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[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
[bookmark: _Ref129681832]In RAN1#109e, RAN1#110 and RAN1#110bis-e, companies have reached some agreements on the evaluation methodology for AI/ML for CSI feedback enhancement use case [1] [2] [3]. Major configurations/parameters for baseline and dataset generation have also been agreed. However, there are still some issues that companies didn’t reach consensus in RAN#110bis-e related to CSI feedback enhancement use case [4].  
In this contribution, we further discuss some of those unresolved issues, focusing more on CSI compression sub use case.
In addition, we also discuss the following evaluation results for CSI feedback compression sub use case:
· System level performance comparisons between baseline approach (using Rel-16 Type II codebook) and AI/ML based approach.
· Performance evaluation results when using eigenvectors as the input to the CSI feedback generation part and as the output of the CSI reconstruction part.

Continued discussion on evaluation methodology for AI/ML based CSI feedback compression
Evaluation related topics
Baseline KPI
During the 3rd round discussion, an issue was discussed related to whether there is need to introduce an additional baseline based on ideal CSI, e.g., ideal eigenvectors (note: this baseline is applicable for both CSI compression and CSI prediction sub use cases). This baseline can be considered as the upper bound to determine the gap of AI/ML to the ideal optimized performance. The following question was raised by the moderator and discussed among companies, however, there was no consensus.
Question 2.4.1: For the evaluation of CSI enhancements, do you think there is need to introduce an additional throughput baseline based on ideal CSI (e.g., ideal eigenvector), which is taken as an upper bound? E.g., the baseline of ideal CSI is used for
· Option 1: For calibration purpose
· Option 2: To be taken as the eventual KPI for AI/ML-based performance comparison
rking assumption 
In the evaluation of the AI/ML based CSI feedback enhancement, if SGCS is adopted as the intermediate KPI for the rank>1 situation, companies to ensure the correct calculation of SGCS and to avoid disorder issue of the output eigenvectors
· Note: Eventual KPI can still be used to compare the performance


During RAN1#109e meeting, companies have agreed to adopt throughput and CSI feedback overhead as baseline metrics for performance evaluation and comparison is using Rel-16 or Rel-17 Type II as specified in [1]. Note that in RAN1#110bis-e, Type I Codebook (if it outperforms Type II Codebook) can be optionally considered for comparing AI/ML schemes up to companies [3]. 
While some companies viewed that comparing performance with upper bound may provide additional information regarding how much AI/ML-based approach can achieve, as we already agree to adopt either Rel-16 or Rel-17 Type II as benchmark(s) for performance comparison, we do not feel there is a strong need to introduce another baseline KPI for throughput comparison. Companies may decide to report/share such additional information in their results.   
Proposal 1: Companies may optionally report throughput comparison between AI/ML-based CSI enhancement and based on ideal CSI outcome.
Additional Intermediate KPIs
Besides baseline throughput (eventual KPI), companies agreed to use SGCS and NMSE as intermediate KPIs to evaluate AI/ML model performance first. During RAN1#110bis-e a few companies raised concern related to that SGCS may be sensitive to the order of the eigenvector and therefore have introduced other intermediate KPIs like RAR (Relative Achievable Rate) for evaluating the accuracy of the AI/ML output CSI. Regarding the concern on SGCS calculation, the following working assumption was discussed and agreed:Working assumption 
In the evaluation of the AI/ML based CSI feedback enhancement, if SGCS is adopted as the intermediate KPI for the rank>1 situation, companies to ensure the correct calculation of SGCS and to avoid disorder issue of the output eigenvectors
· Note: Eventual KPI can still be used to compare the performance


Given the above working assumption and the agreed-upon eventual KPI, i.e., system level throughput, we feel there is no strong need to introduce another intermediate KPI (in addition to SGCS and NMSE) for CSI feedback enhancement.
Proposal 2: Do not introduce additional intermediate KPI(s), companies to follow agreed-upon working assumption to avoid disorder of the output eigenvectors.
Payload alignment
As agreed in RAN1#109e, CSI feedback overhead is one of the baseline metrics for performance evaluation and comparison, there is a need to align the CSI payload calculation among companies to facilitate the discussion. During RAN1#110bis-e, a few options were discussed:
· [bookmark: _Hlk117511456]Option 1: Payload size is calculated based on the maximum rank
· Option 2: Payload size is calculated as the weighted average of CSI payload per rank and the distribution of ranks
Note that in RAN1#109e, companies also agreed on using the maximum overhead for each rank at each feedback as the baseline metric [1]:
Maximum overhead (payload size for CSI feedback) for each rank at one feedback instance is the baseline metric for CSI feedback overhead, and companies can provide other metrics. 
While each option may have its own merits, we feel option 2 may better reflect the actual payloads and counting the actual number of non-zero coefficients per rank at each CSI report should be considered to generate more accurate results.  
[bookmark: _Hlk116241557]Proposal 3: To achieve comparable comparison among results, companies should align the CSI feedback payload calculation based on the weighted average of CSI payload per rank and the distribution of ranks, in which the actual number of no-zero coefficients per rank are considered.

