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[bookmark: _Ref5850594]Introduction
At RAN1 110, the following agreements and conclusions were made regarding evaluations on AI/ML for beam management: 

Agreement
 The Following updated based on the agreements in RAN 1 #109-e is adopted
	Parameters
	Values

	UE distribution

	· 10 UEs per sector/cell for system performance related KPI (if supported) [e.g,, throughput] for full buffer traffic (if supported) evaluation (model inference). 
· X UEs per sector/cell for system performance related KPI for FTP traffic (if supported) evaluation (model inference). 
· 
· Other values are not precluded 
· Number of UEs per/sector per cell during data collection (training/testing) is reported by companies if relevant


	UE Antenna Configuration
	· Antenna setup and port layouts at UE: [1,2,1,4,2,1,1], 2 panels (left, right)
· Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams




Agreement
The Following updated based on the agreements in RAN 1 #109-e is adopted
	Parameters
	Values

	UE Speed
	· For spatial domain beam prediction, 3km/h
· For time domain beam prediction: 3km/h(optional), 30km/h (baseline), 60km/h (optional), 90km/h (optional), 120km/h (optional)
· Other values are not precluded

	UE distribution
	· For spatial domain beam prediction: 
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor


	

Agreement
· If UE orientation is modelled, it can be independently modelled from UE moving trajectory model. 
· This is not precluded that UE orientation coupled with UE moving trajectory model. 

Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· FFS on the beams of Set B
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each report/measurement during training and/or inference) 
· FFS on fixed or variable number of beams (pairs)
· FFS on the details 
· Other options are not precluded. 
· FFS on the number of beams (pairs) in Set B
· Note: This does not preclude the alternative that Set B is different from Set A.

Agreement
· To evaluate the performance of AI/ML in beam management at least for NW side beam prediction, UCI report overhead can be further studied as one of KPI options. 
· FFS: number of UCI reports and UCI payload size

In this document, we refer to the above-mentioned agreements for the beam management use case.
Evaluation aspects related to spatial and temporal beam prediction
Some evaluation aspects and proposals are common to both spatial and temporal beam prediction, but some of them are specific to each use case. In the following subsections, we discuss some common and specific aspects related to each use case.

[bookmark: _Hlk100867512]Evaluation methodology
One of the items regarding simulation assumptions that is still under discussion is BS antenna configuration and Tx power. A major issue related to the following proposed FL alternative in RAN1 110 (and RAN1 109e) is that it translates into a very high output power per antenna element that is not realistic for commercial deployments. 

Alt 1:
· Antenna setup and port layouts at gNB: [4, 8, 2, 1, 1,1,1], (dV, dH) = (0.5, 0.5) λ as baseline
· With 40dBm Tx power

In particular, the above set of assumptions mean an output power per antenna element of 25dBm which is very high. With this being said, we have the following proposal:


Proposal 1: Consider the following simulation assumptions for BM-Case1 and BM-Case2:
· BS antenna configuration: [8, 16, 2, 1, 1,1,1], (dV, dH) = (0.5, 0.5) λ
· BS Tx power: 34 dBm

With the above set of assumptions, the output power per antenna element would be 13dBm which is much more aligned with practical considerations. As an outdoor deployment (UMa) is agreed as the baseline deployment for beam prediction use cases, we can leverage the larger array gain that we can get using a larger gNB panel with a greater number of antenna elements and therefore avoid using a high BS TX power (40dBm) - which in turn translates into unusually high output power per antenna element (25dBm) - to satisfy the outdoor EIRP requirements. 

Now, we try to provide some elaborations on the definition of Set B of beams for spatial domain beam prediction. In the agreement that was made in RAN1 109e, BM-Case1 is defined as spatial-domain DL beam prediction for Set A of beams based on measurement results of Set B of beams and BM-Case2 is defined as temporal DL beam prediction for Set A of beams based on the historic measurement results of Set B of beams. We believe a clarification is needed regarding what exactly Set B is referring to, particularly considering the distinctions between UE-side and gNB-side AI/ML models. When we refer to measured beam set by UE as “Set B”, not all of these measurements may be available as input to UE-side and particularly gNB-side AI/ML models (as only a subset of these measurements is reported to gNB).

Proposal 2: For both sub use cases BM-Case1 and BM-Case2, clarify interpretation of “set B” by selection of one of the following alternatives
· Alt.1: Set B is a set of beams, whose measurements are performed (for prediction of set A) 
· Alt.2: Set B is a set of beam whose measurements are available as inputs of the AI/ML model (for prediction of set A)

To clarify Proposal 2 using an example, if there are  beams transmitted by gNB and UE measures  gNB beams, and reports  gNB beams, the following describe Alt. 1 and Alt. 2:
· Alt. 1: For both UE-side and gNB-side AI/ML models, Set B is the set of  measured beams.
· [bookmark: _Hlk115430075]Alt. 2: For UE-side AI/ML model Set B is the set of  measured beams and for gNB-side AI/ML model Set B is the set of  “reported” beams whose measurements are “available” at gNB side.

One of the important aspects for evaluation methodology that needs to be discussed is identifying the scenarios/configurations for evaluating the generalization capability of AI/ML models. In the following section, we discuss our view of how different scenarios/configurations could be defined.

Evaluating generalization capability of AI/ML models
Let us consider the following categorization for different scenarios/configurations that can be defined for evaluating the performance of AI/ML models, for temporal beam prediction:

[bookmark: _Hlk110813607]Inter-site (heterogeneous): train AI/ML model on a first set of deployment type(s) and test it on a second (unseen) deployment type.
· Example: train for UMi deployment and test on UMa deployment
Inter-site (homogeneous): train on a first set of site(s) of a given deployment type and test it on a second (unseen) site of that same deployment type.
· Example: train and test on two different realizations of UMi à This can be realized by considering different random seeds within the same deployment which would represent a different ‘environment’ within that deployment.
Intra-site: train AI/ML model for a given site and test it on unseen variations within that same site. Let us consider two sub-categories:
· Environment variations due to moving objects, time of day, foliage variation over seasons, etc.: Given the agreements regarding utilizing channel models based on 38.901 [1] for evaluations, the existing channel models do not support this systematic intra-site dataset generation. 
· Basic generalization scenarios: Scenarios identifying minimum conditions/requirements for an AI/ML model to work well in practice 
· Examples for these scenarios are training and testing on different sets of UE speeds/orientations/trajectories 
Across configurations:  train AI/ML model on a first set of configuration(s) and test on a second configuration
· Example: train and test for different UE or gNB codebooks or different gNB array down-tilt angles.

