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[bookmark: _Toc118718111]Introduction
This contribution concerns Agenda Item 9.1.4.1, Evaluation on AI/ML for positioning accuracy enhancements. A summary of relevant past agreements for the agenda item can be found in the Appendix.
The paper outline is as follows:
· Section 2: Views on general issues are provided, including AI/ML model generalizability, and naming the multi-TRP construction at network side as Case 3c.
· Section 3:  Evaluation results and analysis are provided when the model input is CIR and supervised learning is assumed. Four AI/ML methods are studied, with three variants of AI/ML assisted approach and the direct AI/ML approach.
· Section 4: The focus here is the methodology and evaluation results of semi-supervised learning, when only a small fraction of the training dataset is provided with ground truth labels.
· Section 5 concludes the paper with a list of observations and proposals. 

[bookmark: _Toc118718112]General Aspects

In RAN1#109e, the following key performance indicators (KPIs) were agreed:
· Use case KPI: CDF percentiles of horizonal positioning accuracy (reporting of vertical positioning accuracy is optional)
· AI/ML model computational complexity KPI: the number of floating-point operations (FLOPs) required for model inference.
· AI/ML model complexity: the number of model parameters.
Quantifying the ability of AI/ML models to generalize to different propagation environments, scenarios, and system configurations, provides valuable learnings for AI/ML lifecycle management (LCM) solutions and is necessary to justify future normative work. In RAN1#110 and RAN1#110bis, it further was agreed to study generalization aspects [12] with respect to: 
(a) different drops, 
(b) clutter parameters, 
(c) network synchronization error, 
(d) UE/gNB RX and TX timing error, and
(e) InF scenarios. 
This paper summarizes the results of an extensive AI/ML model generalization campaign that addressed points (a)-(d). The evaluations covered both NW-side AI/ML assisted positioning and direct AI/ML positioning.
We believe that the following issues need to be further studied by RAN1, and appropriate solutions to these issues need to be found before AI/ML-based positioning solutions can be standardized.
· AI/ML assisted positioning: The evaluations demonstrate that the AI/ML positioning model can be robust for (a) different drops and (b) clutter parameters. Regarding (c), LoS classification accuracy generated by the model is robust to the network synchronization error. For ToA estimation, while the model can detect reference signal arrival time at the receiver with high accuracy, the model cannot differentiate the timing variation caused by radio propagation or caused by network synchronization error. When such ToA values are fed to the legacy positioning method (e.g., UL-TDOA), the positioning accuracy degrades. Thus the legacy positioning methods need to account for the network synchronization error to better utilize the information (LoS classification, ToA) provided by the AI/ML model. Regarding (d), UE timing error, LoS classification is unaffected and UE positioning performance of conventional UL-TDOA positioning solutions at the centralized node is robust to UE timing errors.
·  Direct AI/ML positioning: AI/ML models may not be robust under (a), (b), and (c); therefore, AI/ML model generalization issues need to be considered up front. Our study indicates that model performance can be improved by site-specific model fine-tuning or re-training.

Based on the discussion above, the following is proposed:

[bookmark: _Toc118706475]For AI/ML assisted methods that support timing-based positioning, the conventional positioning method accounts for the network synchronization error to fully benefit from the improved ToA measurements provided by AI/ML.
[bookmark: _Toc118706476]For direct AI/ML positioning method, protocols are defined to support site-specific model fine-tuning or re-training.

In RAN1 #110b-e, an agreement on different cases of AI/ML based positioning accuracy enhancement was reached:
Agreement
· Study and provide inputs on benefit(s) and potential specification impact at least for the following cases of AI/ML based positioning accuracy enhancement
· Case 1: UE-based positioning with UE-side model, direct AI/ML or AI/ML assisted positioning
· Case 2a: UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning
· Case 2b: UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning
· Case 3a: NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning
· Case 3b: NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning

In our view, Case 3c should be added to the list above, which includes any NG-RAN assisted setup where the AI/ML model is located at a centralized node, and provide the conventional positioning determination algorithm at LMF with intermediary measurements as generated by AI/ML. 
· Case 3c: NG-RAN node assisted positioning with a centralized model, AI/ML assisted positioning
It is noted that Case 3c corresponds to the multi-TRP construction agreed in agenda item 9.2.4.1 when the AI/ML model resides at a centralized node on the network side:
	Agreement (RAN1#110bis)
For AI/ML-assisted positioning, companies report which construction is applied in their evaluation:
1. Single-TRP construction: the input of the ML model is the channel measurement between the target UE and a single TRP, and the output of the ML model is for the same pair of UE and TRP. 
1. Multi-TRP construction: the input of the ML model contains N sets of channel measurements between the target UE and N (N>1) TRPs, and the output of the ML model contains N sets of values, one for each of the N TRPs.



[bookmark: _Toc118706477]For AI/ML based positioning accuracy enhancement, also study the benefit(s) and potential specification impact of Case 3c: NG-RAN node assisted positioning with a centralized model, AI/ML assisted positioning.

One issue left over from RAN1#110bis is, there are two FFS on model complexity for single-TRP construction, see below.
	
	Model complexity to support N TRPs

	Single-TRP, same model for N TRPs
	
When the model is at UE-side, where 
 is the model complexity for the same model.
FFS: if the model is at network-side

	Single-TRP, N models for N TRPs
	When the model is at UE-side,

Where  is the model complexity for the i-th AI/ML model.
FFS: if the model is at network-side


The main concern to have FFS for network-side model is, N models are deployed to N TRPs. For instance, it was argued that  should be used instead of  for “single-TRP, same model for N TRPs”, since a same model has to be duplicated N times to N TRPs. In our view, this argument is not justified. Duplicating one model N times is very different from having N different models. Assuming the same model structure, N different models (i.e., different model coefficients) should be N times the complexity of a single model even when it is duplicated N times.
Another perspective is to consider duplicating a model  times to distribute it to  UEs in a cell. If duplicating a model causes the model complexity to increase proportionally, then UE-side model deployment need to use model complexity calculation of . However, this is not done for UE side model. Thus duplicating a model on the network side does not cause the model complexity to increase either.

[bookmark: _Toc118706478]For single-TRP, the same model complexity calculation applies to UE-side model as well as network-side model. Remove “When the model is at UE-side,” and “FFS: if the model is at network-side” in the agreement of RAN1#110bis.

[bookmark: _Ref117777763][bookmark: _Toc118718113]Evaluation results and discussion for AI/ML models using estimated channel impulse responses as input
We present evaluation results for a few selected cases in this section. The intention of all evaluated use cases is to improve network-based positioning using AI/ML models for the InF-DH deployment scenario. 
[bookmark: _Toc118718114]Overview of positioning solutions for the NG-RAN
In a radio environment, such as the InF-DH {40%, 2m, 2m} environment, there exists enough number of LoS links from a UE to the 18 TRPs. ML models can be used to identify LoS links and estimate the observable first path ToA. As illustrated in Figure 1, the observable first path ToA, , is the delay of the first path in the received channel impulse responses (CIRs). These observable first path ToA estimates for the identified LoS links can be used by conventional triangulation-based positioning algorithms to determine UE positions accurately.
[image: ] [image: ]
 (a) LoS example  (taps)	    (b) NLoS example  (taps)
[bookmark: _Ref117777689]Figure 1: Example magnitudes of LoS and NLoS channel impulse responses.
However, in a highly NLoS environment such as the InF-DH {60%, 6m, 2m} environment, it is not possible to rely only on LoS links to perform UE localization. As illustrated in Figure 2, in a NLoS environment, the observable first path ToA, , does not correctly reflect the true distance between the UE and TRP. Using these observable first path ToAs in a conventional positioning algorithm will lead to inaccurate UE position estimates.
[image: ]
[bookmark: _Ref117777702]Figure 2: Illustration of observable first path and unobservable direct path between a pair of TX and RX nodes.
Instead, as illustrated in Figure 2, estimates of the unobserved direct path ToAs, , which is defined as the time needed for the radio wave to travel across the 3D distance between the TX and RX ignoring all blockers (if any) in between,

should be supplied to conventional positioning algorithms. An example is provided in Figure 1 (b). The observable first path ToA, , can be estimated accurately from the received CIR using either conventional signal processing algorithms or ML modes, which in this case is at tap 79.4. On the other hand, the unobserved direct path ToAs, , calculated from the relative distance is in fact 30.2 taps.
After describing the datasets in Section 3.3, we investigate four different ML assisted or ML based positioning solutions for the NG-RAN:
· In Section 3.4, we consider deploying an identical ML model to different TRPs to estimate the observable first path ToA, , independently for an environment with enough LoS links such as the InF-DH {40%, 2m, 2m} environment. UE positions are obtained with conventional positioning algorithms.
· This is a Case 3a scenario (NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning), with single-TRP construction and same model for N TRPs.
· In Section 3.5, we consider distributed ML models at different TRPs to estimate the unobserved direct path ToAs, , at individual TRPs independently for a highly NLoS environment such as the InF-DH {60%, 6m, 2m} environment. UE positions are obtained with conventional positioning algorithms.
· This is a Case 3a scenario (NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning), with single-TRP construction and different models for N TRPs.
· In Section 3.6, we consider a centralized ML model to jointly estimate all 18 unobserved direct path ToAs, , from the CIRs collected from all TRPs for a highly NLoS environment such as the InF-DH {60%, 6m, 2m} environment. UE positions are obtained with conventional positioning algorithms.
· This is a Case 3c scenario (NG-RAN node assisted positioning with a centralized model, AI/ML assisted positioning), with multi-TRP construction.
· In Section 3.7, we consider a centralized ML model to directly generate UE positions from the CIRs collected from all TRPs for a highly NLoS environment such as the InF-DH {60%, 6m, 2m} environment. UE positions are generated by the ML models directly.
· This is a Case 3b scenario (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning)
An overview of the considered positioning architectures for the NG-RAN is provided in Figure 3 below.

	[image: ]
	[image: ]

	(a) Section 3.4: AI/ML assisted positioning, single-TRP with same model for N TRPs. Model output = {LoS, } estimation.
	(b) Section 3.5: AI/ML assisted positioning, single-TRP with N different models for N TRPs, where N=18. Model output =  estimation


	[image: ]
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	(c) Section 3.6: AI/ML assisted positioning, multi-TRP construction for N=18 TRPs. Model output = a vector of 18  estimations
	(d) Section 3.7: direct UE positioning. Model output = UE horizontal coordinates



[bookmark: _Ref117778114]Figure 3: Overview of the considered positioning architectures for the NG-RAN.
1.1 [bookmark: _Toc118718115]Key take-aways of different NR-RAN positioning approaches
The NR-RAN positioning approaches we investigated in this section can be classified in two different ways:
· Three AI/ML assisted positioning approaches and one direct AI/ML positioning approach.
· Two distributed AI/ML computation and two centralized AI/ML computation approaches.
[bookmark: _Toc118718116]High-performance Case 3c: NG-RAN node assisted positioning with a centralized model, AI/ML assisted positioning
We found all four positioning approaches can achieve accurate UE positioning when the AI/ML models are operating in the environments similar to that used for model training. 
· In Section 3.4, we demonstrate Case 3a AI/ML assisted approach can achieve 90%title 2D UE positioning error below 0.1 m in an environment with enough LoS links such as the InF-DH {40%, 2m, 2m} environment.
· In Section 3.5, we demonstrate Case 3a AI/ML assisted approach can achieve 90%title 2D UE positioning error of 0.74 m in a highly NLoS environment such as the InF-DH {60%, 6m, 2m} environment.
· In Section 3.7, we demonstrate Case 3b centralized AI/ML direct positioning approach can achieve 90%title 2D UE positioning error of 0.53 m in a highly NLoS environment such as the InF-DH {60%, 6m, 2m} environment.
· In Section 3.6, we demonstrate Case 3c centralized AI/ML assisted approach can achieve 90%title 2D UE positioning error of 0.31 m in a highly NLoS environment such as the InF-DH {60%, 6m, 2m} environment. We show this Case 3c approach can in fact achieve much better UE positioning accuracy with same or lower complexity than the Case 3b approach.
· In Section 3.5.3, we further demonstrate the Case 3c approach is robust to operating SNR mismatch.

[bookmark: _Toc118706426]Centralized AI/ML assisted positioning approach (Case 3c) can achieve much better UE positioning accuracy with same or lower complexity than the Case 3b centralized direct positioning approach. Case 3c is also robust to operating SNR mismatch while Case 3b is not.

[bookmark: _Toc118718117]Robustness of distributed AI/ML assisted approaches (Case 3a) with respect to operating SNR mismatch
We further investigate the impact of lower operating SNR on the different positioning approaches. Our evaluation results are summarized in Figure 4. 
· We plot the computational complexity of different models along the x-axis and the 90%tile 2D positioning error in the y-axis. 
· Different models for the same scenario cases are connected by solid lines.
· Different operating SNR points of the same model are connected by dashed lines.
[image: ]
[bookmark: _Ref118454737]Figure 4: Comparison of model performance, computational complexity and sensitivity to operating SNR mismatch.
We can observe that
· The two distributed AI/ML assisted approaches (Case 3a in Section 3.4 and Section 3.5) are robust to operating SNR reduction of up to 20 dB. Both approaches retain the same high positioning accuracy even when the operating SNR is 20 dB lower than the training set SNR.
· Since estimating the unobserved direct path delay is itself a form of fingerprinting, the impressive robustness of the models in Section 3.5 may be attributable to the distributed fingerprinting nature.
· However, the two centralized AI/ML approaches (Case 3b in Section 3.7 and Case 3c in Section 3.6) exhibit sensitivity to mismatch between operating SNR and the training set SNR. As shown in the figure, with a 20 dB operating SNR reduction, the 90%tile 2D positioning errors can double or triple, particularly for smaller models.

[bookmark: _Toc118706427]Distributed ML models that estimate ToAs independently at different TRPs achieve more robustness against operating SNR mismatch from that assumed during model training than centralized ML models. The centralized ML models either jointly estimate ToAs (AI/ML assisted appraoch) or generate UE position directly (direct AI/ML approach) are more sensitive to operating SNR mismatch.
[bookmark: _Toc118706479]Investigate the impact of operating SNRs on the performance of each AI/ML approaches/constructions in the study item.

[bookmark: _Toc118718118]Intrinsic model monitoring capability of AI/ML assisted approaches (Case 3a, 3c)
The four different AI/ML positioning approaches also exhibit different sensitivity to environmental changes.
· We found the models estimating observable first path delays for the LoS links (Section 3.4) to be insensitive to different random seeds for UE location, 3GPP spatial model, and propagation seeds. In fact, the quality of observable first path delays for the LoS links remain accurate even when the models are deployed to completely different InF environments. These models behave almost like conventional signal processing algorithms in terms of their robustness to various environmental changes.
· Although, for environments without enough LoS links, accurate UE positioning cannot be obtained using the outputs from this type of model, since the conventional positioning methods need to have at least 3 LoS links to produce accurate position estimation.
· The models estimating unobservable direct path delays for all links (Section 3.5 and Section 3.6) and the models estimating the UE positions directly (Section 3.7) are rather sensitive to different random seeds for UE location, 3GPP spatial model, and propagation seeds. This is because these models are in essence performing fingerprinting either locally (Section 3.5) or globally (Section 3.6 and Section 3.7). When the operating environment changes, mitigation solutions are needed.
Since the fingerprinting type AI/ML models are sensitive to operating environment changes, it is necessary to monitor the model performance over time and ensure the models are operating within performance requirements. 
For the AI/ML direct positioning approach Case 3b in Section 3.7, model performance monitoring may require periodically obtaining additional new test samples with both the required model inputs and the correct UE positions.
However, the AI/ML assisted approach for Case 3a in Section 3.4 and Section 3.5 and Case 3c in Section 3.6 can be monitored without collecting new test samples. For these AI/ML assisted approaches, the LMF takes the estimated time of arrivals into conventional triangulation-based error minimization framework to search and determine the UE position. It can be expected that the minimization outcome will have smaller residual losses when the AI/ML models are operating in the correct environment and are generating correct time of arrivals than when the models are applied to an environment different than the one used to train the models. In Figure 5, we provide the residual losses from conventional triangulation-based error minimization positioning algorithms. The AI/ML models for supplying the ToAs are trained with a dataset for the {60%, 6m, 2m} parameter.
· When the trained model is operating in the same environment of {60%, 6m, 2m}, the residual losses shown in blue line are below 0.77 with a probability of 99%.
· When the trained model is operating in the substantially different environment of {40%, 2m, 2m} where the model performs badly, the residual losses shown in orange line are above 0.77 with a probability of 99%.
· When the trained model is operating in a moderately different environment of {40%, 6m, 2m}, where the test environment has drifted from the training set environment, but the model is still performing well, the distribution of the residual losses shown in green remain quite similar to those for the {60%, 6m, 2m} environment (blue line).
From this analysis, it can be concluded that the residual losses from the conventional positioning algorithms can be used as a reliable metric to detect model/environment mismatch. For the example shown here, one could determine a threshold for flagging model refinement/re-training, for example, threshold =1 considering both blue and green curves. If the positioning residual losses are above this threshold, there is a high chance that the environment has drifted too far from the training environment and the model will need to be replaced or adjusted.
[image: Chart, line chart
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[bookmark: _Ref118473973]Figure 5: Residual losses from conventional triangulation-based error minimization positioning algorithms. The ML model is trained in the {60%, 6m, 2m} environment and tested in three environments: {60%, 6m, 2m}, {40%, 6m, 2m} and {40%, 2m, 2m}.

In AI 9.2.1, the following agreements were made on model monitoring:
	Agreement
Study at least the following metrics/methods for AI/ML model monitoring in lifecycle management per use case:
0. Monitoring based on inference accuracy, including metrics related to intermediate KPIs
0. Monitoring based on system performance, including metrics related to system peformance KPIs
0. Other monitoring solutions, at least following 2 options.
2. Monitoring based on data distribution
0. Input-based: e.g., Monitoring the validity of the AI/ML input, e.g., out-of-distribution detection, drift detection of input data, or something simple like checking SNR, delay spread, etc.
0. Output-based: e.g., drift detection of output data
2. Monitoring based on applicable condition
Note: Model monitoring metric calculation may be done at NW or UE
Agreement
Study performance monitoring approaches, considering the following model monitoring KPIs as general guidance
· Accuracy and relevance (i.e., how well does the given monitoring metric/methods reflect the model and system performance)
· Overhead (e.g., signaling overhead associated with model monitoring)
· Complexity (e.g., computation and memory cost for model monitoring)
· Latency (i.e., timeliness of monitoring result, from model failure to action, given the purpose of model monitoring)
· FFS: Power consumption
· Other KPIs are not precluded.
Note: Relevant KPIs may vary across different model monitoring approaches.
FFS: Discussion of KPIs for other LCM procedures



Based on the investigation above, residual losses conventional positioning methods is accurate, without signaling overhead. The complexity, latency, and power consumption are negligible since the computation is already part of the conventional method. While the evaluations results are for network-side deployment (i.e., Case 3a, 3c), we expect the same principle applies to UE-side deployment, i.e., Case 1 with AI/ML assisted, Case 2a. 
Thus we have the following observations on the model monitoring KPIs for AI/ML assisted positioning approaches. 
[bookmark: _Toc118706428]For AI/ML assisted positioning approaches (e.g., Case 3a and Case 3c), model monitoring metrics can be accurately and reliably provided by the conventional positioning methods (e.g., residual loss). This is an important advantage of AI/ML assisted positioning approaches over the direct AI/ML positioning approach (e.g., Case 3b).
[bookmark: _Toc118706429]For AI/ML assisted positioning approaches, model monitoring leveraging conventional positioning method incurs negligible cost in terms of: signaling overhead, complexity, latency, and power consumption.


[bookmark: _Toc118706480]Evaluate the performance of model monitoring metrics for both AI/ML assisted approach and direct AI/ML approach. 
[bookmark: _Toc118706481]For their proposed model monitoring metrics, the proponent company report model monitoring KPIs including: accuracy, signaling overhead, complexity (computation and memory cost for model monitoring), and latency.
[bookmark: _Toc118706482]Capture in TR 38.843 that: For AI/ML assisted positioning, model monitoring metrics can be reliably provided by the conventional positioning methods.

[bookmark: _Toc118718119]Other considerations
Based on our evaluations of the four constructions in Figure 3 and the analysis above, all four AI/ML methods are valuable for improving positioning accuracy. While the evaluation in this contribution focused on NG-RAN assisted/LMF-based positioning (Case 3a, 3b, 3c), the same methodologies can be applied to other Cases as well. Specific to AI/ML assisted approach, the three types of constructions discussed in RAN1#110bis should have evaluation results captured in the TR.
[bookmark: _Toc118706483]For AI/ML assisted positioning, evaluation results for all three types of constructions are captured in TR 38.843: (a) single-TRP with same model for N TRPs; (b) single-TRP with N different models for N TRPs; (c) Multi-TRP.

For Case 2a and Case 3a, the node (UE or gNB) that performs AI/ML inference is different from the node (LMF) that receives the model output and determines the UE position. Thus, the AI/ML model output needs to be sent over a standardized interface (LPP for Case 2a, NRPPa for Case 3a), and there is a need to specify the AI/ML model output so that it can be transported by the interface.
· Case 2a: UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning
· Case 3a: NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning
Based on evaluation results in section 3.4-3.6, both types of ML model output work well for AI/ML assisted positioning: (a) a single type of output (e.g., LOS/NLOS indicator or ToA); (b) composite type of output (e.g., both LOS/NLOS indicator and ToA). Thus both should be supported as model output.

For Case 2b and 3b, the node (UE or gNB) that provides the model input is different from the node (LMF) that receives the input, performs model inference, and determines the UE position. Thus, the AI/ML model input needs to be sent over a standardized interface (LPP for Case 2b, NRPPa for Case 3b), and there is a need to specify the AI/ML model input so that it can be transported by the interface.
· Case 2b: UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning
· Case 3b: NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning

Accordingly, we have the following proposals:
[bookmark: _Toc118706484]At least for Case 2a and 3a, define ML model output which are to be carried by the standardized interfaces for model inference. Companies provide evaluation results for the defined ML model output.
[bookmark: _Toc118706485]At least for Case 2b and 3b, define ML model input which are to be carried by the standardized interfaces for model inference. Companies provide evaluation results for the defined ML model input.
[bookmark: _Toc118706486]For Case 2a and 3a, support both types of ML model output: (a) a single type of output (e.g., LOS/NLOS indicator or ToA); (b) composite type of output (e.g., both LOS/NLOS indicator and ToA).


