Page 1
3GPP TSG RAN WG1 Meeting #110-Bis-e	R1-2209975
October 10th – 19th, 2022

Agenda item:	9.2.1
Source: 	Qualcomm Incorporated
Title: 	General Aspects of AI/ML Framework
Document for:	Discussion/Decision

Introduction

At RAN #94, a new study on artificial intelligence/machine learning for NR air interface has been approved [1], with the main goal of exploring the benefits of augmenting the air interface with features enabling improved support of AI/ML-based algorithms for enhanced performance and/or reduced complexity/overhead.
Through studying a few carefully selected use cases, the goal is to identify a common AI/ML framework, including functional requirements of AI/ML architecture, which could be used in subsequent projects. The study should also identify areas where AI/ML could improve the performance of air-interface functions.
The study will serve to identify what is required for an adequate AI/ML model characterization and description establishing pertinent notation for discussions and subsequent evaluations. Various levels of collaboration between the gNB and UE are identified and considered.
Specification impact will be assessed in order to improve the overall understanding of what would be required to enable AI/ML techniques for the air interface.

The SI consists of studying individual use cases as well as deriving a general framework for AI/ML. Below we summarize the goal of the study as shown in [1] relevant to the general framework:
AI/ML model, terminology, and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g.,
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting separate or joint ML operations.
· Characterize lifecycle management of AI/ML model: e.g., model training, model deployment, model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference
· Identify common notation and terminology for AI/ML related functions, procedures, and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

Some progress has been made in RAN1 #109-e and RAN1 #110 toward achieving the SI objectives, leading in Agenda 9.2.1 to some basic agreements on these aspects.
· General principles
· Working list of terminologies
· Network-UE collaboration levels
· Life Cycle Management (LCM) lists
· Common KPIs

In this contribution, we further elaborate the above aspects and various aspects of LCMs.

[bookmark: _Ref115268446]AI/ML model development and LCM framework
In this Section, we discuss AI/ML model development and LCM framework, focusing on proprietary AI/ML models with offline training. The reason for focusing on proprietary AI/ML models with offline training is because they are readily available options without 3gpp specifications. Therefore, it is highly natural that 3gpp take such a framework as a naturally available baseline and, if needed, further discuss the need and benefit of specification-based alternatives.

[image:]
[bookmark: _Ref111013527]Figure 1: Model development framework for AI/ML Models for modem

Figure 1 illustrates a typical model development process for proprietary AI/ML Models with offline training.

Step 1: data collection
As the first step, data may be collected from devices. How data are collected can be left as an implementation choice and business agreements (i.e., APIs from UEs) among involved parties and can be left outside the scope of 3gpp specification. That is, the data collection entity can operate over-the-top (OTT). A data collection entity may be owned by a UE vendor, a chip vendor, a network vendor, a network operator, a service provider, or a 3rd party. Who owns the data collection entity is a business decision and outside the scope of 3gpp specification.

Step 2: model development and training
Once enough data is collected, one or a family of AI/ML Models may be developed and trained. Model development and training may happen either at the same site as the OTT data collection entity or at separate OTT ML servers. The OTT ML servers where the model training happens may be owned by a UE vendor, a chip vendor, a network vendor, a network operator, a service provider, or a 3rd party. Where the models are developed and trained and who owns the ML servers are business decisions and outside the scope of 3gpp specification.

AI/ML model development is typically an iterative process of data collection, model design, training, and performance validation. AI/ML model development also requires careful implementation consideration for power consumption, hardware area, latency, and concurrency with other PHY/MAC functionalities and require extensive testing. As such, they require elaborate offline design process for the ML model design, training, compilation to a target-device-specific run-time image, and testing.

After one ML Model or a family or ML Models are developed, they need to be compiled to be used for inference at target devices. This step may include model quantization and compression for a fixed-point inference. The fixed-point ML Models go through standalone and end-to-end performance evaluations for target KPIs such as throughput and BLER. The designed ML Models then may be mapped to a sequence of operations for execution targets (e.g., hardware, firmware, DSP, neural accelerator) and converted into run-time binary images. This process involves various optimization for power, area, and latency, via various levels of parallelism and optimization decisions. The model compilation process is often target-device specific. That is, multiple run-time images may have to be generated for a single ML Model. Finally, the run-time images are tested for correctness, and the devices with the run-time image goes through extensive testing to ensure error-free operations in conjunction with the rest of the device implementation.
The entire process from data collection, model design, training, compile, and testing is an iterative engineering process, and key decisions are often made in the context of the overall modem design in consideration of optimization across performance, power consumption, chip area, latency, concurrency, memory efficiency, hardware reuse, etc.

Step 3: model deployment
Once AI/ML models are developed, trained, and compiled, the models may be deployed for inference operations. In some use cases, the models may be directly deployed to the target devices. In some other use cases, the models may be registered to the 3gpp network, assigned model IDs, and stored at one or more model repositories. The model repositories may be hosted inside or outside the 3gpp network. Subsequently, the network may direct the UE and/or gNB to download a model corresponding to a particular model ID for inference operation.