For downlink TX beam prediction, we can train assuming first UE codebook and test assuming second UE codebook, and then, we can try to see how well the AI/ML model generalizes across these two scenarios. This is of practical significance particularly for gNB-side beam prediction to see how well an AI/ML model that has been trained for a certain UE ‘type’ generalizes to another UE ‘type’. Now, let us consider UE-side AI/ML models for beam prediction. We can train an AI/ML model at the UE side assuming first gNB codebook and test the AI/ML model assuming second gNB codebook (potentially with different beam shapes) and see how the AI/ML model performs across these scenarios. This is also of practical significance, as we can analyse how the UE-side AI/ML model that has been trained in a given cell generalizes to a secondary cell within the same site in which the secondary gNB uses a different codebook, potentially with different beam shapes.

At a high level, there could be two methodologies for UE- side AI/ML models. The first methodology is to utilize a ‘large’ AI/ML model and train that AI/ML model using a ‘large’ dataset that is representative of multiple scenarios/configurations. The main question to ask is: when deployed, how good this large trained AI/ML model is going to perform across different scenarios/configurations. The second methodology is to use multiple ‘smaller’ AI/ML models that have been trained using ‘smaller’ datasets representing smaller sets of scenarios/configurations. For this methodology, if the UE moves to a new scenario/configuration, then the AI/ML model will change to the one that is tailored to that scenario/configuration. The choice between first and second methodology at least partially depends on how ‘different’ the dataset distribution is across different scenarios/configurations. A practical approach to tackle this methodology selection is to collect a large amount of data that naturally represents different scenarios/configurations and determine how many models are needed for a given use case through offline engineering. An important signaling aspect that has been discussed in [2] that would help with both of the methodologies above is signaling of assistance information. The signaling of assistance information could help UE identify the scenario/configuration that it is deployed in (‘scenario discovery’), and the performance of AI/ML model could improve through this identification.


[bookmark: _Hlk110860571]Proposal 3: Consider the following categorizations for definition of scenarios/configurations for evaluating the generalization capability of AI/ML models for temporal beam prediction:
Inter-site (heterogeneous): train AI/ML model on a first set of deployment type(s) and test it on a second (unseen) deployment type.
Inter-site (homogeneous): train on a first set of site(s) of a given deployment type and test it on a second (unseen) site of that same deployment type.
Intra-site: train AI/ML model for a given site and test it on unseen variations within that same site. 
Across configurations:  train AI/ML model on a first set of configuration(s) and test on a second configuration


UE Orientation Model
In RAN1 109e UE orientation was one of the FFS items and we have the following proposal regarding UE orientation. 

Proposal 3: For BM-Case2, consider the scenario in which the UE orientation changes as a function of UE trajectory.
FFS: details of this function
Defining UE orientation as above can give us the necessary tools to try to model how UE orientation changes in practical scenarios. 

KPIs 
Spatial and temporal beam prediction may lead to reduced reference signal overhead (and/or UE power consumption), but on the other hand the overall performance of beam prediction depends on beam prediction quality. Reducing reference signal overhead beyond a certain point may adversely impact the overall performance due to poor beam prediction quality. One major direction of RAN1 evaluations on this topic should be to study the trade-off between reference signal overhead reduction (and/or UE power consumption) and a measure for beam prediction quality. The measure for beam prediction quality may be defined based on the agreed KPIs from RAN1 109e. The output of this study could help in defining criteria or metrics for AI/ML model performance monitoring which could lead to model activation/deactivation or updating of AI/ML models.

[bookmark: _Hlk115384525]Proposal 4: For BM-Case1 and BM-Case2, study the impact of incorporating beam prediction quality information (e.g., a measure for prediction confidence such as std of predicted RSRPs) on evaluating the performance of AI/ML model, using the agreed KPIs
· Note: The results from this study could help in defining criteria or metrics for AI/ML model performance monitoring which could lead to model activation/deactivation or updating of AI/ML models.

Beam prediction at UE and gNB have different requirements in terms of signalling overhead and the associated beam prediction accuracy. For instance, gNB only has access to a subset of UE measurements and having access to more beam measurements may improve gNB-side beam prediction accuracy. On the other hand, in order for gNB to have access to more UE beam measurements the UE report overhead would inevitably need to increase. The trade-off between beam prediction accuracy and required signalling overhead should be considered in the study for UE-side and gNB-side prediction, and the benefits and drawbacks of beam prediction at each side should be identified.

[bookmark: _Hlk115384563]Proposal 5: For BM-Case1 and BM-Case2, study the benefits and trade-offs associated with UE-side and gNB-side beam prediction, using the agreed KPIs 

For spatial domain beam prediction and SLS evaluations, one metric that can give useful intuitions about the overall performance of the system is spectral efficiency CDF across UEs in the system. 

[bookmark: _Hlk115384580]Proposal 6: At least for BM-Case1, consider spectral efficiency CDF for SLS evaluations as a KPI.

In RAN1 110 there was an agreement on potential outputs related to AI/ML models in the agenda item focused on signaling aspects, and potential inputs to AI/ML models are still under discussion in the Evaluations agenda item. The potential inputs to AI/ML models for beam prediction naturally depend on which side the AI/ML model is located. For instance, some inputs (such as UE RX beam information) may be available at UE side, but not the gNB side. The following proposal discusses different options for AI/ML model inputs for beam prediction use cases.

[bookmark: _Hlk115384603]Proposal 7: For both spatial and temporal prediction evaluation, consider the following options as inputs to AI/ML models for the study and potential down selection:
· Option 1: For Tx-Rx beam pair prediction:
· L1-RSRP of Tx-Rx beam pairs in Set B 
· Option 2: For DL Tx beam prediction 
· L1-RSRP of Tx beams in Set B, measured by a (set of) Rx beam(s) selected by UE
· FFS on selection criteria of (set of) Rx beam(s) by UE
· Option 3: For DL Rx beam prediction, 
· L1-RSRP of Rx beams in Set B (where Set B of beams is for Rx beam)
· Note: DL Rx beam prediction may or may not have spec impact  
· Other inputs (e.g., CIR) are not preluded. 
· Note 1: Other assistance information is not precluded
· Note 2: Options 1 and 3 are applicable to UE-side AI/ML models.

Performance Results
We present our simulation results for temporal and spatial domain beam prediction in this section. 

