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Introduction

In RAN#94-e, Rel-18 new study item on “Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface” is endorsed. One of the objectives of the study item [1] is the following:

	*** text omitted***
Use cases to focus on: 
· Initial set of use cases includes:
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
*** text omitted***
For the use cases under consideration:
1) Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
· PHY layer aspects, e.g., (RAN1)
· Consider aspects related to, e.g., the potential specification of the AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases
· Use case and collaboration level specific specification impact, such as new signalling, means for training and validation data assistance, assistance information, measurement, and feedback



Moreover, in RAN1#110, the following agreements and conclusions were made regarding the selection of sub-use cases and the potential specification impact of the CSI feedback enhancement use case.

	Agreement
In CSI compression using two-sided model use case, the following AI/ML model training collaborations will be further studied:
· Type 1: Joint training of the two-sided model at a single side/entity, e.g., UE-sided or Network-sided.
· Type 2: Joint training of the two-sided model at network side and UE side, repectively.
· Type 3: Separate training at network side and UE side, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE side and network side, respectively.
· Note: Joint training means the generation model and reconstruction model should be trained in the same loop for forward propagation and backward propagation. Joint training could be done both at single node or across multiple nodes (e.g., through gradient exchange between nodes).
· Note: Separate training includes sequential training starting with UE side training, or sequential training starting with NW side training [, or parallel training] at UE and NW
· Other collaboration types are not excluded. 

Conclusion
CSI-RS configuration and overhead reduction is NOT selected as one representative sub-use case for CSI feedback enhancement use case.

Conclusion
Resource allocation and scheduling is NOT selected as one representative sub-use case for CSI feedback enhancement use case.

Agreement
In CSI compression using two-sided model use case, further study potential specification impact on CSI report, including at least
· CSI generation model output and/or CSI reconstruction model input, including configuration(size/format) and/or potential post/pre-processing of CSI generation model output/CSI reconstruction model input. 
· CQI determination
· RI determination

Agreement
In CSI compression using two-sided model use case, further study potential specification impact on output CSI, including at least
· Model output type/dimension/configuration and potential post processing 

Agreement
In CSI compression using two-sided model use case, further discuss at least the following aspects, including their necessity/feasibility/potential specification impact, for data collection for AI/ML model training/inference/update/monitoring:
· Assistance signaling for UE’s data collection  
· Assistance signaling for gNB’s data collection
· Delivery of the datasets.


 
In this contribution, we will provide our views on the potential specification impact of the CSI feedback enhancement use case and finalization of its sub-use cases.


CSI Prediction/Extrapolation

1 
2 
2.1 
2.2 
Motivation

A massive MIMO system relies on high-resolution CSI feedback from UEs to the gNB to facilitate multi-user MIMO (MU-MIMO) transmission. This can yield significant gains in terms of system throughput, where multiple users can be simultaneously supported.

Massive MIMO systems are affected by channel aging, where the channel varies between the time that 1) a UE computes CSI feedback and the time that 2) a gNB uses that CSI feedback to transmit to the UE.  For example, channel aging can create a significant mismatch between a DL beamforming vector that a UE recommends for transmission at time t and the optimal DL beamforming vector at time t.  Channel aging can be especially problematic in high-mobility scenarios, leading to significant degradation in MU-MIMO performance (e.g. user-perceived throughput).

Recent research results from both academia and industry indicate that AI-based CSI prediction (where “prediction” refers to the time domain) strategies can significantly reduce prediction error beyond that achieved by the sample-and-hold strategy that is supported by Rel. 15-17.  Many of these results utilize deep learning techniques to learn the temporal channel correlations (and, in some instances, spatial-frequency channel correlations).

The benefits of AI-based CSI prediction can be applied to extrapolation in other domains (e.g. frequency, space; we use “extrapolation” to refer to those domains).  For example, a gNB can configure a UE to send it CSI reports for an inactive bandwidth part (BWP).  The UE can use received DL CSI-RS on an active BWP and then perform AI-based CSI extrapolation to infer CSI on the inactive BWP.  The gNB can then decide whether to configure the UE to switch to the inactive BWP, depending on the CSI reports for the active and inactive BWPs.