[bookmark: _Toc111024780][bookmark: _Toc111024831]Step 4: inference operation
For inference operation, the network may configure the UE and/or gNB with an AI/ML operation with a particular model ID. If needed, the UE and/or gNB may have to download the model corresponding to the configured model ID. The network may activate or deactivate the model for inference. The network may monitor the performance of the model. The network may ask the UE and/or gNB to switch to another model, and if needed, the UE and/or gNB may have to download the model corresponding to the model ID.

Step 5: model update

While the above illustration was given for initial model development, the same engineering process (i.e., further data collection, model re-design, re-training, and testing) can be repeated for model re-training and/or new model development after initial models are deployed. That is, after initial ML Models are deployed at the target devices, the models may be re-trained as needed, and updated models may be deployed to the target devices. The model re-training can be based on continual or on-demand data collection and could be aided/triggered by results from model performance monitoring. Framework-wise, the model re-training framework is mostly an offline engineering procedure, akin to initial model development.

Two-sided AI/ML Models
All the above discussions apply to both one-sided and two-sided AI/ML models.

As an illustrative example, consider two-sided ML model for CSI compression with “Type 3” training as agreed in RAN1 #110. In this case, data may be initially collected from UEs at an OTT data collection entity. The data collection entity may be owned, for example, by a chip vendor, for the training of the UE-side CSI generation part, and an intermediate dataset may be shared with a network vendor for the training of the network-side CSI reconstruction part. This is illustrated in Figure 2.

[image:]
[bookmark: _Ref115122997]Figure 2: Two-sided CSI compression model via Type 2 or Type 3 training

“Type 2” can be performed in a similar manner as in Figure 2, except that the UE-side and network-side OTT ML servers should exchange gradients and activations to allow for joint training. This is also illustrated in Figure 2.

Likewise, for “Type 1” training, data may be initially collected from UEs at an OTT data collection entity owned by a chip vendor (or any other vendor). The collected dataset may then be shared with an OTT ML server where joint training of the two-sided model can be performed. The OTT ML server where the model training happens may be owned by a UE vendor, a chip vendor, a network vendor, a network operator, a service provider, or a 3rd party. Who owns the OTT ML server is a business decision and outside the scope of 3gpp specification. Type 1 training is illustrated in Figure 3.

[image:]
[bookmark: _Ref115260392]Figure 3: Two-sided CSI compression model via Type 1 training

Network-configurable models

[bookmark: _Hlk110604101][bookmark: _Hlk110604110]In the previous section, we have discussed “proprietary model” as a naturally available baseline. In this case, the model development, structure, and parameters are proprietary. The model delivery format is also proprietary and specific to intended target devices. For example, the model being delivered may be a run-time binary image. As such, there is no concern for interoperability. The model (structure and parameters) is developed offline, fully tested, and packaged offline into a proprietary format (e.g., run-time binary image) acceptable by the intended target devices. The developed/trained/packaged model may be stored at a server location (which may be inside or outside 3gpp network) if it cannot be stored at the target device. The developed/tested/packaged model is registered to the network and assigned a model ID. The network addresses the model with the model ID for inference operation and model management (configuration, activation, deactivation, switching, monitoring, fallback). However, the network does not know the model structure or parameters. In other words, the model remains proprietary.

An alternative framework is “network-configurable model”. In this framework, the model is hosted at the network in a standardized format. This allows the network to configure model parameters to the target devices. Initially, the model structure is developed offline and fully tested at the intended target devices for capability. The initial model parameters may also be determined via offline training. The model is then stored in the network and assigned a model ID. The network may further train the model or update the parameters of the model based on collected data. The model is delivered to the target devices in a standardized format. The target device will have to compile the model to be able to run inference. The network may update the model parameters, and the updated model can be delivered to the target devices. The network addresses a network-configurable model with a model ID for inference operation and model management, where the model ID for the network-configurable model only refers to the model structure and not a fixed set of parameters.

There are several aspects for consideration of network-configurable models.
· Delivery of a network-configurable model requires standardization of a model description format (e.g., ONNX) for interoperability.
· Handling of network-configured model requires advanced device capability. As the model is delivered in a standardized format, the target device becomes responsible for converting the standardized model description into an executable form. This includes run-time compiling of the model and going through various target-specific procedures for optimization such as quantization, compression, mapping to execution targets (hardware, firmware, neural accelerator, etc.), all inside the device in run-time, which would require advanced capabilities at the target device.
· While proprietary models can be optimized for each target device (tailored to the device’s internal implementations/capabilities of CPU, GPU, DSP, HW accelerator, physical/virtual memory, cache), network-configurable model cannot.

The table below summarizes key aspects of proprietary models and network-configurable models.