Evaluation result reporting
General evaluation result collection
To facilitate the discussions and result comparisons, having a unified report format may be desirable. During the RAN1#110bis-e meeting, the moderator has proposed the following table for result collection [4].
	
	
	Source 1
	…

	CSI generation part
	AL/ML model backbone
	
	

	
	Pre-processing
	
	

	
	Post-processing
	
	

	
	FLOPs/M
	
	

	
	Parameters/M
	
	

	CSI reconstruction part
	AL/ML model backbone
	
	

	
	Pre-processing
	
	

	
	Post-processing
	
	

	
	FLOPs/M
	
	

	
	Parameters/M
	
	

	Generic description
	Input type of CSI generation part
	
	

	
	Output type of CSI reconstruction part
	
	

	
	Quantization /dequantization method
	
	

	Dataset size
	Train/k
	
	

	
	Test/k
	
	

	Gain for intermediate KPIs
	SGCS
	
	

	
	NMSE
	
	

	
	[Others]
	
	

	Gain for eventual KPI
	Mean UPT
	
	

	
	5% UPT
	
	

	CSI payload
	Payload 1
	
	

	
	Payload 2
	
	

	
	Payload 3
	
	

	FFS others
	
	
	



Given that companies may be using datasets generated from different parameters and/or baselines, and may be using different input/output type for AI/ML model, the following attributes should also be included as part of the results:
· Scenario/channel model, e.g., dense urban, UMa or UMi @ 2GHz or 4GHz
· UE distribution, e.g., 80% indoor (3km/h), 20% outdoor (30km/h)
· Configuration(s), e.g., frequency, BS Tx power, antenna setup and port layout at UE side and NW side
· Baseline, e.g., Rel-16 or Rel-17 Type II or Type I
· Channel estimation, e.g., ideal, or realistic
· AI/ML model input / output type
Proposal 4: To facilitate evaluation related discussion and result collection, include at least the following attributes in the evaluation result report template in addition to what was proposed/discussed under Issue#3-11 from RAN1#110bis-e [2]:
· Scenario/channel model (e.g., dense urban, UMa or UMi @ 2GHz or 4GHz)
· UE distribution (e.g., 80% indoor (3km/h), 20% outdoor (30km/h))
· Configuration(s) (e.g., frequency, BS Tx power, antenna setup and port layout at UE side and NW side)
· Baseline (e.g., Rel-16 or Rel-17 Type II or Type I) used in the comparison
· Channel estimation, e.g., ideal, or realistic

Model generalization result collection
For model generalization, agreements were reached to verify the generalization performance of an AI/ML model over various scenarios, e.g., deployment scenarios like UMa/UMi/InH, outdoor/indoor UE distribution for UMa/UMi, carrier frequencies, and to verify the generalization performance over various configurations, e.g., various bandwidths, various sizes of CSI feedback payloads, various antenna port layouts.
Companies may choose one or more of the scenarios/configurations in their study. Like the general result collection, it would be better if companies can align some performance reporting attributes for model generalization evaluation. Table 2.2-1 provides an example of performance report.
Table 2.2-1: Model generalization evaluation report attributes
	
	
	Source 1
	Source 2

	Training type
	Type 1, 2 or 3
	
	

	Scenario / configuration
	Train
	
	

	
	Test
	
	

	Channel estimation
	Train
	
	

	
	Test
	
	

	Input/output type of AI/ML model
	Train
	
	

	
	Test
	
	

	Dataset size
	Train
	
	

	
	Test
	
	

	CSI payload
	Train
	
	

	
	Test
	
	

	Intermediate KPI: SGCS
	Trained scenario/config.
	
	

	
	Tested scenario/config.
	
	

	Intermediate KPI: NMSE
	Trained scenario/config.
	
	

	
	Tested scenario/config.
	
	

	Eventual/final KPI: Mean UPT
	Trained scenario/config.
	
	

	
	Tested scenario/config.
	
	

	Eventual/final KPI: 5% UPT
	Trained scenario/config.
	
