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[bookmark: _Toc118653596]Introduction
This contribution discusses the issues for the agenda item other aspects on AI/ML for positioning accuracy enhancements. 
The paper outline is as follows:
· Section 2: Views are shared on some discussions left open in RAN1#110bis-e.
· Section 3: Analysis is provided for each deployment case on the potential benefits and specification impacts for AI/ML model inference, configuration, performance monitoring, and data collection for training. 
· [bookmark: _Hlk118642507]Section 4 concludes the paper with a list of observations and proposals. 

[bookmark: _Ref118009184][bookmark: _Toc118653597]General Aspects
Before delving into the issues specific to each deployment case, we review some general issues and open discussions from RAN1#110bis-e. 
[bookmark: _Toc118653598]Sub use cases and scenarios
One checkpoint in the SID [1] is:
· “Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98”

For the use case of positioning accuracy enhancements, two methods have been evaluated extensively by RAN1 companies, and the following agreement was made in RAN1#110.
	Agreement
For characterization and performance evaluations of AI/ML based positioning accuracy enhancement, the following two AI/ML based positioning methods are selected.
· Direct AI/ML positioning
· AI/ML assisted positioning
· Note 1: the selection does not intend to provide any indication of the prospects of any future normative project.
· Note 2: further discussion (including selection of other sub use cases and/or down selection of selected sub use cases) are not precluded based on performance evaluation and potential specification impact study results



In RAN1#10bis-e, some companies proposed to prioritize study of either AI/ML assisted or direct AI/ML (fingerprinting) solutions at the UE or NW side with potential down prioritization. Based on the high volume of evaluation results provided by companies, both methods provide significant positioning accuracy enhancements in different deployment scenarios. No further down-selection is necessary in our view. The agreement above can be revised by deleting the notes, i.e., the two methods are the finalized representative sub use cases for the use case of positioning accuracy enhancements.
[bookmark: _Toc118705244]Studying both AI/ML assisted and direct AI/ML (fingerprinting) positioning solutions will better span the agenda item 9.2.4 problem space, provide better input to general cross-functional framework discussions in agenda item 9.2.1, and provide a better foundation for any future normative work.

Our companion paper [1] provides performance evaluations for the Indoor factory dense high (InF-DH) scenario with various clutter settings (see Table 1). The evaluations include UE and NW timing errors, variations in UE transmit power, and propagation environment changes. 
· NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning (Case 3a): Both single-TRP and multi-TRP constructions were evaluated in  [1]. A simple single-TRP construction is: AI/ML models were trained to classify links as either line of sight (LoS) or non-line of sight (NLoS) and, simultaneously, to estimate the observable first path time of arrival (ToA) of SRS. Identical AI/ML models were deployed at each TRP, and the model outputs (LoS/NLoS classification + ToA estimate) were forwarded to the LMF for use as inputs to a legacy positioning algorithm (e.g., UL-TDOA in [1]). 
· NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning (Case 3b): Various AI/ML models were trained to directly estimate the UE’s position from the SRS CIRs measured by TRPs.

	Environment clutter setting
	LoS Probability

	{40%, 2m, 2m}
	0.449

	{50%, 2m, 2m}
	0.352

	{60%, 2m, 2m}
	0.268

	{40%, 6m, 2m}
	0.014

	{50%, 6m, 2m}
	0.025

	[bookmark: _Hlk117081197]{60%, 6m, 2m}
	0.008


[bookmark: _Ref117955756][bookmark: _Ref117955731]Table 1: LoS probabilities of different InF-DH environment [1]

A takeaway from [1] is as follows: NW-side AI/ML positioning solutions (both direct AI/ML fingerprinting and AI/ML assisted) may achieve significant performance improvements over legacy solutions for the wide range of LoS probabilities shown in Table 1. 
RAN1 should continue to study the NG-RAN direct AI/ML (fingerprinting) and AI/ML assisted positioning solutions for moderate and heavy NLoS scenarios. RAN1 should quantify potential performance benefits with a focus on robustness to implementation imperfections (e.g., measurement and timing errors) and wide validity areas (e.g., strong generalizability over multiple deployment environments). In terms of specification impact, RAN1 needs to continue the investigation for training data collection, model inference, and model performance monitoring.
[bookmark: _Toc118705245]The AI/ML assisted and direct AI/ML (fingerprinting) positioning solutions show significant positioning accuracy improvement for both moderate and heavy NLoS environments. Evaluation results indicate that AI/ML assisted solutions are more robust against UE timing errors, variations in UE transmit power, and propagation settings.

[bookmark: _Toc118705555]For the use case of positioning accuracy enhancements, the two finalized sub use cases are: (a) direct AI/ML positioning; (b) AI/ML assisted positioning.
[bookmark: _Toc118705556]For both AI/ML assisted and direct AI/ML positioning approaches, study the potential specification impact for training data collection, model inference, and model performance monitoring.

[bookmark: _Ref118112511][bookmark: _Toc118653599]AI/ML model training (online versus offline) 
Some companies argued for online versus offline training of AI/ML models in RAN1#110bis-e, with potential down selection. The discussion was deferred until sufficient progress was made in the General Aspects agenda item 9.2.1. For reference, the following working assumption from RAN1#110 on online versus offline training is shown in Table 2.

	Terminology
	Description

	Online training
	An AI/ML training process where the model being used for inference) is (typically continuously) trained in (near) real-time with the arrival of new training samples.
Note: the notion of (near) real-time vs. non real-time is context-dependent and is relative to the inference time-scale.
Note: This definition only serves as a guidance. There may be cases that may not exactly conform to this definition but could still be categorized as online training by commonly accepted conventions.
Note: Fine-tuning/re-training may be done via online or offline training. (This note could be removed when we define the term fine-tuning.)

	Offline training
	An AI/ML training process where the model is trained based on collected dataset, and where the trained model is later used or delivered for inference.
Note: This definition only serves as a guidance. There may be cases that may not exactly conform to this definition but could still be categorized as offline training by commonly accepted conventions.