Temporal beam prediction
Here we present results for temporal beam prediction, comparing predictions from ML methods to a sample-and-hold baseline for UE Rx beam and gNB Tx beam prediction on RSRP data collected from mobile UEs.

Simulation Assumptions
This section details the process for generating mobile UE random trajectories for temporal beam prediction simulations as well as the simulation assumptions used in data generation for training/testing ML methods.

UE random trajectory generation
The following random trajectory generation process is based on Option 3 in the agreed methods for trajectory generation in RAN1 109e, with some modifications based on Option 4.

A UE has initial position , initial orientation , constant forward velocity , and initial azimuthal velocity angle . Temporal granularity  is defined as the smallest unit of time considered in random walk generation and mean temporal step size   is defined as the mean travel time for walk steps along the random trajectory.  is chosen such that it will be a whole-number multiple of the temporal granularity:


where  is the mean number of sub-steps per walk step.
Maximum walk time  is likewise chosen to be a whole-number multiple of .
Distance granularity  is computed as


[bookmark: _Hlk111193215]For the purposes of random trajectory generation for urban macro and urban micro simulations, a geometric sector is defined as a geometric area in which the random trajectory will be constrained, consisting of the intersection of two regions: the first region consists of one third of the hexagonal cell surrounding the UE’s serving gNB and symmetric with respect to the gNB’s azimuthal orientation, , and the second region consists of the area outside a circle with radius  centred on the serving gNB. Figure 1 provides a diagram of an example sector for a scenario with an ISD of 200 m, a serving gNB positioned at the origin with , and a chosen 10 m.
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[bookmark: _Ref111128162][bookmark: _Ref111128139]Figure 1 Example sector
Two schemes for updating UE orientation changes throughout the trajectory are proposed:
1. Matched-to-walk orientation change scheme: follows changes to the UE’s azimuthal velocity angle, while  and  remain constant.
2. Constant-angular-velocity orientation change scheme: , , and  all update with constant angular velocity  with sign decided randomly for each angle.

Given the above setup, the following algorithm is used to generate a random trajectory for a particular UE:
1. Initialize total sub-step counter .
2. If constant-angular-velocity orientation change is specified, choose orientation angle update directions  to each be either  or  with equal probability.
3. For walk step 
3.1. Draw number of sub-steps for the th step  from a geometric distribution with probability of success .
3.2. Draw azimuthal velocity angle delta for the th walk step  from a uniform distribution in the range .
3.3. Compute sub-step velocity angle delta:  = .
3.4. For each sub-step :
3.4.1. Increment total sub-step counter  If the UE’s total travel time thus far  is greater than , terminate the walk. Otherwise, continue.
3.4.2. Update the UE’s sub-step velocity angle: .
3.4.3. Compute potential updated UE position: .
If is outside the geometric sector, terminate the walk. Otherwise, update the UE’s position.
3.4.4. Update the UE’s orientation depending on orientation change scheme:
a. If using constant-angular-velocity orientation change, .
b. If using matched-to-walk orientation change .

Figure 2 shows a randomly set of randomly generated UE walks with the following parameters:
·  = 1 m
·  = 30 km/h
·  = 35 m
· gNB positioned at the origin with 
· ISD = 200 m

[image: ]
[bookmark: _Ref111128303]Figure 2 Example random UE trajectories
Figure 3 displays orientation changes for a particular random walk the matched-to-walk orientation change scheme, while Figure 4 displays the same random walk generated with the constant-angular-velocity orientation change scheme. For both examples,  and .

[image: ]
[bookmark: _Ref111128595]Figure 3 Random walk with matched-to-walk orientation changes
[image: ]
[bookmark: _Ref111128613]Figure 4 Random walk with constant-angular-velocity orientation changes

Assumptions for data generation simulations
Table 1 summarizes the details for the simulation assumptions for temporal beam prediction, and Table 2 summarizes the random trajectory parameters.

[bookmark: _Ref111130031]Table 1 Temporal beam prediction simulation assumptions
	Parameters
	Value

	Scenario
	Uma, outdoor

	Carrier frequency
	28 GHz

	ISD
	200 m

	BS antenna cfg.
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ

	BS codebook
	12 beams (DFT codebook), 
6 azimuth beams (22.5 degree separation) and 
2 elevation beams (45 degree separation)

	UE antenna cfg.
	(M,N,P) = (1,4,2), 2 panels (left, right)

	UE codebook
	4 beams (DFT codebook) with 45-degree separation

	gNB antenna gain
	8 dBi

	BS Tx power
	28 dBm for 80 MHz bandwidth, 60 dBm EIRP

	UE Rx. noise figure
	9 dB

	SCS
	120 KHz

	Car penetration loss
	Included

	Beam management frequency
	40 ms




[bookmark: _Ref111130607]Table 2 Random trajectory parameters
	Parameters
	Value

	
	1 s

	
	0.1 s

	
	40 s

	
	30 km/h

	
	35 m

	Orientation change scheme
	Constant-azimuthal-velocity,  = 10, 100 RPM



Evaluation results
Beam prediction formulation
For this set of results, an MN beam prediction formulation was used: in this formulation, the prediction algorithm is given as input L1-RSRP measurements from  contiguous beam management cycles out of every  contiguous cycles, then provides predictions for the best L1 beams for the following  cycles. We consider three separate sets of UE-side predictions:

1. UE Rx beam prediction: given the best RSRP values for each UE Rx beam at each measured beam management cycle, predict the best UE Rx beams at each predicted beam management cycle
2. gNB Tx beam prediction: given the best RSRP values for gNB Tx beam at each measured beam management cycle, predict the best gNB Tx beams at each predicted beam management cycle
3. Rx-Tx beam pair link prediction: given the best RSRP values for each Rx-Tx beam pair link at each measured beam management cycle, predict the best Rx-Tx beam pair links at each predicted beam management cycle

For  = 10 RPM, we present results for M1N5 (representing an 83.3% reduction in beam measurements) as well as M1N10 (representing a 90.9% reduction in beam measurements.) For  = 100 RPM, we present results for M1N5 only.

Machine learning and baseline methods
For each beam prediction formulation, a long-short-term-memory recurrent neural network (LSTM) was trained to predict UE Rx beams, while a separate LSTM was trained to predict gNB Tx beams. Results from these ML methods are compared to a sample-and-hold comparison baseline, where the best beams from the final cycle in each contiguous set of measured beam management cycles are predicted to be the best beams for the entire following set of prediction cycles.

