neural Network architectures in terms of FLOPS and/or number of parameters. Unbalanced models are further categorized into “encoder heavy” and “decoder heavy” when the two models in question are an encoder and a decoder.
Proposal 7	As an intermediate KPI for rank>1 PDSCH, adopt the Relative Achievable Rate (RAR) as defined above, evaluated at the SNR point  .
Proposal 8	Use mean RAR for Ranks 2 and 4 over a baseline as an intermediate KPI for rank>1 PDSCH.
Proposal 9	Companies are encouraged to provide optional genie based upper bound performance metrics obtained using ideal CSI per subband.
Proposal 10	For the CSI payload size calculation, payload size for each CSI report from the UE in the SLS is logged and the average payload (across all ranks) is obtained from this log.
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Appendix
Model sizes
In this section we present the model sizes in terms of number of FLOPs and number of parameters for the different encoder/decoder architectures, in accordance with the agreement at RAN1#110.
	Agreement
For the evaluation of the AI/ML based CSI compression sub use cases, the capability/complexity related KPIs, including FLOPs as well as AI/ML model size and/or number of AI/ML parameters, are to be reported separately for the CSI generation part and the CSI reconstruction part.


The underlying encoder architecture was presented in [R1-2208729] and is illustrated in Figure 2. The decoder has a matching architecture with different branches depending on layer and rank.

[image: ]
[bookmark: _Ref118467116]Figure 2: The general encoder architecture. The decoder has a matching architecture
In the tables below the number of parameters are the total number of parameters for all 6 branches, as this it the total number of parameters needed to store to run the model in inference. The number of FLOPs presented are the total number of flops for a single layer as well as for running all 6 branches. However, the latter should be understood as an upper bound, since depending on how the UE computes the RI it may not be necessary to run all 6 branches for every sample. Likewise, the decoder will only run a number of branches equal to the received RI, and thus for the decoder an upper bound on the number of FLOPs is given by 4 times the number of FLOPs for a single layer. All layers have the same number of FLOPs, the difference in the Layer A and Layer B architectures is related to what is sent over the air.
Table 19 Encoder model sizes in terms of FLOPs and number of parameters
	Encoders

	Encoder architecture
	FLOPs (per layer)
	FLOPs (upper bound)
	Number of parameters

	Encoder A (EncA)
	32 k
	192 k
	78 k

	Encoder B (EncB)
	38 k
	228 k
	96 k

	Encoder D (EncD)
	60 k
	360 k
	156 k



Table 20 Decoder model sizes in terms of FLOPs and number of parameters
	Decoders

	Decoder architecture
	FLOPs (per layer)
	FLOPs (upper bound)
	Number of parameters

	Decoder A (DecA)
	34 k
	136 k
	78 k

	Decoder C (DecC)
	50 k
	200 k
	120 k

	Decoder E (DecE)
	18 k
	72 k
	9.0 k

	Decoder F (DecF)
	88 k
	352 k
	228 k

	Decoder G (DecG)
	83 k
	332 k
	228 k


Note: The difference in FLOPs for DecF and DecG reflects the operations for the skip connections.

Full CDF curves
CDFs for “4 Training performance for Type 1 baseline”

[image: ]
Figure 3: CDF of SGCS for layers 1 and 2 for baseline AE, Encoder A1 and Decoder A1, as well as Rel16 eType-II for parameter combinations 1, 2, and 3.
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Figure 4: CDF of SGCS for layers 3 and 4 for baseline AE, Encoder A1 and Decoder A1, as well as Rel16 eType-II for parameter combinations 1, 2, and 3.
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Figure 5: CDF of RAR for layers 1 and 2 for baseline AE, Encoder A1 and Decoder A1, as well as Rel16 eType-II for parameter combinations 1, 2, and 3.
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Figure 6: CDF of RAR for layers 3 and 4 for baseline AE, Encoder A1 and Decoder A1, as well as Rel16 eType-II for parameter combinations 1, 2, and 3.


CDFs for “2.5 The difficulties in drawing conclusions based on ”
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Figure 7: CDF of SGCS for larger decoder models with and without extra skip connections.
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Figure 8: CDF of RAR for larger decoder models with and without extra skip connections.



CDFs for “3 Performance of high-resolution transfer of target CSI and NW data collection”
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Figure 9: CDF of SGCS for layers 1 and 2, for 3 different high-resolution formats.
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Figure 10: CDF of SGCS for layers 3 and 4, for 3 different high-resolution formats.
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Figure 11: CDF of RAR for layers 1 and 2, for 3 different high-resolution formats.
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Figure 12: CDF of RAR for layers 3 and 4, for 3 different high-resolution formats.