[bookmark: _Ref118011302]Table 2: Working assumption for online versus offline training

This is the first RAN1 AI/ML project and, not surprisingly, there remains much uncertainty and significant standardization challenges. It is our understanding that online learning primarily refers to reinforcement learning solutions where agents learn in an online manner through action exploration and reward observation. It is our opinion that offline training of AI/ML models (that have standard impact) already pose significant challenges with performance and testing (indeed, RAN4 work has not yet begun). In addition, reinforcement learning problems are notorious for slow convergence times, instability, and sensitivity to the reward function. It is our view that consideration of highly adaptive online learning for AI/ML training can be left for future 3GPP projects / releases. 
[bookmark: _Toc118705557]For the use case of positioning accuracy enhancement, prioritize the study of offline AI/ML model training in Release 18. 

[bookmark: _Toc118653600]One and two-sided AI/ML models
The discussion on prioritization of one-sided versus two-sided AI/ML models was deferred until there is more progress on the issue in the General Frameworks agenda item 9.2.1. For reference, we include the working assumption for one- and two-sided AI/ML models in Table 3.

	Terminology
	Description

	UE-side (AI/ML) model
	An AI/ML Model whose inference is performed entirely at the UE

	Network-side (AI/ML) model
	An AI/ML Model whose inference is performed entirely at the network

	One-sided (AI/ML) model
	A UE-side (AI/ML) model or a Network-side (AI/ML) model

	Two-sided (AI/ML) model
	A paired AI/ML Model(s) over which joint inference is performed, where joint inference comprises AI/ML Inference whose inference is performed jointly across the UE and the network, i.e, the first part of inference is firstly performed by UE and then the remaining part is performed by gNB, or vice versa.


[bookmark: _Ref118007478][bookmark: _Ref117961671]Table 3: Working assumption for one- and two-sided AI/ML models

It is our understanding that the three pilot use cases[footnoteRef:2] were selected to span the physical-layer AI/ML “problem space”. The learnings from these pilot use cases are to be captured in the General Aspects agenda item 9.2.1 for potential use in future 3GPP projects. We, therefore, believe that an important role of the positioning accuracy enhancements use case is to provide learnings for the General Aspects agenda item 9.2.1 and there is no need to wait for progress in agenda item 9.2.1. We think that it is best to proceed with one-sided AI/ML models to ensure sufficient progress is made for the positioning use case.  [2:  CSI feedback enhancement, beam management, and positioning accuracy enhancements (see the study item description [2]).] 

A detailed study of two-sided AI/ML models is already ongoing in the CSI feedback enhancement agenda item 9.2.2. For example, agenda item 9.2.2 is studying general solutions to enable multi-vendor training and deployment of two-sided AI/ML models. Training, testing, and deploying two-sided AI/ML models in 3GPP’s multi-vendor ecosystem presents significant standardization challenges [3]. We expect that learnings from these studies will apply more generally to other use cases and be captured in the General Aspects agenda item 9.2.1. Further study of “how to train multi-vendor two-sided AI/ML models” in the position accuracy enhancement agenda will impose a significant additional workload (resulting in fewer learnings for one-side AI/ML solutions) and have considerable overlap with agenda 9.2.2 --- all without providing significant additional learnings to the overall study item.
[bookmark: _Toc118705246]The CSI feedback enhancement agenda item 9.2.2 is already studying general solutions to enable the training of two-sided AI/ML models. Further study of “how to train multi-vendor two-sided AI/ML models” in the position accuracy enhancement agenda will impose a significant additional workload without adding new learnings to the overall study item. 
[bookmark: _Toc118705558]For the use case of positioning accuracy enhancement, prioritize the study of one-sided AI/ML models, with model inference in either the NW or the UE.

[bookmark: _Ref118009225][bookmark: _Toc118653601]Potential specification impact for each positioning cases
We share our views on the potential benefits and specification impacts for AI/ML model inference, configuration, performance monitoring, and data collection for training in this section. To help structure our discussion, we will break the problem space down into the deployment cases as discussed in RAN1#110bis-e), see Table 4. 
The cases discussed in RAN1#110bis-e (Case 1, Case 2a, Case 2b, Case 3a, and Case 3b) missed the scenario where a centralized AI/ML model observes UL channel measurements result inputs from multiple TRPs and outputs information to a legacy positioning solution. For example, we show in [1] that a centralized direct path ToA estimation AI/ML model can achieve an order of magnitude reduction in direct path ToA estimation errors with an order of magnitude reduction in computational complexity (with respect to distributed direct path ToA estimation AI/ML models). 

	
	Legacy solution
	AI/ML solution

	Case 1
	DL-TDoA, DL-AoD
	UE-based positioning with UE-side model, direct AI/ML or AI/ML assisted positioning

	Case 2a
	DL-TDoA, DL-AoD, Multi-RTT
	UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning

	Case 2b
	DL-TDoA, DL-AoD, Multi-RTT
	UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning

	Case 3a
	Multi-RTT, UL-TDoA, UL-AoA
	NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning

	Case 3b
	Multi-RTT, UL-TDoA, UL-AoA
	NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning

	Case 3c
	Multi-RTT, UL-TDoA, UL-AoA
	NG-RAN node assisted positioning with a centralized model, AI/ML assisted positioning


[bookmark: _Ref117955752][bookmark: _Ref118272839]Table 4: AI/ML positioning cases for discussing benefits and potential specification impacts

We propose to add Case 3c to cover any NG-RAN assisted setup, where 
· the AI/ML model is located at a centralized node, and 
· the centralized AI/ML model output is used as input to a conventional positioning algorithm at LMF. 
We additionally note that Case 3c corresponds to the multi-TRP construction agreed in agenda item 9.2.4.1 when the AI/ML model resides at a centralized node on the network side:
	Agreement (RAN1#110bis)
For AI/ML-assisted positioning, companies report which construction is applied in their evaluation:
1. Single-TRP construction: the input of the ML model is the channel measurement between the target UE and a single TRP, and the output of the ML model is for the same pair of UE and TRP. 
1. Multi-TRP construction: the input of the ML model contains N sets of channel measurements between the target UE and N (N>1) TRPs, and the output of the ML model contains N sets of values, one for each of the N TRPs.