Best-beam KPIs
We compare results using the set of agreed KPIs from RAN1 109e:
· Mean RSRP difference (dB): The mean difference between the RSRP of the genie best beam and the predicted best beam
· Top-K beam prediction accuracy:
· Option 1 (%): the percentage of predictions in which the top-1 predicted beam is among the top-K genie-aided beams
· Option 2 (%): the percentage of predictions in which the top-1 genie-aided beam is among the top-K predicted beams
· 1-dB marginal beam prediction accuracy (%): the percentage of predictions in which the ideal L1-RSRP of the top-1 predicted beam is within 1 dB of the ideal L1-RSRP of the top-1 genie-aided beam

UE Rx beam prediction results,  RPM
Table 3 provides a summary of the KPI results for M1N5 and M1N10 beam prediction for a UE rotation speed of 10 RPM. Figure 5 and Figure 6 plot these KPIs for M1N5 and M1N10, respectively.

[bookmark: _Ref111136743]Table 3 KPI results for LSTM vs. sample-and-hold baseline, UE Rx beam prediction,  = 10 RPM
	Methods
	Mean RSRP diff (dB)
	Top-1 acc. (option 1) (%)
	Top-2 acc. (option 1) (%)
	Top-3 acc. (option 1) (%)
	Top-1 acc. (option 2) (%)
	Top-2 acc. (option 2) (%)
	Top-3 acc. (option 2) (%)
	1-dB marginal acc. (%)

	LSTM (M1N5)
	0.65
	77.34
	92.15
	96.77
	77.34
	92.23
	96.87
	84.36

	Sample and hold (M1N5)
	1.21
	72.77
	88.11
	94.49
	72.77
	87.96
	94.51
	78.96

	LSTM (M1N10)
	1.99
	62.75
	81.79
	90.04
	62.75
	83.61
	91.29
	69.72

	Sample and hold (M1N10)
	2.65
	61.35
	77.97
	87.26
	61.35
	77.44
	86.84
	66.95
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[bookmark: _Ref111137052][bookmark: _Ref111136845]Figure 5 M1N5 KPI results for beam prediction LSTM vs. sample-and-hold baseline, UE Rx beam prediction,  = 10 RPM
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[bookmark: _Ref111137071]Figure 6 M1N10 KPI results for beam prediction LSTM vs. sample-and-hold baseline, UE Rx beam prediction,  = 10 RPM

For UE Rx beam prediction,  = 10 RPM, the ML method outperforms the sample-and-hold baseline for both M1N5 and M1N10 beam prediction formulations, showing a 4.57% gain in top-1 beam prediction accuracy, a 5.4% gain in 1-dB marginal beam prediction accuracy, and a 0.56-dB reduction in mean predicted best beam RSRP error in the M1N5 case.

gNB Tx beam prediction results,  = 10 RPM
Table 4 provides a summary of the KPI results for M1N5 and M1N10 beam prediction. Figure 7 and Figure 8 plot these KPIs for M1N5 and M1N10, respectively.

[bookmark: _Ref111138038]Table 4 KPI results for LSTM vs. sample-and-hold baseline, gNB Tx beam prediction,  = 10 RPM
	Methods
	Mean RSRP diff (dB)
	Top-1 acc. (option 1) (%)
	Top-2 acc. (option 1) (%)
	Top-3 acc. (option 1) (%)
	Top-1 acc. (option 2) (%)
	Top-2 acc. (option 2) (%)
	Top-3 acc. (option 2) (%)
	1-dB marginal acc. (%)

	LSTM (M1N5)
	0.28
	88.50
	97.33
	99.30
	88.50
	97.32
	99.32
	91.94

	Sample and hold (M1N5)
	0.31
	87.96
	97.24
	99.23
	87.96
	97.23
	99.24
	91.43

	LSTM (M1N10)
	0.43
	85.98
	96.52
	98.85
	85.98
	96.49
	98.88
	89.49

	Sample and hold (M1N10)
	0.39
	86.41
	96.77
	99.00
	86.41
	96.67
	99.04
	89.88
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[bookmark: _Ref111138081]Figure 7 M1N5 KPI results for beam prediction LSTM vs. sample-and-hold baseline, gNB Tx beam prediction,  = 10 RPM
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[bookmark: _Ref111138100]Figure 8 M1N10 KPI results for beam prediction LSTM vs. sample-and-hold baseline, gNB Tx beam prediction,  = 10 RPM



For gNB Tx beam prediction,  = 10 RPM, our ML methods do not strongly outperform the sample-and-hold baseline in the M1N5 formulation and are somewhat weaker than the baseline in the M1N10 formulation.


M1N5 gNB Tx Beam prediction results,  = 100 RPM
Table 5 provides a summary of the KPI results for M1N5 beam prediction. Figure 9 plots these KPIs.
[bookmark: _Ref115381665][bookmark: _Ref115381639]Table 5 KPI results for LSTM vs. sample-and-hold baseline, gNB Tx beam prediction, ω = 100 RPM
	Methods
	Mean RSRP diff (dB)
	Top-1 acc. (option 1) (%)
	Top-2 acc. (option 1) (%)
	Top-3 acc. (option 1) (%)
	Top-1 acc. (option 2) (%)
	Top-2 acc. (option 2) (%)
	Top-3 acc. (option 2) (%)
	1-dB marginal acc. (%)

	LSTM (M1N5)
	0.55
	81.60
	94.65
	98.55
	81.60
	94.57
	98.44
	86.19

	Sample and hold (M1N5)
	0.84
	78.28
	91.76
	96.91
	78.28
	91.66
	96.94
	82.57
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[bookmark: _Ref115381914]Figure 9 M1N5 KPI results for beam prediction LSTM vs. sample-and-hold baseline, gNB Tx beam prediction, ω = 100 RPM

M1N5 Tx-Rx beam pair link prediction results,  = 100 RPM
Table 6 provides a summary of the KPI results for M1N5 beam prediction. Figure 10 plots these KPIs.
[bookmark: _Ref115382691]Table 6 KPI results for LSTM vs. sample-and-hold baseline, Tx-Rx beam-pair link prediction, ω = 100 RPM
	Methods
	Mean RSRP diff (dB)
	Top-1 acc. (option 1) (%)
	Top-2 acc. (option 1) (%)
	Top-3 acc. (option 1) (%)
	Top-1 acc. (option 2) (%)
	Top-2 acc. (option 2) (%)
	Top-3 acc. (option 2) (%)
	1-dB marginal acc. (%)