	

	
	Tested scenario/config.
	
	

	Mechanism applied
	Pre/post-processing: Train
	
	

	
	Pre/post-processing: Test
	
	

	
	Others
	
	



Proposal 5: When reporting AI/ML model generalization evaluation results for CSI feedback enhancements, companies to consider aligning the reporting attributes and format as depicted in Table 2.2-1. 

System level performance evaluation results
In this section, we present our initial SLS result. For this result, the major system level simulation configuration parameters are listed in Table 4.1-1. All UEs are limited with rank 1 feedbacks and transmissions. The ML model’s input is based on ideal channel. Quantization is not used in the ML for this initial SLS.

Three simulation results are compared: The baseline FDD using Rel.16 Type II codebook, ML model using code size of 128, and ML model using code size of 64.  Figures 3-1 and 3-2 show the mean and 5% UPT (User Perceived Throughput) respectively. Figures 3-3 shows the CDF of the UPT for three cases.

We can see that both ML models yield better mean and 5% UPT than the FDD baseline. The ML model using code size of 64 experiences a little degradation comparing to code size of 128. This can be seen from the CDF curve of Figures 3-3. For the 5% UPT, code size of 64 shows some improvement. However, given the randomness of the simulation and limited number of samples averaged in this simulation, this improvement should not be given too much attention.

For overhead, even though we didn’t discuss integrated system level results after quantization, a general assumption is that 3 bits may be used for each code in the encoder output (when applying scalar quantization) which would sum to ~192 bits for the entire AI/ML model generated CSI feedback with code size 64. This would be roughly comparable with current FDD baseline with all UEs limited to rank1 feedback of Rel.16 Type II CB. When applying vector quantization, there will be significant saving in air-interface overhead as discussed in our contributions for previous meetings [5] [6] [7], as well as in Section 4 of this document. Results for integrated system level performance analysis after quantization together with more realistic SLS and more configurations will be followed in future contributions.

Observation 1: When evaluating AI/ML model performance CSI feedback compression sub use case using system level throughput KPIs, i.e., mean UPT and 5%-tile UPT, there is no significant performance difference between when encoder output size is 64 and when encoder output size is 128.
[image: ] 
Figure 3-1: Mean UPT of Non-full-buffer SLS
[image: ]
Figure 3-2: 5% UPT of Non-full-buffer SLS
[image: ]Figure 3-3: CDF of UPT of Non-full-buffer SLS

Other performance evaluation results using intermediate KPIs
In our contributions to RAN1#109e, RAN1#110 and RAN1#110bis-e [5] [6] [7], we shared the performance evaluation results of CSI compression sub use case using channel matrix as the input (type) to the CSI feedback generation part and at the UE side as the output (type) of the CSI reconstruction part at NW side.  
In this sub section, we discuss performance evaluation results for using eigenvectors as input (type) to the CSI feedback generation part and at the UE side as the output (type) of the CSI reconstruction part at NW side for Dense Urban scenario with UMa channel model.
Dataset construction
For dataset construction, we use the agreed-upon assumptions and simulation parameters from RAN1#109-e, RAN1#110 and RAN1#110bis-e. Table 4.1-1 depicts some major parameters used UMa dataset generation for 4GHz.
Table 4.1-1: parameters for UMa dataset generation
	Parameter
	Value

	Duplex, Waveform 
	FDD, OFDM 

	Scenario
	Dense Urban (Macro only)

	Frequency Range
	FR1 only, 4GHz.

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ 

	Antenna setup and port layouts at UE
	4RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1-2)

	BS Tx power 
	44dBm for 20MHz

	Numerology: SCS
	30kHz for 4GHz

	UE distribution
	100% outdoor (3km/h) 



AI/ML Model related details
To reduce CSI feedback overhead, we investigated using an autoencoder-based AI/ML model to first compress the CSI feedback at the UE side, followed by vector quantization and lossless encoding to generate a stream of bits as the output at the UE side to be sent as the CSI feedback bits. On the gNB side, the procedures are reversed; the received bits first go through lossless decoding, followed by de-quantization, then the de-quantized output is used as input to the AI/ML decoder to reconstruct the original CSI feedback. The study results discussed in this document is based on training Type 1 (Joint training of the two-sided model at a single side/entity, i.e., the network side). Figure 3.2-1 depicted the high-level functional flow diagram of our AI/ML-based CSI feedback compression and reconstruction study. 
As discussed above, the input type for the AI/ML autoencoder model is the eigenvectors the UE intends to send, and the output of prediction is the reconstructed eigenvectors. We use CNN-based neural network for the encoder and decoder.Figure 3.2-1: High-level functional flow diagram of AI/ML-based CSI feedback compression


Other modeling related parameters and configurations are listed in Table 4.2-1.

