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Introduction
AI/ML for physical layer has gained tremendous interest in academic research in recent years. The first 3GPP SI will study the use of AI/ML technology in air interface design, through three carefully selected use cases [1]. New evaluation methodology and corresponding evaluation are required to fully understand the benefit of AI/ML in comparison with traditional methods, and the associated potential specification. 
Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels









In this paper, we focus on the evaluation of CSI feedback enhancement use case.  
Evaluation methodology 
Remaining details on CSI compression   
On evaluation methodology, the SGCS is chosen as the intermediate metric.
Agreement

For the evaluation of the AI/ML based CSI feedback enhancement, if the GCS/SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’, between GCS and SGCS, SGCS is adopted











For higher rank, it was discussed whether a simple average over each layer can be used, or a weighted average where weighing factor is based on eigen value of each layer. Different options are captured. 

Method 1: Average over all layers
o    Note: [image: ] is the [image: ]eigenvector of the target CSI at resource unit i and K is the rank. [image: ]is the [image: ] output vector of the output CSI of resource unit i. [image: ] is the total number of resource units. [image: ] denotes the average operation over multiple samples.
[image: A picture containing text  Description automatically generated]
·     Method 2: Weighted average over all layers
o    Note: Companies to report the formula (e.g., whether normalization is applied for eigenvalues)
·     Method 3: GCS/SGCS is separately calculated for each layer (e.g., for K layers, K GCS/SGCS values are derived respectively, and comparison is performed per layer)
·      Other methods are not precluded
·      FFS: Further down-selection among the above options or take one/a subset of the above methods as baseline(s).
 























 





In our view, since the cosine similarity is to provide insight into the AI performance per layer, reporting cosine similarity per layer would provide the complete picture.  

Proposal 1: For rank>1, SGCS is separately calculated for each layer.  

Baseline performance calibration for CSI compression 
It was agreed that the R16 type II codebook will be used as the performance baseline to evaluate the potential gain using AI based approach. How type II codebook is implemented is up to each company’s implementation. 

Based on submissions from RAN1 110, it was observed a large variation of the type II codebook performance with the agreed EVM. The variation of type II codebook performance among companies are even larger than the AI based approach. This results in some observation of no gain, to large percentage of gain comparing to the traditional codebook. To draw conclusion whether AI based approach is beneficial, RAN1 should consider calibrate the type II codebook SGCS performance.  

Proposal 2: RAN1 consider to calibration type II codebook SGCS, to properly evaluate the gain of AI based approach.  

For CSI compression evaluation, identifying the throughput gain at the same feedback overhead or feedback overhead reduction at the same throughput both can be considered in the evaluation of auto encoder’s benefit over conventional Type II codebook based feedback. Of course, quantification of that depends on accurate counting the feedback overhead for AI based approaches and conventional Type II feedback scheme.

As a first step, Type II’s feedback overhead counting: we can align the following:
1. Let be the maximum feedback overhead (in bits) of Type II for configuration c and rank r, , (which can be found from inspecting TS 38.214 for configuration 1/2/3/4/5/6, for configuration 7/8 extension to rank 3/4 can be also considered),  
2. Let  be the maximum number of non-zero coefficients (which is  for rank 1, and  for rank 2/3/4) for configuration c and rank r, .
3. From system level simulation conducted for Type II configuration c, denote the rank distribution of PDSCHs at a given offered load as   For example, with a given Type II configuration, if PDSCH’s rank distribution is 10% at rank 1, 40% at rank 2, 40% at rank 3, 10% at rank 4, then .	Note gNB scheduler design may bear proprietary information, but the outcome of the gNB scheduling decision should be shared to understand under what conditions the gain of auto-encoder is achieved. 
4.  Let  be the average number of actual non-zero coefficients at different ranks at the chosen Type II configuration. Note with Type II configuration 1 or 2, typically the maximum number of non-zero linear combination coefficients is taken. For other Type configurations, then depending on the delay spread, the reported non-zero linear combination coefficients can be fewer than the maximum allowed by specification, in another word 
5. Then the average Type II feedback overhead (in bits) at configuration is given by
 
 Note: 7 bits for each non-zero coefficients: 3 bits for amplitude and 4 bits for phase)

Similarly for auto encoders, the rank distribution can be also reported, so the average feedback overhead is  where A(r) is the number of feedback bits at a given rank for an autoencoder, and  is the rank distribution at a given offered load.

We provide two tables below for B(c,r) and N(c,r) for alignment with companies. We have

Proposal 4: To achieve fair comparison with Type II CSI feedback, companies should align the maximum feedback overhead for Type II, the maximum number of non-zero coefficients for Type II. Companies should report the average number of non-zero coefficients for Type II, rank distribution of PDSCHs for both Type II and autoencoder.