Therefore, it is necessary to add Case 3c to the study (see Table 4 above).

[bookmark: _Toc118705559]For AI/ML based positioning accuracy enhancement, also study the benefit(s) and potential specification impact of Case 3c: NG-RAN node assisted positioning with a centralized model, AI/ML assisted positioning.

RAN2/RAN3 discussions will need to deal specifics of the centralized node solution, according to the conclusion below.
	Conclusion (RAN1#109e)
· RAN1 discussion should focus on network-UE interaction.
· AI/ML functionality mapping within the network (such as gNB, LMF, or OAM) is up to RAN2/3 discussion.



For AI/ML models deployed at network side, RAN1 should leave the discussion of mapping entities to network nodes to RAN2/RAN3. That is, RAN1 does not need to be concerned with what these entities are: data collection entity (data collection for training and model monitoring) and model monitoring entity. RAN2/RAN3 may explicit assign these roles to a network entity or decide to leave it to network implementation. 
[bookmark: _Toc118705560]At least for AI/ML models residing at network side (Case 2b, 3a, 3b, 3c), it’s up to RAN2/3 to discuss whether/how to map the AI/ML functional entities to  network nodes, including data collection entity and model monitoring entity. 

In the following subsections, we address each case in Table 4 separately, shaping discussions around the following key topics: data collection, AI/ML model configuration, AI/ML model inference, and AI/ML model monitoring. We start with the three NG-RAN assisted positioning solutions. 

[bookmark: _Toc118653602](Case 3c) NG-RAN node assisted positioning with centralized model, AI/ML assisted positioning
This subsection discusses Case 3c, which is illustrated in Figure 1. We have a multi-TRP scenario where the unobserved direct path ToA is estimated jointly by a centralized AI/ML model using the UL channel impulse responses collected from all TRPs. For the evaluations in [1], the input to the AI/ML model is assumed to be a three-dimensional complex-valued tensor  (18 TRPs with 2 Rx antennas and 256 time-domain samples).  The target outputs of the AI/ML model are the 18 estimated unobserved ToAs, as illustrated in Figure 1. 

[image: A picture containing diagram

Description automatically generated]
[bookmark: _Ref118293143][bookmark: _Ref118293112]Figure 1: NG-RAN node assisted positioning with centralized model, AI/ML assisted positioning (Case 3c)

As shown in our evaluation paper [1], the centralized direct path ToA estimation AI/ML models can achieve an order of magnitude reduction in direct path ToA estimation errors with an order of magnitude reduction in total complexity -- compared to some constructions using distributed path ToA estimation AI/ML models (Case 3a discussed in Section 3.2).
It is not surprising that a centralized multi-TRP AI/ML-based joint estimation of all unobserved direct path ToAs outperforms separate estimation of direct path ToAs at each TRP. For example, the earlier layers of the multi-TRP deep neural network will learn to extract important features that are needed for later layers to jointly estimate the direct path ToAs. If, instead, the centralized multi-TRP AI/ML is replaced by separate AI/ML models at each TRP, then the set of learned features is restricted to a single CIR. That is, the direct path ToA estimate of a particular NLoS cannot leverage important side information from links to other TRPs.
[bookmark: _Toc118653603]AI/ML model inference
The UE is configured to transmit periodic, aperiodic, or semi-persistent SRS. Support for positioning specific SRS configurations was added in Rel-16. The SRS is configured by the LMF, with the requested SRS configuration sent to the gNB, which in turn, sends the SRS configuration to the UE using RRC signalling. 
The TRP can utilize UL SRS transmissions to estimate the UL channel impulse response using proprietary methods. The centralized model for AI/ML assisted positioning is a complex deep neural network that will need to be executed on dedicated AI accelerators in a centralized node, for example, the CU. The signaling of channel features from the TRP to the AI/ML model input are implementation issues. The target outputs of the AI/ML model are the unobserved direct path ToAs,  [1]. The estimated  can be forwarded to the LMF using existing signaling (NRPPa protocol ), and the LMF obtains the UE position using conventional positioning algorithms.
[bookmark: _Toc118705247]For Case 3c (NR-RAN assisted positioning with a centralized model, AI/ML assisted positioning): AI/ML model inference is up to network implementation and transparent to the UE and LMF. No specification impact is expected.  
[bookmark: _Toc118705561]For Case 3c (NR-RAN assisted positioning with a centralized TRP-model, AI/ML assisted positioning):  The input to the AI/ML model does not need to be specified. AI/ML model inference is left to proprietary implementation. 

[bookmark: _Toc118653604]AI/ML model registration, selection, activation, deactivation, switching, and fallback operation
The NW’s usage of the AI/ML model is transparent to the UE and LMF. Therefore, aspects related to AI/ML model registration, selection, activation, deactivation, switching, and fallback operation (e.g., to legacy) can be left for network implementation. 
[bookmark: _Toc118705562]For Case 3c (NR-RAN assisted positioning with a centralized TRP-model, AI/ML assisted positioning):  AI/ML model registration, selection, activation, deactivation, switching, and fallback operation are left for implementation. No specification impact is expected.  

[bookmark: _Toc118653605]Data collection for training
LMF-side conventional positioning algorithms require accurate estimates of direct path ToAs to perform UE localization.  As shown in our evaluation paper [1], a centralized multi-TRP AI/ML model can be trained to accurately estimate unobserved direct path ToAs in heavy NLoS deployments. The AI/ML model was trained on a relatively large dataset (e.g., approx. 86,400 samples). In the evaluation [1], each sample in the training dataset consisted of the following:
· AI/ML model inputs: Time-domain CIRs or (one for each TRP), and
· Labels / reconstruction targets: Ground truth unobserved direct ToAs (one for each TRP) derived from the TRP and  UE positions.