	LSTM (M1N5)
	4.54
	40.47
	56.96
	66.04
	40.47
	60.58
	70.89
	47.00

	Sample and hold (M1N5)
	10.80
	17.49
	27.00
	35.06
	17.49
	27.37
	35.42
	20.63
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[bookmark: _Ref115382763]Figure 10 M1N5 KPI results for beam prediction LSTM vs. sample-and-hold baseline, Tx-Rx beam pair link prediction,  = 100 RPM

M1N5 UE Rx Beam prediction results,  = 100 RPM
Table 7 provides a summary of the KPI results for M1N5 beam prediction. Figure 11 plots these KPIs.
[bookmark: _Ref115382911]Table 7 KPI results for LSTM vs. sample-and-hold baseline, UE Rx beam prediction, ω = 100 RPM
	Methods
	Mean RSRP diff (dB)
	Top-1 acc. (option 1) (%)
	Top-2 acc. (option 1) (%)
	Top-3 acc. (option 1) (%)
	Top-1 acc. (option 2) (%)
	Top-2 acc. (option 2) (%)
	Top-3 acc. (option 2) (%)
	1-dB marginal acc. (%)

	LSTM (M1N5)
	3.21
	51.44
	71.75
	82.18
	51.44
	74.19
	83.88
	58.49

	Sample and hold (M1N5)
	9.65
	21.06
	34.83
	47.88
	21.06
	35.35
	48.41
	24.59
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[bookmark: _Ref115382970]Figure 11 M1N5 KPI results for beam prediction LSTM vs. sample-and-hold baseline, UE Rx beam prediction, ω = 100 RPM

We note that in the  = 100-RPM cases, the LSTM strongly outperforms the sample-and-hold baseline, especially in the UE Rx beam and Tx-Rx beam pair link cases. The rapid rotation leads to significant changes in best-beam RSRPs between measured cycles; the LSTM is able to predict for these changes, while the sample-and-hold scheme breaks down. However, in the  = 10 RPM cases, the improvement is less dramatic, as sample-and-hold provides much stronger predictions. We further note that for both the  = 10 RPM and 100 RPM, the sample-and-hold baseline is significantly more accurate for gNB Tx beam prediction than sample-and-hold for Tx-Rx beam pair or UE Rx beam prediction. This gNB Tx beam advantage for the baseline can be explained by the fact that the constant-azimuthal-speed orientation changes experienced by the mobile UEs lead to frequent changes in the best UE Rx beams, but do not significantly impact the frequency of best-beam change for gNB Tx beams. Our results indicate that ML methods will provide an advantage in high-stress scenarios where frequent UE orientation changes lead to rapid changes in the best beams. ML methods may also provide an advantage in predictions for L2 and L3 beams, which for mobile UEs would experience more rapid changes than L1 beams.

Spatial domain beam prediction
In this section we present simulation results for spatial domain beam prediction. We reuse the terminology agreed in RAN1 109e to refer to the agreed use cases.

Set B is a subset of Set A
We consider two scenarios for this sub-use case (Alt. 1 of BM-case1 agreed in RAN1 109e), which we call Use case 1 and Use case 2. For Use case 1, we do not assume signalling of assistance information and rely on L1-RSRP values as inputs to the AI/ML model. For Use case 2, we assume signalling of assistance information and rely on channel impulse responses (CIRs) of top- beam pairs as inputs to the AI/ML model. We have different simulation assumptions for Use case 1 and Use case 2, and our goal in this section is to illustrate the merits of spatial domain beam prediction for each use case, rather than comparative analysis of Use case 1 and Use case 2.


[bookmark: _Ref111156551][bookmark: _Ref115392731]Use case 1 (i.e., no assistance information)
We consider Alt.1 of spatial domain beam prediction agreed in RAN1 109e and present our evaluations. For Use case 1, we do not assume the availability of ‘assistance information’.

Simulation Assumptions
For use case 1, we predict the best gNB beam ID in Set A based on the measured RSRPs of Set B. In simulations, we focus on the UMa scenario, and follow the agreed SLS simulation assumptions in RAN1 109e meeting. We assume there is no UE mobility. The dataset is generated from random UE location drops in a cell with three sectors. Spatial consistency procedure is performed based on 38.901 [1], to ensure the channel characteristics between neighbouring UEs are appropriately correlated. Key assumptions for the simulations are summarized in Table 8. The datasets used for training and testing correspond to different sets of UE locations. The gNB array has 32 antennas, 8 on azimuth and 4 on elevation. We assume 192 DFT beams in Set A in the cell, and 24 beams are down-selected for Set B. In Figure 12, we illustrate the beam pointing angles of Set A and Set B beams in a sector. We select the Set B in a way that the measured beams cover as much space in both elevation and azimuth directions as possible.

[bookmark: _Ref111140057][bookmark: _Ref111140050]Table 8 Simulation assumptions for Use case1
	Parameters
	Value

	Scenario
	Uma, outdoor

	Carrier frequency
	30 GHz

	ISD
	200 m

	BS antenna cfg
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ

	gNB codebook (Set A)
	16 (azimuth) by 4 (elevation) beams per sector,
in total Set A has 192 beams per cell 

	gNB codebook (Set B)
	8 beams down-selected from Set A per sector, as shown in Figure 12 (or in Figure 13 for Set B1),
in total set B has 24 beams per cell

	gNB antenna gain
	8 dBi

	BS Tx power
	30 dBm for 20 RB bandwidth

	SCS
	120KHz

	Car penetration loss
	Included

	UE mobility and rotation
	Not assumed, only consider a single time shot




For the AI/ML based approach, we apply a fully connected (FC) layer based NN to predict the best beam in Set A. We also consider the following 2 baseline approaches to predict the best beam ID, in addition to a NN-based AI/ML model:
· Baseline-1 (linear interpolation-based approach): For the non-measured beams in Set A, we estimate their RSRPs by performing a 2D linear interpolation (and extrapolation, when applicable) based on the measured RSRPs and the pointing angle of the beams.  We select the top K predicted beams based on the interpolated RSRPs.
· Baseline-2 (empirical PMF-based approach): We derive an empirical probability distribution of the best beam ID in Set A, given the best beam ID in Set B, based on the training dataset. For testing, we select the top K predicted beams based on the derived empirical distribution.
[image: ]
[bookmark: _Ref111140842]Figure 12 Illustration of pointing angles of Set A and Set B beams in a sector of the cell.