CDFs for “5.1.1 Generalization from Dense Urban @ 2 GHz to UMi @ 4 GHz”

[image: ]
Figure 13: CDF of SGCS on a test set from UMi @ 4 GHz, for layers 1 and 1 for baseline AE, Encoder A1 and Decoder A1, as well as Rel16 eType-II for parameter combinations 1, 2, and 3.
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Figure 14: CDF of SGCS on a test set from UMi @ 4 GHz, for layers 3 and 4 for baseline AE, Encoder A1 and Decoder A1, as well as Rel16 eType-II for parameter combinations 1, 2, and 3.
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Figure 15: CDF of RAR on a test set from UMi @ 4 GHz, for layers 1 and 2 for baseline AE, Encoder A1 and Decoder A1, as well as Rel16 eType-II for parameter combinations 1, 2, and 3.
[image: ]
Figure 16: CDF of RAR on a test set from UMi @ 4 GHz, for layers 3 and 4 for baseline AE, Encoder A1 and Decoder A1, as well as Rel16 eType-II for parameter combinations 1, 2, and 3.



CDFs for “5.1.2 Generalization to different antenna spacing”

[image: ]
Figure 17: CDF of SGCS on a test set from Dense Urban with (dH,dV) = (0.5, 0.3)λ, for layers 1 and 1 for baseline AE, Encoder A1 and Decoder A1, as well as Rel16 eType-II for parameter combinations 1, 2, and 3.
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Figure 18: CDF of SGCS on a test set from Dense Urban with (dH,dV) = (0.5, 0.3)λ, for layers 3 and 4 for baseline AE, Encoder A1 and Decoder A1, as well as Rel16 eType-II for parameter combinations 1, 2, and 3.
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Figure 19: CDF of RAR on a test set from Dense Urban with (dH,dV) = (0.5, 0.3)λ, for layers 1 and 2 for baseline AE, Encoder A1 and Decoder A1, as well as Rel16 eType-II for parameter combinations 1, 2, and 3.
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Figure 20: CDF of RAR on a test set from Dense Urban with (dH,dV) = (0.5, 0.3)λ, for layers 3 and 4 for baseline AE, Encoder A1 and Decoder A1, as well as Rel16 eType-II for parameter combinations 1, 2, and 3.



CDFs for “5.2.1 Generalization with respect to bandwidth”
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Figure 21: CDF of SGCS on a 20MHz test, for layers 1 and 1 for baseline AE, Encoder A1 and Decoder A1, as well as Rel16 eType-II for parameter combinations 1, 2, and 3.
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Figure 22: CDF of SGCS on a 20MHz test, for layers 3 and 4 for baseline AE, Encoder A1 and Decoder A1, as well as Rel16 eType-II for parameter combinations 1, 2, and 3.
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Figure 23: CDF of RAR on a 20MHz test, for layers 1 and 2 for baseline AE, Encoder A1 and Decoder A1, as well as Rel16 eType-II for parameter combinations 1, 2, and 3.
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Figure 24: CDF of RAR on a 20MHz test, for layers 3 and 4 for baseline AE, Encoder A1 and Decoder A1, as well as Rel16 eType-II for parameter combinations 1, 2, and 3.



CDFs for “0 ”
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Figure 25: CDF of SGCS for different pairings of the result from the multi-vendor training scenario with 2 UE encoders and 2 NW decoders available in the same training session.
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Figure 26: CDF of RAR for different pairings of the result from the multi-vendor training scenario with 2 UE encoders and 2 NW decoders available in the same training session.



CDFs for “7.1 Performance of NW trains first approach”
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Figure 27: CDF of SGCS for layers 1 and 2 for NW-first training.
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Figure 28: CDF of SGCS for layers 3 and 4 for NW-first training.

[image: ]
Figure 29: CDF of RAR for layers 1 and 2 for NW-first training.
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Figure 30: CDF of RAR for layers 3 and 4 for NW-first training.



CDFs for “7.2 Performance of UE trains first approach”
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Figure 31: CDF of SGCS for layers 1 and 2 for UE-first training.
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Figure 32: CDF of SGCS for layers 3 and 4 for UE-first training.
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Figure 33: CDF of RAR for layers 1 and 2 for UE-first training.
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Figure 34: CDF of RAR for layers 3 and 4 for UE-first training.





Training data
The data used for training the models are logged from a system level simulator running the scenario described in the following table.
Table 21 SLS parameters used for generating training data
	System-level simulation parameters for data generation

	Scenario
	Uma dense (200m ISD)

	Carrier frequency
	2 GHz 

	Bandwidth
	10 MHz (52 RBs)

	Subcarrier spacing
	15 kHz

	Channel model
	38.901

	BS transmit power
	41 dBm

	BS antenna height
	25 m 

	BS antenna configuration
	32 ports 
· (, , , , , , ) = (8, 8 ,2, 1, 1, 2, 8) 
· (, ) = (0.5, 0.8)
· 

	UE antenna configuration
	4Rx 
· (, , , , , , ) = (1,2,2,1,1,2) 
· 0.5 element spacing, 
omni-directional elements

	UE distribution
	Indoor: 80%

	UE speeds
	Indoor: 3 km/h. Outdoor: 30 km/h



	4/4	
image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image1.png

image2.png