In terms of model inputs, as discussed, the AI/ML model inference is up to network implementation, i.e., the exact format of input to the centralized AI/ML model (e.g., time-domain CIRs or power delay profile (PDP)) does not need to be standardized. Similarly, the format of model input does not need to be specified for the purpose of training data collection.
[bookmark: _Toc118705248]For Case 3c (NG-RAN assisted positioning with a centralized TRP-model, AI/ML assisted positioning): The format of input to the centralized AI/ML model (e.g., time-domain CIRs) is transparent to the LMF and UE.
[bookmark: _Toc118705563]For Case 3c (NG-RAN assisted positioning with a centralized TRP-model, AI/ML assisted positioning): The format of input to the centralized AI/ML model does not need to be specified for model inference nor training data collection. 

In terms of labels / reconstruction targets, the LMF needs to provide it, together with the correct association of model input data. The LMF will need to provide the NW with an SRS configuration to enable UL data collection. The SRS configuration can be combined with assistance information (a ground truth direct path ToA or UE location) to enable the training datasets to be constructed. The LMF-to-NW assistance information can be a ground truth unobserved direct ToA for each link or the location of the UE (from which the direct path ToA can be derived). 
[bookmark: _Toc118705564]For Case 3c (NG-RAN assisted positioning with a centralized TRP-model, AI/ML assisted positioning):  Study signaling enhancements for the LMF to provide the ground truth label (e.g., ground truth direct path ToAs or UE locations) together with the SRS configuration to support the training data collection. 


[bookmark: _Ref118295134][bookmark: _Ref118295165][bookmark: _Ref118295172][bookmark: _Toc118653606](Case 3a) NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning
This subsection discusses Case 3a. As shown in our evaluation paper [1], AI/ML assisted positioning with a gNB-side AI/ML model provides positioning performance enhancements over legacy solutions, generalizes well over different propagation environments, and is robust to measurement errors. Two different Case 3a AI/ML assisted variants are evaluated [1]:
Solution 1. distributed LoS classification and time of arrival estimation, where a distributed model estimates the observed direct path ToA using the same AI/ML model with UL channel impulse response from one TRP, and 
Solution 2. distributed unobserved direct path time of arrival estimation, where a distributed model estimated the unobserved direct path ToA using different AI/ML models with UL channel impulse response from one TRP. 
These two solution variants are shown in Figure 2 and Figure 3. For the evaluations in [1], the input to the AI/ML model is assumed to be a two-dimensional complex-valued tensor . The target outputs of the AI/ML model is the observed or the unobserved ToA. 

[image: ]
[bookmark: _Ref118707597]Figure 2: NG-RAN node assisted positioning with distributed model, AI/ML assisted positioning (Case 3a), solution 1.


[image: ]
[bookmark: _Ref118707601]Figure 3: NG-RAN node assisted positioning with distributed model, AI/ML assisted positioning (Case 3a), solution 2.

[bookmark: _Toc118653607]AI/ML model inference 
The TRP can utilize UL SRS transmissions to estimate the channel impulse response to be used for model input for the assisted solutions 1 and 2 listed above. For the inference phase, the UE can be configured to transmit SRS. In Rel-16, the support for positioning specific SRS configurations was added. The UE can be configured to transmit periodic, aperiodic, or semi-persistent SRS signals. 
According to the existing specification, the SRS is configured in the LMF, with the requested SRS configuration sent to the gNB, which in turn, sends the SRS configuration to the UE using RRC signalling. 
The NRPPa protocol  already supports reporting of ML output from the gNB to LMF, for example, hard and soft LoS/NLOS indicator, UL RTOA (UL Relative Time of Arrival). Hence, model output of the assisted AI/ML positioning solutions using a distributed model can be reported with existing signaling. The reporting IE can be the same towards the LMF regardless of whether the gNB produced the report using legacy methods or using AI/ML models.
[bookmark: _Toc118705565]For Case 3a (NG-RAN node assisted positioning with LMF-side model, AI/ML assisted positioning): The input to the AI/ML model does not need to be specified. The model output can be reported from gNB to LMF using existing signaling.  No specification impact is expected for model inference. 

[bookmark: _Toc118653608]AI/ML model registration, selection, activation, deactivation, switching, and fallback operation
For Case 3a solutions, the model output reporting can be supported using existing signaling. As discussed for performance monitoring in Section 3.3, model monitoring can be done in LMF without extra signaling support. LMF and gNB are both network nodes, so there is no need to specify new signaling for model registration, selection, activation, deactivation, switching or fallback operation. 
[bookmark: _Toc118705566]For Case 3a (NG-RAN node assisted positioning with LMF-side model, AI/ML assisted positioning): AI/ML model registration, selection, activation, deactivation, switching, and fallback operation are left for implementation. No specification impact is expected. 

[bookmark: _Ref118645574][bookmark: _Toc118653609][bookmark: _Ref118303911]AI/ML model performance monitoring 
The AI/ML assisted solutions 1 and 2 proposed and evaluated in [1] can be deployed transparently in the NW in terms of model inference. Also, for NW-side model, it is expected that model monitoring is done in the NW. 
In the straightforward way, model monitoring can for example be done by collecting labelled data using a special device, which is specifically designed for testing the model performance. 
On the other hand, for Case 3a and Case 3c, model monitoring can be accomplished without collecting labelled data during model deployment. In the Case 3a or Case 3c setup, the LMF takes the AI/ML estimated ToA into conventional triangulation-based error minimization framework to search and determine the UE position. It can be expected that the minimization outcome will have smaller residual losses when the AI/ML models are operating in the correct environment and are generating correct ToA. Conversely, larger residual losses are unavoidable when the models are applied to an environment different than the one used to train the models. 
In [2] we provide the residual losses from conventional triangulation-based error minimization positioning algorithms. In the evaluation (see Figure 4) the AI/ML models for supplying the ToAs are trained with a dataset for the {60%, 6m, 2m} parameter.
· When the trained model is operating in the same {60%, 6m, 2m} environment, the residual losses shown in blue line are below 0.77 with a probability of 99%.
· When the trained model is operating in the {40%, 2m, 2m} environment where it performs badly, the residual losses shown in orange line are above 0.77 with a probability of 99%.
· When the trained model is operating in a {40%, 6m, 2m} environment that is different than the training set environment but not so different that the model is still performing well, the distribution of the residual losses shown in green remain quite similar to those for the {60%, 6m, 2m} environment.