[bookmark: _Ref117263196][bookmark: _Toc118718120]Description of datasets and performance of conventional positioning solutions
We assume all TRPs measure a UE SRS, with  and  spanning a 100 MHz BWP with a carrier frequency of 3.5 GHz. The LoS and NLoS path losses for InF-DH are given by [TR 38.901]:

· The max and min 3D distances between a UE and a BS in the InF scenario are 121 and 6.5 m, respectively. The corresponding max and min path losses are hence 90.1 and 59.7 dB, respectively, before considering shadowing.
· With 23 dBm UE power (the agreed maximum UE TX power, see Table 6-1 of TR 38.857), the range of received powers at a TRP is -67.1 to -36.7 dBm before considering shadowing and fast fading. 
· For a 100 MHz carrier, the thermal noise floor is -89 dBm (assuming NF=5 dB). Hence, the SNR before considering shadowing and fast fading is between 21.9 and 52.3 dB.
· For UE transmit power at 13 or 3 dBm, the corresponding SNRs are reduced by 10 and 20 dB, respectively.
Each TRP is equipped with a (M, N, P, Mg, Ng) = (1, 1, 2, 1, 1) antenna. Our study indicates that for the small hall with 18 TRPs, this gNB antenna array is adequate for UE positioning. Note: The array size is smaller than the agreed ((M, N, P, Mg, Ng) = (4, 4, 2, 1, 1)). The smaller antenna array reduces the size of input to AI/ML model to 1/16, allowing for a lower complexity AI/ML solution (including model training, inference, monitoring, and update).
· For the FR1 scenario with carrier frequency of 3.5 GHz, the received signals are sampled at  MHz. A sampling tap is hence 8.14 ns or equivalently 2.44 m at speed of light.
· The received signals are correlated with the SRS sequence to obtain raw estimates of the frequency domain channel responses. No further filtering is performed.
· The collated frequency responses are converted to the time domain channel impulses using 4096 FFT and only a window of 256 consecutive samples is retained. The input to each AI/ML model is, therefore, a
· NTRP × Nport × Nt =1×2×256  complex array in Section 3.4 and Section 3.5, and a 
· NTRP × Nport × Nt =18×2×256 complex array in Section 3.6 and Section 3.7.
Other than the parameters explicitly described above, we follow the agreed simulation assumptions for FR1 and use the baseline assumptions wherever applicable (e.g., UE antenna height = 1.5 m, gNB antenna height = 8 m).
Note: For FR1 scenario with a carrier frequency of 3.5 GHz, different environment clutter settings of the InF-DH deployment scenario have very different LoS probabilities as tabulated in Table 1.
[bookmark: _Ref110581322]Table 1 LoS probabilities of different InF-DH environment settings.
	Environment clutter setting
	LoS Probability

	{40%, 2m, 2m}
	0.449

	{50%, 2m, 2m}
	0.352

	{60%, 2m, 2m}
	0.268

	{40%, 6m, 2m}
	0.014

	{50%, 6m, 2m}
	0.025

	[bookmark: _Hlk117081197]{60%, 6m, 2m}
	0.008



To enable the AI/ML experiments in this paper, we generated the following datasets.
· Datasets 1a, 1b, 1c, 1d, 1e, 1f with respective clutter parameters {40%, 2m, 2m}, {50%, 2m, 2m}, {60%, 2m, 2m}, {40%, 6m, 2m}, {50%, 6m, 2m}, and {60%, 6m, 2m}. Each one of these datasets is comprised of two disjoint parts:
· Train sub-dataset: This part contains 96,000 randomly selected UE positions and the corresponding CIRs to all 18 TRPs, and it is used for training and validation. We typically use a train/validate split ratio of 9/1.
· Test sub-dataset: This part contains 4,000 randomly selected UE positions and the corresponding CIRs to all 18 TRPs. This part is not used for training/validation – it is used only for final test evaluation.
· Datasets 2a, 2b, 2c, 2d, 2e, 2f with respective clutter parameters of {40%, 2m, 2m}, {50%, 2m, 2m}, {60%, 2m, 2m}, {40%, 6m, 2m}, {50%, 6m, 2m}, and {60%, 6m, 2m}.
· These datasets each contains 4,000 randomly selected UE positions and the corresponding CIRs to all 18 TRPs. 
· These datasets are never used for training/validation -- they are only used for final test evaluation.
· These datasets are generated using different random number generator seeds (w.r.t. Datasets 1x above) for UE location, spatial correlation maps, and channel models. Dataset 2a, 2b, 2c 2d, 2e, 2f can be understood as test datasets with different UE locations, clutter layout, and clutter parameters to Dataset 1x. The purpose of these datasets is to evaluate the generalizability of the ML models.
In Figure 6 (a) and Figure 6 (c), we compare the excess delays of NLoS links to BS#0 (with 2D coordinate [-50, -20] with respect to the center of InF hall) in the first and the second datasets, respectively. Similarly, in Figure 6 (b) and Figure 6 (d), we compare the excess delays of NLoS links to BS#10 (with 2D coordinate [10, 0] with respect to the center of InF hall) in the first and the second datasets, respectively. It can be observed that the two test datasets contain very different propagation and spatial conditions. Here the small hall (L=120m x W=60m) is assumed, and the center of the hall is assigned coordinate [0, 0].
[image: ][image: ]
(a) to BS#0 in the 1st dataset					(b) to BS#10 in the 1st dataset
[image: ][image: ]
(c) to BS#0 in the 2nd dataset					(d) to BS#10 in the 2nd dataset
[bookmark: _Ref110513736]Figure 6 Excess delays to BS#0 or BS#10 in the first test dataset or the second test dataset (‘jet’ color map is shown: darker blue points have smaller excess delays than lighter yellow/red points).
[bookmark: _Toc118718121]Performance of conventional positioning solutions
Given the LoS probabilities for dataset 2a, 2b, 2c, 2d with clutter parameters of {40%, 2m, 2m}, {50%, 2m, 2m}, {60%, 2m, 2m}, and {60%, 6m, 2m} shown in Table 1, a dummy LoS classifier can achieve an accuracy of . Examining the CDF of the received powers for the LoS and NLoS links, one can devise a baseline LoS classification solution by comparing the received power to a threshold. Using such a baseline classification algorithm, a LoS classification accuracy of around 70% can be achieved for the first three datasets and around 90% for the last test dataset. Applying comparison of the powers of the detected first tap against others, the LoS classification accuracy can be further improved for the first three test datasets. The accuracy results for these LoS classification baselines are provided in Table 2.
[bookmark: _Ref114820293]Table 2 LoS classification accuracy baselines.
	Dataset
	Dummy classifier
	RX power only classifier
	Tap power comparison

	{40%, 2m, 2m}
	0.551
	0.702
	0.809

	{50%, 2m, 2m}
	0.648
	0.717
	0.787

	{60%, 2m, 2m}
	0.732
	0.733
	0.767

	{60%, 6m, 2m}
	0.992
	0.916
	0.703



The positioning error distribution of the conventional solution is shown in Figure 7. It can be observed that the positioning errors of 50% UEs are no more than 0.13 m. However, the conventional solution sometimes delivers positions that may be very off. For instance, at 90%tile, the positioning error is 9.595 m. The UE positioning errors for other agreed reporting percentiles are listed in Table 3. The results in Figure 7 and Table 3 are the baseline performance for the evaluation, which are generated by using legacy methods to produce input (LoS classification and ToA) for UL-TDOA.
[bookmark: _Ref114819624]Table 3 Baseline results for comparison. UE positioning errors obtained using conventional non-ML solutions to produce input (LoS classification and ToA) for UL-TDOA.
	CDF Percentile
	UE horizontal position error [m]

	
	{40%, 2m, 2m}
	{50%, 2m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	0.131
	2.855
	5.643
	6.175

	67
	1.783
	5.646
	7.650
	8.432

	80
	4.814
	9.254
	10.668
	11.315

	90
	9.595
	16.775
	17.541
	15.849



[image: ]
[bookmark: _Ref114834045]Figure 7 Baseline results for comparison. Positioning error distributions using conventional non-ML solutions
[bookmark: _Ref111145012][bookmark: _Ref118290377][bookmark: _Ref118303614][bookmark: _Toc118718122]Case 3a: AI/ML assisted positioning using distributed LoS classification and observable first path time of arrival estimation (Single-TRP, Same Model for N TRPs)
In this section, we investigate the performance of deploying an identical AI/ML model to all 18 TRPs in the InF-DH deployment scenario. The TRPs use the AI/ML model to estimate the following quantities from UL SRS:
· Classification of whether the link is a LoS or NLoS link.
· Estimated observable first path time of arrival (ToA) of the signal from the UE to the TRP.
Each TRP processes the received CIR samples independently and forwards the AI/ML model outputs (LoS/NLoS classification and ToA estimate) to a centralized positioning node (e.g., the LMF), see Figure 8.
The LoS/NLoS classifications and ToA estimates collected at the centralized node are used to determine the UE position. In this section, we assume legacy positioning algorithms are retained at the centralized node such that we can isolate and investigate the gains of TRP AI/ML models alone.

[image: ]
[bookmark: _Ref110505552]Figure 8 AI/ML assisted positioning where UL CIR based LoS classification and TOA estimation using AI/ML is deployed to all TRPs. During deployment, each TRP uses a same ML model and process the received CIR samples independently and forward its outputs to the centralized node for estimating the position of the target UE.
[bookmark: _Ref117262620][bookmark: _Toc118718123]TRP ML model architectures
TRP model architecture I
For this initial investigation, we deploy a simple ML model to all the TRPs. The first three layers are complex 1D convolutions (“complex conv1D”) with 4, 8 and 16 channels and kernel size of 3. Each complex conv1D layer is followed by a cReLU activation function [8] 

and a MaxAbsPool1D layer of kernel size 2 and stride size 2 that returns the complex values with maximum absolute values in the patch. After these convolutional layers, the channels are flattened and fed into three fully connected layers of output size of 64, 32 and 1, respectively. The first and second fully connected layers are followed by a cReLU activation function. The last fully connected layer is followed by a ReLU on the imaginary part only:

The model has 35,447 complex parameters and takes 404,655 FLOPs to perform model inference. As usual, the number of parameters is dominated by the fully connected layers and the computational complexity is dominated by the convolutional layers.
The real part of the single output from the network is used as the logit for LoS classification and the imaginary part is used as the ToA estimate. The ML model is trained with a loss function that weights between the binary cross entropy of classification and the mean absolute deviation (MAD) of the LoS link ToA estimates:

·  is a batch of  ground truth LoS labels.
· t is a batch of ground truth ToA values.
·  is the complex network outputs for the batch.
·  computes the binary cross entropy between the label and the logit.
·  is a tunable weight on the relative contributions of the binary cross-entropy and the MSE of the LoS links.
·  is a tunable scaling factor for the ToA estimates.
Network parameters are updated by the Adam algorithm with default parameters and a cosine learning rate schedule with warm-up that varies between 2E-3 to 5E-6 over 300 training epochs.

[image: ]
Figure 9 Architecture I of the ML model used for AI/ML assisted positioning.

Overall, the main features of the first ML model are summarized in Table 4 below.
[bookmark: _Ref115425304]Table 4 Key features of the ML model I for LoS classification and time of arrival estimation.
	ML model input
	Time domain CIR, obtained from SRS estimation, 1x2x256  complex array

	ML model output
	(1). LoS/NLoS classification
(2). ToA estimate 

	Model complexity:
	Model size
	6 layers: 3 Conv1D layers, 3 Dense layers

	
	Number of parameters in the ML model
	35,447 complex parameters

	Computation complexity for model inference: number of FLOPs per model
	404,655 FLOPs

	Number of ML models obtained from training
	One (same ML model deployed at each TRP)

	Number of ML models deployed for inference
	18 (One ML model per TRP)

	Function for position estimation of the target UE
	Legacy method: UTDOA



TRP model architecture II
To increase the perceptive field of the ML model, a second model architecture for the TRP is constructed similar to the first model architecture with the only changes being that two convolutional layers, instead of one, are performed before each MaxAbsPool1D. This is illustrated in Figure 10. The activation functions, loss function and training parameters are kept the same as those for the first model architecture. The model has 36,513 complex parameters and takes 944,387 FLOPs to perform model inference.

[image: ]
[bookmark: _Ref115425534]Figure 10 Architecture II of the ML model used for AI/ML assisted positioning.
Overall, the main features of the second ML model are summarized in Table 5 below.
[bookmark: _Ref115425554]Table 5 Key features of the ML model II for LoS classification and time of arrival estimation.
	ML model input
	Time domain CIR, obtained from SRS estimation, 1x2x256  complex array

	ML model output
	(1). LoS/NLoS classification
(2). ToA estimate 

	Model complexity:
	Model size
	9 layers: 6 Conv1D layers, 3 Dense layers

	
	Number of parameters in the ML model
	36,512 complex parameters

	Computation complexity for model inference: number of FLOPs per model
	944,387 FLOPs

	Number of ML models obtained from training
	One.
The same ML model is deployed at each TRP

	Number of ML models deployed for inference
	18
One ML model per TRP

	Function for position estimation of the target UE
	Legacy method: UTDOA



[bookmark: _Toc118718124]ML model LoS classification and ToA estimation performance
We train the two models on the train dataset and tested on test dataset 1 with clutter parameters of {40%, 2m, 2m}. For LoS classification, the two trained models achieve similar accuracy with Model I at 95.7% and Model II at 95.9%. Both classification accuracy results outperform the baseline accuracy results shown in Table 2 using conventional algorithms by a large margin.
Inspecting further into the confusion matrices of the LoS classification results from the two models shown in Table 6, it can be observed that Model I and Model II have similar false positive and false negative probabilities as well. As discussed in [9], reducing the false positive probabilities is beneficial to the positioning accuracy produced by conventional triangulation positioning algorithms.
[bookmark: _Ref114819644]Table 6 Confusion matrices and accuracy of the LoS classification results from the two models on test dataset 1.
	Ground truth
	Model I prediction
	
	Ground truth
	Model II prediction

	
	LoS
	NLoS
	
	
	LoS
	NLoS

	LoS
	0.948
	0.052
	
	LoS
	0.949
	0.051

	NLoS
	0.036
	0.964
	
	NLoS
	0.032
	0.968

	Overall accuracy: 0.957
	
	Overall accuracy: 0.959



For the LoS links, the ML models achieve ToA RMSE of around 0.15 m. Since the model is not trained to minimize NLoS ToA errors, the ToA RMSE for all links is around 3 – 4 m. The CDFs of the ToA estimation errors generated by the two trained models are provided in Figure 11 and Table 7. Comparing the ToA estimation errors at different percentile points, it can be observed that the ToA estimation errors of Model II are generally about half of those generated by Model I.
[bookmark: _Ref110524683]Table 7 ToA estimation errors for test dataset 1 at different percentiles.
	CDF Percentile
	Model I ToA errors [m]
	
	CDF Percentile
	Model II ToA errors [m]

	
	LoS links
	NLoS links
	
	
	LoS links
	NLoS links

	50
	0.029
	0.186
	
	50
	0.016
	0.095

	67
	0.050
	0.631
	
	67
	0.029
	0.320

	80
	0.085
	1.445
	
	80
	0.049
	0.836

	90
	0.164
	3.137
	
	90
	0.091
	2.574



[image: ][image: ]
(a) Model I								(b) Model II
[bookmark: _Ref110521416]Figure 11 ML model ToA estimation error (expressed in meters) distributions for the LoS and all links from the test dataset 1.

Based on the LoS classification and ToA estimation evaluation results presented in this section, we can make the following observation:
[bookmark: _Toc118706430]A single simple AI/ML model can be deployed to all TRPs to generate reliable LoS classification and ToA estimates in the InF-DH environment with {40%, 2m, 2m} clutter parameters.

The LoS classifications and ToA estimates generated by the independent TRPs are collected to a centralized node (e.g., LMF). If there are at least three reported LoS links, the centralized node retains only those reported as LoS links. The retained ToA estimates are then fed into a triangularization error minimizer to determine the UE position. Otherwise, the triangularization error minimization is performed based on all 18 ToA estimates with more weights given to those associated with reported LoS status.
Since the centralized node trusts the LoS reports from the TRPs completely, positioning performance can be compromised if there are false positives in these reports. While the model achieves very good LoS classification accuracy at the per-link level, the probability of having false positives in any of the 18 LoS/ToA reports to the centralized node can still be problematic for conventional triangulation algorithms. As discussed in [9], two possible solutions can be adopted:
· One can bias the LoS logit decision boundary to reduce false positive probabilities. With such biasing, one can reduce the probability of having false positives in any of the 18 LoS/ToA reports for a UE to an acceptable level.
· One can adopt a triangulation loss function, such as the L1 loss function (i.e., sum of absolute values of errors), that is more robust to outliers caused by such LoS false positive reports.
In the following, we present positioning results based on using a robust L1 loss function in the conventional triangularization error minimizer. The distributions of UE positioning error are shown in Figure 12 and Table 8. Model I achieves a 90 percentile 2D positioning error of 11.3 cm and Model II achieves an even lower 90 percentile 2D positioning error of 6.3 cm. Positioning using the LoS classification and ToA estimates from both models are thus substantially more accurate than achievable using the LoS classification and ToA estimates generated by conventional baseline algorithms.
[bookmark: _Ref114834227]Table 8 UE 2D positioning errors for test dataset 1 at different percentiles using conventional positioning algorithms.
	CDF Percentile
	With Model I inputs [m]
	With Model II inputs [m]
	With conventional algorithm inputs [m]

	50
	0.034
	0.020
	0.131

	67
	0.049
	0.028
	1.783

	80
	0.070
	0.040
	4.814

	90
	0.109
	0.062
	9.595
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(a) Model I								(b) Model II
[bookmark: _Ref110607477]Figure 12 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on test dataset 1.

Based on the LoS classification, ToA estimation and UE positioning evaluation results presented in this section, we can make the following observation:
[bookmark: _Toc118706431]Reliable positioning performance can be achieved by deploying an identical simple AI/ML model to operate independently at different TRPs in the InF-DH environment with {40%, 2m, 2m} clutter parameters. Simple conventional UL-TDOA positioning solutions at the centralized node can be retained to process the reports generated by the TRPs.
[bookmark: _Toc118706432]AI/ML-assisted positioning can substantially improve the UE positioning accuracy for the difficult cases where existing methods tend to fail.

[bookmark: _Ref117776317][bookmark: _Toc118718125]Sensitivity of ML models to UE transmit powers
The models presented in the above are trained with a 23 dBm UE transmit power assumption. In this section, we investigate the performance sensitivity of the trained models to test data generated with different UE transmit power. More specifically, we test the models for 13 or 3 dBm UE transmit power assumptions, representing 10 or 20 dB lower operating SNRs than assumed during model training.
The confusion matrices and accuracy of the LoS classification results for Model I and II are provided in Table 9 and Table 10, respectively. The LoS ToA estimation errors for Model I and II are provided in Table 11and Table 12, respectively. We observed that, for these trained targets, both models are robust with respect to the change of operating SNRs. The ToA errors considering all links are provided Table 13 and Table 14, respectively. Though some degradation of the model performance can be observed here, NLoS link ToA estimates are not normally used in the subsequent positioning algorithms.

[bookmark: _Ref117764405]Table 9 Confusion matrices and accuracy of the LoS classification results from Model I tested with different UE powers.
	
	23 dBm UE power
	13 dBm UE power
	3 dBm UE power

	True positive
	0.948
	0.948
	0.947

	False negative
	0.052
	0.052
	0.053

	False positive
	0.036
	0.036
	0.035

	True negative
	0.964
	0.964
	0.965

	Accuracy
	0.957
	0.957
	0.957



[bookmark: _Ref117764408]Table 10 Confusion matrices and accuracy of the LoS classification results from Model II tested with different UE powers.
	
	23 dBm UE power
	13 dBm UE power
	3 dBm UE power

	True positive
	0.949
	0.949
	0.947

	False negative
	0.051
	0.051
	0.053

	False positive
	0.032
	0.032
	0.031

	True negative
	0.968
	0.968
	0.969

	Accuracy
	0.959
	0.959
	0.959



[bookmark: _Ref117764476]Table 11 LoS link ToA estimation error results from Model I tested with different UE powers
	CDF Percentile
	23 dBm UE power
	13 dBm UE power
	3 dBm UE power

	50
	0.029
	0.029
	0.031

	67
	0.050
	0.050
	0.054

	80
	0.085
	0.086
	0.091

	90
	0.164
	0.165
	0.176



[bookmark: _Ref117764479]Table 12 LoS link ToA estimation error results from Model II tested with different UE powers.
	CDF Percentile
	23 dBm UE power
	13 dBm UE power
	3 dBm UE power

	50
	0.016
	0.017
	0.019

	67
	0.029
	0.029
	0.033

	80
	0.049
	0.050
	0.054

	90
	0.091
	0.092
	0.098



[bookmark: _Ref117764596]Table 13 All link ToA estimation error results from Model I tested with different UE powers.
	CDF Percentile
	23 dBm UE power
	13 dBm UE power
	3 dBm UE power

	50
	0.186
	0.186
	0.203

	67
	0.631
	0.634
	0.714

	80
	1.445
	1.458
	1.668

	90
	3.137
	3.154
	3.749



[bookmark: _Ref117764598]Table 14 All link ToA estimation error results from Model II tested with different UE powers.
	CDF Percentile
	23 dBm UE power
	13 dBm UE power
	3 dBm UE power

	50
	0.095
	0.096
	0.106

	67
	0.320
	0.323
	0.380

	80
	0.836
	0.845
	1.075

	90
	2.574
	2.611
	4.043



Using the LoS classification and observable first path ToA estimates generated by the models for different UE transmit power assumptions as inputs, we summarize the 2D positioning performance of Model I and II in Table 15 and Table 16, respectively. Since the two models are robust to 20 dB operating SNR reduction as discussed in the above, we observed here the 2D positioning performance are also robust to such operating SNR reduction.

[bookmark: _Ref117771309]Table 15 2D positioning errors for test dataset {40%, 2m, 2m} from Model I tested with different UE powers.
	CDF Percentile
	23 dBm UE power
	13 dBm UE power
	3 dBm UE power

	50
	0.034
	0.035
	0.036

	67
	0.049
	0.049
	0.052

	80
	0.070
	0.071
	0.075

	90
	0.109
	0.109
	0.117



[bookmark: _Ref117771311]Table 16 2D positioning errors for test dataset {40%, 2m, 2m} from Model II tested with different UE powers.
	CDF Percentile
	23 dBm UE power
	13 dBm UE power
	3 dBm UE power

	50
	0.020
	0.020
	0.023

	67
	0.028
	0.028
	0.032

	80
	0.040
	0.041
	0.046

	90
	0.062
	0.062
	0.072



Based on the LoS classification, ToA estimation and UE positioning evaluation results presented in this section, we can make the following observation:
[bookmark: _Toc118706433]Robust LoS classification, ToA estimation, and positioning performance can be achieved by deploying an identical simple AI/ML model to operate independently at different TRPs in the InF-DH environment with {40%, 2m, 2m} clutter parameters even when the operating SNR is 20 dB lower than that used for training the ML models.
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(a) Model I								(b) Model II
Figure 13 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on test dataset {40%, 2m, 2m} with 13 dBm UE power.
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(a) Model I								(b) Model II
Figure 14 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on test dataset {40%, 2m, 2m} with 3 dBm UE power.
[bookmark: _Toc118718126]Sensitivity of ML models to spatial seeds and environmental parameters changes
In this section, we investigate and analyze the performance of the ML models trained in an InF-DH scenario with {40%, 2m, 2m} environment parameters in a wide range of different degrees of environmental changes.
· We first test the trained models using test dataset 2a, which has the same {40%, 2m, 2m} environment parameters but the realizations are generated with different random seeds for UE location, 3GPP spatial model, and propagation seeds than the first dataset. This is to test whether the trained models can generalize to different environmental arrangements with the same average characteristics.
· We then test the trained models using test dataset 2b, 2c and 2d, which are generated using different environment parameters of {50%, 2m, 2m}, {60%, 2m, 2m} and {60%, 6m, 2m}, respectively. This is to test whether the trained models can generalize to different environments with different arrangements as well as different average characteristics.
Trained models tested on the same clutter parameter but different spatial and propagation seeds
We first test the trained models using test dataset 2a, which has the same {40%, 2m, 2m} environment parameters but the realizations are generated with different random seeds for UE location, 3GPP spatial model, and propagation seeds than the first dataset. For LoS classification, both models obtain slightly better accuracy at 95.9% and 96.0% than achieved in the first test dataset. The confusion matrices of the LoS classification results from the two models are shown in Table 17 and can be found to be generally the same as those tested with the first test dataset. It can be concluded the trained models perform the same regardless of whether the radio link realizations are generated with same or different random seeds.
[bookmark: _Ref114824322]Table 17 Confusion matrices and accuracy of the LoS classification results from the two models tested with test dataset 2a.
	Ground truth
	Model I prediction
	
	Ground truth
	Model II prediction

	
	LoS
	NLoS
	
	
	LoS
	NLoS

	LoS
	0.952
	0.048
	
	LoS
	0.952
	0.048

	NLoS
	0.035
	0.965
	
	NLoS
	0.034
	0.966

	Overall accuracy: 0.959
	
	Overall accuracy: 0.960



The CDFs of the ToA estimation errors generated by the two trained models are provided in Figure 15 and Table 18. Comparing the ToA estimation errors at different percentile points, it can be observed that the ToA estimation errors of Model II are generally less than half of those generated by Model I. Furthermore, the CDF results of the trained models tested with test dataset 2a can be found to be generally the same as those tested with the first test dataset. It can be concluded the trained models perform the same regardless of whether the radio link realizations are generated with same or different random seeds.
[bookmark: _Ref114824778]Table 18 ToA estimation errors for test dataset 2a at different percentiles.
	CDF Percentile
	Model I ToA errors [m]
	
	CDF Percentile
	Model II ToA errors [m]

	
	LoS links
	NLoS links
	
	
	LoS links
	NLoS links

	50
	0.026
	0.187
	
	50
	0.015
	0.098

	67
	0.044
	0.655
	
	67
	0.026
	0.338

	80
	0.076
	1.488
	
	80
	0.044
	0.884

	90
	0.145
	3.161
	
	90
	0.082
	2.666
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(a) Model I								(b) Model II
[bookmark: _Ref114824795]Figure 15 ML model ToA estimation error (expressed in meters) distributions for the LoS and all links from the test dataset 2a.