	Model type
	Proprietary model
	Network-configurable model

	Differing Characteristics
	· Proprietary structure and parameters
· Proprietary data collection
· Stored inside or outside the network
· Delivery in a proprietary format
· Design can be optimized to each target device.
	· Configurable model parameters
· Standardized data collection may be needed
· Stored inside the network
· Delivery in a standardized format
· Design cannot be optimized to each target device.

	Common characteristics
	· Offline model structure development and testing
· Signaling-based model management via model ID (activation, monitoring, deactivation, selection, switching, fallback)

Flexible model parameter update?

On the surface, it may appear that network-configurable models may provide more flexibility than proprietary models because of the ability to configure and update parameters of the model. However, this is not true, because one can equivalently develop multiple proprietary models having different parameters. Just like the parameters of a deployed network-configurable model can be updated via model delivery of new parameters, the parameters of a proprietary model can be updated via model delivery of another proprietary model having different parameters.

Over-the-air training?

One advantage of a network-configurable model that is not possible with a proprietary model is its capability of network-managed over-the-air online training of a deployed model at the target device. However, it’s hard to argue for such a use case because of the following reasons:

Firstly, training AI/ML model takes lots of epochs. From over-the-air resource utilization point of view, it’s usually better to train the AI/ML model offline based on a collected data, rather than exchanging gradients or parameters of the model over-the-air.

Secondly, the same AI/ML model will be used for millions of identical UEs. Therefore, it’s highly questionable why one would want to train the model over-the-air, addressing induvial UEs and exchanging gradients or parameters with individual UEs, instead of training the model at an offline server once and deploy the trained model to millions of UEs. The only scenario that could benefit from over-the-air training seems to be UE-level personalization of the model. However, there doesn’t seem to be such need for use cases under discussion.

Lastly, specifying over-the-air training for network-configurable models would require significant specification efforts.

Challenges with network configurable model: unoptimized design

Proprietary models can be highly optimized for target devices in terms of inference latency and power consumption. This is because the model structure of proprietary models can be optimized during the model development time by tailoring the design to the device’s internal implementations/capabilities of CPU, GPU, DSP, HW accelerator, physical/virtual memory, cache, and because a fully trained, quantized, and compiled model can be emulated/tested on the target device before deployment. In fact, model development process is often an iterative process between model structure design, training, and testing on the target device, and also often involves enhancing/budgeting HW/SW/memory capabilities of the target device. As an example, a given target device may have an ML accelerator that supports acceleration of certain types (but not all types) of neural network layers (e.g., 2D convolution of certain kernel size and activation size). What types of layers enjoy acceleration, and how much is the acceleration, is device specific. It is often the case that inference latency can be an order of magnitude different depending on whether the layers used in a deep neural network are supported by the ML accelerator or not, and also depending on whether the size of activations fit into the memory/cache size or not. All these device-specific implementation aspects can be considered in developing proprietary models.
Quite obviously, network-configurable models are target-device agnostic and cannot be optimized in the same manner.

[bookmark: _Toc115429198]Observations 1: Proprietary model can be highly optimized for the target device. Network-configurable models do not enjoy such optimization.

Challenges with network configurable model: test coverage

As discussed earlier, proprietary models can go through extensive testing with the rest of the device implementation during the development time. For network-configurable models, one can only test model structure but not the full model with parameters. As discussed earlier, parameter updates on an existing structure also needs testing, as the output of the new model may result in different behaviour in the rest of the software stack and new timelines that will need to be tested. Even a model parameter update may impact existing procedures, therefore, even model updates involving parameter set updates may also require factory testing, compilation, and hardware and software optimizations to ensure performance requirements and interoperability with other existing features. With network-configurable models, such testing cannot be done.

[bookmark: _Toc115429199]Observations 2: Due to lack of testing of full model with parameters, network-configurable models may fail to meet the performance requirements of the AI/ML use case, or worse, result in undefined UE behavior.

Lack of device support

Network-configurable model relies on UE’s capability of model compilation. However, the model compilation process is CPU intensive and requires UE to implement automated model compilation tools. UEs may not have such capability. If UE is not expected to compile the model, then only feasible solution is that model is converted into an executable in a target-specific manner by the UE/chip vendor before being delivered to the UE, meaning that the model will have to be proprietary.

[bookmark: _Toc115429200]Observations 3: UEs may not be expected to compile AI/ML models locally.

Based on all the above considerations, we propose:

[bookmark: _Toc115429169]Proposal 1: Deprioritize network-configurable AI/ML Models until clear needs and benefits are identified and their feasibility is addressed.