Description

Fig. 1 shows one approach for the prediction aspect of this sub-use case which relies on a three-dimensional convolutional neural network (3D-CNN) and entails the following steps:
· The UE/gNB stores its channel observation H(tk) at each time instant tk in a buffer, where this buffer can hold three channel observations.
· At time instant t3, the UE/gNB passes all of the channel observations in its buffer (i.e. H(t3), H(t2), and H(t1)) to a 3D-CNN, which predicts the channel at the next time instant H(t4) as 4).
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Figure 1: AI-based CSI prediction

Another approach for the prediction aspect of this sub-use case could entail UL-to-DL channel prediction at the gNB in an FDD system, where UL-to-DL channel reciprocity cannot be assumed.  In this scenario, the gNB could use one or multiple received SRS to predict DL CSI.

Fig. 2 shows one approach for the extrapolation aspect of this sub-use case which relies on a combination of a 1-D CNN and a residual neural network; it entails the following steps:
· The UE/gNB receives CSI-RS/SRS on one frequency band F1, and it wants to infer CSI on another frequency band F2
· The UE/gNB may also receive some CSI-RS/SRS as assistance information on F2 (in this case, it performs a combination of extrapolation and interpolation)
· The UE/gNB passes its received CSI-RS/SRS on F1 (and possibly F2) to a combination of a 1-D CNN and a residual neural network, which infers the CSI on F2.
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Figure 2: AI-based CSI extrapolation

As this sub-use case can encompass a range of approaches, this sub-use case should be clearly defined (e.g. assumptions, required inputs, required outputs).  For example:
· CSI prediction at the gNB: one or multiple received UL SRS could be input to the CSI predictor, and the CSI predictor could output a prediction of the UL channel H
· CSI prediction at the UE: one or multiple received DL CSI-RS could be input to the CSI predictor, and the CSI predictor could output a prediction of the DL channel H
· CSI extrapolation at the gNB: one or multiple received UL SRS could be input to the CSI extrapolator, and the CSI extrapolator could output the inferred UL channel Hbwp-inactive on an inactive BWP
· CSI extrapolation at the UE: one or multiple received DL CSI-RS could be input to the CSI extrapolator, and the CSI extrapolator could output the inferred DL channel Hbwp-inactive on an inactive BWP.

Proposal 1-1: Study CSI prediction/extrapolation as one sub-use case for AI/ML for CSI feedback enhancement, including signaling requirements, input/output requirements, CSI configurations, and training strategies.

Spec impact

In RAN1#109-e, the following agreement was made:
Agreement

Take the following network-UE collaboration levels as one aspect for defining collaboration levels
1. Level x: No collaboration
2. Level y: Signaling-based collaboration without model transfer
3. Level z: Signaling-based collaboration with model transfer
Note: Other aspect(s), for defining collaboration levels is not precluded and will be discussed in later meetings, e.g., with/without model updating, to support training/inference, for defining collaboration levels will be discussed in later meetings
FFS: Clarification is needed for Level x-y boundary

A scenario where the UE performs CSI prediction/extrapolation is expected to map to collaboration level y.  For example, when UL-to-DL channel reciprocity cannot be assumed (e.g. FDD systems), DL CSI prediction/extrapolation at the UE can yield improved performance, as the UE can perform training and inference while relying on limited information exchanges with the gNB:
· The gNB may enable or disable channel prediction/extrapolation at the UE.
· The gNB may configure the UE to apply a particular channel prediction/extrapolation method.
· The gNB may configure the UE to perform channel prediction/extrapolation at a given time/frequency offset.
· The gNB may configure the UE to report its channel prediction/extrapolation.

In particular, this scenario only requires AI/ML model training/storage/inference at the UE; AI/ML model exchanges with the gNB are not required.

Proposal 1-2: Study CSI prediction/extrapolation at the UE under collaboration level y, where limited information exchanges (without model transfer) are required to configure/enable AI/ML.


CSI Compression

Spec impact

In RAN1#109-e, the following agreement was made:
Agreement
Spatial-frequency domain CSI compression using two-sided AI model is selected as one representative sub use case.
· Note: Study of other sub use cases is not precluded.
· Note: All pre-processing/post-processing, quantization/de-quantization are within the scope of the sub use case.