In the following, we present positioning results based on using a robust L1 loss function in the conventional triangularization error minimizer. The distributions of UE positioning error are shown in Figure 16 and Table 19. Both models achieve slightly better positioning accuracy results with this test dataset 2a than with the first test dataset. Model I achieves a 90 percentile 2D positioning error of 10.6 cm and Model II achieves an even lower 90 percentile 2D positioning error of 6.2 cm. It can be concluded the outputs generated by the trained models perform the same regardless of whether the radio link realizations are generated with same or different random seeds.
[bookmark: _Ref114834681]Table 19 UE 2D positioning errors for test dataset 2a {40%, 2m, 2m} at different percentiles using conventional positioning algorithms.
	CDF Percentile
	With Model I inputs [m]
	With Model II inputs [m]
	With conventional algorithm inputs [m]

	50
	0.031
	0.018
	0.131

	67
	0.043
	0.026
	1.783

	80
	0.062
	0.037
	4.814

	90
	0.100
	0.061
	9.595
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(a) Model I								(b) Model II
[bookmark: _Ref114834668]Figure 16 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on test dataset 2a {40%, 2m, 2m}.

Based on the LoS classification, ToA estimation evaluation and UE positioning results presented in this section, we can make the following observation:
[bookmark: _Toc118706434]A single simple AI/ML model deployed to all TRPs for LoS classification and ToA estimation can generalize to different InF-DH {40%, 2m, 2m} environment realizations. Reliable positioning performance is achieved irrespective of environment change.

Trained models tested on different clutter parameters
We test the trained models using test dataset 2b, 2c and 2d, which are generated using different environment parameters of {50%, 2m, 2m}, {60%, 2m, 2m} and {60%, 6m, 2m}, respectively. This is to test whether the trained models can generalize to different environments with different arrangements as well as different average characteristics.
The LoS classification test results are provided in Table 20 and Table 21 for Model I and Model II, respectively. It can be observed that:
· The model maintains consistent classification accuracy across all four environmental test setup parameters.
· False positive probabilities are around 3.6% across all environments with 2m height clutters. The probability increases slightly to around 4.7% in the highly NLoS environment of {60%, 6m, 2m}.
· False negative probabilities are around 4.7% for {40%, 2m, 2m} and {50%, 2m, 2m}, but drop to around 3.9% for {60%, 2m, 2m}. The probabilities further decrease to 0.5% in the highly NLoS environment of {60%, 6m, 2m}.

[bookmark: _Toc118706435]For models trained with one InF-DH environment parameters and applied to a different environment, LoS classification false negative probability gradually improves while false positive probability degrades slightly as environment parameters deviate more and more from those used for training. As a result, LoS classification accuracy performance of the models is largely unaffected by the environment parameters.

[bookmark: _Ref114838588]Table 20 Confusion matrices and accuracy of the LoS classification results from Model I tested with test dataset 2a, 2b, 2c and 2d.
	
	{40%, 2m, 2m}
	{50%, 2m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	True positive
	0.952
	0.953
	0.961
	0.995

	False negative
	0.048
	0.047
	0.039
	0.005

	False positive
	0.035
	0.036
	0.038
	0.048

	True negative
	0.965
	0.964
	0.962
	0.952

	Accuracy
	0.959
	0.960
	0.962
	0.952



[bookmark: _Ref114839597]Table 21 Confusion matrices and accuracy of the LoS classification results from Model II tested with test dataset 2a, 2b, 2c and 2d.
	
	{40%, 2m, 2m}
	{50%, 2m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	True positive
	0.952
	0.954
	0.962
	0.995

	False negative
	0.048
	0.046
	0.038
	0.005

	False positive
	0.034
	0.033
	0.035
	0.046

	True negative
	0.966
	0.967
	0.965
	0.936

	Accuracy
	0.960
	0.962
	0.964
	0.954



The ToA estimation performance of Model I is provided in Table 22 and Table 24 for LoS links and all links, respectively. The ToA estimation performance of Model II is provided in Table 23 and Table 25 for LoS links and all links, respectively. It can be observed that:
· The ToA estimation accuracy for LoS links is maintained at similar levels across all four environmental test setup parameters. The 90 percentile ToA estimation errors increase only slightly as the environmental parameters deviate more from those applied in the training set.
· The ToA estimation accuracy for all links shows more variations as the environmental parameters deviate more from those applied in the training set. For instance, the 90 percentile ToA errors increase by 13%, 23%, and 50% as the environmental parameters change to {50%, 2m, 2m}, {60%, 2m, 2m} and {60%, 6m, 2m}, respectively.
Since the model is trained to achieve good ToA estimation accuracy for LoS links rather than for all links, it can be concluded the trained models provide consistent LoS link ToA estimation across all four environmental test setup parameters.

[bookmark: _Toc118706436]For models trained with one InF-DH environment parameters and applied to a different environment, ToA estimation quality for the LoS links degrades gradually and only slightly as environment parameters deviate more and more from those used for training. For the NLoS links, ToA estimation quality also degrades gradually as environment parameters deviate more and more from those used for training.

[bookmark: _Ref114838866]Table 22 LoS link ToA estimation error results from Model I tested with test dataset 2a, 2b, 2c and 2d.
	CDF Percentile
	{40%, 2m, 2m}
	{50%, 2m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	0.026
	0.028
	0.027
	0.026

	67
	0.044
	0.048
	0.046
	0.048

	80
	0.076
	0.082
	0.078
	0.088

	90
	0.145
	0.159
	0.152
	0.178



[bookmark: _Ref114839863]Table 23 LoS link ToA estimation error results from Model II tested with test dataset 2a, 2b, 2c and 2d.
	CDF Percentile
	{40%, 2m, 2m}
	{50%, 2m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	0.015
	0.016
	0.016
	0.016

	67
	0.026
	0.028
	0.027
	0.029

	80
	0.044
	0.049
	0.048
	0.052

	90
	0.082
	0.090
	0.087
	0.097



[bookmark: _Ref114838872]Table 24 All link ToA estimation error results from Model I tested with test dataset 2a, 2b, 2c and 2d.
	CDF Percentile
	{40%, 2m, 2m}
	{50%, 2m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	0.187
	0.309
	0.433
	0.776

	67
	0.655
	0.843
	1.016
	1.451

	80
	1.488
	1.748
	1.979
	2.503

	90
	3.161
	3.566
	3.901
	4.729



[bookmark: _Ref114839871]Table 25 All link ToA estimation error results from Model II tested with test dataset 2a, 2b, 2c and 2d.
	CDF Percentile
	{40%, 2m, 2m}
	{50%, 2m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	0.098
	0.154
	0.213
	0.403

	67
	0.338
	0.442
	0.542
	0.820

	80
	0.884
	1.052
	1.228
	1.660

	90
	2.666
	3.204
	3.654
	4.850



Based on the LoS classification and ToA estimation evaluation presented in this section, we can make the following observation:
[bookmark: _Toc118706437]A single simple AI/ML model trained in the InF-DH {40%, 2m, 2m} environment can generalize to different InF-DH environment clutter parameters.

Positioning performance of using AI/ML generated inputs with conventional UL-TDOA positioning solutions
Using the ML model trained in the InF-DH {40%, 2m, 2m} environment to generate LoS classification and ToA estimates in the InF-DH {50%, 2m, 2m} environment, conventional UL-TDOA positioning algorithms at the centralized node can generate reliable UE positions with at least 90%tile probabilities. The positioning error distributions are provided in Figure 17 and Table 26. It can be concluded:

[bookmark: _Toc118706438]Reliable positioning performance can be achieved by deploying an identical simple AI/ML model trained in the InF-DH {40%, 2m, 2m} environment to operate independently at different TRPs in the InF-DH {50%, 2m, 2m} environment and conventional UL-TDOA positioning algorithms at the centralized node. The positioning accuracy using ML model inputs is substantially better than that achieved using conventional baseline solutions.
[bookmark: _Ref115440030]Table 26 UE 2D positioning errors for test dataset 2b {50%, 2m, 2m} at different percentiles using conventional positioning algorithms.
	CDF Percentile
	With Model I inputs
	With Model II inputs
	With conventional algorithm inputs

	50
	0.042
	0.025
	2.855

	67
	0.065
	0.038
	5.646

	80
	0.110
	0.064
	9.254

	90
	0.264
	0.150
	16.775



[image: ][image: ]
(a) Model I								(b) Model II
[bookmark: _Ref115440004]Figure 17 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on test dataset 2b {50%, 2m, 2m}.

Given the lower LoS probability, a UE in the InF-DH {60%, 2m, 2m} environment has lower probabilities of seeing at least three LoS links to the TRPs in the factory. Using the ML model trained in the InF-DH {40%, 2m, 2m} environment to generate LoS classification and ToA estimates in the InF-DH {60%, 2m, 2m} environment, conventional UL-TDOA positioning algorithms at the centralized node can generate reliable UE positions with at least 67% probabilities. UE positioning accuracy at higher percentile points degrades because of reduced probabilities of seeing at least three LoS links to the TRPs in the factory. The positioning error distributions are provided in Figure 18 and Table 27. It can be concluded:
[bookmark: _Toc118706439]Good positioning performance can be achieved by deploying an identical simple AI/ML model trained in the InF-DH {40%, 2m, 2m} environment to operate independently at different TRPs in the InF-DH {60%, 2m, 2m} environment and with conventional UL-TDOA positioning algorithms at the centralized node. The positioning accuracy using ML model inputs is substantially better than that achieved using conventional baseline solutions.
[bookmark: _Ref114842103]Table 27 UE 2D positioning errors for test dataset 2c {60%, 2m, 2m} at different percentiles using conventional positioning algorithms.
	CDF Percentile
	With Model I inputs
	With Model II inputs
	With conventional algorithm inputs

	50
	0.060
	0.036
	5.643

	67
	0.126
	0.072
	7.650

	80
	0.679
	0.262
	10.668

	90
	5.340
	4.732
	17.541
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(a) Model I								(b) Model II
[bookmark: _Ref114842088]Figure 18 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on test dataset 2c {60%, 2m, 2m}.

In the highly NLoS InF-DH {60%, 6m, 2m} environment, a UE does not have any chance of seeing at least three LoS links to the TRPs in the factory. Even with high-quality LoS classification and ToA estimates produced by the ML models, conventional UL-TDOA positioning algorithms still cannot achieve adequate UE positioning accuracy. The positioning error distributions are provided in Figure 19 and Table 28. It can be concluded:
[bookmark: _Toc118706440]Good positioning performance is not achieved by conventional UL-TDOA positioning algorithms in the highly NLoS InF-DH {60%, 6m, 2m} environment even with high-quality LoS classification and ToA estimates produced by the ML models. 
[bookmark: _Ref114841675]Table 28 UE 2D positioning errors for test dataset 2d {60%, 6m, 2m} at different percentiles using /conventional positioning algorithms.
	CDF Percentile
	With Model I inputs
	With Model II inputs
	With conventional algorithm inputs

	50
	6.200
	6.073
	6.175

	67
	8.264
	8.261
	8.432

	80
	10.388
	10.342
	11.315

	90
	13.476
	13.528
	15.849
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(a) Model I								(b) Model II
[bookmark: _Ref114841687]Figure 19 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on test dataset 2d {60%, 6m, 2m}.
[bookmark: _Toc118718127]Sensitivity of ML models to UE timing errors
[bookmark: _Hlk116481426]In this section, we investigate and analyze the performance of the ML models against UE timing errors. Note that in the agreed evaluation assumptions (see also Table 6-1 of TR 38.857), STD of UE timing error is denoted as =Y (ns), and the truncated Gaussian distribution have range [, ], where =2*=2*Y (ns). For network synchronization errors, the STD is denoted as =X (ns).
· We first test Model II trained without network synchronization errors against test dataset 2a with random UE timing errors at various STD values (Y (ns)).
· We next test Model II trained with STD = 25 ns (X (ns)) network synchronization errors against test dataset 2a with random UE timing errors at various STD values.
· We also test Model II trained with STD = 50 ns (X (ns)) network synchronization errors against test dataset 2a with random UE timing errors at various STD values (Y (ns)).
The ToA estimation quality is evaluated with respect to the individual TRP’s point of view. For example, if the correct first tap position is tap #5.13 without TRP synchronization error and the TRP has a synchronization error of  taps, the correct first tap position from the TRP’s point of view is tap #10.78, which is what the TRP expects the ML model estimation of ToA to produce.
Performance of model II trained without network synchronization errors
We first test Model II trained without network synchronization errors against test dataset 2a with random UE timing errors at various STD values. As agreed in the previous RAN1 meeting, the random UE timing errors are generated according to a truncated Gaussian distribution with a (pre-truncation) STD (aka, ) and truncation at ±2*STD (aka,  ). 
The confusion matrices of the LoS classification results are provided in Table 29. It can be observed that the trained model maintains similar accuracy performance as with no timing error for UE timing errors up to at least 20 ns. The model accuracy degrades marginally from around 96% down to 94% when the timing error reaches 50 ns. 
In terms of false negative and false positive probabilities, similar to the LoS classification results, the model appears to maintain similar performance as with no timing error for UE timing errors up to at least 20 ns. For timing error 50 ns, false negative and false positive probabilities degrade from around 5% down to 7.5%, and around 3.5% down to 4.5%, respectively.

[bookmark: _Toc118706441]For a model trained without network synchronization errors, LoS classification KPIs are largely unaffected by the UE timing errors.

[bookmark: _Ref116481794]Table 29 Confusion matrices and accuracy of the LoS classification results from Model II tested with various UE timing STD values (Y ns).
	STD 
(aka, )
	0 ns
	2 ns
	6 ns
	20 ns
	50 ns

	True positive
	0.951
	0.951
	0.951
	0.951
	0.925

	False negative
	0.049
	0.049
	0.049
	0.049
	0.075

	False positive
	0.035
	0.034
	0.034
	0.035
	0.045

	True negative
	0.965
	0.966
	0.966
	0.965
	0.955

	Accuracy
	0.959
	0.960
	0.960
	0.959
	0.942



The ToA estimation performance is provided in Table 30 and Table 31 for LoS links and all links, respectively. It can be observed that:
· The ToA estimation accuracy for LoS links degrades gradually as the UE timing error increases. The ToA estimation errors with UE timing error of STD = Y=50 ns is roughly three times those with no UE timing error.
· The ToA estimation accuracy for NLoS links exhibits similar patterns as for LoS links. However, for some CDF percentiles, the ToA estimation accuracy for NLoS links actually improves with the UE timing errors. However, with a large UE timing error such as STD = Y=50 ns, ToA estimation performance degrades particularly at high CDF percentiles.
Since the model is trained to achieve good ToA estimation accuracy for LoS links rather than for all links, it can be concluded the trained models provide stable LoS link ToA estimation across the UE timing errors.

[bookmark: _Toc118706442]For a model trained without network synchronization errors, the ToA estimation accuracy for LoS links degrades gradually but remains stable as UE timing errors increase.

[bookmark: _Ref116552645]Table 30 LoS link ToA estimation error results from Model II tested with various UE timing STD values (Y ns).
	CDF Percentile
	Y=0 ns
	Y=2 ns
	Y=6 ns
	Y=20 ns
	Y=50 ns

	50
	0.018
	0.026
	0.028
	0.029
	0.032

	67
	0.031
	0.041
	0.045
	0.047
	0.055

	80
	0.051
	0.064
	0.068
	0.073
	0.096

	90
	0.094
	0.103
	0.109
	0.129
	0.306



[bookmark: _Ref116552658]Table 31 All link ToA estimation error results from Model II tested with various UE timing STD values (Y ns).
	CDF Percentile
	Y=0 ns
	Y=2 ns
	Y=6 ns
	Y=20 ns
	Y=50 ns

	50
	0.112
	0.117
	0.120
	0.130
	0.160

	67
	0.396
	0.398
	0.405
	0.433
	0.525

	80
	1.018
	1.016
	1.017
	1.108
	1.428

	90
	3.091
	3.067
	3.102
	3.424
	7.618



Performance of model II trained with network synchronization errors of STD = 25 ns
We next test Model II trained with STD = 25 ns network synchronization errors against test dataset 2a with random UE timing errors at various STD values.
The confusion matrices of the LoS classification results are provided in 
Table 32. It can be observed that the trained model maintains similar accuracy performance as with no UE timing.  
 
[bookmark: _Toc118706443]For a model trained with network synchronization error STD = 25 ns, LoS classification performances are largely unaffected by the UE timing errors. 
[bookmark: _Ref116553554]
Table 32 Confusion matrices and accuracy of the LoS classification results from Model II trained with STD = X= 25 ns network synchronization errors and tested with various UE timing STD values (Y ns).
	STD 
(aka, )
	0 ns
	2 ns
	6 ns
	20 ns
	50 ns

	True positive
	0.951
	0.952
	0.952
	0.951
	0.950

	False negative
	0.049
	0.048
	0.048
	0.049
	0.050

	False positive
	0.036
	0.036
	0.036
	0.036
	0.043

	True negative
	0.964
	0.964
	0.964
	0.964
	0.957

	Accuracy
	0.958
	0.959
	0.959
	0.958
	0.954



The ToA estimation performance is provided in Table 33 and Table 34 for LoS links and all links, respectively. It can be observed that:
· The ToA estimation accuracy for LoS links is maintained across all tested UE timing errors.
· The ToA estimation accuracy for NLoS links exhibits more complicated patterns. For some CDF percentiles, the ToA estimation accuracy for NLoS links actually improves with the UE timing errors. However, with a large UE timing error such as STD = 50 ns, ToA estimation performance degrades particularly at high CDF percentiles. In fact, the losses of ToA estimation accuracy for NLoS links are substantially reduced when compared to a model trained without network synchronization error.

[bookmark: _Toc118706444]With the model trained with network synchronization error STD = 25 ns, ToA estimation quality across all UE timing errors are improved substantially. The ToA estimation quality for LoS links, in particular, stays at high accuracy levels regardless of the UE timing errors.

[bookmark: _Ref116553961]Table 33 LoS link ToA estimation error results from Model II trained with STD = 25 ns network synchronization errors and tested with various UE timing error STD values Y (ns).
	CDF Percentile
	Y=0 ns
	Y=2 ns
	Y=6 ns
	Y= 20 ns
	Y= 50 ns

	50
	0.019
	0.019
	0.019
	0.019
	0.020

	67
	0.031
	0.031
	0.031
	0.031
	0.034

	80
	0.051
	0.055
	0.050
	0.050
	0.059

	90
	0.090
	0.091
	0.091
	0.092
	0.111



[bookmark: _Ref116553979]Table 34 All link ToA estimation error results from Model II trained with STD = 25 ns network synchronization errors and tested with various UE timing error STD values Y (ns).
	CDF Percentile
	Y=0 ns
	Y=2 ns
	Y= 6 ns
	Y= 20 ns
	Y= 50 ns

	50
	0.110
	0.112
	0.111
	0.113
	0.124

	67
	0.398
	0.399
	0.394
	0.395
	0.430

	80
	0.924
	0.930
	0.925
	0.930
	1.006

	90
	2.091
	2.072
	2.072
	2.120
	2.453



Performance of model II trained with network synchronization errors of STD = 50 ns
We next test Model II trained with STD = 50 ns network synchronization errors against test dataset 2a with random UE timing errors at various STD values.
The confusion matrices of the LoS classification results are provided in Table 35. It can be observed that the trained model maintains similar accuracy performance as with no UE timing.  

[bookmark: _Toc118706445]For a model trained with network synchronization error STD = 50 ns, LoS classification performances are largely unaffected by the UE timing errors. 

[bookmark: _Ref116560436]Table 35 Confusion matrices and accuracy of the LoS classification results from Model II trained with STD = 50 ns network synchronization errors and tested with various UE timing STD values.
	STD 
(aka, )
	0 ns
	2 ns
	6 ns
	20 ns
	50 ns

	True positive
	0.947
	0.947
	0.947
	0.947
	0.946

	False negative
	0.053
	0.053
	0.053
	0.053
	0.054

	False positive
	0.035
	0.034
	0.034
	0.035
	0.037

	True negative
	0.965
	0.966
	0.966
	0.965
	0.963

	Accuracy
	0.957
	0.958
	0.958
	0.957
	0.956



The ToA estimation performance is provided in Table 36 and Table 37 for LoS links and all links, respectively. It can be observed that:
· The ToA estimation accuracy for LoS links is maintained across all tested UE timing errors.
· The ToA estimation accuracy for NLoS links degrades gradually as the network synchronization error increases.

[bookmark: _Toc118706446]With the model trained with network synchronization error STD = 50 ns, ToA estimation quality across all UE timing errors are improved substantially. The ToA estimation quality for LoS links, in particular, stays at high accuracy levels regardless of the UE timing errors.

[bookmark: _Ref116560563]Table 36 LoS link ToA estimation error results from Model II trained with STD = 50 ns network synchronization errors and tested with various UE timing STD values.
	CDF Percentile
	Y=0 ns
	Y=2 ns
	Y=6 ns
	Y=20 ns
	Y=50 ns

	50
	0.018
	0.018
	0.018
	0.018
	0.018

	67
	0.030
	0.029
	0.029
	0.029
	0.030

	80
	0.049
	0.049
	0.049
	0.049
	0.052

	90
	0.091
	0.090
	0.089
	0.090
	0.096



[bookmark: _Ref116560626]Table 37 All link ToA estimation error results from Model II trained with STD = 50 ns network synchronization errors and tested with various UE timing STD values.
	CDF Percentile
	Y=0 ns
	Y=2 ns
	Y=6 ns
	Y=20 ns
	Y=50 ns

	50
	0.109
	0.109
	0.110
	0.109
	0.114

	67
	0.374
	0.375
	0.375
	0.377
	0.388

	80
	0.913
	0.914
	0.918
	0.926
	0.965

	90
	2.226
	2.230
	2.240
	2.268
	2.419



Positioning performance of using AI/ML generated inputs with conventional UL-TDOA positioning solutions
While the LoS classification output from the ML model remains accurate and the ToA estimates are consistent with the individual TRP’s synchronization errors, positioning performance at the centralized node can be substantially degraded by the UE timing errors if it is not properly addressed in the positioning algorithm. Since a UE timing error affects the estimated observable first path ToAs for all 18 TRPs identically, the conventional positioning algorithms can consider this UE timing error as an additional free parameter (in addition to the UE coordinates) to optimize or search. Aided with such enhancement, conventional positioning algorithms can achieve high positioning accuracy even when there are large UE timing errors present in the estimated observable first path ToAs.
As shown in Table 38, UE timing errors dominate the UE positioning errors of conventional UL-TDOA algorithms in the ML model has been trained without network synchronization error. However, as shown in Table 39 and Table 40, the UE positioning errors of conventional UL-TDOA algorithms are less sensitive to the UE timing errors to up to at least 20 ns. Note that the 90 percentile position errors for the ML model trained with STD = 50 ns network synchronization errors is only 0.653 m for UE timing errors 50 ns.

[bookmark: _Toc118706447]UE positioning performance of conventional UL-TDOA positioning solutions at the centralized node is robust and shows below 1 m errors for different UE timing errors for the ML model trained with STD = 50 ns network synchronization errors.