[bookmark: _Ref115429086]Network-UE collaboration levels
In RAN#1 109-e, the following agreement was made on the network-UE collaboration level:Agreement
Take the following network-UE collaboration levels as one aspect for defining collaboration levels
1. Level x: No collaboration
2. Level y: Signaling-based collaboration without model transfer
3. Level z: Signaling-based collaboration with model transfer
Note: Other aspect(s), for defining collaboration levels is not precluded and will be discussed in later meetings, e.g., with/without model updating, to support training/inference, for defining collaboration levels will be discussed in later meetings
FFS: Clarification is needed for Level x-y boundary

Further, in RAN#1 110, it was noted:Note:
Companies are encouraged to bring discussions on various options and their views on how to define Level y/z boundary in the next RAN1 meeting.

We proposed to define Level y-z boundary based on
· Level y: Model delivery is transparent to 3gpp.
· Level z: Model is hosted in 3gpp network and delivered via 3gpp signaling

This Level y-z definition is consistent with the agreed “model transfer” terminology definition.
	AI/ML model transfer
	Delivery of an AI/ML model over the air interface, either parameters of a model structure known at the receiving end or a new model with parameters. Delivery may contain a full model or a partial model.

In both Level y and z, model being delivered can be a proprietary model as discussed in Section 2. In particular, for Level z, a proprietary model (i.e., run-time binary format) developed offline can be hosted inside 3gpp network for delivery to target devices via 3gpp signaling. Similarly, for two-sided models in Level z, a proprietary two-sided model can be developed offline (via Type1/2/3 training as agreed in RAN1 #110), and the UE-part and network-part of the two-sided model can be hosted inside 3gpp network for delivery to the gNB and UE, respectively.

[bookmark: _Toc115429170]Proposal 2: Define Level y-z boundary based on
- Level y: Model delivery is transparent to 3gpp.
- Level z: Model is hosted in 3gpp network and delivered with 3gpp signaling

ML model Life Cycle Management

In RAN#1 110, the following agreement was made on model Life Cycle Management (LCM).
Agreement
Study the following aspects, including the definition of components (if needed) and necessity, in Life Cycle Management
· Data collection
· Note: This also includes associated assistance information, if applicable.
· Model training
· [Model registration]
· Model deployment
· Note: Terminology is to be defined. This includes process of compiling a trained AI/ML model and packaging it into an executable format and delivering to a target device.
· [Model configuration]
· Model inference operation
· Model selection, activation, deactivation, switching, and fallback operation
· Note: some of them to be refined
· Model monitoring
· Model update
· Note: Terminology is to be defined. This includes model finetuning, retraining, and re-development via online/offline training.
· Model transfer
· UE capability
Note: Some aspects in the list may not have specification impact.
Note: Aspects with square brackets are tentative and pending terminology definition.
Note: More aspects may be added as study progresses.

Accordingly, in this contribution, we discuss each listed LCM aspect in the following subsections.

Data collection
It is observed that, for model development and training of UE-side models, data can be collected from UEs by data collection entities in a proprietary manner. This is a naturally existing baseline that does not need any specification effort.

Here, data collection entities may be owned by a UE vendor, a chip vendor, a network vendor, a network operator, a service provider, or a 3rd party. Who owns the data collection entity and how data are collected (i.e., APIs from UEs) are business decisions and outside the scope of 3gpp specification.

Given the proprietary data collection route is naturally available, the need and benefit of 3gpp-based data collection is unclear. Such a specification effort needs strong justification.

Specifying what data to collect in 3gpp is time-consuming, lacks flexibility, and lacks forward compatibility. It is best to leave data collection outside 3gpp specification, so that data may be readily collected as needed for any new AI/ML sub-use-cases and/or for any new input/output needs of AI/ML models being considered. Flexibility is important to accommodate different input/output choices among different model designs for the given sub-use-case. Forward compatibility is important to allow development of new AI/ML models for the given sub-use-case; given the rapid advances in the AI/ML field, tomorrow’s best AI/ML model for the given sub-use-case may be different from today’s best model and may require different dataset. Therefore, it is best to leave what to collect outside 3gpp specification.

[bookmark: _Toc115429201]Observations 4: Specifying what data to collect in 3gpp is time-consuming, lacks flexibility, and lacks forward compatibility.

[bookmark: _Toc115429171]Proposal 3: For model development and training of UE-side models, take proprietary data collection from UEs by non-specified data collection entities as a starting point.

Similarly, for model development and training of two-sided models for which the first part of inference is firstly performed by UE, data can be collected from UEs by data collection entities in a proprietary manner. This was already illustrated in Figure 2 and Figure 3 for Type 1/2/3 two-sided model training options. Given the proprietary data collection route is naturally available, the need and benefit of 3gpp-based data collection is unclear. Such a specification effort needs strong justification.

[bookmark: _Toc115429172]Proposal 4: For model development and training of two-sided models for which the first part of inference is firstly performed by UE, take proprietary data collection from UEs by non-specified data collection entities as a starting point.

Data collection: assistance information

Assistance information for dataset collection could be helpful in the model development process. For example, a family of ML models may have to be developed for the given functionality (e.g., site-specific ML Models for positioning), and the decision of how many models to develop in the family can be aided by assistance information provided during the dataset collection process.