It can be concluded that the residual losses from the conventional positioning algorithms can be used as a reliable metric to detect model/environment mismatch. For the example shown here, one could determine a threshold of 1 considering both the blue and the green curves. If the positioning residual losses are above this threshold, there is a high chance that the environment has drifted far enough from the training environment that the model will need to be replaced or adjusted. Therefore, the AI/ML assisted models for Case 3a and Case 3c can be reliably monitored without collecting additional test samples with the required model inputs and ground truth labels (e.g., UE positions). This means that there is no need to specify signalling to collect test data for model monitoring purpose.
[image: Chart, line chart

Description automatically generated]
[bookmark: _Ref118708216]Figure 4: Residual losses from conventional triangulation-based error minimization positioning algorithms. The AI/ML models for supplying the ToAs are trained with a dataset for the {60%, 6m, 2m} clutter parameter. The trained models are shown here to operate in

[bookmark: _Toc118705249]Performance monitoring of AI/ML assisted positioning (e.g., Case 3a, Case 3c, Case 2a) can be achieved by evaluating the residual loss from the triangulation-based error minimization positioning algorithm (i.e., conventional positioning methods). No need to collect labelled data for model monitoring purpose. This is an important advantage of AI/ML assisted positioning approaches over the AI/ML direct positioning approach (e.g., Case 3b).

[bookmark: _Toc118705567]For Case 3a and 3c, model monitoring metric is calculated without collecting test data. No signalling is to be specified to collect test data for model monitoring purpose.

[bookmark: _Toc118653610]Data collection for training 
For the Case 3a assisted AI/ML solutions, gNB data is used for model training and model inference. As discussed above, data for model inference can be collected based on SRS transmissions from a UE. Legacy SRS configuration mechanisms can be used to configure the UE to transmit positioning SRS. 
As stated in Section 2.2, we propose to prioritize offline AI/ML model training for Rel-18. For training purposes, model input data as well as appropriate labelling of the data needs to be collected. Using supervised learning, the data labels need to represent the model output. The assisted AI/ML solution 1 produces LoS classification and time of arrival estimates as the output. Solution variant 2 produces time of arrival estimates. The labels need to be collected in a way so that they can be properly associated with the model input.
For data collection, PRUs or another type of special UEs are commonly proposed to be used. With a special UE, it is assumed that the UE location is known in the network and the network is control of when the special UE is transmitting the SRS. The gNB measures the configured SRS and compile channel information reports (e.g., CIR) for the purpose of training data collection, although the format of input (e.g., CIR) to the AI/ML model does not need to be specified for model inference nor training data collection.  LMF can provide the location of the special UE for ground truth label generation. After that the association of channel information reports (e.g., CIR) with the correct label can be done in the network. 

[bookmark: _Toc118705568]For Case 3a (NG-RAN node assisted positioning with LMF-side model, AI/ML assisted positioning): The format of input to the AI/ML model does not need to be specified for model inference nor training data collection. 

[bookmark: _Toc118705569]For Case 3a (NG-RAN node assisted positioning with LMF-side model, AI/ML assisted positioning): Study signaling enhancements for the LMF to provide the ground truth label (e.g., ground truth direct path ToAs or UE locations) together with the SRS configuration to support the training data collection.


[bookmark: _Toc118653611](Case 3b) NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning
As shown in our companion paper [1], direct AI/ML positioning with gNB side model, provides positioning performance enhancements over legacy positioning methods, and also enables positioning in heavy NLoS environment. Two different direct AI/ML solution variants are evaluated, 1) direct AI/ML positioning using UL CIR and 2) direct AI/ML positioning using SRS RSRP.  The evaluated model uses different inputs but all provide UE location as the output, see Figure 5. 
[image: ]
[bookmark: _Ref118708717]Figure 5: NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning (Case 3b), solution 1.
[bookmark: _Toc118653612]AI/ML model inference 
As for Case 3a, the TRP can utilize UL SRS transmissions to estimate the channel impulse response to be used for model input for the assisted solutions 1 and 2 listed above for Case 3b. For the inference phase, the UE can be configured to transmit SRS. 
The existing NRPPa protocol  supports reporting of UL RTOA, UL SRS-RSRP, etc. Using the extended additional path list, time and power of up to 8 additional paths can be reported with existing signaling. 
In many evaluation results reported so far in the study item, a time domain CIR with 256 entries has been used as model input for Case 2b and 3b solutions, which is significantly longer than 8 entries. Solutions with varying number of path timings have been evaluated in for example . It is expected that the exact representation of the channel information model input for Case 2b and 3b solutions will continue to be evaluated in agenda item 9.2.4.1. 
Without knowing the exact model input to be specified in the work item, RAN1 discussion can proceed using the example of reporting CIR from gNB to LMF with some suitable representation.  This implies that the existing NRPPa signalling need to be extended due to: (a) new model input type (e.g., CIR) is reported instead of RSRP; (b) more time domain samples may be needed than the existing list size of 8.
[bookmark: _Toc118705570]For Case 3b (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning): The existing reporting from gNB to LMF need to be enhanced to support model inference due to potentially new information type (e.g., CIR) and/or a larger size of measurement report (e.g., 256 time domain samples).
[bookmark: _Toc118653613]AI/ML model registration, selection, activation, deactivation, switching, and fallback operation
For direct AI/ML Case 3b positioning, the AI/ML model is deployed and controlled fully on the network side. Hence, no specification impact is expected for model registration, selection, activation, deactivation, switching or fallback operation.  
[bookmark: _Toc118705571]For Case 3b (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning): AI/ML model registration, selection, activation, deactivation, switching, and fallback operation are left for implementation. No specification impact is expected. 

[bookmark: _Toc118653614]AI/ML model performance monitoring 

For direct AI/ML Case 3b positioning, the AI/ML model is deployed and controlled fully on the network side. Hence, no specification impact is expected for model monitoring. 
[bookmark: _Toc118705572]For Case 3b (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning): Model monitoring is left for implementation. No specification impact is expected.