Table I: Maximum feedback overhead (in bits) of Type II for configuration



	
	B(c,r)

	
	rank 1
	rank 2
	rank 3
	rank 4

	config 1
	62
	110
	94
	102

	config 2
	92
	167
	151
	159

	config 3
	112
	205
	182
	199

	config 4
	170
	318
	295
	312

	config 5
	228
	431
	408
	425

	config 6
	282
	539
	524
	561

	config 7
	246
	467
	437
	463

	config 8
	332
	636
	606
	632



Table II: Maximum number of non-zero coefficients

	
	N(c,1)
	N(c,2), N(c,3), N(c,4)

	
	K0
	2*K0

	config 1
	4
	8

	config 2
	8
	16

	config 3
	8
	16

	config 4
	16
	32

	config 5
	24
	48

	config 6
	28
	56

	config 7
	24
	48

	config 8
	36
	72


Remaining details on CSI prediction   
Other than CSI compression, CSI prediction is another interesting use case. CSI prediction in time domain uses one sided model, where the prediction can be either at the gNB side or at the UE side. For EVM, a set of conclusions are captured in RAN1 110, where majority of the EVM for CSI prediction is already agreed including: 
· 100% outdoor UE is assumed for UE distribution. 
· UE speed is assumed for evaluation with 10, 20, 30, 60, 120km/h
· 5ms CSI feedback periodicity is taken as baseline, while other CSI feedback periodicity values can be reported for the EVM
Companies are encouraged to report the details of their models for evaluation, including the structure of the AI/ML model, the input CSI type, output CSI type, data pre/post processing and loss function.  
The key remaining EVM is the baseline performance. In R18 MIMO discussion, the signal processing algorithm used to predict future channel is up to each company’s implementation. Similar method can be used in AI based CSI prediction, the baseline performance can be up to each company’s report for performance and complexity comparison purpose.   

Proposal 3:  For CSI prediction using one sided model, companies to report the traditional method used for prediction.  

Preliminary evaluation results 
CSI compression  
For auto-encoder/decoder based CSI compression use case, CNN based autoencoder and transformer based auto-encoders are the two main directions for AI model design. Earlier publications are mostly CNN based 
[3-6]. [3] designed CsiNet which uses one convolutional layer and fully connected layer as a simple encoder, and multiple stage of refine block with skip connection at decoder. [4,5,6] fine turn the design with different filter sizes, dilation factor, number of layers etc.

Recent work have moved to transformer based auto-encoder design [7,8]. Transformer based auto-encoder has observe better gain comparing to CNN, due to its global view comparing to local view of CNN. 

For CNN based auto-encoder, we observe similar performance comparing type II codebook with low feedback bits such as config 1 and 2. However as feedback bits go higher, type II codebook performance improve faster than CNN based auto-encoder, resulting worse performance for CNN based auto-encoder in Config 5 and 6.   In this contribution, we only present transformer based autoencoder performance.  

In RAN1 110, three cases have been agreed to study the AI/ML model performance. 
Agreement
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.






























The following evaluation assumption following agreed EVM are used. The main focus is to study the impact of antenna port layout (N1/N2/P).  

Table III: summary of evaluation setting

	Parameter
	Value

	Duplex, Waveform 
	FDD, OFDM 

	Carrier frequency
	2GHz  

	Bandwidth
	10MHz  

	Subcarrier spacing
	15kHz  

	Nt
	32: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

And (M, N, P, Mg, Ng; Mp, Np) = (8,8,2,1,1;4,4)


	Nr
	4: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	Layout 
	21 cells, ISD: 200m for dense Urban (Macro only). 


	UE dropping
	20% outdoor, 80% indoor



To get diverse data samples, the data set for training and testing is generated with 500 random drops, each with 21 cells, 16 UEs per cell, 10 different CSI-RS measurements per UE. Per CSI-RS measurement, the frequency domain matrix size is 4x32x52. Total data set size is 500 * 21 * 16 * 10. 

Case 1:  

For case 1, the training data set is generated for [8,2,2] antenna port layout, and testing with the same [8,2,2] antenna port layout. Figure 1-4 shows the preliminary results of SGCS comparing to type II codebook for each layer, up to 4 layers. Input to the AI model is the eigen-vector of each layer per sub-band, and output of the decoder is the precoder per layer for each sub-band. The AI model is trained based on the 1st eigen-vector only, and used for inferencing for the 2nd, 3rd and 4th layer as well. The transformer based auto-encoder achieve better performance for all layers. Higher gain is observed in higher ranks. 
[image: ]
Fig.1 SGCS of layer 1
[image: ]
Fig.2 SGCS of layer 2

[image: ]
Fig.3 SGCS of layer 3

[image: ]
Fig.4 SGCS of layer 4

Case 2:  

For case 2, the training data set is generated for [8,2,2] antenna port layout, and testing with the same [4,4,2] antenna port layout. Figure 5 shows the preliminary results of SGCS comparing to testing dataset of [4,4,2] versus testing data set of [8 2 2]. Only the layer 1 SGCS is shown, and other layers follow similar observations.  