Table 4.2-1: AI/ML model related configurations 
	[bookmark: _Hlk110499082]AI/ML model details
	Value

	AI/ML model type
	CNN-based

	Training dataset size
	8,000

	Testing dataset size
	2,000

	Training/testing input type
	Eigenvectors of channels

	Training/testing output type
	Eigenvectors of channels

	Batch size
	32

	Epoch
	400

	Encoder output size
	128

	Quantization method
	Vector quantization

	Quantization codebook size
	[256, 512, 1024]

	Number of Model parameters
	Total = 1.91M (encoder = 780K, decoder = 1.13M)

	FLOPs
	Total = 160M (encoder = 55M, decoder = 105M



Scenario-based AI/ML Model Performance Evaluation Results
Performance for Dense Urban, UMa channel model

Table 4.3.1-1 shows the Rank 1 performance evaluation results for Dense Urban deployment scenario with UMa channel model and Table 4.3.1-2 shows the results for Rank 2. Note that all the performance results included in this section are the results after vector quantization (using the configuration specified in Table 4.2-1 and based on the functional flow is shown in Figure 4.2-1), followed by lossless encoding.

Table 4.3.1-1: Rank 1 results for Dense Urban UMa channel model 
	Scenario
	Frequency
	Code size
	Codebook size
	GCS (non-quantized)
	SGCS (non-quantized)
	GCS (quantized)
	SGCS (quantized)
	Avg. bits (after lossless enc)

	UMa
	4GHz
	128
	256
	0.9886
	0.9793
	0.8613
	0.7743
(-21%)
	7.8082

	UMa
	4GHz
	128
	512
	
	
	0.9340
	0.8896
(-9%)
	8.7731

	UMa
	4GHz
	128
	1024
	
	
	0.9697
	0.9483
(-3%)
	9.791



Table 4.3.1-2: Rank 2 results for Dense Urban UMa channel model 
	Scenario
	Frequency
	Code size
	Codebook size
	GCS (non-quantized)
	SGCS (non-quantized)
	GCS (quantized)
	SGCS (quantized)
	Avg. bits (after lossless enc)

	UMa
	4GHz
	128
	256
	0.9885
	0.9791
	0.8518
	0.7589
(-22%)
	7.8178

	UMa
	4GHz
	128
	512
	
	
	0.9371
	0.8958
(-9%)
	8.7792

	UMa
	4GHz
	128
	1024
	
	
	0.9705
	0.9492
(-3%)
	9.778



When we compare the SGCS between Rank 1 and Rank 2 results across various vector quantization codebook sizes, we observed that there is no significant performance difference between Rank 1 and Rank 2 from our experiments as shown in Figure 4.3.1-1.Figure 4.3.1-1: SGCS comparison between Rank 1 and Rank 2


[bookmark: _Hlk115184358]Observation 2: AI/ML-based CSI feedback compression using eigenvectors of channels as the input to the CSI feedback generation part and as the output of the CSI reconstruction part achieved decent reconstruction accuracy with ~3% performance degradation (evaluated using intermediate KPI SGCS) when applying vector quantization on the output of the CSI generation part with sufficiently large quantization codebook size, e.g., 1024.
Observation 3: AI/ML-based CSI feedback compression using eigenvectors of channels as the input to the CSI feedback generation part and as the output of the CSI reconstruction part achieved similar reconstruction performance for Rank 1 and Rank 2 (either non-quantized results or quantized results) when evaluated using intermediate KPI SGCS.
Observation 4: CSI reconstruction accuracy degrades noticeably when the size of vector quantization codebook size decreases, i.e., performance loss increases from 3% to 9% when codebook size decreases from 1024 to 512 and performance loss further increases to 21-22% when codebook size decreases to 256.
Observation 5: When using vector quantization on the output of CSI feedback generation part, AI/ML-based CSI feedback compression can significantly reduce the CSI feedback/air-interface overhead, i.e., to ~10 bits per CSI feedback instance (per rank).  
Observation 6: To achieve decent CSI reconstruction accuracy, the size of vector quantization codebook must increase significantly, which may incur much more overhead if the vector quantization codebook will be shared over the air-interface between the NW-side and UE-side.  
Proposal 6: Study the incurred air-interface overhead when utilization large vector quantization codebook to achieve better CSI reconstruction performance.  