[bookmark: _Toc118653615]Data collection for training 
For the Case 3b direct AI/ML solutions, gNB data reported to LMF is used for model training and model inference. As discussed above, data for model inference can be collected in gNB based on SRS transmissions from a UE. For Case 3b solutions, input data from several TRPs is used in the model training and model inference stages. 
As stated in Section 2.2, we propose to prioritize offline AI/ML model training for Rel-18. For training purposes, model input data as well as appropriate record keeping information (e.g., time stamp) of the data needs to be collected. The model input data is CIR, or RSRP, or other types of rich channel information.
Using supervised learning, the data labels need to represent the model output, in this case, the UE position. Regardless how the labelling is achieved, the labels (i.e., UE position) need to be collected in a way so that they can be properly associated with the model input when building up the database for model training.
For data collection, PRUs or another type of special UE are commonly proposed to be used. With a special UE, it is assumed that the UE location is known in the network and the network is control of when the special UE is transmitting the SRS, so that the special UE is triggered to transmit the configured SRS at the known location. Hence, ground truth label generation and association of rich channel information with the correct label can be done in the network. 
[bookmark: _Toc118705573]For Case 3b (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning): The same standard impact (if any) is expected to support data collection for model training and model inference, if the LMF is also the training data collection entity. Otherwise (i.e., LMF is not the training data collection entity), it’s up to RAN2/RAN3 to discuss the standard impact to support training data collection.

[bookmark: _Toc118653616](Case 1) UE-based positioning with UE-side model, direct AI/ML or AI/ML assisted positioning 
For case 1, the entire procedure from performing PRS measurement to determining UE location is fully contained within the black box (i.e., the UE). The UE does not have to reveal any information to the network about model input, model output, training data collection, or model monitoring. If the UE does not choose to share the information, the network may not be able to tell whether the UE used direct AI/ML approach, or AI/ML assisted approach, or the UE has invoked the conventional positioning method as a fall-back.  Thus the standard impact of Case 1 highly depends on the information the UE chooses to request from, or report to, the network. 
[bookmark: _Toc118705574]For Case 1 (UE-based positioning with UE-side model, direct AI/ML or AI/ML assisted positioning), the standard impact depends on the information the UE chooses to request from or report to the network.
[bookmark: _Toc118653617](Case 2a) UE-assisted/LMF-based positioning with UE side model, AI/ML assisted positioning 
Case 2a solution covers AI/ML assisted positioning with UE side model. For the solutions discussed so far during the study item, some variant of the channel impulse response (full CIR or path timings with RSRPPs for example) and RSRP are the main model input alternatives. As model output, LoS classification or time of arrival estimates are common model output parameters. 
[bookmark: _Toc118653618]AI/ML model inference 

The UE can utilize DL PRS transmissions to estimate the channel impulse response or RSRP values to be used for model input for the assisted solutions in Case 2a. For the inference phase, the gNB can be configured to transmit PRS for the UE to perform measurements on. 
The LPP protocol  supports reporting of DL RSTD (DL Reference Signal Time Difference) with optional additional path information from the UE to LMF. The RSTD is the relative timing difference between this neighbour TRP and the PRS reference TRP. The LPP protocol also supports reporting of various other types of measurements, e.g., LoS/NLoS indicator, ToA/RSTD, DL-PRS-RSRP, DL AoD.
Hence, model output reporting for the evaluated assisted AI/ML positioning solution using a UE side model can be supported with existing LPP signalling. Also, with existing measurement reports, the conventional positioning methods (e.g., DL-TDOA) works the same regardless of how the measurement values are obtained by the UE (AI/ML or non-AI/ML).
[bookmark: _Toc118705250]For Case 2a (UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning): Model inference can be supported with existing signalling, where the reporting of model output to LMF reuses the existing LPP IEs (e.g., LoS/NLOS indicator, ToA/RSTD, DL-PRS-RSRP, DL AoD).
[bookmark: _Toc118705575]For Case 2a (UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning): Define ML model output which is to be carried by LPP from UE to LMF. No specification impact is expected when the model output is fully aligned with existing measurement report.
[bookmark: _Toc118653619]AI/ML model registration, selection, activation, deactivation, switching, and fallback operation 
In our contribution for agenda item 9.2.1 [4], model management, i.e., model registration, selection, activation, deactivation, switching and fallback operation, is extensively discussed, using beam management and positioning as example use cases. The main conclusion is that for UE-assisted positioning with UE side model, the existing capability framework can be enhanced to enable model configuration, i.e., model registration, selection, activation, switching and fallback. It is also proposed that we should prioritize NW-initiated AI/ML selection, activation, deactivation, switching and fallback operation at the UE. 
Regarding model monitoring, as discussed in section 3.2.3, Case 2a uses AI/ML assisted positioning, and the conventional positioning method residing at the LMF can calculate the model monitoring metrics. Consequently, the LMF can make decisions on whether/how to change the model on the UE-side. Based on the model monitoring decision, the LMF then coordinates with UE on procedures like activation, deactivation, switching, and fallback. 
Thus, we have the following observations and proposals:
[bookmark: _Toc118467932][bookmark: _Toc118705251]NW can know about which UE-sided models are available via enhancing the capability framework or explicitly by which release the UE supports.
[bookmark: _Toc118705576][bookmark: _Toc118367512]For Case 2a (UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning): Define LMF-initiated procedure for AI/ML model selection, activation, deactivation, switching, and fallback operation.
[bookmark: _Toc118367513][bookmark: _Toc118705577]For Case 2a (UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning): The UE can fallback to existing non-AI/ML mechanisms for reporting measurement results (e.g., LoS/NLOS indicator, RSTD).
[bookmark: _Toc118653620]AI/ML model performance monitoring 
In the Case 2a, the LMF takes the AI/ML generated measurement reports (such as the estimated time of arrival) into conventional triangulation-based error minimization framework to search and determine the UE position. Similar to Case 3a and 3c, it can be expected that the minimization outcome will have smaller residual losses when the AI/ML models are operating in the correct environment and are generating correct positioning related reports. In contrast, larger residual losses are expected when the model does not perform well, e.g., when the model is applied to an environment substantially different than the one used to train the model. 
As the example and analysis presented in Section 3.2.3 show, the residual losses from the conventional positioning algorithms can be used as a reliable metric to detect model/environment mismatch. If the positioning residual losses are above a predefined threshold, then the LMF can decide that the environment has drifted far enough from the training environment and the model need to be replaced or adjusted.
[bookmark: _Toc118705578]For Case 2a (UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning): Model monitoring metric is calculated by LMF. The model monitoring decisions are sent from LMF to UE via an enhanced LPP signaling.