[bookmark: _Ref116562338]Table 38 UE 2D positioning errors from Model II tested with various UE timing STD values.
	CDF Percentile
	Y=0 ns
	Y=2 ns
	Y=6 ns
	Y=20 ns
	Y=50 ns

	50
	0.022
	0.049
	0.052
	0.060
	0.079

	67
	0.031
	0.079
	0.084
	0.106
	0.222

	80
	0.045
	0.140
	0.148
	0.249
	2.607

	90
	0.072
	0.384
	0.445
	1.619
	9.827



[bookmark: _Ref116562364]Table 39 UE 2D positioning errors from Model II trained with STD = 25 ns network synchronization errors and tested with various UE timing STD values.
	CDF Percentile
	Y=0 ns
	Y=2 ns
	Y=6 ns
	Y=20 ns
	Y=50 ns

	50
	0.024
	0.036
	0.037
	0.037
	0.045

	67
	0.034
	0.060
	0.061
	0.063
	0.085

	80
	0.047
	0.114
	0.117
	0.120
	0.231

	90
	0.072
	0.357
	0.342
	0.402
	2.553



[bookmark: _Ref116563205]Table 40 UE 2D positioning errors from Model II trained with STD = 50 ns network synchronization errors and tested with various UE timing STD values.
	CDF Percentile
	Y=0 ns
	Y=2 ns
	Y=6 ns
	Y=20 ns
	Y=50 ns

	50
	0.021
	0.034
	0.033
	0.033
	0.038

	67
	0.030
	0.057
	0.057
	0.057
	0.066

	80
	0.042
	0.107
	0.101
	0.110
	0.132

	90
	0.067
	0.329
	0.300
	0.336
	0.653



[bookmark: _Toc118718128]Sensitivity of ML models to network synchronization errors
In this section, we investigate and analyze the performance of the ML models against network synchronization errors.
· We first test Model II trained without network synchronization errors against test dataset 2a with random network synchronization errors at various STD values (X ns).
· We next test Model II trained with STD =X = 25 ns network synchronization errors against test dataset 2a with random network synchronization errors at various STD values.
The ToA estimation quality is evaluated with respect to the individual TRP’s point of view. For example, if the correct first tap position is tap #5.13 without TRP synchronization error and the TRP has a synchronization error of  taps, the correct first tap position from the TRP’s point of view is tap #10.78, which is what the TRP expects the ML model estimation of ToA to produce.

Performance of model II trained without network synchronization errors
We first test Model II trained without network synchronization errors against test dataset 2a with random network synchronization errors at various STD values. As agreed in the previous RAN1 meeting, the random network synchronization errors are generated according to a truncated Gaussian distribution with a (pre-truncation) STD (aka, ) and truncation at ±2*STD (aka,  ). 
The confusion matrices of the LoS classification results are provided in Table 41. It can be observed that the trained model maintains similar accuracy performance as with no synchronization error for network synchronization errors up to at least 20 ns. The model accuracy degrades marginally from around 96% down to 94% when the synchronization error reaches 50 ns.
In terms of false negative probability, the model appears to degrade gradually as the network synchronization error increases. However, at the same time, the model manages to reduce the false positive rates as the network synchronization error increases. As a result, this complementary degradation and improvement in the two types of misclassifications, the model arrives at an accuracy performance that is largely unaffected by the network synchronization errors.

[bookmark: _Toc118706448]For a model trained without network synchronization errors, LoS classification false negative probability degrades gradually while false positive probability improves gradually as network synchronization error increases. As a result, LoS classification accuracy performance of a model trained without network synchronization errors is largely unaffected by the network synchronization errors.

[bookmark: _Ref115077373]Table 41 Confusion matrices and accuracy of the LoS classification results from Model II tested with various network synchronization STD values.
	STD 
(aka, =X)
	0 ns
	2 ns
	6 ns
	20 ns
	50 ns

	True positive
	0.952
	0.947
	0.943
	0.930
	0.877

	False negative
	0.048
	0.053
	0.057
	0.070
	0.123

	False positive
	0.035
	0.029
	0.027
	0.021
	0.012

	True negative
	0.965
	0.971
	0.973
	0.979
	0.988

	Accuracy
	0.959
	0.961
	0.960
	0.958
	0.939



The ToA estimation performance is provided in Table 42 and Table 43 for LoS links and all links, respectively. It can be observed that:
· The ToA estimation accuracy for LoS links degrades gradually as the network synchronization error increases. The ToA estimation errors with network synchronization error of 50 ns is roughly twice those with no network synchronization error.
· The ToA estimation accuracy for NLoS links exhibits more complicated patterns. For some CDF percentiles, the ToA estimation accuracy for NLoS links actually improves with the network synchronization errors. However, with a large network synchronization error such as STD = 50 ns, ToA estimation performance degrades particularly at high CDF percentiles.
Since the model is trained to achieve good ToA estimation accuracy for LoS links rather than for all links, it can be concluded the trained models provide stable LoS link ToA estimation across the network synchronization errors.

[bookmark: _Toc118706449]For a model trained without network synchronization errors, the ToA estimation accuracy for LoS links degrades gradually but remains stable as network synchronization errors increase.

[bookmark: _Ref115078980]Table 42 LoS link ToA estimation error results from Model II tested with various network synchronization STD values (X ns).
	CDF Percentile
	X=0 ns
	X=2 ns
	X=6 ns
	X=20 ns
	X=50 ns

	50
	0.015
	0.019
	0.021
	0.022
	0.027

	67
	0.026
	0.033
	0.037
	0.039
	0.047

	80
	0.044
	0.054
	0.058
	0.061
	0.078

	90
	0.082
	0.089
	0.093
	0.099
	0.161



[bookmark: _Ref115078990]Table 43 All link ToA estimation error results from Model II tested with various network synchronization STD values (X ns).
	CDF Percentile
	X=0 ns
	X=2 ns
	X=6 ns
	X=20 ns
	X=50 ns

	50
	0.187
	0.101
	0.106
	0.117
	0.199

	67
	0.655
	0.351
	0.370
	0.454
	1.181

	80
	1.488
	0.950
	1.022
	1.422
	14.249

	90
	3.161
	3.096
	3.767
	8.463
	46.067



Performance of model II trained with network synchronization errors of STD = 25 ns
We next test Model II trained with STD = 25 ns network synchronization errors against test dataset 2a with random network synchronization errors at various STD values.
The confusion matrices of the LoS classification results are provided in Table 44. It can be observed that the trained model maintains similar accuracy performance as with no synchronization error. In terms of false negative probability, the model appears to degrade gradually as the network synchronization error increases. However, at the same time, the model manages to reduce the false positive rates as the network synchronization error increases. As a result, this complementary degradation and improvement in the two types of misclassifications, the model arrives at an accuracy performance that is largely unaffected by the network synchronization errors.

[bookmark: _Toc118706450]For a model trained with network synchronization error STD = 25 ns, LoS classification false negative probability degrades gradually while false positive probability improves gradually as network synchronization error increases. As a result, LoS classification accuracy performance of a model trained without network synchronization errors is largely unaffected by the network synchronization errors.

[bookmark: _Ref115081551]Table 44 Confusion matrices and accuracy of the LoS classification results from Model II trained with STD = 25 ns network synchronization errors and tested with various network synchronization STD values.
	STD 
(aka, =X)
	0 ns
	2 ns
	6 ns
	20 ns
	50 ns

	True positive
	0.970
	0.967
	0.965
	0.955
	0.926

	False negative
	0.030
	0.033
	0.035
	0.045
	0.074

	False positive
	0.069
	0.063
	0.055
	0.042
	0.023

	True negative
	0.931
	0.937
	0.945
	0.958
	0.977

	Accuracy
	0.948
	0.950
	0.954
	0.956
	0.955



The ToA estimation performance is provided in Table 45 and Table 46 for LoS links and all links, respectively. It can be observed that:
· The ToA estimation accuracy for LoS links is maintained across all tested network synchronization errors.
· The ToA estimation accuracy for NLoS links is also maintained for network synchronization errors at least up to STD = 20 ns. For the latter case, the losses of ToA estimation accuracy for NLoS links are substantially reduced when compared to a model trained without network synchronization error.

[bookmark: _Toc118706451]With the model trained with network synchronization error STD = 25 ns, ToA estimation quality across all network synchronization errors are improved substantially. The ToA estimation quality for LoS links, in particular, stays at high accuracy levels regardless of the network synchronization errors.

[bookmark: _Ref115081740]Table 45 LoS link ToA estimation error results from Model II trained with STD = 25 ns network synchronization errors and tested with various network synchronization STD values  (X ns).
	CDF Percentile
	X=0 ns
	X=2 ns
	X=6 ns
	X=20 ns
	X=50 ns

	50
	0.023
	0.021
	0.020
	0.019
	0.020

	67
	0.040
	0.036
	0.034
	0.032
	0.034

	80
	0.074
	0.062
	0.058
	0.052
	0.058

	90
	0.157
	0.116
	0.103
	0.094
	0.107



[bookmark: _Ref115081746]Table 46 All link ToA estimation error results from Model II trained with STD = 25 ns network synchronization errors and tested with various network synchronization STD values.
	CDF Percentile
	X=0 ns
	X=2 ns
	X=6 ns
	X=20 ns
	X=50 ns

	50
	0.123
	0.112
	0.109
	0.110
	0.136

	67
	0.358
	0.332
	0.331
	0.355
	0.501

	80
	0.778
	0.726
	0.731
	0.803
	1.399

	90
	1.659
	1.531
	1.575
	1.861
	8.652



Positioning performance of using AI/ML generated inputs with conventional UL-TDOA positioning solutions
While the LoS classification output from the ML model remains accurate and the ToA estimates are consistent with the individual TRP’s synchronization errors, positioning performance at the centralized node is degraded by the TRP synchronization errors. As shown in Table 47 and Table 48, network synchronization errors dominate the UE positioning errors of conventional UL-TDOA algorithms. In general, the 90 percentile position errors are approximately 1.5·STD regardless of whether the ML models have been trained with or without network synchronization errors.

[bookmark: _Toc118706452]UE positioning performance of conventional UL-TDOA positioning solutions at the centralized node is degraded by network synchronization errors. The 90 percentile position errors are approximately 1.5 times the STD distribution parameter of the truncated Gaussian distribution.

[bookmark: _Ref115164529]Table 47 UE 2D positioning errors from Model II tested with various network synchronization STD values (X ns).
	CDF Percentile
	X=0 ns
	X=2 ns
	X=6 ns
	X=20 ns
	X=50 ns

	50
	0.018
	0.484
	1.473
	4.573
	10.741

	67
	0.026
	0.632
	1.913
	5.919
	13.826

	80
	0.037
	0.792
	2.364
	7.342
	17.577

	90
	0.062
	0.997
	2.926
	9.200
	22.149



[bookmark: _Ref115164534]Table 48 UE 2D positioning errors from Model II trained with STD = 25 ns network synchronization errors and tested with various network synchronization STD values.
	CDF Percentile
	X=0 ns
	X=2 ns
	X=6 ns
	X=20 ns
	X=50 ns

	50
	0.029
	0.506
	1.468
	4.510
	10.442

	67
	0.044
	0.657
	1.907
	5.852
	13.634

	80
	0.067
	0.834
	2.344
	7.315
	17.198

	90
	0.126
	1.096
	2.945
	9.100
	21.459



[bookmark: _Toc118718129]Summary tables of evaluation results
Table 49 Evaluation results for AI/ML model deployed on network-side, without model generalization investigation. No network synchronization error. Two architectures of the ML model: Model I (6 layers: 3 Conv1D layers, 3 Dense layers) and Model II (9 layers: 6 Conv1D layers, 3 Dense layers)
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
1x2x256  complex array

	(1). LoS/NLoS classification
(2). ToA estimate
	Ideal

	{40%, 2m, 2m}
	{40%, 2m, 2m}
	5400 UE drops
	4000 UE drops
	35,447  complex parameters
	7,283,790 FLOPs
	0.109	

	II
	
	
	
	
	
	
	
	36,512 complex parameters
	16,998,966 FLOPs
	0.062



Table 50. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {40%, 2m, 2m} and 23 dBm UE transmit power and tested with the same InF-DH clutter parameters and 13 dBm and 3 dBm UE transmit powers.  No network synchronization error. Two architectures of the ML model: Model I (6 layers: 3 Conv1D layers, 3 Dense layers) and Model II (9 layers: 6 Conv1D layers, 3 Dense layers)
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
1x2x256  complex array

	(1). LoS/NLoS classification
(2). ToA estimate
	Ideal

	{40%, 2m, 2m} 23dBm UE TX pow.
	{40%, 2m, 2m} 23dBm UE TX pow.
	5400 UE drops
	4000 UE drops
	35,447 complex parameters
	7,283,790 FLOPs
	0.109

	
	
	
	
	
	{40%, 2m, 2m} 13dBm UE TX pow.
	
	
	
	
	0.109

	
	
	
	
	
	{40%, 2m, 2m} 3dBm UE TX pow.
	
	
	
	
	0.117

	II
	
	
	
	
	{40%, 2m, 2m} 23dBm UE TX pow.
	
	
	36,512 complex parameters
	16,998,966 FLOPs
	0.062

	
	
	
	
	
	{40%, 2m, 2m} 13dBm UE TX pow.
	
	
	
	
	0.062

	
	
	
	
	
	{40%, 2m, 2m} 3dBm UE TX pow.
	
	
	
	
	0.072




Table 51. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {40%, 2m, 2m} and tested with various InF-DH clutter parameters and new drop.  No network synchronization error. Two architectures of the ML model: Model I (6 layers: 3 Conv1D layers, 3 Dense layers) and Model II (9 layers: 6 Conv1D layers, 3 Dense layers)
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
1x2x256  complex array

	(1). LoS/NLoS classification(2). ToA estimate
	Ideal

	{40%, 2m, 2m}
	{40%, 2m, 2m} new drop
	5400 UE drops
	4000 UE drops
	35,447 complex parameters
	7,283,790 FLOPs
	0.100	

	
	
	
	
	
	{50%,2m,2m}
	
	
	
	
	0.264	

	
	
	
	
	
	{60%, 2m, 2m}
	
	
	
	
	5.340	

	
	
	
	
	
	{60%, 6m, 2m}
	
	
	
	
	13.476	

	II
	
	
	
	
	{40%,2m,2m} new drop
	
	
	36,512 complex parameters
	16,998,966 FLOPs
	0.061

	
	
	
	
	
	{50%,2m,2m}
	
	
	
	
	0.150

	
	
	
	
	
	{60%, 2m, 2m}
	
	
	
	
	4.732

	
	
	
	
	
	{60%, 6m, 2m}
	
	
	
	
	13.528



Table 52. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {40%, 2m, 2m} with no network synchronization errors, and tested with InF-DH {40%, 2m, 2m} and a range of UE timing errors. Architecture II (9 layers: 6 Conv1D layers, 3 Dense layers).
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	II
	Time domain CIR, 
1x2x256  complex array

	(1). LoS/NLoS classification
(2). ToA estimate
	Ideal

	{40%, 2m, 2m}
	{40%,2m,2m}, T1=0ns
	5400 UE drops
	4000 UE drops
	36,512 complex parameter
	16,998,966 FLOPs
	0.072

	
	
	
	
	
	{40%,2m,2m}, T1=2ns
	
	
	
	
	0.384

	
	
	
	
	
	{40%,2m,2m}, T1=6ns
	
	
	
	
	0.445

	
	
	
	
	
	{40%,2m,2m}, T1=20ns
	
	
	
	
	1.619

	
	
	
	
	
	{40%,2m,2m}, T1=50ns
	
	
	
	
	9.827



Table 53. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {40%, 2m, 2m} with network synchronization error STD T1=25ns, and tested with InF-DH {40%, 2m, 2m} and a range of UE timing errors. Architecture II (9 layers: 6 Conv1D layers, 3 Dense layers).
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	II
	Time domain CIR, 
1x2x256  complex array

	(1). LoS/NLoS classification
(2). ToA estimate
	Ideal

	{40%, 2m, 2m}
	{40%,2m,2m}, T1=0ns
	5400 UE drops
	4000 UE drops
	36,512 complex parameters
	16,998,966 FLOPs
	0.072

	
	
	
	
	
	{40%,2m,2m}, T1=2ns
	
	
	
	
	0.357

	
	
	
	
	
	{40%,2m,2m}, T1=6ns
	
	
	
	
	0.342

	
	
	
	
	
	{40%,2m,2m}, T1=20ns
	
	
	
	
	0.402

	
	
	
	
	
	{40%,2m,2m}, T1=50ns
	
	
	
	
	2.553


Table 54. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {40%, 2m, 2m} with network synchronization error STD T1=50ns, and tested with InF-DH {40%, 2m, 2m} and a range of UE timing errors. Architecture II (9 layers: 6 Conv1D layers, 3 Dense layers).
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	II
	Time domain CIR, 
1x2x256  complex array

	(1). LoS/NLoS classification
(2). ToA estimate
	Ideal

	{40%, 2m, 2m}
	{40%,2m,2m}, T1=0ns
	5400 UE drops
	4000 UE drops
	36,512 complex parameters
	16,998,966 FLOPs
	0.067

	
	
	
	
	
	{40%,2m,2m}, T1=2ns
	
	
	
	
	0.329

	
	
	
	
	
	{40%,2m,2m}, T1=6ns
	
	
	
	
	0.3

	
	
	
	
	
	{40%,2m,2m}, T1=20ns
	
	
	
	
	0.336

	
	
	
	
	
	{40%,2m,2m}, T1=50ns
	
	
	
	
	0.653




Table 55. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {40%, 2m, 2m} with no network synchronization errors, and tested with InF-DH {40%, 2m, 2m} and a range of network synchronization errors. Architecture II (9 layers: 6 Conv1D layers, 3 Dense layers).
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	II
	Time domain CIR, 
1x2x256  complex array

	(1). LoS/NLoS classification
(2). ToA estimate
	Ideal

	{40%, 2m, 2m}
	{40%,2m,2m}, T1=0ns
	5400 UE drops
	4000 UE drops
	36,512 complex parameters
	16,998,966 FLOPs
	0.062

	
	
	
	
	
	{40%,2m,2m}, T1=2ns
	
	
	
	
	0.997

	
	
	
	
	
	{40%,2m,2m}, T1=6ns
	
	
	
	
	2.926

	
	
	
	
	
	{40%,2m,2m}, T1=20ns
	
	
	
	
	9.2

	
	
	
	
	
	{40%,2m,2m}, T1=50ns
	
	
	
	
	22.149



Table 56. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {40%, 2m, 2m} with network synchronization error STD T1=25ns, and tested with InF-DH {40%, 2m, 2m} and a range of network synchronization errors. Architecture II (9 layers: 6 Conv1D layers, 3 Dense layers).
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	II
	Time domain CIR, 
1x2x256  complex array

	(1). LoS/NLoS classification
(2). ToA estimate
	Ideal

	{40%, 2m, 2m}
	{40%,2m,2m}, T1=0ns
	5400 UE drops
	4000 UE drops
	36,512 complex parameters
	16,998,966 FLOPs
	0.126

	
	
	
	
	
	{40%,2m,2m}, T1=2ns
	
	
	
	
	1.096

	
	
	
	
	
	{40%,2m,2m}, T1=6ns
	
	
	
	
	2.945

	
	
	
	
	
	{40%,2m,2m}, T1=20ns
	
	
	
	
	9.1

	
	
	
	
	
	{40%,2m,2m}, T1=50ns
	
	
	
	
	21.459



[bookmark: _Ref116985781][bookmark: _Ref117762954][bookmark: _Ref118289628][bookmark: _Ref118289667][bookmark: _Ref118290385][bookmark: _Ref118291209][bookmark: _Toc118718130]Case 3a: AI/ML assisted positioning using distributed unobserved direct path ToA estimation (Single-TRP, N different models for N TRPs)
In this section, we consider distributed ML models at different TRPs to estimate the unobserved direct path ToAs, , at individual TRPs independently. An identical model architecture is adopted for all TRPs. However, each TRP is equipped with a different trained model using CIRs received at the given TRP only, resulting in 18 different models, each with a different set of parameter values.
[image: ]
Figure 20 AI/ML assisted positioning where UL CIR based unobserved direct path ToA estimation using AI/ML is deployed to all TRPs. During deployment, each TRP uses a different ML model and process the received CIR samples independently and forward its outputs to the centralized node for estimating the position of the target UE.
[bookmark: _Toc118718131]TRP ML model architectures
We consider a model architecture using the complex activation functions and complex convolutional and MaxAbsPooling modules described in Section 3.4.1. The model consists of 34 layers. A different model is trained for each of the TRP. Each of the models output one single complex value. 
· The real part is taken as the direct path ToA estimates for the TRP. 
Specific details of the model and computational complexity values of the model are summarized in the following table. For the baseline, the models are trained using {60%, 6m, 2m} train dataset, i.e. dataset 1f.

Table 57 Key features of the ML model for unobserved direct path time of arrival estimation.
	ML model input
	Time domain CIR, obtained from SRS estimation 1x2x256 complex array

	ML model output
	1 direct path ToA estimate

	Model complexity: 
	Per model size
	34 layers

	
	Number of parameters per ML model
	1,808,513 complex parameters 
(×18 for complexity reporting in section 3.5.7)

	Computation complexity for model inference: number of FLOPs per model
	128,685,404 FLOPs
(×18 for complexity reporting in section 3.5.7)

	Number of ML models obtained from training
	18 (One ML model per TRP)

	Number of ML models deployed for inference
	18 (One ML model per TRP)

	Function for position estimation of the target UE
	Legacy method: UTDOA



[bookmark: _Toc118718132]ML model direct path ToA estimation performance
For the {60%, 6m, 2m} test dataset (dataset 2f), the direct path ToA estimation error distribution of the models at different TRPs are provided in Figure 21 (a). Moderate performance differences between the models at different TRPs can be observed. In general, performance for the TRPs closer to the center of the factory tends to be better than that for those closer to the edge of the factory. 
The aggregate direct path ToA estimation error distribution for all models is provided in Figure 21 (b) and further summarized in Table 58. It can be observed that direct path ToA estimation error less than a meter can be obtained at least 75% of the time.

[bookmark: _Toc118706453]Distributed direct path ToA estimation ML models can achieve direct path ToA estimation errors less than a meter at least 75% of the time in a highly NLoS {60%, 6m, 2m} environment.

[image: ] [image: ]
(a) Error distributions for individual TRPs			(b) Overall error distribution
[bookmark: _Ref117773727]Figure 21 ML model direct path ToA estimation error (expressed in meters) distributions for the {60%, 6m, 2m} test dataset for each of the 18 TRPs.
[bookmark: _Ref117774232]Table 58 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Direct path ToA estimation errors [m]

	50
	0.391

	67
	0.697

	80
	1.333

	90
	3.487



Using the direct path ToA estimates from the distributed ToA estimation models as inputs to the conventional positioning algorithms, we can obtain highly accurate UE positioning estimates as provided in Figure 22 and summarized in Table 59. We can observe high UE positioning accuracy obtained by this approach in this highly NLoS {60%, 6m, 2m} environment. The 90%tile UE position error is 0.744 m, which is comparable to centralized direct positioning ML models to be presented in Section 3.7.

[bookmark: _Toc118706454]Distributed direct path ToA estimation ML models together with conventional positioning algorithms can obtain highly accurate UE position estimates in highly NLoS {60%, 6m, 2m} environment. The positioning accuracy level is comparable to centralized direct positioning ML models.

[bookmark: _Ref117848236]Table 59 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	With ML model input [m]
	Conventional algorithms [m]

	50
	0.293
	6.175

	67
	0.405
	8.432

	80
	0.542
	11.315

	90
	0.744
	15.849



[image: ]
[bookmark: _Ref117848218]Figure 22 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on {60%, 6m, 2m} test dataset
[bookmark: _Ref117776327][bookmark: _Toc118718133]Sensitivity of ML models to UE transmit powers
The model presented in the above is trained with a 23 dBm UE transmit power assumption. In this section, we investigate the performance sensitivity of the trained model to test data generated with different UE transmit power. More specifically, we test the model for 13 or 3 dBm UE transmit power assumptions, representing 10 or 20 dB lower operating SNRs than assumed during model training.
The direct path ToA estimation error distributions are summarized in Table 60. For this distributed ML model assistance architecture, we again observed that the ML model performance is robust with respect to the change of operating SNRs. 