Concretely, model development process may involve decision on whether one ML model or a family of ML models should be used. For example, a model developer may decide in favor of developing one large model across various deployment scenarios or several smaller models one for each deployment scenario. As another example, a model developer may want to develop one model across SNRs or two separate models for high and low SNRs. As yet another example, a model developer may want to develop one model across different CSI-RS beam configurations or several smaller models one for each CSI-RS beam configuration. For these model development purposes, it will be helpful if certain meta-data is made available at the UEs collecting data. While certain meta-data, such as a serving cell ID, RSRP, etc., may be readily available, other information such as CSI-RS beam configuration may not be known at UEs. In such a case, it may be beneficial to introduce signaling of such meta-data (such as CSI-RS beam configuration) to UEs as assistance signaling for data collection.
As an example, consider two-sided CSI compression as an example, and suppose that a given gNB site may use several different CSI-RS beam configurations. These could include, for example, combinations of antenna to TxRU mapping, digital/analog precoding, and downtilt angles. In this scenario, a given CSI-RS port would present different channel distributions observed at UE, just like different deployment scenarios or different SNRs would do. In this case, it may be beneficial to let UE know which underlying beam configuration was used for the given CSI-RS instance. Suppose the gNB uses N different beam configurations for CSI-RS and that the configuration ID is signaled to UE as a meta information. This would allow the model developer to categorize the collected CSI-RS observations into N different groups and help the model developer determine whether one model or a family of K<=N models may have to be developed.
We refer to the offline decision process determining how many (K) models to develop and the applicable coverage area of each model as scenario discovery.

If the model developer decides to develop K>1 different models in the family, then at inference time, the right model would have to be chosen during inference time that matches with the CSI-RS beam configuration used at inference. During the model registration, the configuration IDs {1,...,N} that each of the K models support could be provided to the network during the model registration, so that the gNB may know which of the K models to activate at UE in preparation for a CSI-RS beam configuration the gNB intends to use. We refer to this process as scenario association.

[bookmark: _Toc115429173]Proposal 5: Study meta data assistance to UEs, such as zone ID, scenario ID, and configuration ID, to help develop/train scenario- and configuration-specific models. This is applicable to both UE-side models and two-sided models.

Model training
To efficiently advance the study, we propose that RAN1 first focus on offline training. The need, benefit, and specification impact of online training can further be discussed during the study.

[bookmark: _Toc115429174]Proposal 6: Take offline training as a starting point for Rel-18 study.

From the discussion in Section 2, it is observed that UE-side models can be developed and trained in a proprietary manner based on proprietary data collection. This is a naturally existing baseline without any specification effort. Generally, model development and offline training falls into an engineering domain that does not involve 3gpp specification.

An entity (entities) for proprietary model development and training may be owned by a UE vendor, a chip vendor, a network vendor, a network operator, a service provider, or a 3rd party. It is a business decision and outside the scope of 3gpp specification.

[bookmark: _Toc115429175]Proposal 7: For model development and training of UE-side models, take proprietary model development and training based on proprietary data collection as a starting point.

Similarly, network-side models can be developed and trained in a proprietary manner based on proprietary data collection.

[bookmark: _Toc115429176]Proposal 8: For model development and training of network-side models, take proprietary model development and training based on proprietary data collection as a starting point.

Similarly, two-sided models can be developed and trained in a proprietary manner, based on the Type1/2/3 two-sided model training as agreed in RAN1 #110, based on proprietary data collection. Once data is collected at proprietary data collection entities, dataset sharing across data collection entities and across one or more training entities is outside the scope of 3gpp specification.

[bookmark: _Toc115429177]Proposal 9: For model development and training of two-sided models for which the first part of inference is firstly performed by UE, take proprietary model development and training based on proprietary data collection as a starting point, based on the Type1/2/3 two-sided model training as agreed in RAN1 #110.

Note that, for two-sided model training, RAN1 only need to study technical feasibility of Type1/2/3. Which of Type1/2/3 is used is a business decision and outside the scope of 3gpp specification.

[bookmark: _Toc115429178]Proposal 10: For two-sided model training, RAN1 only needs to study technical feasibility of Type1/2/3. Which of Type1/2/3 is used is a business decision and outside the scope of 3gpp specification.

Input to Proprietary Model is implementation-specific

From RAN1 #109-e, the following agreement was madeConclusion
As indicated in SID, although specific AI/ML algorithms and models may be studied for evaluation purposes, AI/ML algorithms and models are implementation specific and are not expected to be specified.