[bookmark: _Toc118653621](Case 2b) UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning 
Case 2b solution covers UE assisted direct AI/ML positioning with LMF-side model. For the solutions discussed so far during the study item, some variant of the channel impulse response (full CIR or path timings with RSRPPs for example) and RSRP are the main model input alternatives. The evaluated models provide UE location as the output.

[bookmark: _Toc118653622]AI/ML model inference
Like Case 2a, the UE can utilize DL PRS transmissions to estimate the channel impulse response or RSRP values, which is uses as model input. For the inference phase, the gNB can be configured to transmit PRS for the UE to perform measurements, and the UE send the measurement reports to LMF to be used as model input. 
The LPP protocol  supports reporting of DL PRS measurement results such as LoS/NLoS indicator, ToA/RSTD, DL-PRS-RSRP, DL AoD. However, in most evaluation results reported so far in the study item, a time domain CIR with 256 entries has been used as model input for Case 2b and 3b solutions.  Thus, similar to Case 3b, the existing LPP signalling need to be extended due to: (a) new model input type (e.g., CIR) is reported instead of RSTD/DL-PRS-RSRP/etc; (b) more time domain samples may be needed than the existing list size of 8 for DL-PRS-RSRP.
[bookmark: _Toc118705579]For Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): The existing measurement reporting from UE to LMF need to be enhanced to support model inference due to potentially new information type (e.g., CIR) and/or a larger size of measurement report (e.g., 256 time domain samples).
[bookmark: _Toc118705580]For Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): Define ML model input which is to be carried by LPP from UE to LMF. The extent of specification impact depends on the type and size of measurement results that are required as the model input.

[bookmark: _Toc118653623]AI/ML model registration, selection, activation, deactivation, switching, and fallback operation
For direct AI/ML Case 2b positioning, the AI/ML model is deployed and controlled fully on the network side. Hence, there is no specification impact foreseen for model registration, selection, activation, deactivation, switching or fallback operation.  
[bookmark: _Toc118705581]For Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): AI/ML model registration, selection, activation, deactivation, switching, and fallback operation are left for implementation. No specification impact is expected.

[bookmark: _Toc118653624]AI/ML model performance monitoring 
For direct AI/ML Case 2b positioning, the AI/ML model is deployed and controlled fully on the network side. Hence, no specification impact is expected for model monitoring. 
[bookmark: _Toc118705582]For Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): Model monitoring is left for implementation. No specification impact is expected.
[bookmark: _Toc118653625] Data collection for training 
For the Case 2b direct AI/ML solutions, UE data reported to LMF is used for model training and model inference. As discussed above, data for model inference can be collected in UE based on PRS transmissions from gNB. For Case 2b solutions, input data reflecting UE measurements of several TRPs’ PRS is used in the model training and model inference stages. 
As stated in Section 2.2, we propose to prioritize offline AI/ML model training for Rel-18. For training purposes, model input data as well as appropriate record keeping information (e.g., time stamp) of the data needs to be collected. Using supervised learning, the data labels need to represent the model output, in this case, the UE position. 
Regardless how the labelling is achieved, the labels (i.e., UE position) need to be collected in a way so that they can be properly associated with the model input when building up the database for model training.
For data collection, PRUs or another type of special UE are commonly proposed to be used. With a special UE, it is assumed that the UE location is known in the network and the network is in control of when the special UE is receiving the PRS, so that the special UE is triggered to measure the configured PRS at the known location. Hence, ground truth label generation and association of rich channel information with the correct label can be done in the network. When LMF is the training data collection entity, data collection for training and data collection for inference can share the same or similar signalling. Otherwise (i.e., LMF is not the training data collection entity), it’s up to RAN2/RAN3 to discuss the standard impact.
[bookmark: _Toc118705583]For Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): The same standard impact is expected to support data collection for model training and model inference, if the LMF is also the training data collection entity. Otherwise (i.e., LMF is not the training data collection entity), it’s up to RAN2/RAN3 to discuss the standard impact to support training data collection. 

[bookmark: _Ref118642439][bookmark: _Toc118653626]Conclusion
In the previous sections we made the following observations: 
Observation 1	Studying both AI/ML assisted and direct AI/ML (fingerprinting) positioning solutions will better span the agenda item 9.2.4 problem space, provide better input to general cross-functional framework discussions in agenda item 9.2.1, and provide a better foundation for any future normative work.
Observation 2	The AI/ML assisted and direct AI/ML (fingerprinting) positioning solutions show significant positioning accuracy improvement for both moderate and heavy NLoS environments. Evaluation results indicate that AI/ML assisted solutions are more robust against UE timing errors, variations in UE transmit power, and propagation settings.
Observation 3	The CSI feedback enhancement agenda item 9.2.2 is already studying general solutions to enable the training of two-sided AI/ML models. Further study of “how to train multi-vendor two-sided AI/ML models” in the position accuracy enhancement agenda will impose a significant additional workload without adding new learnings to the overall study item.
Observation 4	For Case 3c (NR-RAN assisted positioning with a centralized model, AI/ML assisted positioning): AI/ML model inference is up to network implementation and transparent to the UE and LMF. No specification impact is expected.
Observation 5	For Case 3c (NG-RAN assisted positioning with a centralized TRP-model, AI/ML assisted positioning): The format of input to the centralized AI/ML model (e.g., time-domain CIRs) is transparent to the LMF and UE.
Observation 6	Performance monitoring of AI/ML assisted positioning (e.g., Case 3a, Case 3c, Case 2a) can be achieved by evaluating the residual loss from the triangulation-based error minimization positioning algorithm (i.e., conventional positioning methods). No need to collect labelled data for model monitoring purpose. This is an important advantage of AI/ML assisted positioning approaches over the AI/ML direct positioning approach (e.g., Case 3b).
Observation 7	For Case 2a (UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning): Model inference can be supported with existing signalling, where the reporting of model output to LMF reuses the existing LPP IEs (e.g., LoS/NLOS indicator, ToA/RSTD, DL-PRS-RSRP, DL AoD).
Observation 8	NW can know about which UE-sided models are available via enhancing the capability framework or explicitly by which release the UE supports.