[bookmark: _Ref117774892]Table 60 Direct path ToA estimation errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	23 dBm UE power
	13 dBm UE power
	3 dBm UE power

	50
	0.391
	0.390
	0.391

	67
	0.697
	0.697
	0.697

	80
	1.333
	1.337
	1.336

	90
	3.487
	3.489
	3.485



Using the direct path ToA estimates generated by the models for different UE transmit power assumptions as inputs, we summarize the 2D positioning performance in Table 61. Since the models are robust to 20 dB operating SNR reduction as discussed in the above, we observed here the 2D positioning performance are also robust to such operating SNR reduction.
Based on the direct path ToA estimation and UE positioning evaluation results presented in this section, we can make the following observation:

[bookmark: _Toc118706455]Robust direct path ToA estimation and positioning performance can be achieved by deploying AI/ML models to operate independently at different TRPs in the InF-DH environment with {60%, 6m, 2m} clutter parameters even when the operating SNR is 20 dB lower than that used for training the ML models.

[bookmark: _Ref117775161]Table 61 UE 2D positioning errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	23 dBm UE power
	13 dBm UE power
	3 dBm UE power

	50
	0.293
	0.293
	0.290

	67
	0.405
	0.400
	0.404

	80
	0.542
	0.541
	0.544

	90
	0.744
	0.746
	0.744



[bookmark: _Toc118718134]Sensitivity of ML models to spatial seeds and environmental parameters changes
In this section, we investigate and analyze the performance of the ML models trained in an InF-DH scenario with {60%, 6m, 2m} environment parameters (dataset 2f) in a wide range of different degrees of environmental changes.
· We first test the trained models using test dataset 2f, which has the same {60%, 6m, 2m} environment parameters but the realizations are generated with different random seeds for UE location, 3GPP spatial model, and propagation seeds than the first dataset. This is to test whether the trained models can generalize to different environmental arrangements with the same average characteristics.
· We then test the trained models using {40%, 2m, 2m}, {40%, 6m, 2m} and {60%, 2m, 2m} test datasets (datasets 1a, 1d and 1c), which are generated using different environment parameters of respectively. This is to test whether the trained models can generalize to different environments with different arrangements as well as different average characteristics.
Trained models tested on the same clutter parameter but different spatial and propagation seeds
We first test the trained the models using test dataset 2f, which has the same {60%, 6m, 2m} environment parameters but the realizations are generated with different random seeds for UE location, 3GPP spatial model, and propagation seeds than the first dataset. 
The direct path ToA estimation error distribution of the models at different TRPs are provided in Figure 23 (a). Moderate performance differences between the models at different TRPs can be observed. 
The aggregate direct path ToA estimation error distribution for all models is provided in Figure 23 (b) and further summarized in Table 62. The CDF results of the trained models tested with test dataset 2f degrade substantially compared to the same model tested with the first test dataset. For instance, 90%tile of direct path TOA increased from 3.487 m to 22.414 m. It can be concluded the trained models do not perform well when the radio link realizations are generated with different random seeds.
[image: ][image: ]
(a) Error distributions for individual TRPs			(b) Overall error distribution
[bookmark: _Ref118263977]Figure 23 ML model direct path ToA estimation error (expressed in meters) distributions for the {60%, 6m, 2m} test dataset for each of the 18 TRPs.

[bookmark: _Ref118264100]Table 62 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Direct path ToA estimation errors [m]

	50
	6.114

	67
	9.782

	80
	14.702

	90
	22.414



The UE 2D positioning error distributions are provided in Table 63, in a similar pattern as the direct path ToA estimation error, 90%tile of 2D UE positioning error increased significantly from below 1 m to above 11 m for the trained models tested with the first test dataset versus tested with test dataset from a different environmental arrangements with the same average characteristics, here test dataset 2f.
 
[bookmark: _Ref118280559]Table 63 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	UE horizontal position error [m]

	50
	5.335

	67
	7.096

	80
	8.814

	90
	11.308



[image: ]
Figure 24 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on {60%, 6m, 2m} test dataset
[bookmark: _Toc118706456]Direct path ToA estimation and positioning performance can degrade significantly by deploying AI/ML models to operate independently at different TRPs in the InF-DH environment with {60%, 6m, 2m} clutter parameters even when trained in one environment and then tested a new environment with the same average characteristics.

[bookmark: _Ref118298497]Trained models tested on different clutter parameters
In this subsection, we investigate model generalization by testing the trained models with {60%, 6m, 2m}, using {40%, 2m, 2m}, {40%, 6m, 2m} and {60%, 2m, 2m} test datasets, which are generated using different environment parameters of respectively. This is to test whether the trained models can generalize to different environments with different arrangements as well as different average characteristics.
The direct path TOA and UE 2D positioning errors results for different environment parameters are provided in Table 64 and Table 65, respectively. Moreover, Figure 25 depicted the UE 2D positioning error distributions for different InF scenario test dataset. The last column in the tables and Figure 25 (d), {60%, 6m, 2m}, are provided as reference. It can be observed that the models generalize well to {40%, 6m, 2m} clutter parameters, while the performance degrades for other clutter parameters. It can be concluded that in the InF-DH environment, clutter height has more impact than the clutter density.

[bookmark: _Ref117784067]Table 64 Direct path ToA estimation errors tested with test dataset with different clutter parameters.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	1.235
	0.394
	0.607
	0.391

	67
	4.216
	0.707
	1.660
	0.697

	80
	7.196
	1.360
	4.503
	1.333

	90
	11.036
	3.536
	8.245
	3.487



[bookmark: _Ref118281957]Table 65 UE 2D positioning errors tested with test dataset with different clutter parameters.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	1.037
	0.297
	0.471
	0.293

	67
	1.928
	0.407
	0.705
	0.405

	80
	3.227
	0.548
	1.014
	0.542

	90
	4.792
	0.759
	1.634
	0.744



[image: ][image: ]
(a) {40%, 2m, 2m} test set				(b) {40%, 6m, 2m} test set
[image: ][image: ]
(c) {60%, 2m, 2m} test set				(d) {60%, 6m, 2m} test set
[bookmark: _Ref118282902]Figure 25 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for different InF scenario test dataset.
[bookmark: _Toc118706457]The AI/ML models trained with the InF-DH environment with {60%, 6m, 2m} clutter parameters and operating independently at different TRPs can generalize well to an environment with similar clutter height, like {40%, 6m, 2m} clutter parameters, but they fail to generalize in the environments with different clutter height, even if the clutter density is the same as training environment.

[bookmark: _Toc118718135]Performance of fast fine-tuning trained models to environmental parameters changes
To address the performance losses of applying a model trained with the {60%, 6m, 2m} environment dataset to different environments, a simple fast fine-tuning approach is investigated in this section. That is, we apply the same training process to the trained model with 1000 samples from {40%, 2m, 2m} train dataset. Given the small fast fine-tuning train dataset size, the burden on data collection and training is reduced.
The direct path ToA estimation errors distribution of the fast fine-tuned model is provided in Table 66 for different clutter parameters. It can be observed that the direct path ToA estimation errors are reduced for the {40%, 2m, 2m} test dataset but are increased for all other test datasets.
Similarly, the UE 2D positioning errors for the {40%, 2m, 2m} test dataset are reduced by more than half but the accuracy is degraded substantially for all other test datasets.

[bookmark: _Toc118706458]For the AI/ML models trained with the InF-DH environment with {60%, 6m, 2m} clutter parameters and fine-tuned with samples from {40%, 2m, 2m} dataset and operating independently at different TRPs, the performance improves for the same environment as used for fine-tuning, but degrades for other environments.

[bookmark: _Ref117784129]Table 66 Direct path ToA estimation errors (in meters) from the trained model with fast fine-tuning on 1000 samples from {40%, 2m, 2m} train dataset, and tested with test dataset with different clutter parameters.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	1.090
	2.575
	1.527
	2.676

	67
	2.189
	4.752
	3.096
	4.889

	80
	4.313
	8.061
	5.754
	8.221

	90
	8.617
	13.785
	10.842
	13.972



Table 67 UE 2D positioning errors tested from the trained model with fast fine-tuning on 1000 samples from {40%, 2m, 2m} train dataset, and tested with test dataset with different clutter parameters.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	0.771
	2.411
	1.123
	2.554

	67
	1.076
	3.391
	1.647
	3.573

	80
	1.473
	4.666
	2.378
	4.880

	90
	2.114
	6.206
	3.469
	6.624



[image: ][image: ]
(a) {40%, 2m, 2m} test set				(b) {40%, 6m, 2m} test set
[image: ][image: ]
(c) {60%, 2m, 2m} test set				(d) {60%, 6m, 2m} test set
Figure 26 UE 2D positioning error distributions for using the trained model with fast fine-tuning on 1000 samples from {40%, 2m, 2m} train dataset, and feeding the ML outputs to conventional L1 error minimizing positioning solutions for different InF scenario test datasets.
[bookmark: _Toc118718136]Performance of models trained with mixed datasets
To address the performance losses of applying a model trained with the {60%, 6m, 2m} environment dataset to different environments, another approach is to train the model with a mix of realizations from more than one environmental dataset. In this section, we investigate the model performance when the model is trained with even mix of the {60%, 6m, 2m} and {40%, 2m, 2m} datasets. We then test the trained model on four different environmental datasets.
The direct path ToA estimation error distribution of the models at different TRPs and the UE 2D positioning errors for different InF scenario test datasets are provided in Figure 27 and Figure 28, respectively. Moreover, Table 68 and Table 69 summarize direct path ToA estimation errors and UE 2D positioning errors for the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters, respectively.
It can be observed that the performance in environments with 2 m clutter height, i.e., {40%, 2m, 2m} and {60%, 2m, 2m}, is acceptable while it degrades for environments with 6 m clutter height, i.e., {40%, 6m, 2m} and {60%, 6m, 2m}. One reason for better performance in the environments with 2 m clutter height than those with 6 m clutter height can be higher LoS probability and thus more cases where the direct path TOA is equal to the observable TOA which makes it easier for the model to learn. On the other hand, for AI/ML models to perform well in highly NLoS environments, like {40%, 6m, 2m} and {60%, 6m, 2m} clutter parameters, they need to have bigger train datasets for such environments. 

[bookmark: _Toc118706459]The AI/ML models trained with a mixed dataset from the InF-DH environment with {60%, 6m, 2m} and {40%, 2m, 2m} clutter parameters and operating independently at different TRPs operate well in environments with 2m clutter height while the performance degrades for environments with 6m clutter height.

[image: ][image: ]
(a) {40%, 2m, 2m} test set				(b) {40%, 6m, 2m} test set
[image: ][image: ]
(c) {60%, 2m, 2m} test set				(d) {60%, 6m, 2m} test set
[bookmark: _Ref118287348]Figure 27 Direct path ToA estimation error (expressed in meters) distributions for models trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested for different InF scenario test dataset for each of the 18 TRPs.

[bookmark: _Ref118287403]Table 68 Direct path ToA estimation errors from the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	0.210
	0.602
	0.335
	0.620

	67
	0.504
	1.197
	0.771
	1.228

	80
	1.156
	2.632
	1.738
	2.689

	90
	3.467
	6.517
	4.845
	6.599



[bookmark: _Ref118287405]Table 69 UE 2D positioning errors for the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	0.120
	0.444
	0.190
	0.462

	67
	0.175
	0.624
	0.299
	0.653

	80
	0.248
	0.863
	0.447
	0.892

	90
	0.392
	1.268
	0.680
	1.309



[image: ][image: ]
(a) {40%, 2m, 2m} test set				(b) {40%, 6m, 2m} test set
[image: ][image: ]
(c) {60%, 2m, 2m} test set				(d) {60%, 6m, 2m} test set
[bookmark: _Ref118287349]Figure 28 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for different InF scenario test dataset.
[bookmark: _Toc118718137]Summary tables of evaluation results
Table 70. Evaluation results for AI/ML model deployed on network-side, without model generalization investigation. No network synchronization error. Architectures of the ML model: 34 layers complex network.
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	Time domain CIR, 
1x2x256  complex array

	ToA estimate
	Ideal

	{60%, 6m, 2m}
	{60%, 6m, 2m}
	86,400  UE drops
	4000 UE drops
	32,553,234 complex parameters
	2,316,337,272 FLOPs
	0.744	



Table 71. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {60%, 6m, 2m} and 23 dBm UE transmit power and tested with the same InF-DH clutter parameters and 13 dBm and 3 dBm UE transmit powers.  No network synchronization error. Architectures of the ML model: 34 layers complex network.
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz.pos. accuracy at 90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	Time domain CIR, 
1x2x256  complex array

	ToA estimate
	Ideal

	{60%, 6m, 2m} 23dBm UE TX pow.
	{60%, 6m, 2m} 23dBm UE TX pow.
	86,400  UE drops
	4000 UE drops
	32,553,234 complex parameters
	2,316,337,272 FLOPs
	0.744

	
	
	
	
	{60%, 6m, 2m} 13dBm UE TX pow.
	
	
	
	
	0.746

	
	
	
	
	{60%, 6m, 2m} 3dBm UE TX pow.
	
	
	
	
	0.744



Table 72. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {60%, 6m, 2m} and tested with various InF-DH clutter parameters and new drop.  No network synchronization error. Architectures of the ML model: 34 layers complex network.
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy at 90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	Time domain CIR, 
1x2x256  complex array
	ToA estimate
	Ideal

	{60%, 6m, 2m}
	{40%, 2m, 2m} 
	86,400  UE drops
	4000 UE drops
	32,553,234 complex parameters
	2,316,337,272 FLOPs
	4.792

	
	
	
	
	{40%,6m,2m}
	
	
	
	
	0.759

	
	
	
	
	{60%, 2m, 2m}
	
	
	
	
	1.634

	
	
	
	
	{60%, 6m, 2m} new drop
	
	
	
	
	11.308



Table 73. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {60%, 6m, 2m}, then fine-tuned with InF-DH {40%, 2m, 2m}, and tested with various InF-DH clutter parameters.  No network synchronization error. Architectures of the ML model: 34 layers complex network
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model complexity
	Computation complexity
	AI/ML

	Time domain CIR, 
1x2x256  complex array

	ToA estimate
	Ideal

	{60%, 6m, 2m}
	{40%, 2m, 2m} 
	{40%, 2m, 2m} 
	86,400  UE drops
	1000  UE drops
	4000 UE drops
	32,553,234 complex parameters
	2,316,337,272 FLOPs
	2.114

	
	
	
	
	
	{40%,6m,2m}
	
	
	
	
	
	6.206

	
	
	
	
	
	{60%, 2m, 2m}
	
	
	
	
	
	3.469

	
	
	
	
	
	{60%, 6m, 2m}
	
	
	
	
	
	6.624



Table 74. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained with mixed datasets in InF-DH {60%, 6m, 2m} and InF-DH {40%, 4m, 2m} and tested with various InF-DH clutter parameters.  No network synchronization error. Architectures of the ML model: 34 layers complex network.
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy at 90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	Time domain CIR, 
1x2x256  complex array
	ToA estimate
	Ideal

	{60%, 6m, 2m} and {40%, 2m, 2m}
	{40%, 2m, 2m} 
	86,400  UE drops (43200 UE drops for each)
	4000 UE drops
	32,553,234 complex parameters
	2,316,337,272 FLOPs
	0.392

	
	
	
	
	{40%,6m,2m}
	
	
	
	
	1.268

	
	
	
	
	{60%, 2m, 2m}
	
	
	
	
	0.68

	
	
	
	
	{60%, 6m, 2m}
	
	
	
	
	1.309



[bookmark: _Ref117762965][bookmark: _Toc118718138]Case 3c: AI/ML assisted positioning using centralized unobserved direct path ToA estimation (Multi-TRP construction)
In this section, we estimate the unobserved direct path ToA using a centralized ML model with UL SRS channel impulse responses collected from all TRPs. The input to the AI/ML model is a three-dimensional complex-valued tensor  as described in Section 3.3. Since the ML model inference or training requires suitable specific hardware, the model is expected to be performed in a centralized unit with the needed hardware. The target outputs of the model are the 18 unobserved direct path ToAs, , as descried at the beginning of Section 3. The estimated unobserved direct path ToAs are forwarded to the LMF to obtain UE positions using conventional positioning algorithms.
[image: ]
Figure 29 AI/ML assisted positioning where a centralized node process all UL CIRs forwarded from all TRPs to product estimates for unobserved direct path ToAs, which are further processed with conventional positioning algorithms to position of the target UE.
[bookmark: _Toc118718139]ML model architectures
We consider two models architectures using the complex activation functions and complex convolutional and MaxAbsPooling modules described in Section 3.4.1. Each of the two models consists of 18 layers with different internal widths. Both models output nine complex values.
· The real parts are taken as the direct path ToA estimates for the first nine TRPs.
· The imaginary parts are taken as the direct path ToA estimates for the second nine TRPs. 
Specific details of the model and computational complexity values of the three models are summarized in the following table. For the baseline, the models are trained using {60%, 6m, 2m} train dataset.
Table 75 Key features of the ML models for unobserved direct path time of arrival estimation
	ML model input 
	Time domain CIR, obtained from SRS estimation, 18x2x256 complex array 

	ML model output 
	18 direct path ToA estimates

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 1,229,121 complex parameters
Model II: 4,884,345 complex parameters

	Computation complexity for model inference: number of FLOPs 
	Model I: 86,127,185 FLOPs
Model II: 328,859,463 FLOPs

	Number of ML models deployed for inference 
	One per deployment, residing in a centralized node

	Function for position estimation of the target UE
	Legacy method: UTDOA



[bookmark: _Ref118296959][bookmark: _Toc118718140]ML model direct path ToA estimation performance
For the {60%, 6m, 2m} test dataset, the direct path ToA estimation error distributions (expressed in meters) for the models at different TRPs are provided Figure 30. Different than the results for distributed models in Section 3.5, it can be observed that both centralized models achieve uniform accuracy for the direct path ToA estimates to all the 18 TRPs. Furthermore, these direct path ToA estimation errors from the centralized models are almost an order of magnitude lower than those from the distributed models in Section 3.5 at CDF=90%.
In fact, such large estimation accuracy improvement can be achieved with much lower overall computational complexity, too. That is, the distributed model architecture in Section 3.5 requires running 18 different models at 18 different TRPs with a total computational complexity of 18x128 MFLOPs = 2.3 GFLOPs. On the other hand, the centralized models here only need 86 or 329 MFLOPs. That is an order of magnitude reduction in computational complexity.
This reduction in computation complexity and improvement in performance for the centralized model is to be expected from the representation learning point of view. That is, one expects the earlier layers of the network to learn basic forms and fine details of the data. For distributed models performing independent computations, the representation and the corresponding learned layers need to be replicated in every TRP models. On the other hand, the representation and the corresponding learned earlier layers can be shared toward generating the direct path ToA estimates for different TRPs.

[bookmark: _Toc118706460]Centralized direct path ToA estimation ML models can achieve an order of magnitude reduction in direct path ToA estimation errors with an order of magnitude reduction in total computational complexity than distributed direct path ToA estimation ML models.

[image: ] [image: ]
(a) Model I								(b) Model II
[bookmark: _Ref117517138][bookmark: _Hlk117599023]Figure 30 ML model direct path ToA estimation error (expressed in meters) distributions for the {60%, 6m, 2m} test dataset for each of the 18 TRPs.
Table 76 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Direct path ToA errors [m]

	
	Model I
	Model II

	50
	0.176
	0.119

	67
	0.259
	0.174

	80
	0.350
	0.233

	90
	0.464
	0.308



Using the direct path ToA estimates from the two centralized ToA estimation models as inputs to the conventional positioning algorithms, we can obtain highly accurate UE positioning estimates as provided in Figure 31 and summarized in Table 77. With Model I, the 90%tile UE position error is 0.653 m. With Model II, the 90%tile UE position error is 0.436 m. Compared to the centralized direct positioning ML models to be presented in Section 3.7, we can observe that Model II together with conventional positioning algorithms achieves better UE positioning accuracy at lower computational complexity than direct positioning ML models.

[bookmark: _Toc118706461]Centralized direct path ToA estimation ML models together with conventional positioning algorithms can obtain highly accurate UE position estimates in highly NLoS {60%, 6m, 2m} environment; and can, in fact, outperform direct positioning ML models in terms of both better UE positioning accuracy and lower computational complexity.
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(a) Model I								(b) Model II
[bookmark: _Ref117847657]Figure 31 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on {60%, 6m, 2m} test dataset.
[bookmark: _Ref117847627]Table 77 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles
	CDF Percentile
	With Model I inputs [m]
	With Model II inputs [m]
	Conventional algorithms [m]

	50
	0.325
	0.219
	6.175

	67
	0.428
	0.282
	8.432

	80
	0.522
	0.352
	11.315

	90
	0.653
	0.436
	15.849



[bookmark: _Ref117776332][bookmark: _Toc118718141]Sensitivity of ML models to UE transmit powers
The models presented in the above are trained with a 23 dBm UE transmit power assumption. In this section, we investigate the performance sensitivity of the trained models to test data generated with different UE transmit power. More specifically, we test the models for 13 or 3 dBm UE transmit power assumptions, representing 10 or 20 dB lower operating SNRs than assumed during model training.
The direct path ToA estimation error distributions for Model I and II are summarized in Table 78 and Table 79, respectively. Unlike the distributed ML model assistance architectures investigated in Section 3.4 and Section 3.5, we observe the centralized models considered here to be more sensitive to operating SNR deviations. More specifically, we observe the 90% tile direct path ToA error to almost triple from 0.464 m to 1.27 m for Model I and almost double from 0.308 m to 0.506 m for Model II.

[bookmark: _Toc118706462]Centralized direct path ToA estimation models are sensitive to operating SNR deviation from that assumed during model training. With a 20 dB SNR reduction, the 90%tile direct path ToA errors may more than double for smaller models and may increase by 2/3 for larger models.

[bookmark: _Ref117775335]Table 78 Model I direct path ToA estimation errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	23 dBm UE power
	13 dBm UE power
	3 dBm UE power

	50
	0.176
	0.190
	0.385

	67
	0.259
	0.278
	0.590

	80
	0.350
	0.379
	0.856

	90
	0.464
	0.507
	1.270



[bookmark: _Ref117775331]Table 79 Model II direct path ToA estimation errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	23 dBm UE power
	13 dBm UE power
	3 dBm UE power

	50
	0.119
	0.120
	0.177

	67
	0.174
	0.175
	0.263

	80
	0.233
	0.234
	0.365

	90
	0.308
	0.310
	0.506



Using the direct path ToA estimates generated by the models for different UE transmit power assumptions as inputs, we summarize the 2D positioning performance in Table 80 and Table 81, respectively. The model sensitivity to operating SNR observed in the above manifests in the UE positioning accuracy as well. It can be observed that the 90%tile positioning error almost triple from 0.653 m to 1.965 m for Model I. And, for Model II, the 90%tile positioning error almost double from 0.436 m to 0.785 m.

[bookmark: _Toc118706463]UE positioning using centralized direct path ToA estimation models are sensitive to operating SNR deviation from that assumed during model training. With a 20 dB SNR reduction, the 90%tile 2D positioning errors may double or triple.