Evaluation results

We present the beam prediction performance for use case1 in Table 9. For Top K beam selection accuracy, we follow Option 2 definition as described in Section 4.1.2. Compared with the baseline approached, our results show that NN based AI/ML model provide a significant performance gain, in terms of both beam selection accuracy and L1 RSRP difference. The linear interpolation-based approach (Baseline-1) provides the worst performance, as Set B beams are sparsely sampled from Set A, and the RSRPs in general cannot be approximated by a linear fit. 
[bookmark: _Ref111141347][bookmark: _Ref111141342]Table 9 Beam prediction performance for Use case1.
	
	Average L1-RSRP difference (in dB)
	Top-1 accuracy
	Top-2 accuracy
	Top-5 accuracy
	1dB margin accuracy

	Baseline-1
	4.22
	10.7%
	16.3%
	31.8%
	32.8%

	Baseline-2
	1.27
	28.3%
	46.1%
	79.2%
	59.0%

	NN based

	0.36
	63.5%
	80.0%
	92.5%
	90.4%

	NN based (Set B1)

	0.57
	55.2%
	73.6%
	87.5%
	86.0%



We further compare the NN based prediction performance between different selections of Set B beams. We define an alternative Set B of measured beam as Set B1. The pointing angles of Set B1 is illustrated in Figure 13. Note that Set B1 contains the same number of measured beams as the original Set B. To illustrate the impact of Set B beam selection, Set B1 only contains the beams of the same elevation pointing angles, while the original Set B uniformly down-selects beams along the elevation direction. As expected, our results show that the original set B outperforms Set B1, e.g., by more than 8% in Top 1 beam selection accuracy as the beams in the original Set B capture more spatial domain features on elevation. This comparison indicates that beam prediction performance largely depends on the selection of Set B beams. To select the optimal Set B as the input for beam prediction algorithm, it is essential to have the knowledge of the gNB beam pattern, e.g., the pointing angles and beam shapes of Set A beams.
[image: ]
[bookmark: _Ref111141146]Figure 13 Illustration of pointing angles of Set A and Set B1 in a sector.

Use case 2 (i.e., with assistance information)
We consider Alt.1 of spatial domain beam prediction agreed in RAN1 109e and present our evaluations. The main distinction of these sets of results with Use case 1 is that we assume the availability of some assistance information from gNB at the UE side. We assume no UE mobility for this use case. We consider UE-side AI/ML models and define the following terminologies. 
· At UE side: Set  (solid in Figure 14) is the set of beams over which the measurements are made and Set  (dashed in Figure 14) is the set of beams over which predictions are made
· At gNB side: Set  is the set of beams over which the measurements are made and Set  is the set of beams over which we predict.
· Method 1A: pick best beam from Set  ( in Figure 14) and Set  ( in Figure 14) at UE & gNB, respectively, using AI/ML model. As AI/ML inference is being done at the UE side, UE needs to feedback best beam index from beam set  to gNB.


[image: ]
[bookmark: _Ref111141565]Figure 14 Method 1A: UE-side and gNB-side beam update

· Method 1B: gNB uses best beam from its codebook (Set ) and UE uses best beam from Set  ( in Figure 15), using AI/ML model
[image: ]
[bookmark: _Ref111141733]Figure 15 Method 1B: UE-side only beam update

Simulation Assumptions
We provide simulation results for InH and UMa (outdoor) deployments. 

Signaling of assistance information
As mentioned in the beginning of this section, we consider UE-side AI/ML models and assume signaling of assistance information from gNB to UE. The assistance information includes beam boresight directions of beams from Set  and , and also location vector of gNB panel antenna elements, from gNB to UE. Please note that this assistance information is used for both Method 1A and Method 1B.

Simulation assumptions for InH 
The simulation assumptions for InH have been summarized in Table 10.
As the input to the AI/ML model, we feed channel impulse responses corresponding to beam pairs having top-5 RSRPs (from Set , Set ). As the output of the AI/ML model, we get the predicted beam indices from Set , Set .
[bookmark: _Hlk111069397][bookmark: _Ref115383176]Table 10 Simulation assumptions for InH deployment
	Parameters
	Value

	Carrier frequency
	30 GHz

	BS antenna cfg.
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ

	BS codebook (Set )
	8 beams (azimuth), 4 beams (elevation)

	BS codebook (Set )
	32 beams (azimuth), 16 beams (elevation)

	UE antenna cfg.
	(M,N,P) = (2,2,2), 2 panels (front, back)

	UE codebook (Set B)
	2 beams (azimuth), 2 beams (elevation)

	UE codebook (Set A)
	8 beams (azimuth), 8 beams (elevation)

	gNB antenna gain
	5dBi 

	BS Tx power
	18 dBm for 80 MHz bandwidth 

	UE Rx. noise figure
	10 dB

	SCS 
	120 kHz



The input and output to the AI/ML model is illustrated in Figure 16.


[image: ]
[bookmark: _Ref115386694][bookmark: _Ref115386471]Figure 16 Inputs and outputs of AI/ML model for Use case 2
In Figure 17 we plot the spectral efficiency for the methods described earlier in this section, as well. The leftmost curve indicates the best performance we can achieve using beam measurements from Set  and . We observe the spectral efficiency improvement across UEs for UE-side only (Method 1B) and joint UE-side and gNB-side beam update (Method 1A) based on measurements from beam sets  and . Looking at the comparative performance of Method 1A and Method 1B, we see the benefit that UE feedback of the best gNB beam index from beam Set  brings into the table. 

 [image: ] 
[bookmark: _Ref111142609]Figure 17 Spectral efficiency CDF across all UEs for InH deployment
Simulation assumptions for UMa (outdoor)
The simulation assumptions for UMa have been summarized in Table 11 Simulation assumptions for UMa (outdoor) deployment.
In Figure 18 we plot the spectral efficiency for the methods described earlier in this section. Also, for the UMa deployment we see the spectral efficiency gains associated with Methods 1A and 1B which highlight the benefits associated with predicting beams with higher angular resolution (from Set  and ) at UE (and gNB) using measured beams with lower angular resolution (from Set  and ).