Fig. 3 shows one approach for this sub-use case which relies on an autoencoder (AE) and entails the following steps:
· The UE pre-processes its channel estimate  (e.g. by performing an SVD for each sub-band) to obtain a precoder , which is passed to the encoder.
· The encoder compresses the precoder  into a feature vector .
· The feature vector is passed from the UE to the gNB (here, it is assumed that the feedback channel is noiseless), which passes it to the decoder.
· The decoder decompresses the feature vector into an estimate of the precoder.
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Figure 3: Autoencoder

In this sub-use case, the input/output requirements for an autoencoder should be studied. Candidates for the input type include:
· a set of eigenvectors (or singular vectors)  pre-processed by the UE
· a raw channel .
Similarly, candidates for the output type include:
· an estimate of a set of eigenvectors  reconstructed by the decoder
· an estimate of the raw channel .
If  is the autoencoder input, then the UE also needs to send the RI and CQI to the gNB, since encoding  is equivalent to encoding the PMI. In contrast, if  is the autoencoder input, then the gNB can process the full CSI. These approaches have their respective advantages and disadvantages. For example, if  is the autoencoder input:
· the gNB can identify the eigenvalue corresponding to each eigenvector using an eigenvalue decomposition of the raw channel – enabling it to perform adaptive power allocation (which generally outperforms equal power allocation).
· if the UE does not also report the CQI, though, then the gNB cannot exploit the UE’s measurements of interference.

Table 1: Advantages and disadvantages of candidates for autoencoder input type
	Candidate autoencoder input type
	advantages
	disadvantages

	set of eigenvectors 
	- the compression ratio might be better than that achieved by compressing the raw channel.
	- UE also needs to report other information (e.g., RI, CQI).

	raw channel 
	- the gNB can exploit full channel information (e.g., eigenvalues and eigenvectors) to obtain improved MIMO performance (e.g. adaptive power allocation).
	- the compression ratio might be worse than that achieved by compressing .
- the gNB cannot exploit the UE’s measurements of interference.



The data format of the required inputs/outputs, including the input to the encoder and the output of the encoder (i.e. the feedback that is sent by the UE to the gNB) should be known at the UE and the gNB.  For example:
· the input to the encoder could consist of the channel matrices of a single resource element (RE)
· the input to the encoder could consist of the channel matrices of multiple REs
· if the gNB trains the encoder and the decoder, and then shares the encoder with the UE, the gNB could signal the required format of the encoder input to the UE
· if the UE trains the encoder and the decoder, and then shares the decoder with the gNB, the UE could signal the required format of the decoder output to the gNB
· a new UCI type could be defined for the output of the encoder, which consists of quantized codewords
· the required format of the encoder/decoder input/output could be included in the description of a model when it is registered.

Proposal 2-1: For CSI compression, study signaling requirements, input/output requirements and CSI configurations.

Two-sided model development

The following agreement was made in RAN1#110:
Agreement
In CSI compression using two-sided model use case, the following AI/ML model training collaborations will be further studied:
· Type 1: Joint training of the two-sided model at a single side/entity, e.g., UE-sided or Network-sided.
· Type 2: Joint training of the two-sided model at network side and UE side, repectively.
· Type 3: Separate training at network side and UE side, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE side and network side, respectively.
· Note: Joint training means the generation model and reconstruction model should be trained in the same loop for forward propagation and backward propagation. Joint training could be done both at single node or across multiple nodes (e.g., through gradient exchange between nodes).
· Note: Separate training includes sequential training starting with UE side training, or sequential training starting with NW side training [, or parallel training] at UE and NW
· Other collaboration types are not excluded.

In our view, the discussion for two-sided model training/development falls under the general aspects of the AI/ML framework as the framework discussion includes characterization of defining stages of AI/ML algorithm and associated complexity, UE-gNB collaboration, life cycle management, dataset(s), and notation/terminology.

Proposal 2-2: Study the various types of AI/ML model training collaborations under agenda item 9.2.1: general aspects of AI/ML framework.