Further extending the above conclusion, for proprietary UE-side models developed/trained based on proprietary data collection, input to the model does not need to be specified, because specific input and its format to the model is an implementation choice. For example, for “CSI-RS channel” input, UE may want to use either time or frequency domain inputs, apply certain averaging across subcarriers, apply certain timing and frequency offset correction, certain scaling, and certain noise whitening. All those decisions are implementation-specific and cannot be mandated. UE may also want to use other auxiliary inputs, such as an SNR estimate, a Doppler estimate, sensor measurements, map information, etc. Whether to use any of these auxiliary inputs to the model is implementation-specific and cannot be mandated. Similarly, any pre-processing UE performs is up to UE implementation. Also, whether UE uses an end-to-end ML approach, or a conventional signal processing for feature extraction followed by an ML model that takes the features as input, is also up to UE implementation.

Therefore, for proprietary UE-side models developed/trained based on proprietary data collection, input to the model does not need to be specified. What kinds of inputs to use and the input formats are up to the entity responsible for model development/training.

[bookmark: _Toc115429179]Proposal 11: For proprietary UE-side models developed/trained based on proprietary data collection, input to the model does not need to be specified.

Similar observation holds for network-side models and two-sided models.

[bookmark: _Toc115429180]Proposal 12: For proprietary network-side models developed/trained based on proprietary data collection, input to the model does not need to be specified.
[bookmark: _Toc115429181]Proposal 13: proprietary two-sided models developed/trained based on proprietary data collection, input to the model does not need to be specified.

We note that, 3gpp may still agree on nominal input of the AI/ML models for the purpose of evaluation study.

Model registration, deployment, and configuration
As was discussed in Section 4, UE may not be expected to compile a model locally. The compilation process is CPU intensive and requires tools that are better optimized offline. Therefore, a compiled model may need to be delivered to the UE for inference.

[bookmark: _Toc115429182]Proposal 14: A model is converted into an executable before delivery to the UE.

Model inference operation

Assistance information for training and inference refers to various types of assistance information that may be used as input to the ML Model.

Example: Beam information, such as boresight angle, 3dB beam width, and/or beam shape information, could be provide as assistance information to UE. Such assistance information may be used as an auxiliary input to AI/ML Models for beam prediction.

It is noted that the use of more explicit input such as beam information, as opposed to logical beam IDs, as an input to an ML Model has several well-known benefits, such as
· Better sample efficiency, i.e., requires a smaller number of training samples
· Better model generalization performance, i.e., allows a single model to cover diverse scenarios, and avoids the need of developing multiple models across different beam codebook deployments.
· Helps reducing model complexity (both model size and compute)

[bookmark: _Toc115429183]Proposal 15: Study assistance information for AI/ML model inference. Study includes assessing their benefits and costs based on the common KPIs agreed in RAN1 #110.

Model monitoring
There are several aspects to consider in discussing model monitoring:
· What metrics do we monitor?
· What models do we monitor?
· Who performs model monitoring?
· What’s the purpose of model monitoring? That is, what’s the intended action out of model monitoring?
· How do we assess the need and benefit/cost of model monitoring?

Below we cover these questions and propose how RAN1 structure model monitoring study.

What metrics do we monitor?

Model performance may be monitored by looking at direct KPIs and indirect KPIs.

[bookmark: _Toc115429184]Proposal 16: Study the following metrics for model monitoring
- Direct monitoring (e.g., inference accuracy)
- Indirect monitoring (e.g., system throughput)

What’s the purpose of model monitoring?

Certain decisions, either dynamically or offline, may be made based on the model performance monitoring result. Model monitoring may be based on slow time scale statistics and may lead to slow time scale actions such as further data collection and/or model retraining or re-development. Model monitoring may be based on fast time scale and may lead to fast time scale actions such as deactivating the model or switching to an alternative model.

[bookmark: _Toc115429185]Proposal 17: Study the following categories of model monitoring
- Model monitoring for model update decision (i.e., re-training, new model development)
- Model monitoring for inference management (i.e., model selection, activation, deactivation, switching, and fallback operation)

It is noted that a model update is a slow time scale decision, so a model monitoring for model update decision can be done in relatively slow time scale. On the other hand, a model monitoring for inference management requires fast time scale monitoring (in terms of latency and frequency) for a fast action.

It is noted that the model update decision is best done by the same entity where the model was trained. For example, if the model is a proprietary model, then the re-training decision is best made by the same entity (ML server or an engineering entity) responsible for the training of the model. The re-training decision can be made based on monitoring KPIs provided by network and UEs, or based on the training entity’s directly calculating performance KPIs based on inference data available at the training entity.

How do we assess the need and benefit/cost of model monitoring

[bookmark: _Toc115429186]Proposal 18: For model monitoring, consider the following “model monitoring KPIs” to assess the need and benefit/cost of model monitoring:
- Accuracy and relevance (i.e., how well does the given monitoring metric reflect the model and system performance)
- Overhead (e.g., signaling overhead associated with model monitoring)
- Complexity (e.g., computation and memory cost for model monitoring)
- Latency (i.e., timeliness of monitoring result, from model failure to action, given the purpose of model monitoring)

Who performs model monitoring

For model monitoring of network-side models, the network can naturally perform the monitoring.