Conclusions
In this contribution, we discussed our views on some of the issues that didn’t reach consensus among companies during RAN1#110bis-e. We also discussed the evaluation results of CSI feedback compression sub use case when using eigenvectors as input to the CSI feedback generation part and as the output of the CSI reconstruction part. Our observations and proposals are as follows.
[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Proposal 1: Companies may optionally report throughput comparison between AI/ML-based CSI enhancement and based on ideal CSI outcome.
Proposal 2: Do not introduce additional intermediate KPI(s), companies to follow agreed-upon working assumption to avoid disorder of the output eigenvectors.
Proposal 3: To achieve comparable comparison among results, companies should align the CSI feedback payload calculation based on the weighted average of CSI payload per rank and the distribution of ranks, in which the actual number of no-zero coefficients per rank are considered.
Proposal 4: To facilitate evaluation related discussion and result collection, include at least the following attributes in the evaluation result report template in addition to what was proposed/discussed under Issue#3-11 from RAN1#110bis-e [2]:
· Scenario/channel model (e.g., dense urban, UMa or UMi @ 2GHz or 4GHz)
· UE distribution (e.g., 80% indoor (3km/h), 20% outdoor (30km/h))
· Configuration(s) (e.g., frequency, BS Tx power, antenna setup and port layout at UE side and NW side)
· Baseline (e.g., Rel-16 or Rel-17 Type II or Type I) used in the comparison
· Channel estimation, e.g., ideal, or realistic
Proposal 5: When reporting AI/ML model generalization evaluation results for CSI feedback enhancements, companies to consider aligning the reporting attributes and format as depicted in Table 2.2-1. 
Table 2.2-1: Model generalization evaluation report attributes
	
	
	Source 1
	Source 2

	Training type
	Type 1, 2 or 3
	
	

	Scenario / configuration
	Train
	
	

	
	Test
	
	

	Channel estimation
	Train
	
	

	
	Test
	
	

	Input/output type of AI/ML model
	Train
	
	

	
	Test
	
	

	Dataset size
	Train
	
	

	
	Test
	
	

	CSI payload
	Train
	
	

	
	Test
	
	

	Intermediate KPI: SGCS
	Trained scenario/config.
	
	

	
	Tested scenario/config.
	
	

	Intermediate KPI: NMSE
	Trained scenario/config.
	
	

	
	Tested scenario/config.
	
	

	Eventual/final KPI: Mean UPT
	Trained scenario/config.
	
	

	
	Tested scenario/config.
	
	

	Eventual/final KPI: 5% UPT
	Trained scenario/config.
	
	

	
	Tested scenario/config.
	
	

	Mechanism applied
	Pre/post-processing: Train
	
	

	
	Pre/post-processing: Test
	
	

	
	Others
	
	


Proposal 6: Study the incurred air-interface overhead when utilization large vector quantization codebook to achieve better CSI reconstruction performance.  
Observation 1: When evaluating AI/ML model performance CSI feedback compression sub use case using system level throughput KPIs, i.e., mean UPT and 5%-tile UPT, there is no significant performance difference between when encoder output size is 64 and when encoder output size is 128.
Observation 2: AI/ML-based CSI feedback compression using eigenvectors of channels as the input to the CSI feedback generation part and as the output of the CSI reconstruction part achieved decent reconstruction accuracy with ~3% performance degradation (evaluated using intermediate KPI SGCS) when applying vector quantization on the output of the CSI generation part with sufficiently large quantization codebook size, e.g., 1024.
Observation 3: AI/ML-based CSI feedback compression using eigenvectors of channels as the input to the CSI feedback generation part and as the output of the CSI reconstruction part achieved similar reconstruction performance for Rank 1 and Rank 2 (either non-quantized results or quantized results) when evaluated using intermediate KPI SGCS.
Observation 4: CSI reconstruction accuracy degrades noticeably when the size of vector quantization codebook size decreases, i.e., performance loss increases from 3% to 9% when codebook size decreases from 1024 to 512 and performance loss further increases to 21-22% when codebook size decreases to 256.
Observation 5: When using vector quantization on the output of CSI feedback generation part, AI/ML-based CSI feedback compression can significantly reduce the CSI feedback/air-interface overhead, i.e., to ~10 bits per CSI feedback instance (per rank).  
Observation 6: To achieve decent CSI reconstruction accuracy, the size of vector quantization codebook must increase significantly, which may incur much more overhead if the vector quantization codebook will be shared over the air-interface between the NW-side and UE-side.  
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