Based on the discussion in the previous sections we propose the following:
Proposal 1	For the use case of positioning accuracy enhancements, the two finalized sub use cases are: (a) direct AI/ML positioning; (b) AI/ML assisted positioning.
Proposal 2	For both AI/ML assisted and direct AI/ML positioning approaches, study the potential specification impact for training data collection, model inference, and model performance monitoring.
Proposal 3	For the use case of positioning accuracy enhancement, prioritize the study of offline AI/ML model training in Release 18.
Proposal 4	For the use case of positioning accuracy enhancement, prioritize the study of one-sided AI/ML models, with model inference in either the NW or the UE.
Proposal 5	For AI/ML based positioning accuracy enhancement, also study the benefit(s) and potential specification impact of Case 3c: NG-RAN node assisted positioning with a centralized model, AI/ML assisted positioning.
Proposal 6	At least for AI/ML models residing at network side (Case 2b, 3a, 3b, 3c), it’s up to RAN2/3 to discuss whether/how to map the AI/ML functional entities to  network nodes, including data collection entity and model monitoring entity.
Proposal 7	For Case 3c (NR-RAN assisted positioning with a centralized TRP-model, AI/ML assisted positioning):  The input to the AI/ML model does not need to be specified. AI/ML model inference is left to proprietary implementation.
Proposal 8	For Case 3c (NR-RAN assisted positioning with a centralized TRP-model, AI/ML assisted positioning):  AI/ML model registration, selection, activation, deactivation, switching, and fallback operation are left for implementation. No specification impact is expected.
Proposal 9	For Case 3c (NG-RAN assisted positioning with a centralized TRP-model, AI/ML assisted positioning): The format of input to the centralized AI/ML model does not need to be specified for model inference nor training data collection.
Proposal 10	For Case 3c (NG-RAN assisted positioning with a centralized TRP-model, AI/ML assisted positioning):  Study signaling enhancements for the LMF to provide the ground truth label (e.g., ground truth direct path ToAs or UE locations) together with the SRS configuration to support the training data collection.
Proposal 11	For Case 3a (NG-RAN node assisted positioning with LMF-side model, AI/ML assisted positioning): The input to the AI/ML model does not need to be specified. The model output can be reported from gNB to LMF using existing signaling.  No specification impact is expected for model inference.
Proposal 12	For Case 3a (NG-RAN node assisted positioning with LMF-side model, AI/ML assisted positioning): AI/ML model registration, selection, activation, deactivation, switching, and fallback operation are left for implementation. No specification impact is expected.
Proposal 13	For Case 3a and 3c, model monitoring metric is calculated without collecting test data. No signalling is to be specified to collect test data for model monitoring purpose.
Proposal 14	For Case 3a (NG-RAN node assisted positioning with LMF-side model, AI/ML assisted positioning): The format of input to the AI/ML model does not need to be specified for model inference nor training data collection.
Proposal 15	For Case 3a (NG-RAN node assisted positioning with LMF-side model, AI/ML assisted positioning): Study signaling enhancements for the LMF to provide the ground truth label (e.g., ground truth direct path ToAs or UE locations) together with the SRS configuration to support the training data collection.
Proposal 16	For Case 3b (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning): The existing reporting from gNB to LMF need to be enhanced to support model inference due to potentially new information type (e.g., CIR) and/or a larger size of measurement report (e.g., 256 time domain samples).
Proposal 17	For Case 3b (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning): AI/ML model registration, selection, activation, deactivation, switching, and fallback operation are left for implementation. No specification impact is expected.
Proposal 18	For Case 3b (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning): Model monitoring is left for implementation. No specification impact is expected.
Proposal 19	For Case 3b (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning): The same standard impact (if any) is expected to support data collection for model training and model inference, if the LMF is also the training data collection entity. Otherwise (i.e., LMF is not the training data collection entity), it’s up to RAN2/RAN3 to discuss the standard impact to support training data collection.
Proposal 20	For Case 1 (UE-based positioning with UE-side model, direct AI/ML or AI/ML assisted positioning), the standard impact depends on the information the UE chooses to request from or report to the network.
Proposal 21	For Case 2a (UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning): Define ML model output which is to be carried by LPP from UE to LMF. No specification impact is expected when the model output is fully aligned with existing measurement report.
Proposal 22	For Case 2a (UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning): Define LMF-initiated procedure for AI/ML model selection, activation, deactivation, switching, and fallback operation.
Proposal 23	For Case 2a (UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning): The UE can fallback to existing non-AI/ML mechanisms for reporting measurement results (e.g., LoS/NLOS indicator, RSTD).
Proposal 24	For Case 2a (UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning): Model monitoring metric is calculated by LMF. The model monitoring decisions are sent from LMF to UE via an enhanced LPP signaling.
Proposal 25	For Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): The existing measurement reporting from UE to LMF need to be enhanced to support model inference due to potentially new information type (e.g., CIR) and/or a larger size of measurement report (e.g., 256 time domain samples).
Proposal 26	For Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): Define ML model input which is to be carried by LPP from UE to LMF. The extent of specification impact depends on the type and size of measurement results that are required as the model input.
Proposal 27	For Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): AI/ML model registration, selection, activation, deactivation, switching, and fallback operation are left for implementation. No specification impact is expected.
Proposal 28	For Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): Model monitoring is left for implementation. No specification impact is expected.
Proposal 29	For Case 2b (UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning): The same standard impact is expected to support data collection for model training and model inference, if the LMF is also the training data collection entity. Otherwise (i.e., LMF is not the training data collection entity), it’s up to RAN2/RAN3 to discuss the standard impact to support training data collection.
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