  [image: ] 
[bookmark: _Ref115383530]Figure 18 Spectral efficiency CDF across all UEs for UMa (outdoor) deployment


[bookmark: _Ref115383481]Table 11 Simulation assumptions for UMa (outdoor) deployment
	Parameters
	Value

	Carrier frequency
	30 GHz

	ISD
	200m

	BS antenna cfg.
	(M, N, P, Mg, Ng) = (4, 8, 2, 2, 2)

	BS codebook (Set )
	12 beams (azimuth), 3 beams (elevation)

	BS codebook (Set )
	24 beams (azimuth), 6 beams (elevation)

	UE antenna cfg.
	(M,N,P) = (2,2,2), 2 panels (front, back)

	UE codebook (Set B)
	2 beams (azimuth), 2 beams (elevation)

	UE codebook (Set A)
	8 beams (azimuth), 8 beams (elevation)

	gNB antenna gain
	8dBi 

	BS Tx power
	23 dBm for 80 MHz bandwidth 

	UE Rx. noise figure
	10 dB

	SCS 
	120 kHz



Wide to narrow beam prediction
We present evaluation results for Alt.2 of spatial domain beam prediction (BM-Case1) agreed in RAN1 109e in this section.

Simulation Assumptions
In this section, we study the use case of wide to narrow beam prediction, wherein Set A is consisted of narrow beams, and Set B is consisted of wide beams. Key simulation assumptions are summarized in Table 12. We assume the wide beams in Set B have the same elevation beamwidth and twice the azimuth beamwidth as the narrow beams in Set A.  The beam pointing angles of Set A and Set B beams within a sector are shown in Figure 19. In the cell, there are 192 narrow beams in Set A, and 24 wide beams in Set B. As a benchmark, the non-NN based baseline approach follows the Baseline-2 procedure described in Section 4.2.1.1.
[bookmark: _Ref115386782]Table 12 Simulation assumptions for wide-to-narrow beam prediction
	Parameters
	Value

	Scenario
	Uma, outdoor

	Carrier frequency
	30 GHz

	ISD
	200 m

	BS antenna cfg.
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ

	gNB codebook (Set A)
	16 (azimuth) by 4 (elevation) narrow beams per sector,
in total Set A has 192 narrow beams per cell 

	gNB codebook (Set B)
	8 wide beams of the same elevation angle per sector,
in total Set B has 24 wide beams per cell,
compared with narrow beam, wide beam has 2x azimuth beamwidth and 3dB weaker directivity gain

	gNB antenna gain
	8 dBi

	BS Tx power
	30 dBm for 20 RB bandwidth

	SCS
	120KHz

	Car penetration loss
	Included

	UE mobility and rotation
	Not assumed, only consider a single time shot



[image: ]
[bookmark: _Ref111144216][bookmark: _Ref111144210]Figure 19 Illustration of pointing angles of wide and narrow beams in a sector.


Evaluation Results
We show a comparison of wide-to-narrow beam prediction performance below. The results show that NN-based AI/ ML model can predict the best beam ID significantly more accurate than the non-NN based baseline approach. For instance, in terms of the 1dB margin accuracy, with the NN based approach, the predicted beam is within 1 dB difference from the genie best beam with almost 90% chance, while the non-NN based approach only offers less than 50% accuracy.

Table 13 Beam prediction performance of wide-to-narrow beam prediction
	
	Average L1-RSRP difference (in dB)
	Top-1 accuracy
	Top-2 accuracy
	Top-5 accuracy
	1dB margin accuracy

	Baseline
	2.08
	24.6%
	41.4%
	73.6%
	48.5%

	NN based

	0.43
	59.9%
	76.5%
	91.2%
	88.1%



Evaluations for generalization capability of AI/ML models
In this section, we present the inter-site generalization results for spatial domain beam prediction. We show how the spatial beam prediction module trained with the data from a first set of cells perform in an unseen cell. Based on our discussion in Proposal 3, the unseen cell for generalization test can be a cell from the same deployment type (homogenous inter-site case) or from a different deployment (heterogenous inter-site case). 

Using the same assumptions in Section 3.2.1.1 (e.g., as illustrated in Table 8 and Figure 12), we generate RSRP datasets for multiple cells in both Uma and Umi deployments. Different random seeds are assumed to generate data in difference cells, and the corresponding dataset in each cell is labelled with deployment type plus random seed ID, e.g., Umi 1-10 and Uma 1-10. Spatial consistency is assumed only between UEs in the same cell. The training, validation, and test datasets for each cell are taken from different UE locations in the cell. Similar to Section 3.2.1, we apply a FC layer based NN in the simulations. For all the simulations below, we assume the same NN size for a fair comparison.
[bookmark: _Ref115383891]Table 14 Homogenous inter-site generalization performance for Uma cells
	Training cell
	Test cell
	Average L1-RSRP difference (in dB)
	Top-1 accuracy
	Top-2 accuracy
	Top-5 accuracy
	1dB margin accuracy

	Uma cell 0
	Uma cell 0
	0.38
	62.7%
	84.8%
	96.1%
	90.0%

	Uma cell 0
	Uma 1-9
	1.60
	31.1%
	51.2%
	77.2%
	61.2%

	Uma cell 0
	Uma cell 10
	1.45
	27.9%
	45.0%
	67.3%
	62.2%

	Uma cell 0-9
	Uma cell 0
	0.49
	56.0%
	79.2%
	93.4%
	88.5%

	Uma cell 0-9
	Uma 1-9
	0.53
	59.2%
	78.0%
	91.3%
	86.4%

	Uma cell 0-9
	Uma cell 10
	1.16
	38.5%
	59.6%
	79.5%
	68.4%


We present the homogenous inter-site generalization results for Uma cells in Table 14, wherein the datasets used for training and testing are from different Uma cells. In the results, the performance of the ideal case where the training and testing datasets are all from the same cell Uma0 is provided as a comparison benchmark. Compared with the ideal case, we observe a noticeable performance degradation when the NN is tested on an unseen cell of the same deployment type. For example, when the NN is trained with dataset from Uma cell 0, the top 1 beam selection accuracy performance may drop from 62.7% in the same cell to 27.9% in an unseen cell Uma cell 10. Further, diversifying the training dataset by including data from more cells may improve the generalization performance. But still, in the Uma deployment, even after the NN is trained with data from 10 difference cells, the NN may not work as well in an unseen Uma cell.
[bookmark: _Ref115383957]Table 15 Homogenous inter-site generalization performance for Umi cells
	Training cell
	Test cell
	Average L1-RSRP difference (in dB)
	Top-1 accuracy
	Top-2 accuracy
	Top-5 accuracy
	1dB margin accuracy