There are several different locations where monitoring of UE-side models and the UE part of a two-sided models may be performed. In case the monitoring is performed at the network side, monitoring results may be communicated back to the UE to aid decision on model re-training or model re-development from the UE side.

[bookmark: _Toc115429187]Proposal 19: For model monitoring of UE-side models and the UE part of two-sided models, study the following locations where model monitoring is performed and specification aspects:
- Self-monitoring at the UE side (inside UE or at a proprietary server)
- Network-initiated monitoring at the UE side
- Monitoring at the NW side

What models do we monitor

[bookmark: _Toc115429188]Proposal 20: Study model monitoring of
- Active model (e.g., to determine whether to deactivate the model from inference)
- Inactive model (e.g., to assess whether to activate the model for inference)

[bookmark: _Toc115429189]Proposal 21: For monitoring of two-sided models, study model monitoring of
- UE-part only
- NW-part only
- UE-part and NW-part as a whole

Signaling aspects for model monitoring

[bookmark: _Toc115429190]Proposal 22: Study the following specification aspects for model monitoring:
For monitoring at the UE side:
- Signaling to enable monitoring at UE-side (e.g., RS to enable ground truth measurement)
- Monitoring configuration (e.g., periodic or event-based condition for monitoring reporting, KPI to monitor)
- Monitoring report from UE to network (e.g., feedback of KPIs)
For monitoring at the NW side:
- Monitoring result indication from network to UE

Model selection, activation, deactivation, switching, and fallback operation
Model decisions during inference – such as model activation, selection, deactivation, switching to a different model, and fallback to non-ML – may be triggered from the following reasons:
· Model monitoring result indicating a performance issue
· Model coverage boundary (e.g., handover from one model coverage area to another model coverage area)

[bookmark: _Toc115429191]Proposal 23: Study model selection, switching, and fallback framework based on model monitoring.

[bookmark: _Toc115429192]Proposal 24: Study inference operation with model selection and switching among a family of models for the given sub-use case.

[bookmark: _Toc115429193]Proposal 25: Study model selection, switching, and fallback framework based on pre-defined scenarios/configurations (e.g., cell ID, zone ID, scenario ID, configuration ID)

[bookmark: _Toc115429194]Proposal 26: Study how to develop and train scenario/configuration-specific models, including categorizing/tagging datasets into different scenarios/configurations.

Triggers for model decision may arise from the network or from the UE. It may be because the KPI calculation for model monitoring may be at either network or UE side. It may also be because model decision is based on other factors not related to performance - such as UE battery, power consumption (heat dissipation), or the (un)availability of hardware accelerator issue.

[bookmark: _Toc115429195]Proposal 27: For UE-side and two-sided models, study both network-initiated, UE-initiated, and UE-autonomous model selection, switching, and fallback mechanisms.

Model update
Model update, such as model re-training and new model development may be performed offline, similar to the initial model development. Model update decision may partially be based on model monitoring results. New data may be continually collected from the device for model monitoring, model update decision, re-training, and new model training. Other reasons for model update may include device HW/SW changes requiring model update, and upgrading to a new AI/ML architecture for better performance and complexity. Once an updated model is available, it can be registered to the network, assigned a model ID, and deployed to the devices for inference.

Another kind of model update is online model fine-tuning. However, online model fine-tuning requires advanced device capability, and model training is generally a procedure with high power consumption. Given that model may be trained once and shared across millions of devices, the need and benefit of per-device online training is questionable. Furthermore, device-specific model optimization and testing are difficult or nearly impossible with online model update.

Therefore, we propose to prioritize offline model update over online model update.

[bookmark: _Toc115429196]Proposal 28: Take offline model update (e.g., offline model re-development, offline model re-training) as a starting point for Rel-18 study over model update via online training, to ensure optimized model performance and proper test coverage.

UE capability
As previously discussed, the models should be proprietary those are tested to ensure that they will meet the AI/ML use case performance requirements without any interoperability issues with the existing features. Furthermore, for an AI/ML use case, multiple models may be developed for different scenarios. The UE capability signaling should indicate model IDs supported per use case (or feature supporting AI/ML algorithms)
[bookmark: _Toc115429197]Proposal 29: The UE capability signaling should indicate supported model IDs for the given sub-use-case.