[bookmark: _Ref117775577]Table 80 Model I UE 2D positioning errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	23 dBm UE power
	13 dBm UE power
	3 dBm UE power

	50
	0.325
	0.346
	0.706

	67
	0.428
	0.454
	0.992

	80
	0.522
	0.565
	1.377

	90
	0.653
	0.717
	1.965



[bookmark: _Ref117775579]Table 81 Model II UE 2D positioning errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	23 dBm UE power
	13 dBm UE power
	3 dBm UE power

	50
	0.219
	0.220
	0.330

	67
	0.282
	0.287
	0.445

	80
	0.352
	0.356
	0.580

	90
	0.436
	0.439
	0.785



[bookmark: _Toc118718142]Sensitivity of ML models to spatial seeds and environmental parameters changes
In this section, we investigate and analyze the performance of the ML models trained in an InF-DH scenario with {60%, 6m, 2m} environment parameters in a wide range of different degrees of environmental changes.
· We first test the trained models using test dataset 2f, which has the same {60%, 6m, 2m} environment parameters but the realizations are generated with different random seeds for UE location, 3GPP spatial model, and propagation seeds than the first dataset. This is to test whether the trained models can generalize to different environmental arrangements with the same average characteristics.
· We then test the trained models using {40%, 2m, 2m}, {40%, 6m, 2m} and {60%, 2m, 2m} test datasets, which are generated using different environment parameters of respectively. This is to test whether the trained models can generalize to different environments with different arrangements as well as different average characteristics.
Trained models tested on the same clutter parameter but different spatial and propagation seeds
We first test the trained models using test dataset 2f, which has the same {60%, 6m, 2m} environment parameters but the realizations are generated with different random seeds for UE location, 3GPP spatial model, and propagation seeds than the first dataset. This is to test whether the trained models can generalize to different environmental arrangements with the same average characteristics.
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(a) Model I								(b) Model II
[bookmark: _Ref118291344]Figure 32 ML model direct path ToA estimation error (expressed in meters) distributions for the {60%, 6m, 2m} test dataset (new_seed) for each of the 18 TRPs.
Figure 32 (a) and Figure 32 (b) show the direct path ToA estimation error distributions at different TRPs for Model I and Model II, respectively. Furthermore, Table 82 summarizes direct path ToA estimation errors at different percentiles. It can be observed that both centralized models perform poorly to estimate the direct path ToA to all the 18 TRPs. As observed, unlike the results in Section 3.6.2, Model II performs worse than Model I in generalizing to the new environmental arrangements with the same average characteristics. 
As a result of poor direct path ToA estimation, UE 2D positioning errors increased substantially for both models. It can be seen from Table 83, provided the results of UE 2D positioning errors at different percentiles, and Figure 33, illustrated positioning error distributions.
[bookmark: _Toc118706464]UE positioning using centralized direct path ToA estimation models do not generalize well to new environmental settings with the same clutter parameters.

[bookmark: _Ref118297606]Table 82 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset (new_seed) at different percentiles.
	CDF Percentile
	Direct path ToA errors [m]

	
	Model I
	Model II

	50
	3.556
	4.041

	67
	5.162
	5.893

	80
	6.790
	7.765

	90
	8.861
	10.064



[bookmark: _Ref118297610]Table 83 UE 2D positioning errors for {60%, 6m, 2m} test dataset (new_seed) at different percentiles
	CDF Percentile
	With Model I inputs [m]
	With Model II inputs [m]

	50
	6.985
	8.271

	67
	8.920
	10.435

	80
	11.192
	13.041

	90
	14.014
	16.432
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(a) Model I								(b) Model II
[bookmark: _Ref118297823][bookmark: _Hlk117600950]Figure 33 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on {60%, 6m, 2m} test dataset.
[bookmark: _Ref118369068]Trained models tested on different clutter parameters
In this subsection, we investigate model generalization by testing the trained models with {40%, 2m, 2m}, {40%, 6m, 2m} and {60%, 2m, 2m} test datasets (datasets 1a, 1d and 1c), which are generated using different environment parameters of respectively. This is to test whether the trained models can generalize to different environments with different arrangements as well as different average characteristics.
The direct path TOA estimation errors from Model I and Model II tested with test dataset with different environment parameters are provided in Table 84 and Table 85, respectively. Similar to the results from Section 3.5.4.2, it can be observed that both models generalize well to {40%, 6m, 2m} clutter parameters, while the performance degrades for other clutter parameters. It can be concluded that in the InF-DH environment, clutter height has more impact than the clutter density.
The results of UE 2D positioning errors for test dataset {40%, 2m, 2m}, {40%, 6m, 2m} and {60%, 2m, 2m} are provided in Table 86, Table 87 and Table 88, respectively. Moreover, Figure 34, Figure 35 and Figure 36 depicted the UE 2D positioning error distributions of Model I and Model II for {40%, 2m, 2m}, {40%, 6m, 2m} and {60%, 2m, 2m} test datasets, respectively. It can be observed that both models are able to generalize well for {40%, 6m, 2m} test dataset. 
[bookmark: _Toc118706465]UE positioning using centralized direct path ToA estimation models generalize well to environments with the same clutter height but do not generalize well to environments with other environmental differences.

[bookmark: _Ref118298134]Table 84 Direct path ToA estimation errors from Model I tested with test dataset with different clutter parameters.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	2.439
	0.189
	0.962
	0.176

	67
	3.828
	0.279
	1.643
	0.259

	80
	5.434
	0.381
	2.578
	0.350

	90
	7.409
	0.519
	3.959
	0.464



[bookmark: _Ref118298149]Table 85 Direct path ToA estimation errors from Model II tested with test dataset with different clutter parameters.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	2.531
	0.128
	0.844
	0.119

	67
	4.105
	0.189
	1.510
	0.174

	80
	5.860
	0.256
	2.477
	0.233

	90
	8.164
	0.350
	3.952
	0.308



[bookmark: _Ref118298909]Table 86 UE 2D positioning errors for test dataset {40%, 2m, 2m} at different percentiles using conventional positioning algorithms.
	CDF Percentile
	With Model I inputs
	With Model II inputs

	50
	4.482
	4.565

	67
	6.306
	6.424

	80
	8.265
	8.771

	90
	10.756
	11.336
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(a) Model I								(b) Model II
[bookmark: _Ref118298983]Figure 34 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on test dataset {40%, 2m, 2m}.

[bookmark: _Ref118298911]Table 87 UE 2D positioning errors for test dataset {40%, 6m, 2m} at different percentiles using conventional positioning algorithms.
	CDF Percentile
	With Model I inputs
	With Model II inputs

	50
	0.348
	0.235

	67
	0.457
	0.309

	80
	0.573
	0.389

	90
	0.752
	0.501
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(a) Model I								(b) Model II
[bookmark: _Ref118298986]Figure 35 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on test dataset {40%, 6m, 2m}.

[bookmark: _Ref118298913]Table 88 UE 2D positioning errors for test dataset {60%, 2m, 2m} at different percentiles using conventional positioning algorithms.
	CDF Percentile
	With Model I inputs
	With Model II inputs

	50
	1.869
	1.615

	67
	2.926
	2.707

	80
	4.222
	4.066

	90
	6.166
	5.954
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(a) Model I								(b) Model II
[bookmark: _Ref118298988]Figure 36 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on test dataset {60%, 2m, 2m}.
[bookmark: _Toc118718143]Performance of fast fine-tuning trained models to environmental parameter changes
To address the performance losses of applying a model trained with the {60%, 6m, 2m} environment dataset to different environments, a simple fast fine-tuning approach is investigated in this section. That is, we apply the same training process to the trained model with 1000 samples from {40%, 2m, 2m} train dataset. Given the small fast fine-tuning train dataset size, the burden on data collection and training is reduced.
Performance of fine-tuned ML models tested on the same clutter parameter {40%, 2m, 2m}
The direct path ToA estimation errors distribution of the fast fine-tuned Model I and Model II are provided in Table 89 for the {40%, 2m, 2m} test dataset. It can be observed that the direct path ToA estimation errors are reduced for this case. With Model I, the 90%tile direct path ToA errors reduced from 7.409 m to 3.287m. With Model II, the 90%tile direct path ToA errors reduced from 8.164 m to 2.931 m.
Similarly, as reported in Table 90 and depicted in Figure 38, the UE 2D positioning errors for the {40%, 2m, 2m} test dataset are reduced by more than half from above 10 m to below 5 m for both models.
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(a) Model I								(b) Model II
Figure 37 Fine-tuned ML model direct path ToA estimation error (expressed in meters) distributions for the {40%, 2m, 2m} test dataset for each of the 18 TRPs.
[bookmark: _Ref118355908]Table 89 Direct path ToA estimation errors for {40%, 2m, 2m} test dataset at different percentiles.
	CDF Percentile
	Direct path ToA errors [m]

	
	Model I
	Model II

	50
	1.110
	0.956

	67
	1.684
	1.482

	80
	2.348
	2.090

	90
	3.287
	2.931



[bookmark: _Ref118356698]Table 90 UE 2D positioning errors for {40%, 2m, 2m} test dataset at different percentiles
	CDF Percentile
	With Model I inputs [m]
	With Model II inputs [m]

	50
	2.116
	1.816

	67
	2.840
	2.511

	80
	3.736
	3.300

	90
	4.852
	4.283
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(a) Model I								(b) Model II
[bookmark: _Ref118356726]Figure 38 UE 2D positioning error distributions for using fine-tuned AI/ML outputs with conventional L1 error minimizing positioning solutions on {40%, 2m, 2m} test dataset.
[bookmark: _Toc118706466]Centralized direct path ToA estimation models trained in one environment and then fine-tuned with a small dataset from the second environment are much more robust in the second environment. The 90%tile direct path ToA errors may reduce by more than half when testing in the second environment.

Performance of fine-tuned ML models tested on different clutter parameters
The direct path TOA estimation errors from fine-tuned Model I and fine-tuned Model II tested with test dataset with different environment parameters are provided in Table 91 and Table 92, respectively. It can be observed that using the fine-tuned models decreases errors for the {60%, 2m, 2m} test dataset, while the errors are increased for the {40%, 6m, 2m} and {60%, 6m, 2m} test datasets.
The results of UE 2D positioning errors for test dataset {40%, 6m, 2m}, {60%, 2m, 2m} and {60%, 6m, 2m} are provided in Table 93, Table 94 and Table 95, respectively. Moreover, Figure 39, Figure 40 and Figure 41 depicted the UE 2D positioning error distributions of Model I and Model II for {40%, 6m, 2m}, {60%, 2m, 2m} and {60%, 6m, 2m} test datasets, respectively. Similar to direct path ToA estimation results, it can be observed that using the fine-tuned models decreases UE 2D positioning errors for the {60%, 2m, 2m} test dataset, while the positioning errors are increased for the {40%, 6m, 2m} and {60%, 6m, 2m} test datasets.

[bookmark: _Ref118357737]Table 91 Direct path ToA estimation errors from fine-tuned Model I tested with test dataset with different clutter parameters.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	1.110
	1.165
	1.026
	1.176

	67
	1.684
	1.736
	1.557
	1.759

	80
	2.348
	2.412
	2.169
	2.431

	90
	3.287
	3.343
	3.071
	3.357



[bookmark: _Ref118357739]Table 92 Direct path ToA estimation errors from fine-tuned Model II tested with test dataset with different clutter parameters.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	0.956
	0.706
	0.772
	0.705

	67
	1.482
	1.060
	1.177
	1.064

	80
	2.090
	1.451
	1.654
	1.465

	90
	2.931
	1.986
	2.350
	1.999



[bookmark: _Ref118357986]Table 93 UE 2D positioning errors for test dataset {40%, 6m, 2m} at different percentiles using conventional positioning algorithms.
	CDF Percentile
	With Model I inputs
	With Model II inputs

	50
	2.085
	1.267

	67
	2.820
	1.659

	80
	3.613
	2.096

	90
	4.733
	2.755
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(a) Model I								(b) Model II
[bookmark: _Ref118358033]Figure 39 UE 2D positioning error distributions for using fine-tuned AI/ML outputs with conventional L1 error minimizing positioning solutions on test dataset {40%, 6m, 2m}.

[bookmark: _Ref118357987]Table 94 UE 2D positioning errors for test dataset {60%, 2m, 2m} at different percentiles using conventional positioning algorithms.
	CDF Percentile
	With Model I inputs
	With Model II inputs

	50
	1.894
	1.428

	67
	2.543
	1.941

	80
	3.350
	2.591

	90
	4.478
	3.446
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(a) Model I								(b) Model II
[bookmark: _Ref118358034]Figure 40 UE 2D positioning error distributions for using fine-tuned AI/ML outputs with conventional L1 error minimizing positioning solutions on test dataset {60%, 2m, 2m}

[bookmark: _Ref118357989]Table 95 UE 2D positioning errors for test dataset {60%, 6m, 2m} at different percentiles using conventional positioning algorithms.
	CDF Percentile
	With Model I inputs
	With Model II inputs

	50
	2.120
	1.266

	67
	2.845
	1.664

	80
	3.631
	2.116

	90
	4.750
	2.759
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(a) Model I								(b) Model II
[bookmark: _Ref118358036]Figure 41 UE 2D positioning error distributions for using fine-tuned AI/ML outputs with conventional L1 error minimizing positioning solutions on test dataset {60%, 6m, 2m}.
[bookmark: _Toc118706467]Centralized direct path ToA estimation models trained in one environment and then fine-tuned with a small dataset from the second environment are more robust in the environments similar to the second environment in terms of clutter height.

[bookmark: _Toc118718144]Performance of models trained with mixed datasets
To address the performance losses of applying a model trained with the {60%, 6m, 2m} environment dataset to different environments, another approach is to train the model with a mix of realizations from more than one environmental dataset. In this section, we investigate the model performance when the model is trained with even mix of the {60%, 6m, 2m} and {40%, 2m, 2m} datasets. We then test the trained model on four different environmental datasets.
[bookmark: _Ref118613011]Performance of ML models trained with mixed datasets and tested on a same clutter parameter {40%, 2m, 2m}
The direct path ToA estimation errors distribution of Model I and Model II trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, tested for {40%, 2m, 2m} test dataset is provided in Table 96. It can be observed that the direct path ToA estimation errors are reduced by almost order of magnitude. With Model I, the 90%tile direct path ToA errors reduced from 7.409 m to 0.913 m. With Model II, the 90%tile direct path ToA errors reduced from 8.164 m to 0.724 m.
Similarly, as reported in Table 97 and depicted in Figure 43, the UE 2D positioning errors for the {40%, 2m, 2m} test dataset are reduced by almost order of magnitude from above 10 m to around 1 m for both models.
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(a) Model I								(b) Model II
Figure 42 ML model direct path ToA estimation error (expressed in meters) distributions for the {40%, 2m, 2m} test dataset for each of the 18 TRPs.
[bookmark: _Ref118361957]Table 96 Direct path ToA estimation errors for models trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, tested for {40%, 2m, 2m} test dataset at different percentiles.
	CDF Percentile
	Direct path ToA errors [m]

	
	Model I
	Model II

	50
	0.325
	0.263

	67
	0.487
	0.393

	80
	0.670
	0.537

	90
	0.913
	0.724



[bookmark: _Ref118364242]Table 97 UE 2D positioning errors for {40%, 2m, 2m} test dataset at different percentiles
	CDF Percentile
	With Model I inputs [m]
	With Model II inputs [m]

	50
	0.623
	0.500

	67
	0.824
	0.657

	80
	1.038
	0.839

	90
	1.360
	1.088
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(a) Model I								(b) Model II
[bookmark: _Ref118364269]Figure 43 UE 2D positioning error distributions for using fine-tuned AI/ML outputs with conventional L1 error minimizing positioning solutions on {40%, 2m, 2m} test dataset.
[bookmark: _Toc118706468]Centralized direct path ToA estimation models trained with mixed datasets are much more robust in the second environment. The 90%tile direct path ToA errors may reduce by order of magnitude when testing in the second environment.

Performance of ML models trained with mixed datasets and tested on different clutter parameters
The direct path TOA estimation errors distribution of Model I and Model II trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, tested with test dataset with different environment parameters are provided in Table 98 and Table 99, respectively. It can be observed that using the models trained with mixed datasets decreases errors for the {60%, 2m, 2m} test dataset, while the errors are increased for the {40%, 6m, 2m} and {60%, 6m, 2m} test datasets.
The results of UE 2D positioning errors for test dataset {40%, 6m, 2m}, {60%, 2m, 2m} and {60%, 6m, 2m} are provided in Table 100, Table 101 and Table 102, respectively. Moreover, Figure 44, Figure 45 and Figure 46 depicted the UE 2D positioning error distributions of Model I and Model II for {40%, 6m, 2m}, {60%, 2m, 2m} and {60%, 6m, 2m} test datasets, respectively. Similar to direct path ToA estimation results, it can be observed that using the models trained with mixed datasets decreases UE 2D positioning errors for the {60%, 2m, 2m} test dataset, while the positioning errors are increased for the {40%, 6m, 2m} and {60%, 6m, 2m} test datasets.

[bookmark: _Ref118365759]Table 98. Direct path ToA estimation errors from Model I trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	0.325
	0.305
	0.364
	0.294

	67
	0.487
	0.449
	0.543
	0.430

	80
	0.670
	0.608
	0.746
	0.577

	90
	0.913
	0.809
	1.037
	0.767



[bookmark: _Ref118365760]Table 99. Direct path ToA estimation errors from Model II trained trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	0.263
	0.261
	0.310
	0.248

	67
	0.393
	0.386
	0.467
	0.366

	80
	0.537
	0.521
	0.657
	0.495

	90
	0.724
	0.700
	0.902
	0.654




[bookmark: _Ref118365981]Table 100. UE 2D positioning errors for test dataset {40%, 6m, 2m} at different percentiles using conventional positioning algorithms.
	CDF Percentile
	With Model I inputs
	With Model II inputs

	50
	0.564
	0.491

	67
	0.738
	0.633

	80
	0.932
	0.786

	90
	1.183
	1.013
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(a) Model I								(b) Model II
[bookmark: _Ref118366025]Figure 44 UE 2D positioning error distributions for using fine-tuned AI/ML outputs with conventional L1 error minimizing positioning solutions on test dataset {40%, 6m, 2m}.

[bookmark: _Ref118365982]Table 101 UE 2D positioning errors for test dataset {60%, 2m, 2m} at different percentiles using conventional positioning algorithms.
	CDF Percentile
	With Model I inputs
	With Model II inputs

	50
	0.676
	0.585

	67
	0.906
	0.798

	80
	1.165
	1.021

	90
	1.513
	1.313
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(a) Model I								(b) Model II
[bookmark: _Ref118366027]Figure 45. UE 2D positioning error distributions for using fine-tuned AI/ML outputs with conventional L1 error minimizing positioning solutions on test dataset {60%, 2m, 2m}

[bookmark: _Ref118365984]Table 102. UE 2D positioning errors for test dataset {60%, 6m, 2m} at different percentiles using conventional positioning algorithms.
	CDF Percentile
	With Model I inputs
	With Model II inputs

	50
	0.539
	0.466

	67
	0.707
	0.604

	80
	0.876
	0.739

	90
	1.101
	0.923
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(a) Model I								(b) Model II
[bookmark: _Ref118366028]Figure 46 UE 2D positioning error distributions for using fine-tuned AI/ML outputs with conventional L1 error minimizing positioning solutions on test dataset {60%, 6m, 2m}.
[bookmark: _Toc118718145]Summary tables of evaluation results
Table 103. Evaluation results for AI/ML model deployed on network-side, without model generalization investigation. No network synchronization error. Architectures of the ML model: 18 layers complex network.
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
18x2x256  complex array

	ToA estimate
	Ideal

	{60%, 6m, 2m}
	{60%, 6m, 2m}
	86,400  UE drops
	4000 UE drops
	1,229,121 complex parameters
	86,127,185 FLOPs
	0.653

	II
	
	
	
	
	
	
	
	4,884,345 complex parameters
	328,859,463 FLOPs
	0.436



Table 104. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {60%, 6m, 2m} and 23 dBm UE transmit power and tested with the same InF-DH clutter parameters and 13 dBm and 3 dBm UE transmit powers.  No network synchronization error. Architectures of the ML model: 18 layers complex network.
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
18x2x256  complex array

	ToA estimate
	Ideal

	{60%, 6m, 2m} 23dBm UE TX pow.
	{60%, 6m, 2m} 23dBm UE TX pow.
	86,400  UE drops
	4000 UE drops
	1,229,121 complex parameters
	86,127,185 FLOPs
	0.653

	
	
	
	
	
	{60%, 6m, 2m} 13dBm UE TX pow.
	
	
	
	
	0.717

	
	
	
	
	
	{60%, 6m, 2m} 3dBm UE TX pow.
	
	
	
	
	1.965

	II
	
	
	
	
	{60%, 6m, 2m} 23dBm UE TX pow.
	
	
	4,884,345 complex parameters
	328,859,463 FLOPs
	0.436

	
	
	
	
	
	{60%, 6m, 2m} 13dBm UE TX pow.
	
	
	
	
	0.439

	
	
	
	
	
	{60%, 6m, 2m} 3dBm UE TX pow.
	
	
	
	
	0.785



Table 105. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {60%, 6m, 2m} and tested with various InF-DH clutter parameters and new drop.  No network synchronization error. Architectures of the ML model: 18 layers complex network.
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
18x2x256  complex array

	ToA 
	Ideal

	{60%,6m, 2m}
	{40%, 2m, 2m} 
	86,400  UE drops
	4000 UE drops
	1,229,121 complex parameters
	86,127,185 FLOPs
	10.756

	
	
	
	
	
	{40%,6m,2m}
	
	
	
	
	0.752

	
	
	
	
	
	{60%, 2m, 2m}
	
	
	
	
	6.166

	
	
	
	
	
	{60%, 6m, 2m} new drop
	
	
	
	
	14.014


	II
	
	
	
	
	{40%, 2m, 2m} 
	
	
	4,884,345 complex parameters
	328,859,463 FLOPs
	11.336

	
	
	
	
	
	{40%,6m,2m}
	
	
	
	
	0.501

	
	
	
	
	
	{60%, 2m, 2m}
	
	
	
	
	5.954

	
	
	
	
	
	{60%, 6m, 2m} new drop
	
	
	
	
	16.432




Table 106. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {60%, 6m, 2m}, then fine-tuned with InF-DH {40%, 2m, 2m}, and tested with various InF-DH clutter parameters.  No network synchronization error. Architectures of the ML model: 18 layers complex network
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
18x2x256  complex array

	ToA estimate
	Ideal

	{60%, 6m, 2m}
	{40%, 2m, 2m} 
	{40%,2m,2m} 
	86,400  UE drops
	1000  UE drops
	4000 UE drops
	1,229,121 complex parameters
	86,127,185 FLOPs
	4.852

	
	
	
	
	
	
	{40%,6m,2m}
	
	
	
	
	
	4.733

	
	
	
	
	
	
	{60%,2m,2m}
	
	
	
	
	
	4.478

	
	
	
	
	
	
	{60%,6m,2m}
	
	
	
	
	
	4.75

	II
	
	
	
	
	
	{40%,2m,2m} 
	
	
	
	4,884,345 complex parameters
	328,859,463 FLOPs
	4.283

	
	
	
	
	
	
	{40%,6m,2m}
	
	
	
	
	
	2.755

	
	
	
	
	
	
	{60%,2m,2m}
	
	
	
	
	
	3.446

	
	
	
	
	
	
	{60%,6m,2m}
	
	
	
	
	
	2.759



Table 107. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained with mixed datasets in InF-DH {60%, 6m, 2m} and InF-DH {40%, 4m, 2m} and tested with various InF-DH clutter parameters.  No network synchronization error. Architectures of the ML model: 18 layers complex network.
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
18x2x256  complex array

	ToA
	Ideal

	{60%, 6m, 2m}
	{40%,2m,2m} 
	86,400  UE drops
	4000 UE drops
	1,229,121 complex parameters
	86,127,185 FLOPs
	1.36

	
	
	
	
	
	{40%,6m,2m}
	
	
	
	
	1.183

	
	
	
	
	
	{60%,2m,2m}
	
	
	
	
	1.513

	
	
	
	
	
	{60%,6m,2m} 
	
	
	
	
	1.101

	II
	
	
	
	
	{40%,2m,2m} 
	
	
	4,884,345 complex parameters
	328,859,463 FLOPs
	1.088

	
	
	
	
	
	{40%,6m,2m}
	
	
	
	
	1.013

	
	
	
	
	
	{60%,2m,2m}
	
	
	
	
	1.313

	
	
	
	
	
	{60%,6m,2m} 
	
	
	
	
	0.923




[bookmark: _Ref116985811][bookmark: _Toc118718146]Case 3b: Direct AI/ML positioning with centralized fingerprinting
In this section, we estimate UE positions directly using trained AI/ML models from UL SRS channel impulse responses. The input to the AI/ML model is a three-dimensional complex-valued tensor  as described in Section 3.3. Since the ML model inference or training requires suitable specific hardware, the model is expected to be performed in a centralized unit with the needed hardware. 