As expected, when the training dataset is mis-matched with the testing dataset, larger performance drop is observed. 
[image: ]
Fig.5 SGCS of layer 1 for case 2


Case 3:  

For case 3, the training data set is mixed data set with [8,2,2] antenna port layout and [4 4 2] antenna port layout. For each antenna port layout, data is generated with 500 independent drops. So the total data set size is doubling of case 1. The trained model is tested using [4,4,2] antenna port layout and [8 2 2] separately. Figure 6 shows the preliminary results of SGCS comparing to testing dataset of [4,4,2] versus testing data set of [8 2 2]. Only the layer 1 SGCS is shown, and other layers follow similar observations.  

When the training dataset is mix with different antenna port layout, and testing dataset is a subset of training mix, the trained model works in both testing data set. 
[image: ]
Fig.6 SGCS of layer 1 for case 3

 
Observation 1: Transformer based AE can achieve better SGCS performance comparing to type II codebook.

Observation 2: AI based approach achieve higher gain in SGCS for higher rank compared to type II codebook. 

Observation 3: For generalization study case 2, when the autoencoder is trained in UMa with [8 2 2] antenna port layout, and test with [4 4 2] antenna port layout, large performance loss is observed.

Observation 4: For generalization study case 3, when the autoencoder is trained in mixed dataset with [8 2 2] and [4 4 2] antenna port layout, and test with [4 4 2] antenna port layout, similar performance is observed as case 1.  
 
CSI prediction 
LSTM based AI model description: 

For CSI prediction, we focus on UE side prediction where the past measured channel based on CSI-RS are stored in buffer and used to predict the next one or two CSI-RS occasion. Dataset is generated using system level simulator, UMa deployment but all UEs are outdoor with 30kmph speed. We used eight time-domain samples to predict the next 1 or 2 channel response, as shown in Fig. 2.  

[image: ]
Fig. 2 CSI prediction using time domain channel responses

Unlike the CSI compression use case which mainly focus on spatial and frequency domain correlation, the CSI prediction mainly rely on time domain correlation priority of the channel. A LSTM network is a nature choice in this case. 

Preliminary results on CSI prediction

Some pre-liminary evaluation results are shown in Table III. The baseline performance is no prediction, which assume UE always calculate PMI based on the latest CSI-RS measurement. This is represented by the sample and holder error. Normalized MSE is used as the metric, which is defined as 



 In comparison, the LSTM prediction gives significant gain over the sample and hold performance.  


Table IV: NMSE of CSI prediction

	
	Sample/Hold Error
	LSTM

	5ms
	0.44dB
	-22.66dB

	10ms
	4.11dB
	-12.02dB




Observation 5: LSTM based AI model achieves more than 10dB gain for CSI prediction use case. 

Conclusion
In the paper, we discuss the evaluation methodology and initial evaluation result for AI based CSI enhancement.   The proposals and observations are: 

Proposal 1: For rank>1, SGCS is separately calculated for each layer.  

Proposal 2: RAN1 consider to calibration type II codebook SGCS, to properly evaluate the gain of AI based approach.  

Proposal 3: To achieve fair comparison with Type II CSI feedback, companies should align the maximum feedback overhead for Type II, the maximum number of non-zero coefficients for Type II. Companies should report the average number of non-zero coefficients for Type II, rank distribution of PDSCHs for both Type II and autoencoder.

Proposal 4:  For CSI prediction using one sided model, companies to report the traditional method used for prediction.  

Observation 1: Transformer based AE can achieve better SGCS performance comparing to type II codebook.

Observation 2: AI based approach achieve higher gain in SGCS for higher rank compared to type II codebook. 

Observation 3: For generalization study case 2, when the autoencoder is trained in UMa with [8 2 2] antenna port layout, and test with [4 4 2] antenna port layout, large performance loss is observed.

Observation 4: For generalization study case 3, when the autoencoder is trained in mixed dataset with [8 2 2] and [4 4 2] antenna port layout, and test with [4 4 2] antenna port layout, similar performance is observed as case 1.  

Observation 5: LSTM based AI model achieves more than 10dB gain for CSI prediction use case. 
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