Conclusions
In this paper, we discussed general aspects for AI/ML framework for Rel-18 SI and made the following observations and proposals.
Proposal 1: Deprioritize network-configurable AI/ML Models until clear needs and benefits are identified and their feasibility is addressed.
Proposal 2: Define Level y-z boundary based on - Level y: Model delivery is transparent to 3gpp. - Level z: Model is hosted in 3gpp network and delivered with 3gpp signaling
Proposal 3: For model development and training of UE-side models, take proprietary data collection from UEs by non-specified data collection entities as a starting point.
Proposal 4: For model development and training of two-sided models for which the first part of inference is firstly performed by UE, take proprietary data collection from UEs by non-specified data collection entities as a starting point.
Proposal 5: Study meta data assistance to UEs, such as zone ID, scenario ID, and configuration ID, to help develop/train scenario- and configuration-specific models. This is applicable to both UE-side models and two-sided models.
Proposal 6: Take offline training as a starting point for Rel-18 study.
Proposal 7: For model development and training of UE-side models, take proprietary model development and training based on proprietary data collection as a starting point.
Proposal 8: For model development and training of network-side models, take proprietary model development and training based on proprietary data collection as a starting point.
Proposal 9: For model development and training of two-sided models for which the first part of inference is firstly performed by UE, take proprietary model development and training based on proprietary data collection as a starting point, based on the Type1/2/3 two-sided model training as agreed in RAN1 #110.
Proposal 10: For two-sided model training, RAN1 only needs to study technical feasibility of Type1/2/3. Which of Type1/2/3 is used is a business decision and outside the scope of 3gpp specification.
Proposal 11: For proprietary UE-side models developed/trained based on proprietary data collection, input to the model does not need to be specified.
Proposal 12: For proprietary network-side models developed/trained based on proprietary data collection, input to the model does not need to be specified.
Proposal 13: proprietary two-sided models developed/trained based on proprietary data collection, input to the model does not need to be specified.
Proposal 14: A model is converted into an executable before delivery to the UE.
Proposal 15: Study assistance information for AI/ML model inference. Study includes assessing their benefits and costs based on the common KPIs agreed in RAN1 #110.
Proposal 16: Study the following metrics for model monitoring - Direct monitoring (e.g., inference accuracy) - Indirect monitoring (e.g., system throughput)
Proposal 17: Study the following categories of model monitoring - Model monitoring for model update decision (i.e., re-training, new model development) - Model monitoring for inference management (i.e., model selection, activation, deactivation, switching, and fallback operation)
Proposal 18: For model monitoring, consider the following “model monitoring KPIs” to assess the need and benefit/cost of model monitoring: - Accuracy and relevance (i.e., how well does the given monitoring metric reflect the model and system performance) - Overhead (e.g., signaling overhead associated with model monitoring)
Proposal 19: For model monitoring of UE-side models and the UE part of two-sided models, study the following locations where model monitoring is performed and specification aspects: - Self-monitoring at the UE side (inside UE or at a proprietary server) - Network-initiated monitoring at the UE side - Monitoring at the NW side
Proposal 20: Study model monitoring of - Active model (e.g., to determine whether to deactivate the model from inference) - Inactive model (e.g., to assess whether to activate the model for inference)
Proposal 21: For monitoring of two-sided models, study model monitoring of - UE-part only - NW-part only - UE-part and NW-part as a whole
Proposal 22: Study the following specification aspects for model monitoring: For monitoring at the UE side: - Signaling to enable monitoring at UE-side (e.g., RS to enable ground truth measurement) - Monitoring configuration (e.g., periodic or event-based condition for monitoring reporting, KPI to monitor) - Monitoring report from UE to network (e.g., feedback of KPIs) For monitoring at the NW side: - Monitoring result indication from network to UE
Proposal 23: Study model selection, switching, and fallback framework based on model monitoring.
Proposal 24: Study inference operation with model selection and switching among a family of models for the given sub-use case.
Proposal 25: Study model selection, switching, and fallback framework based on pre-defined scenarios/configurations (e.g., cell ID, zone ID, scenario ID, configuration ID)
Proposal 26: Study how to develop and train scenario/configuration-specific models, including categorizing/tagging datasets into different scenarios/configurations.
Proposal 27: For UE-side and two-sided models, study both network-initiated, UE-initiated, and UE-autonomous model selection, switching, and fallback mechanisms.
Proposal 28: Take offline model update (e.g., offline model re-development, offline model re-training) as a starting point for Rel-18 study over model update via online training, to ensure optimized model performance and proper test coverage.
Proposal 29: The UE capability signaling should indicate supported model IDs for the given sub-use-case.

Observations 1: Proprietary model can be highly optimized for the target device. Network-configurable models do not enjoy such optimization.
Observations 2: Due to lack of testing of full model with parameters, network-configurable models may fail to meet the performance requirements of the AI/ML use case, or worse, result in undefined UE behavior.
Observations 3: UEs may not be expected to compile AI/ML models locally.
Observations 4: Specifying what data to collect in 3gpp is time-consuming, lacks flexibility, and lacks forward compatibility.

References
[1] [bookmark: _Ref101451885]RP-213599, “New SI: Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface”, 3GPP RAN Plenary
[2] [bookmark: _Ref101453495]3GPP TR 37.817, Technical Specification Group RAN; Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Study on enhancement for Data Collection for NR and EN-DC (Release 17)
[3] R1-2205023, “General Aspects of AI/ML Framework”, Qualcomm
[4] R1-2207223, “General Aspects of AI/ML Framework”, Qualcomm

2/9
image1.png

image2.png

image3.png