[image: ]
Figure 47 Direct AI/ML positioning at a centralized node processing all UL CIRs forwarded from all TRPs to produce estimates of the target UE position.
[bookmark: _Toc118718147]ML model architectures
We consider three models using the complex activation functions and complex convolutional and MaxAbsPooling modules described in Section 3.4.1. Each of the three models consists of 18 layers with different internal widths. All three models output one single complex value. The UE’s position estimate  is taken as

Specific details of the model and computational complexity values of the three models are summarized in the following table. For the baseline, the models are trained using {60%, 6m, 2m} training dataset (dataset 1f).
Table 108 Key features of the ML model I, II, III for direct UE positioning
	ML model input 
	Time domain CIR, obtained from SRS estimation,  
18x2x256 complex array 

	ML model output 
	UE position estimate

	Model complexity: 
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 1,226,809 complex parameters
Model II: 4,879,729 complex parameters
Model III: 19,463,905 complex parameters

	Computation complexity for model inference (number of FLOPs)
	Model I: 86,122,516 FLOPs
Model II: 328,850,247 FLOPs
Model III: 1,284,201,840 FLOPs

	Number of ML models deployed for inference 
	One per deployment, residing in a centralized node



[bookmark: _Toc118718148]ML model UE position estimation performance
For the {60%, 6m, 2m} test dataset (dataset 1f) with 23 dBm UE transmit power, the UE 2D positioning errors at different percentiles are provided for Model I, II and II in Table 109 and Figure 48. Moderate performance differences between the models are observed. 

[bookmark: _Ref118106248]Table 109 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Model I [m]
	Model II [m]
	Model III [m]
	Conventional algorithms [m]

	50
	0.377
	0.327
	0.268
	6.175

	67
	0.487
	0.418
	0.346
	8.432

	80
	0.600
	0.527
	0.424
	11.315

	90
	0.754
	0.662
	0.529
	15.849
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[bookmark: _Ref118442438]Figure 48 UE 2D positioning error distributions for using Model I, II or III on {60%, 6m, 2m} test dataset.
[bookmark: _Toc118718149]Sensitivity of ML models to UE transmit powers
The models presented in the above are trained with a 23 dBm UE transmit power assumption. In this section, we investigate the performance sensitivity of the trained models to test data generated with different UE transmit power. More specifically, we test the models for 13 or 3 dBm UE transmit power assumptions, representing 10 or 20 dB lower operating SNRs than assumed during model training.
The UE 2D position error distributions for Model I, II and III are summarized in Table 110, Table 111 and Table 112, respectively. Unlike the distributed ML model assistance architectures investigated in Section 3.4 and Section 3.5, we observe the centralized models considered here to be more sensitive to operating SNR deviations. More specifically, for Model I, we observe the 90%-tile position error to almost triple from 0.754 m to 2.297 m. For Model II, we observe the 90%-tile position error to almost double from 0.662 m to 1.203 m. For Model III, we observe the 90%-tile position error to double from 0.529 m to 1.137 m.

[bookmark: _Toc118706469]Centralized direct UE positioning models are sensitive to operating SNR deviation from that assumed during model training. With a 20 dB SNR reduction, the 90%-tile position errors may triple for smaller models and may double for larger models.

[bookmark: _Ref117775692]Table 110 Model I UE 2D positioning errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	23 dBm UE power
	13 dBm UE power
	3 dBm UE power

	50
	0.377
	0.403
	0.851

	67
	0.487
	0.519
	1.185

	80
	0.600
	0.647
	1.652

	90
	0.754
	0.820
	2.297



[bookmark: _Ref117775695]Table 111 Model II UE 2D positioning errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	23 dBm UE power
	13 dBm UE power
	3 dBm UE power

	50
	0.327
	0.336
	0.494

	67
	0.418
	0.434
	0.677

	80
	0.527
	0.546
	0.904

	90
	0.662
	0.692
	1.203



[bookmark: _Ref117775697]Table 112 Model III UE 2D positioning errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	23 dBm UE power
	13 dBm UE power
	3 dBm UE power

	50
	0.268
	0.276
	0.431

	67
	0.346
	0.357
	0.596

	80
	0.424
	0.435
	0.807

	90
	0.529
	0.538
	1.137



[bookmark: _Toc118718150]Sensitivity of ML models to spatial seeds and environmental parameters changes
In this section, we investigate and analyze the performance of the ML models trained in an InF-DH scenario with {60%, 6m, 2m} environment parameters (dataset 1f) in a wide range of different degrees of environmental changes.
· We first test the trained models using test dataset 2f, which has the same {60%, 6m, 2m} environment parameters but the realizations are generated with different random seeds for UE location, 3GPP spatial model, and propagation seeds than the first, train, dataset. This is to test whether the trained models can generalize to different environmental arrangements with the same average characteristics.
· We then test the trained models using {40%, 2m, 2m}, {40%, 6m, 2m} and {60%, 2m, 2m} test datasets (datasets 1a, 1d and 1c), which are generated using different environment parameters of respectively. This is to test whether the trained models can generalize to different environments with different arrangements as well as different average characteristics.
Trained models tested on the same clutter parameter but different spatial and propagation seeds
We first test the trained models using test dataset 2f, which has the same {60%, 6m, 2m} environment parameters as the train dataset but the realizations are generated with different random seeds for UE location, 3GPP spatial model, and propagation seeds. A UE transmit of 23 dBm was used. This is to test whether the trained models can generalize to different environmental arrangements with the same average characteristics.
It can be observed from Table 113 and Figure 49 that all three models perform poorly, and we conclude that they do not generalize well to new environmental arrangements with the same average characteristics. 
[bookmark: _Toc118706470]Centralized direct UE positioning models do not generalize well to new environmental settings with the same clutter parameters.
[bookmark: _Ref118367409]Table 113 UE 2D positioning errors for {60%, 6m, 2m} test dataset with different spatial and propagation seeds at different percentiles.
	CDF Percentile
	Model I [m]
	Model II [m]
	Model III [m]
	Conventional algorithms [m]

	50
	6.520
	5.625
	6.224
	6.175

	67
	8.448
	7.175
	7.967
	8.432

	80
	10.459
	8.856
	9.511
	11.315

	90
	13.254
	11.119
	11.647
	15.849
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[bookmark: _Ref118367418]Figure 49 UE 2D positioning error distributions for {60%, 6m, 2m} test dataset with different spatial and propagation seeds.
Trained models tested on different clutter parameters
Secondly, we investigate how the models generalize to other environments with different arrangements as well as different average characteristics. The models are trained with {60%, 6m, 2m} (dataset 1f) and 23 dBm UE transmit power and tested with {40%, 2m, 2m}, {40%, 6m, 2m} and {60%, 2m, 2m}, i.e., datasets 1a, 1d, and 1c. The resulting UE 2D positioning errors are displayed in Table 114, Table 115 and Table 116 for Model I, II and III, respectively. We observe that all models generalize well to 40% clutter density but with different clutter heights, the performance degrades. This is in line with what was seen in Sections 3.5.4.2 and 3.6.4.2 and again we conclude that in the InF-DH environment, clutter height has more impact than the clutter density. UE 2D positioning error distributions for all investigated test datasets and models can be seen in Figure 50.
[bookmark: _Toc118706471]Centralized direct UE positioning models generalize well to environments with the same clutter height but do not generalize well to environments with other environmental differences.

[bookmark: _Ref118107420]Table 114 UE 2D positioning errors [m] for Model I trained with {60%, 6m, 2m} and tested on data with other clutter parameter settings but with same spatial seed.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	4.923
	0.401
	2.258
	0.377

	67
	6.831
	0.525
	3.387
	0.487

	80
	8.739
	0.668
	4.948
	0.600

	90
	11.072
	0.881
	6.802
	0.754



[bookmark: _Ref118107423]Table 115 UE 2D positioning errors [m] for Model II trained with {60%, 6m, 2m} and tested on data with other clutter parameter settings but with same spatial seed.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	5.253
	0.348
	2.281
	0.327

	67
	6.922
	0.465
	3.450
	0.418

	80
	8.556
	0.597
	4.746
	0.527

	90
	10.486
	0.787
	6.475
	0.662



[bookmark: _Ref118107426]Table 116 UE 2D positioning errors [m] for Model III trained with {60%, 6m, 2m} and tested on data with other clutter parameter settings but with same spatial seed.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	5.349
	0.290
	2.142
	0.268

	67
	7.357
	0.377
	3.196
	0.346

	80
	9.365
	0.480
	4.587
	0.424

	90
	11.804
	0.627
	6.621
	0.529
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(c) Model III
[bookmark: _Ref118369587]Figure 50 UE 2D positioning error distributions for using (a) Model I, (b) Model II, and (c) Model III trained with {60%, 6m, 2m} and tested on datasets with different clutter parameters but with same spatial seed.
[bookmark: _Toc118718151]Performance of fast fine-tuning trained models to environmental parameters changes
To address the performance losses of applying a model trained with the {60%, 6m, 2m} environment dataset (dataset 1f) to different environments, a simple fast fine-tuning approach is investigated in this section. That is, we apply the same training process to the trained model with 1000 samples from a train dataset with same clutter parameters as the data set which will be used for test ({40%, 2m, 2m}, {40%, 6m, 2m}, {60%, 2m, 2m}, or {60%, 6m, 2m}, i.e., datasets 1a, 1d, 1c and 1f, respectively). Given the small fast fine-tuning train dataset size, the burden on data collection and training is reduced. A UE transmit power of 23 dBm is used.
The results are displayed in Table 117, Table 118 and Table 119 for Model I, II and III, respectively. We observe that the fine-tuning has a positive effect on the performance on data sets with different clutter height than the original training data set. However, the cost for fine-tuning is a performance loss for data sets with same clutter height as original training data set.
[bookmark: _Toc118706472]Centralized direct UE positioning models trained in one environment and then fine-tuned with a small dataset from the second environment are much more robust in the second environment. However, the cost for fine-tuning is a performance loss for data sets with same clutter height as original training data set.

[bookmark: _Ref118109191]Table 117 UE 2D positioning errors [m] for Model I trained with {60%, 6m, 2m} and fine-tuned with 1000 samples with same clutter parameters as test data set.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	2.143
	0.853
	1.705
	0.791

	67
	2.868
	1.136
	2.378
	1.050

	80
	3.723
	1.468
	3.163
	1.350

	90
	4.901
	1.898
	4.180
	1.758



[bookmark: _Ref118109193]Table 118 UE 2D positioning errors [m] for Model II trained with {60%, 6m, 2m} and fine-tuned with 1000 samples with same clutter parameters as test data set.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	1.907
	0.731
	1.567
	0.688

	67
	2.581
	0.985
	2.109
	0.892

	80
	3.318
	1.271
	2.707
	1.123

	90
	4.293
	1.660
	3.638
	1.476



[bookmark: _Ref118109195]Table 119 UE 2D positioning errors [m] for Model III trained with {60%, 6m, 2m} and fine-tuned with 1000 samples with same clutter parameters as test data set.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	1.822
	0.621
	1.314
	0.576

	67
	2.439
	0.820
	1.808
	0.757

	80
	3.162
	1.057
	2.385
	0.955

	90
	4.172
	1.377
	3.215
	1.226



[bookmark: _Toc118718152]Performance of models trained with mixed datasets
To address the performance losses of applying a model trained with the {60%, 6m, 2m} environment dataset (dataset 1f) to different environments, another approach is to train the model with a mix of realizations from more than one environmental dataset. In this section, we investigate the model performance when the model is trained with even mix of the {60%, 6m, 2m} and {40%, 2m, 2m} datasets, i.e., datasets 1f and 1a. We then test the trained models on four different environmental datasets (datasets 1a, 1d, 1c and 1f). A UE transmit power of 23 dBm is used.
The results are displayed in Table 120, Table 121 and Table 122 for Model I, II and III, respectively. We observe a performance improvement for data sets {40%, 2m, 2m} and {60%, 2m, 2m}, at the cost of a slight degradation for data sets {40%, 6m, 2m} and {60%, 6m, 2m}, compared to training only on {60%, 6m, 2m}.
[bookmark: _Toc118706473]Centralized direct UE positioning models trained with mixed datasets are much more robust in the second environment and other environments with the same clutter height. There is a degradation for the other environments. 

[bookmark: _Ref118109370]Table 120 UE 2D positioning errors [m] for Model I trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, tested with data from other clutter parameter settings.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	0.697
	0.697
	0.805
	0.669

	67
	0.917
	0.923
	1.099
	0.880

	80
	1.156
	1.153
	1.424
	1.081

	90
	1.505
	1.469
	1.866
	1.345



[bookmark: _Ref118109372]Table 121 UE 2D positioning errors [m] for Model II trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, tested with data from other clutter parameter settings.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	0.658
	0.791
	0.871
	0.738

	67
	0.877
	1.049
	1.196
	0.966

	80
	1.119
	1.321
	1.561
	1.217

	90
	1.444
	1.720
	2.051
	1.529



[bookmark: _Ref118109374]Table 122 UE 2D positioning errors [m] for Model III trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, tested with data from other clutter parameter settings.
	CDF Percentile
	{40%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	0.535
	0.701
	0.749
	0.658

	67
	0.710
	0.916
	1.013
	0.854

	80
	0.924
	1.179
	1.350
	1.053

	90
	1.191
	1.529
	1.856
	1.333
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(a) Model I								(b) Model II
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(c) Model III
Figure 51 UE 2D positioning errors [m] for (a) Model I, (b) Model II, and (c) Model III trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, tested with data from other clutter parameter settings.
[bookmark: _Toc118718153]Summary tables of evaluation results
In the following the summary tables are provided for the evaluation results of Case 3b.
 
All the evaluations assume no network synchronization error, and no UE timing error. Note that test datasets are never part of training dataset.

Table 123. Evaluation results for AI/ML model deployed on network-side, Model I with 18 layers. 
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity 
	Computation complexity 
	AI/ML

	18 x 2 x 256 complex array 
	(x, y) position
	Ideal
	{60%, 6m, 2m},
23 dBm UE power
	{60%, 6m, 2m},
23 dBm UE power
	86,400 UE drops
	4,000 UE drops
	1,226,809 complex parameters
	86,122,516 FLOPs
	0.754

	
	
	
	
	{60%, 6m, 2m},
new drop
23 dBm UE power
	
	
	
	
	13.254

	
	
	
	
	{40%, 2m, 2m},
23 dBm UE power
	
	
	
	
	11.072

	
	
	
	
	{40%, 6m, 2m},
23 dBm UE power
	
	
	
	
	0.881

	
	
	
	
	{60%, 2m, 2m},
23 dBm UE power
	
	
	
	
	6.802

	
	
	
	{60%, 6m, 2m},
23 dBm UE power
	{60%, 6m, 2m},
13 dBm UE power
	
	
	
	
	0.820

	
	
	
	{60%, 6m, 2m},
23 dBm UE power
	{60%, 6m, 2m},
3 dBm UE power
	
	
	
	
	2.297

	
	
	
	{60%, 6m, 2m} and {40%, 2m, 2m}
23 dBm UE power
	{40%, 2m, 2m},
23 dBm UE power
	43,200 UE drops of each
	
	
	
	1.505

	
	
	
	
	{40%, 6m, 2m},
23 dBm UE power
	
	
	
	
	1.469

	
	
	
	
	{60%, 2m, 2m},
23 dBm UE power
	
	
	
	
	1.866

	
	
	
	
	{60%, 6m, 2m},
23 dBm UE power
	
	
	
	
	1.345




Table 124. Evaluation results for AI/ML model deployed on network-side, Model II with 18 layers
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity 
	Computation complexity 
	AI/ML

	18 x 2 x 256 complex array 
	(x, y) position
	Ideal
	{60%, 6m, 2m},
23 dBm UE power
	{60%, 6m, 2m},
23 dBm UE power
	86,400 UE drops
	4,000 UE drops
	4,879,729 complex parameters
	328,850,247 FLOPs
	0.662

	
	
	
	
	{60%, 6m, 2m},
new drop
23 dBm UE power
	
	
	
	
	11.119

	
	
	
	
	{40%, 2m, 2m},
23 dBm UE power
	
	
	
	
	10.486

	
	
	
	
	{40%, 6m, 2m},
23 dBm UE power
	
	
	
	
	0.787

	
	
	
	
	{60%, 2m, 2m},
23 dBm UE power
	
	
	
	
	6.475

	
	
	
	{60%, 6m, 2m},
23 dBm UE power
	{60%, 6m, 2m},
13 dBm UE power
	
	
	
	
	0.692

	
	
	
	{60%, 6m, 2m},
23 dBm UE power
	{60%, 6m, 2m},
3 dBm UE power
	
	
	
	
	1.203

	
	
	
	{60%, 6m, 2m} and {40%, 2m, 2m}
23 dBm UE power
	{40%, 2m, 2m},
23 dBm UE power
	43,200 UE drops of each
	
	
	
	1.444

	
	
	
	
	{40%, 6m, 2m},
23 dBm UE power
	
	
	
	
	1.720

	
	
	
	
	{60%, 2m, 2m},
23 dBm UE power
	
	
	
	
	2.051

	
	
	
	
	{60%, 6m, 2m},
23 dBm UE power
	
	
	
	
	1.529




Table 125. Evaluation results for AI/ML model deployed on network-side, Model III with 18 layers
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	18 x 2 x 256 complex array 
	(x, y) position
	Ideal
	{60%, 6m, 2m},
23 dBm UE power
	{60%, 6m, 2m},
23 dBm UE power
	86,400 UE drops
	4,000 UE drops
	19,463,905 complex parameters
	1,284,201,840 FLOPs
	0.529

	
	
	
	
	{60%, 6m, 2m},
new drop
23 dBm UE power
	
	
	
	
	11.647

	
	
	
	
	{40%, 2m, 2m},
23 dBm UE power
	
	
	
	
	11.804

	
	
	
	
	{40%, 6m, 2m},
23 dBm UE power
	
	
	
	
	0.627

	
	
	
	
	{60%, 2m, 2m},
23 dBm UE power
	
	
	
	
	6.621

	
	
	
	{60%, 6m, 2m},
23 dBm UE power
	{60%, 6m, 2m},
13 dBm UE power
	
	
	
	
	0.538

	
	
	
	{60%, 6m, 2m},
23 dBm UE power
	{60%, 6m, 2m},
3 dBm UE power
	
	
	
	
	1.137

	
	
	
	{60%, 6m, 2m} and {40%, 2m, 2m}
23 dBm UE power
	{40%, 2m, 2m},
23 dBm UE power
	43,200 UE drops of each
	
	
	
	1.191

	
	
	
	
	{40%, 6m, 2m},
23 dBm UE power
	
	
	
	
	1.529

	
	
	
	
	{60%, 2m, 2m},
23 dBm UE power
	
	
	
	
	1.856

	
	
	
	
	{60%, 6m, 2m},
23 dBm UE power
	
	
	
	
	1.333




Table 126. Evaluation results for AI/ML model deployed on network-side, Model I with 18 layers, 23 dBm UE power 
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model complexity
	Computation complexity
	AI/ML

	18x2x 256 complex array 
	(x, y) position
	Ideal
	{60%, 6m, 2m}
	{40%, 2m, 2m}

	{40%, 2m, 2m}

	86,400 UE drops
	1,000 UE drops
	1,000 UE drops
	1,226,809 complex parameters 
	86,122,516 FLOPs
	4.901

	
	
	
	
	{40%, 6m, 2m}

	{40%, 6m, 2m}

	
	
	
	
	
	1.898

	
	
	
	
	{60%, 2m, 2m}

	{60%, 2m, 2m}

	
	
	
	
	
	4.180

	
	
	
	
	{60%, 6m, 2m}

	{60%, 6m, 2m}

	
	
	
	
	
	1.758




Table 127. Evaluation results for AI/ML model deployed on network-side, Model II with 18 layers,
23 dBm UE power
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	18 x 2 x 256 complex array 
	(x, y) position
	Ideal
	{60%, 6m, 2m}
	{40%, 2m, 2m}

	{40%, 2m, 2m}

	86,400 UE drops
	1,000 UE drops
	1,000 UE drops
	4,879,729 complex parameters
	328,850,247 FLOPs
	4.293

	
	
	
	
	{40%, 6m, 2m}

	{40%, 6m, 2m}

	
	
	
	
	
	1.660

	
	
	
	
	{60%, 2m, 2m}

	{60%, 2m, 2m}

	
	
	
	
	
	3.638

	
	
	
	
	{60%, 6m, 2m}

	{60%, 6m, 2m}

	
	
	
	
	
	1.476




Table 128. Evaluation results for AI/ML model deployed on network-side, Model III with 18 layers,
23 dBm UE power
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	18 x 2 x 256 complex array 
	(x, y) position
	Ideal
	{60%, 6m, 2m}

	{40%, 2m, 2m}

	{40%, 2m, 2m}

	86,400 UE drops
	1,000 UE drops
	1,000 UE drops
	19,463,905 complex parameters
	1,284,201,840 FLOPs
	4.172

	
	
	
	
	{40%, 6m, 2m}

	{40%, 6m, 2m}

	
	
	
	
	
	1.377

	
	
	
	
	{60%, 2m, 2m}

	{60%, 2m, 2m}

	
	
	
	
	
	3.215

	
	
	
	
	{60%, 6m, 2m}

	{60%, 6m, 2m}

	
	
	
	
	
	1.226





[bookmark: _Toc118718154]AI/ML models using RSRP data and semi-supervised learning 
In this section, direct AI/ML positioning using SRS based RSRP is evaluated, which could be regarded as a fingerprinting-based positioning method utilizing condensed channel information. Specifically, this section focuses on semi-supervised learning, i.e., model training with both labelled data and un-labelled data. When the access to labeled data is inadequate, it is beneficial to also exploit un-labelled data (e.g., RSRP datapoints without known UE positions) to train the model. This is useful for deployments where there is limited availability of labelled data, due to difficulty or high cost of obtaining the ground truth label (e.g., UE position) for a relatively large proportion of training dataset.
There are two key motivations to investigate the semi-supervised learning that is capable of exploiting the un-labelled data:
· In real life deployment, un-labelled data (i.e., measurements only) are easier to collect as compared to labelled data, due to the challenging task of determining ground truth labels for each measurement sample.
· It is easier to continuously learn and adapt to environment “drifting”, if the learning can be accomplished with relaxed demand of labeled data.
[bookmark: _Toc118718155][bookmark: _Toc117264673]Semi-supervised learning and autoencoder learning structure
In this section, a fingerprinting-based positioning method refers to a computing graph where the model inference is the UE’s coordinates [x, y, z].  Firstly, as illustrated in Figure 52, the learner-A could build a computing graph to infer a position coordinate [x, y, z], which corresponds to a RSRP vector measurement by multiple TRPs.
[image: ]
[bookmark: _Ref118209900]Figure 52 Fingerprint-based positioning machine learner
It is also possible to build a reverse ML function that maps a position [x, y, z] to a RSRP vector. As illustrated by the Figure 53, with a same data set of CSI (RSRP vector) and its corresponding position coordinate, a second model could be learned to infer CSI (RSRP vector) corresponding to a position coordinate [x, y, z]. 
[image: ]
[bookmark: _Ref118210265]Figure 53 Fingerprint-based CSI (RSRP vector) machine learner
Therefore, the first inferrer (inferring position coordinates) and second inferrer (inferring CSI (RSRP vector)) could be connected sequentially as an autoencoder, in which the encoder is a position inferrer while the decoder is a CIR (RSRP vector) inferrer, owing to their converse relationship of input and output variables. The dimension of position coordinate vector (e.g., 3) is much smaller than the RSRP vector (e.g., 18 TRPs), hence, this autoencoder structure becomes an undercomplete autoencoder, which helps to conduct a semi-supervised learning, as depicted in Figure 54. 
 