	Umi cell 0
	Umi cell 0
	0.50
	64.3%
	83.7%
	94.2%
	85.8%

	Umi cell 0
	Umi 1-9
	0.75
	53.9%
	74.6%
	89.5%
	77.4%

	Umi cell 0
	Umi cell 10
	0.74
	54.6%
	73.2%
	88.4%
	76.6%

	Umi cell 0-9
	Umi cell 0
	0.37
	69.1%
	86.4%
	95.0%
	87.8%

	Umi cell 0-9
	Umi 1-9
	0.51
	63.7%
	82.0%
	92.9%
	84.7%

	Umi cell 0-9
	Umi cell 10
	0.53
	60.0%
	79.0%
	92.0%
	83.3%



Next, we perform similar simulations of homogenous inter-site generalization for Umi cases, and the results are presented in Table 15. Unlike the Uma results, it is observed that when the NN is trained with data from 10 Umi cells, the NN shows good generalization to an unseen Umi cell. For example, in terms of Top1 beam selection accuracy, the performance degradation from seen cells Umi 1-9 in the training to an unseen cell Umi10 is less than 5%. The reason for different generalization performance between the Uma and Umi deployments is that a larger correlation distance in spatial consistency is assumed for Uma cases, and hence given the same amount of training data, there are fewer independent realizations that the NN can see in the Uma deployment during the training.
[bookmark: _Ref115384329]Table 16 Heterogenous inter-site generalization performance for Uma and Umi cells
	Training cell
	Test cell
	Average L1-RSRP difference (in dB)
	Top-1 accuracy
	Top-2 accuracy
	Top-5 accuracy
	1dB margin accuracy

	Umi cell 0
	Uma cell 10
	1.17
	34.5%
	59.2%
	81.1%
	67.1%

	Umi cell 0-9
	Uma cell 10
	0.95
	44.9%
	68.8%
	84.6%
	72.4%

	Uma cell 0
	Umi cell 10
	2.55
	23.6%
	39.7%
	61.9%
	41.7%

	Uma cell 0-9
	Umi cell 10
	1.74
	34.5%
	51.6%
	69.3%
	54.8%


Last, we present the results for heterogenous inter-site generalization in Table 16, where the datasets used for training and testing are from different deployment. The results show that when the NN is trained with datasets from a single deployment scenario, e.g., Umi or Uma only, the trained NN generally works poorly with the testing data from another deployment: a larger performance degradation than the case of homogenous inter-site case is observed. Increasing the number of cells used in the training from a single deployment may improve the generalization capability to some limited extent: the improved performance is still far worse than the ideal case where training and testing data are from the same cell. In Table 17, we show that incorporating datasets from different deployments may improve the heterogenous inter-site generalization without significantly affecting the performance in the seen cells.
[bookmark: _Ref115422177]Table 17 Performance for NN trained with both Uma and Umi cell datasets
	Training cell
	Test cell
	Average L1-RSRP difference (in dB)
	Top-1 accuracy
	Top-2 accuracy
	Top-5 accuracy
	1dB margin accuracy

	Umi cell 0-9 + Uma1-9
	Uma 0-9
	0.70
	56.7%
	75.5%
	90.0%
	83.1%

	Umi cell 0-9 + Uma0-9
	Uma cell 10
	0.88
	44.7%
	66.3%
	82.7%
	71.2%

	Umi cell 0-9 + Uma0-9
	Umi cell 0-9
	0.50
	62.7%
	81.2%
	93.1%
	84.9%

	Umi cell 0-9 + Uma0-9
	Umi cell 10
	0.52
	60.1%
	78.7%
	91.3%
	82.5%




Conclusions
In this document, we have discussed aspects related to evaluation methodology for the beam prediction use case. We also presented initial results highlighting the benefits of AI/ML-based approaches for beam prediction. We made the following proposals and observations.

 Proposal 1: Consider the following simulation assumptions for BM-Case1 and BM-Case2:
· BS antenna configuration: [8, 16, 2, 1, 1,1,1], (dV, dH) = (0.5, 0.5) λ
· BS Tx power: 34 dBm

Proposal 2: For both sub use cases BM-Case1 and BM-Case2, clarify interpretation of “set B” by selection of one of the following alternatives
· Alt.1: Set B is a set of beams, whose measurements are performed (for prediction of set A) 
· Alt.2: Set B is a set of beam whose measurements are available as inputs of the AI/ML model (for prediction of set A)

Proposal 3: Consider the following categorizations for definition of scenarios/configurations for evaluating the generalization capability of AI/ML models for temporal beam prediction:
Inter-site (heterogeneous): train AI/ML model on a first set of deployment type(s) and test it on a second (unseen) deployment type.
Inter-site (homogeneous): train on a first set of site(s) of a given deployment type and test it on a second (unseen) site of that same deployment type.
Intra-site: train AI/ML model for a given site and test it on unseen variations within that same site. 
Across configurations:  train AI/ML model on a first set of configuration(s) and test on a second configuration

Proposal 4: For BM-Case1 and BM-Case2, study the impact of incorporating beam prediction quality information (e.g., a measure for prediction confidence such as std of predicted RSRPs) on evaluating the performance of AI/ML model, using the agreed KPIs
· Note: The results from this study could help in defining criteria or metrics for AI/ML model performance monitoring which could lead to model activation/deactivation or updating of AI/ML models.

Proposal 5: For BM-Case1 and BM-Case2, study the benefits and trade-offs associated with UE-side and gNB-side beam prediction, using the agreed KPIs 

Proposal 6: At least for BM-Case1, consider spectral efficiency CDF for SLS evaluations as a KPI.

Proposal 7: For both spatial and temporal prediction evaluation, consider the following options as inputs to AI/ML models for the study and potential down selection:
· Option 1: For Tx-Rx beam pair prediction:
· L1-RSRP of Tx-Rx beam pairs in Set B 
· Option 2: For DL Tx beam prediction 
· L1-RSRP of Tx beams in Set B, measured by a (set of) Rx beam(s) selected by UE
· FFS on selection criteria of (set of) Rx beam(s) by UE
· Option 3: For DL Rx beam prediction, 
· L1-RSRP of Rx beams in Set B (where Set B of beams is for Rx beam)
· Note: DL Rx beam prediction may or may not have spec impact  
· Other inputs (e.g., CIR) are not preluded. 
· Note 1: Other assistance information is not precluded
· Note 2: Options 1 and 3 are applicable to UE-side AI/ML models.
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