[image: ]
[bookmark: _Ref118211259]Figure 54 Semi-supervised learning scheme
While the description above is general and assumed that a UE location is labelled as [x, y, z], in the evaluations presented below, the UE location is reduced to [x, y] since only horizontal position of the target UE is studied.

This initial investigation of the semi-supervised learning assumes a training dataset which is composed of a large amount of un-labelled data (e.g., 10,000 datapoints without label) and a small amount of labelled data (e.g., 100 datapoint with ideal labels). Here one datapoint = one RSRP vector of 18 RSRP values, and the ideal label = true [x, y] coordinate of the UE position. During the model training, a learning metric L as follows is used:


Where the recovery error is calculated as the mean squared error of RSRP data (i.e., the mean of squared difference between the actual RSRP and its inferred version at decoder output), and   is the mean of squared difference between actual label [x, y, z] and its inferred version at encoder output for the fraction of training data with labels. The beta and alpha are coefficients to balance the error sources to L.  In this formulation of L,  could be regarded as a regularization term in the loss function for training.
Note that in general L (the metric for learning) could be defined in other formats. In this section, the L defined above is used to carry out the preliminary investigation of the semi-supervised learning. 
[bookmark: _Toc118718156]Direct AI/ML positioning with fingerprinting based on SRS RSRP
The evaluation results provide a positioning accuracy comparison between two types methods:
1) the baseline method (legacy UL-TDOA positioning algorithm based on geometric calculations) and 
2) fingerprinting based machine learning method, i.e., a direct AI/ML positioning method based on UL SRS RSRP measurements.
a. For AI/ML fingerprinting method, two variants are evaluated: one using semi-supervised learning with a large training dataset with 99% un-labeled data, the other using supervised learning but a small training dataset.
[bookmark: _Toc117264674][bookmark: _Ref118292986][bookmark: _Toc118718157]ML model input and output
In this evaluation, the targeted ML model (positioning inference) take as input received signal power (RSRP) of the sounding reference signal (SRS). The model output is the estimated horizontal location coordinates of the target UE. This scheme is illustrated in Figure 55 below.
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[bookmark: _Ref115278011]Figure 55 Direct AI/ML positioning where the ML takes UL SRS RSRP from all TRPs and output the location of the target UE directly
To have a comparison with conventional methods in performance, ML takes UL SRS RSRP reports from all TRPs and output the location of the target UE directly. Specifically, UL RSRP measurements are obtained at network side and then used for positioning the UE. The RSRP was estimated from SRS transmission and UL measurement. For a given UE, the set of RSRPs are obtained from all 18 TRPs according to the agreed BS layout in a small hall (L=120m x W=60m). The input of 18 RSRP values are fed to the position estimator (conventional or ML based). 
Specifically, we investigate the performance of in the InF-DH deployment scenario. The TRPs estimate the following quantities from UL SRS:
· Estimated time of arrival (ToA) of the signal from the UE to the TRP where each value is an integer in time units of sampling duration (8.138ns), as inputs for reference method employing conventional geometric algorithm.
· Estimated RSRP of the signal from the UE to the TRP, as inputs for fingerprinting ML method.
[bookmark: _Toc118718158]Data generation for ML training and performance verification
In the data generation simulations, it is assumed that each TRP is equipped with a (M, N, P, Mg, Ng) = (1, 1, 2, 1, 1) antenna. Our study indicates that for the small hall and the layout of 18 TRPs, this smaller gNB antenna array than that agreed ((M, N, P, Mg, Ng) = (4, 4, 2, 1, 1)) is adequate for producing position estimation. The smaller antenna array at TRP also reduces the size of input to ML model to 1/16, hence allowing a much lower complexity for the ML solution. A challenging InF-DH clutter setting is assumed: {60%, 6m, 2m}. 
For ML training and testing, the dataset is generated using a system simulator with the agreed parameter settings. The data-generation keeps the propagation seeds constant to maintain spatial consistency between the drops while applying randomization on UE positions and noise/interference from one drop to another drop. In one drop, 1000 UEs are generated simultaneously and randomly distributed in the entire hall. With 10 of such drops, measurement dataset of 10,000 data-points were generated. Each datapoint is one set of measurement values for a UE, which is composed of 18 RSRP values as measured by the UE from 18 TRPs. 
In the evaluation of semi-supervised learning, the training dataset is composed of:
A. 10,000 un-labelled datapoints (RSRP vectors only)) and 
B. 100 labelled datapoints, i.e., 100 of RSRP vectors with each vector containing 18 RSRP values, and the true [x, y] coordinate of the dropped UE. 
As a comparison, for evaluation of supervised learning, only (B) is used in training, since (A) cannot be used.
Additionally, a different dataset of 2000 datapoints is used for testing the performance of AI/ML models.

[bookmark: _Toc117264676][bookmark: _Toc118718159]Semi-supervised learning for ML fingerprinting: computing graph structure 
The ML computing graph of neural network employed for semi-supervised learning is composed of 14 layers total, which is composed of an encoder and a decoder. In Figure 56 and Figure 57, the ML structures for an encoder and a decoder are illustrated, respectively. For the training stage of semi-supervised learning, the encoder and decoder are connected and forms an autoencoder, as illustrated in Figure 54. 
The encoder and decoder have similar structure, and each contains seven sequentially connected layers of fully connected layers or residual network layers, where each residual network layer is composed of two fully connected layers.  There are 400 to 600 neurons at each layer, as denoted in the in figures. It is worth mentioning that further tuning of the neural network structure is possible in order to reduce the complexity and enhance the positioning accuracy. This could be carried out in future study or a realistic engineering project.
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[bookmark: _Ref115278283]Figure 56 High-level structure of the ML model used for encoder on position inference
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[bookmark: _Ref118292560]Figure 57 High level structure of the ML model for decoder on RSRP vector inference
The neural network was trained using the semi-supervised learning with stochastic gradient feedback. The loss function (or cost function) is the one described in 4.2.1.  The training used layer-normalization, dropout for regularization, and Adaptive Moment Estimation (Adam) optimizer. After the model training stage, only the encoder part (i.e., Figure 56) is used in the model inference stage (also model testing in the evaluation).
It is noted that, in contrast, with supervised learning, the ML model contains only the encoder structure (i.e., Figure 56). That is, the training stage strives to obtain coefficient values of the ML model (=encoder structure), and after that the inference stage uses the trained ML model (=encoder structure).


Overall, the main features of the direct ML positioning method are summarized in Table 129.
[bookmark: _Ref118293326]Table 129 Key features of the direct AI/ML positioning method with semi-supervised learning
	ML model input for model inference 
(i.e. encoder part)
	18 RSRP values for a target UE. They are obtained from each TRP based on its SRS measurement 

	ML model output for model inference
	Horizontal position of the target UE

	Model complexity for model training (i.e. include both encoder and decoder)

	Model size 
	14 Dense layers in total, 7 layers for encoder (position inference) 7 layers for decoder (RSRP vector inference); about 400 to 
600 neuros per layer

	
	Number of parameters in the ML model
	around 2 million

	Number of ML models obtained from training
	One

	Number of ML models deployed for inference
	One



[bookmark: _Toc117264677][bookmark: _Toc118718160]Evaluation results of performance benchmarking: legacy method (UL-TDOA) vs. ML based fingerprinting (UL-SRS-RSRP) with semi-supervised learning vs. supervised learning 
In this subsection, performance results in terms of horizonal positioning accuracy are provided for both the legacy method and the ML based method.
For performance benchmarking, the following 3 methods are simulated and compared. Figure 58 presents the performance comparison in terms of cumulative probability function (CDF) for horizontal positioning errors for all 3 schemes.
1. legacy method (UL-TDOA) as a reference, denoted as “conventional” in Figure 58;
2. ML based fingerprinting (UL-SRS-RSRP) with semi-supervised learning with 100 datapoints at a hall with position labels and 10,000 RSRP datapoints without position labels, denoted as “semi-supervising” in the figure;
3. ML based fingerprinting (UL-SRS-RSRP) with supervised learning with 100 datapoints at a hall with position labels, denoted as “supervising”.
It is observed that the with semi-supervised learning, ML method outperforms the legacy method and the supervised learning with a small amount of data, in a large performance improvement. Thus semi-supervised learning is useful when the labeled data is scarce and supervised learning is not a viable solution.

[bookmark: _Toc111221764][bookmark: _Toc118214928][bookmark: _Toc118706474]With direct AI/ML positioning and SRS RSRP inputs, the semi-supervised ML method exploiting non-labelled data outperforms supervised learning with a large performance improvement, when only a small amount of labeled data is available. 
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[bookmark: _Ref115278407]Figure 58 CDF and percentiles of horizontal positioning errors using legacy and ML methods

Thus far the preliminary investigation provides promising results, and further investigation is needed. It is to be further studied how various factors affect the performance at model inference stage when the model is obtained with the proposed semi-supervised learning, for example, the percentage of labeled vs unlabeled datapoints, the overall training dataset size, etc. The generalization capabilities of model obtained via the semi-supervised learning is also to be studied, for example, under the various generalization aspects including different drops, clutter parameters, network synchronization error, etc.
In general, semi-supervised learning is an interesting and desirable direction to explore, due to its merit in exploiting easily obtained non-labelled data.  Considering the cost and latency in collecting ground truth labels, it is recommended to further investigate how to make a good use of the vast amount of readily available non-labelled data in ML based positioning. 
Based on the observations and analysis in this section, we have the following proposal. 
[bookmark: _Toc118706487]At least for direct AI/ML positioning approach, further investigate semi-supervised learning in terms of the potential performance benefits and the applicable deployment scenarios.

1.1.1 [bookmark: _Toc118718161]Summary of evaluation results
In Table 130, a summary of the evaluation results in the agreed reporting format is shown. 




[bookmark: _Ref118295284]Table 130. Evaluation results for semi-supervised learning vs supervised learning. The AI/ML model is deployed on network-side. The model is trained in InF-DH {60%,6m, 2m}, and tested with the same drop. No network synchronization errors or UE/gNB timing errors.
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @60% , 90% (m)

	
	
	
	
	Training/ validation
	test
	Model complexity
	AI/ML

	18 RSRP values for a target UE
	Horizontal position of the target UE
	1% data with ideal label, 99% data without labels
	{60%,6m, 2m}, same drop for training and testing

	100 data points with ideal label, 10000 data-points without label.
Total: 10,100 of 18 RSRP values   
	2,000 of 18 RSRP values
	around 2 million coefficients
for inference

	4.9, 12.5 
(semi-supervised learning)


	18 RSRP values for a target UE
	Horizontal position of the target UE
	Ideal
	{60%,6m, 2m}, same drop for training and testing

	100 of 18 RSRP values
	2,000 of 18 RSRP values  
	around 2 million coefficients
for inference

	8.5, 20.0 
(Supervised learning)



[bookmark: _Ref118642550][bookmark: _Toc118718162]Conclusion
Based on the extensive evaluation and analysis, we made the following observations: 
Observation 1	Centralized AI/ML assisted positioning approach (Case 3c) can achieve much better UE positioning accuracy with same or lower complexity than the Case 3b centralized direct positioning approach. Case 3c is also robust to operating SNR mismatch while Case 3b is not.
Observation 2	Distributed ML models that estimate ToAs independently at different TRPs achieve more robustness against operating SNR mismatch from that assumed during model training than centralized ML models. The centralized ML models either jointly estimate ToAs (AI/ML assisted appraoch) or generate UE position directly (direct AI/ML approach) are more sensitive to operating SNR mismatch.
Observation 3	For AI/ML assisted positioning approaches (e.g., Case 3a and Case 3c), model monitoring metrics can be accurately and reliably provided by the conventional positioning methods (e.g., residual loss). This is an important advantage of AI/ML assisted positioning approaches over the direct AI/ML positioning approach (e.g., Case 3b).
Observation 4	For AI/ML assisted positioning approaches, model monitoring leveraging conventional positioning method incurs negligible cost in terms of: signaling overhead, complexity, latency, and power consumption.
Observation 5	A single simple AI/ML model can be deployed to all TRPs to generate reliable LoS classification and ToA estimates in the InF-DH environment with {40%, 2m, 2m} clutter parameters.
Observation 6	Reliable positioning performance can be achieved by deploying an identical simple AI/ML model to operate independently at different TRPs in the InF-DH environment with {40%, 2m, 2m} clutter parameters. Simple conventional UL-TDOA positioning solutions at the centralized node can be retained to process the reports generated by the TRPs.
Observation 7	AI/ML-assisted positioning can substantially improve the UE positioning accuracy for the difficult cases where existing methods tend to fail.
Observation 8	Robust LoS classification, ToA estimation, and positioning performance can be achieved by deploying an identical simple AI/ML model to operate independently at different TRPs in the InF-DH environment with {40%, 2m, 2m} clutter parameters even when the operating SNR is 20 dB lower than that used for training the ML models.
Observation 9	A single simple AI/ML model deployed to all TRPs for LoS classification and ToA estimation can generalize to different InF-DH {40%, 2m, 2m} environment realizations. Reliable positioning performance is achieved irrespective of environment change.
Observation 10	For models trained with one InF-DH environment parameters and applied to a different environment, LoS classification false negative probability gradually improves while false positive probability degrades slightly as environment parameters deviate more and more from those used for training. As a result, LoS classification accuracy performance of the models is largely unaffected by the environment parameters.
Observation 11	For models trained with one InF-DH environment parameters and applied to a different environment, ToA estimation quality for the LoS links degrades gradually and only slightly as environment parameters deviate more and more from those used for training. For the NLoS links, ToA estimation quality also degrades gradually as environment parameters deviate more and more from those used for training.
Observation 12	A single simple AI/ML model trained in the InF-DH {40%, 2m, 2m} environment can generalize to different InF-DH environment clutter parameters.
Observation 13	Reliable positioning performance can be achieved by deploying an identical simple AI/ML model trained in the InF-DH {40%, 2m, 2m} environment to operate independently at different TRPs in the InF-DH {50%, 2m, 2m} environment and conventional UL-TDOA positioning algorithms at the centralized node. The positioning accuracy using ML model inputs is substantially better than that achieved using conventional baseline solutions.
Observation 14	Good positioning performance can be achieved by deploying an identical simple AI/ML model trained in the InF-DH {40%, 2m, 2m} environment to operate independently at different TRPs in the InF-DH {60%, 2m, 2m} environment and with conventional UL-TDOA positioning algorithms at the centralized node. The positioning accuracy using ML model inputs is substantially better than that achieved using conventional baseline solutions.
Observation 15	Good positioning performance is not achieved by conventional UL-TDOA positioning algorithms in the highly NLoS InF-DH {60%, 6m, 2m} environment even with high-quality LoS classification and ToA estimates produced by the ML models.
Observation 16	For a model trained without network synchronization errors, LoS classification KPIs are largely unaffected by the UE timing errors.
Observation 17	For a model trained without network synchronization errors, the ToA estimation accuracy for LoS links degrades gradually but remains stable as UE timing errors increase.
Observation 18	For a model trained with network synchronization error STD = 25 ns, LoS classification performances are largely unaffected by the UE timing errors.
Observation 19	With the model trained with network synchronization error STD = 25 ns, ToA estimation quality across all UE timing errors are improved substantially. The ToA estimation quality for LoS links, in particular, stays at high accuracy levels regardless of the UE timing errors.
Observation 20	For a model trained with network synchronization error STD = 50 ns, LoS classification performances are largely unaffected by the UE timing errors.
Observation 21	With the model trained with network synchronization error STD = 50 ns, ToA estimation quality across all UE timing errors are improved substantially. The ToA estimation quality for LoS links, in particular, stays at high accuracy levels regardless of the UE timing errors.
Observation 22	UE positioning performance of conventional UL-TDOA positioning solutions at the centralized node is robust and shows below 1 m errors for different UE timing errors for the ML model trained with STD = 50 ns network synchronization errors.
Observation 23	For a model trained without network synchronization errors, LoS classification false negative probability degrades gradually while false positive probability improves gradually as network synchronization error increases. As a result, LoS classification accuracy performance of a model trained without network synchronization errors is largely unaffected by the network synchronization errors.
Observation 24	For a model trained without network synchronization errors, the ToA estimation accuracy for LoS links degrades gradually but remains stable as network synchronization errors increase.
Observation 25	For a model trained with network synchronization error STD = 25 ns, LoS classification false negative probability degrades gradually while false positive probability improves gradually as network synchronization error increases. As a result, LoS classification accuracy performance of a model trained without network synchronization errors is largely unaffected by the network synchronization errors.
Observation 26	With the model trained with network synchronization error STD = 25 ns, ToA estimation quality across all network synchronization errors are improved substantially. The ToA estimation quality for LoS links, in particular, stays at high accuracy levels regardless of the network synchronization errors.
Observation 27	UE positioning performance of conventional UL-TDOA positioning solutions at the centralized node is degraded by network synchronization errors. The 90 percentile position errors are approximately 1.5 times the STD distribution parameter of the truncated Gaussian distribution.
Observation 28	Distributed direct path ToA estimation ML models can achieve direct path ToA estimation errors less than a meter at least 75% of the time in a highly NLoS {60%, 6m, 2m} environment.
Observation 29	Distributed direct path ToA estimation ML models together with conventional positioning algorithms can obtain highly accurate UE position estimates in highly NLoS {60%, 6m, 2m} environment. The positioning accuracy level is comparable to centralized direct positioning ML models.
Observation 30	Robust direct path ToA estimation and positioning performance can be achieved by deploying AI/ML models to operate independently at different TRPs in the InF-DH environment with {60%, 6m, 2m} clutter parameters even when the operating SNR is 20 dB lower than that used for training the ML models.
Observation 31	Direct path ToA estimation and positioning performance can degrade significantly by deploying AI/ML models to operate independently at different TRPs in the InF-DH environment with {60%, 6m, 2m} clutter parameters even when trained in one environment and then tested a new environment with the same average characteristics.
Observation 32	The AI/ML models trained with the InF-DH environment with {60%, 6m, 2m} clutter parameters and operating independently at different TRPs can generalize well to an environment with similar clutter height, like {40%, 6m, 2m} clutter parameters, but they fail to generalize in the environments with different clutter height, even if the clutter density is the same as training environment.
Observation 33	For the AI/ML models trained with the InF-DH environment with {60%, 6m, 2m} clutter parameters and fine-tuned with samples from {40%, 2m, 2m} dataset and operating independently at different TRPs, the performance improves for the same environment as used for fine-tuning, but degrades for other environments.
Observation 34	The AI/ML models trained with a mixed dataset from the InF-DH environment with {60%, 6m, 2m} and {40%, 2m, 2m} clutter parameters and operating independently at different TRPs operate well in environments with 2m clutter height while the performance degrades for environments with 6m clutter height.
Observation 35	Centralized direct path ToA estimation ML models can achieve an order of magnitude reduction in direct path ToA estimation errors with an order of magnitude reduction in total computational complexity than distributed direct path ToA estimation ML models.
Observation 36	Centralized direct path ToA estimation ML models together with conventional positioning algorithms can obtain highly accurate UE position estimates in highly NLoS {60%, 6m, 2m} environment; and can, in fact, outperform direct positioning ML models in terms of both better UE positioning accuracy and lower computational complexity.
Observation 37	Centralized direct path ToA estimation models are sensitive to operating SNR deviation from that assumed during model training. With a 20 dB SNR reduction, the 90%tile direct path ToA errors may more than double for smaller models and may increase by 2/3 for larger models.
Observation 38	UE positioning using centralized direct path ToA estimation models are sensitive to operating SNR deviation from that assumed during model training. With a 20 dB SNR reduction, the 90%tile 2D positioning errors may double or triple.
Observation 39	UE positioning using centralized direct path ToA estimation models do not generalize well to new environmental settings with the same clutter parameters.
Observation 40	UE positioning using centralized direct path ToA estimation models generalize well to environments with the same clutter height but do not generalize well to environments with other environmental differences.
Observation 41	Centralized direct path ToA estimation models trained in one environment and then fine-tuned with a small dataset from the second environment are much more robust in the second environment. The 90%tile direct path ToA errors may reduce by more than half when testing in the second environment.
Observation 42	Centralized direct path ToA estimation models trained in one environment and then fine-tuned with a small dataset from the second environment are more robust in the environments similar to the second environment in terms of clutter height.
Observation 43	Centralized direct path ToA estimation models trained with mixed datasets are much more robust in the second environment. The 90%tile direct path ToA errors may reduce by order of magnitude when testing in the second environment.
Observation 44	Centralized direct UE positioning models are sensitive to operating SNR deviation from that assumed during model training. With a 20 dB SNR reduction, the 90%-tile position errors may triple for smaller models and may double for larger models.
Observation 45	Centralized direct UE positioning models do not generalize well to new environmental settings with the same clutter parameters.
Observation 46	Centralized direct UE positioning models generalize well to environments with the same clutter height but do not generalize well to environments with other environmental differences.
Observation 47	Centralized direct UE positioning models trained in one environment and then fine-tuned with a small dataset from the second environment are much more robust in the second environment. However, the cost for fine-tuning is a performance loss for data sets with same clutter height as original training data set.
Observation 48	Centralized direct UE positioning models trained with mixed datasets are much more robust in the second environment and other environments with the same clutter height. There is a degradation for the other environments.
Observation 49	With direct AI/ML positioning and SRS RSRP inputs, the semi-supervised ML method exploiting non-labelled data outperforms supervised learning with a large performance improvement, when only a small amount of labeled data is available.


Based on the discussion in the previous sections we propose the following:
Proposal 1	For AI/ML assisted methods that support timing-based positioning, the conventional positioning method accounts for the network synchronization error to fully benefit from the improved ToA measurements provided by AI/ML.
Proposal 2	For direct AI/ML positioning method, protocols are defined to support site-specific model fine-tuning or re-training.
Proposal 3	For AI/ML based positioning accuracy enhancement, also study the benefit(s) and potential specification impact of Case 3c: NG-RAN node assisted positioning with a centralized model, AI/ML assisted positioning.
Proposal 4	For single-TRP, the same model complexity calculation applies to UE-side model as well as network-side model. Remove “When the model is at UE-side,” and “FFS: if the model is at network-side” in the agreement of RAN1#110bis.
Proposal 5	Investigate the impact of operating SNRs on the performance of each AI/ML approaches/constructions in the study item.
Proposal 6	Evaluate the performance of model monitoring metrics for both AI/ML assisted approach and direct AI/ML approach.
Proposal 7	For their proposed model monitoring metrics, the proponent company report model monitoring KPIs including: accuracy, signaling overhead, complexity (computation and memory cost for model monitoring), and latency.
Proposal 8	Capture in TR 38.843 that: For AI/ML assisted positioning, model monitoring metrics can be reliably provided by the conventional positioning methods.
Proposal 9	For AI/ML assisted positioning, evaluation results for all three types of constructions are captured in TR 38.843: (a) single-TRP with same model for N TRPs; (b) single-TRP with N different models for N TRPs; (c) Multi-TRP.
Proposal 10	At least for Case 2a and 3a, define ML model output which are to be carried by the standardized interfaces for model inference. Companies provide evaluation results for the defined ML model output.
Proposal 11	At least for Case 2b and 3b, define ML model input which are to be carried by the standardized interfaces for model inference. Companies provide evaluation results for the defined ML model input.
Proposal 12	For Case 2a and 3a, support both types of ML model output: (a) a single type of output (e.g., LOS/NLOS indicator or ToA); (b) composite type of output (e.g., both LOS/NLOS indicator and ToA).
Proposal 13	At least for direct AI/ML positioning approach, further investigate semi-supervised learning in terms of the potential performance benefits and the applicable deployment scenarios.
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