In general, two-sided models can be developed either by a single vendor (Type 1) or by two or more vendors through collaboration (Types 2 and 3).  In all three types, two-sided models can be either developed in an offline setup or online setup; in an online setup, collection of training inputs (data, gradient values, etc.) occurs over the air-interface. However, online model development and updates require extensive sharing of training datasets and other quantities such as backpropagation gradient values for training. 

Proposal 2-3: Deprioritize two-sided model training collaboration that requires extensive sharing of training, validation and testing datasets in this study item.

Moreover, model delivery in Types 1, 2, and 3 can be facilitated by 1) model transfer over the air-interface or 2) methods that are transparent to the physical layer, e.g., preinstalled models. In RAN1#109-e, some companies raised concerns on the proprietary aspects of AI/ML models. This imposes further constraints on model sharing between UE and network vendors. 

Table 2: Various two-sided model training collaborations
	No.
	Two-sided model training collaborations
	Model development
	Model delivery
	Can a model be proprietary?

	1.
	Developed by UE; shared to the network
	Offline or online
	Transparent or model transfer
	No

	2.
	Developed by network; shared to the UE
	Offline or online
	Transparent or model transfer
	No

	3.
	Developed via multi-vendor collaboration
	Offline or online
	Transparent or model transfer
	Possible



Types 2 and 3 can protect proprietary aspects of AI/ML models. Additionally, Types 2 and 3 facilitate model development that supports optimization for the target node’s hardware and implementations. However, Types 2 and 3 may not support scalability in model development. It is not practical for each vendor to set up a training session or exchange training datasets or reference models with each potential collaborating vendor. 

  Table 3: Three types of training collaborations agreed to be studied for two-sided model development for CSI compression
	
	Can
model be proprietary?
	Optimization for UE/gNB hardware/implementation
	Model development/training scalability
	Model management scalability (storing, monitoring, updating, etc.)
	Possible
overhead

	Type-1:
Joint training at one side
	No
	Not supported
	Scalable
	· No issues for over-the-air transfer (use and discard).
· Otherwise, UE/gNB has to manage multiple models.
	· Model transfer overhead,  if over the air interface

	Type-2:
Joint training at both sides
	Yes
	Supported
	Not scalable
· Two vendors train the network in one session.
· A vendor has to contact each collaborating vendor for offline engineering.
	· Has to be verified whether a single a UE-side model works with multiple gNB-side models, and vice versa.

	· Dataset, forward and backward propagation values delivery overhead, if over the air interface.

	Type-3:
Separate training at both sides
	Yes
	Supported
	Not scalable
· Independent training sessions.
· Vendor has to receive training data or reference model from collaborating vendors.
	· Has to be verified whether a single UE-side model works with multiple gNB-side models, and vice versa.

	· Dataset delivery overhead, if over the air interface.
· Reference model delivery overhead, if over the air interface.



Types 1, 2, and 3 can be utilized for both offline and online model development, updates or fine-tuning. For example, in Type 2, two vendors can collaborate for offline engineering outside the 3GPP framework (possibly using a private server). These vendors may share training datasets and backpropagation gradient values without disclosing their respective models. However, this method may still require two vendors to use the same model structure; the inputs (batch) of the training dataset should also be aligned. At the minimum, the models for both sides need to be paired and based on the same baseline architecture (e.g., ResNet, DenseNet) to achieve the expected performance. In this case, the model proprietary issue cannot be fully resolved. On the other hand, for online model development, updates or fine-tuning, the backpropagation gradient values and the training dataset have to be shared online via either the air interface or in manner that is transparent to the physical layer. However, such online updates will be inefficient due to the sharing of large training datasets and backpropagation values.
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Figure 4: Different approaches for two-sided model development without model disclosure
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Figure 5: Different examples for Type 3

Type 3, i.e., separate training of the two sides at the UE and network, can have multiple flavors.  As illustrated in Fig. 5, Type 3-1 Sequential training can start at the network or UE. When the network initiates training, the network trains ENC* and DEC (for example) and generates the labelled dataset {V, c} for the input space and latent space based on the trained model. This labelled dataset can then be shared with the UE for the training of its model (e.g. ENC) via supervised learning. Then, the UE and network would deploy ENC and DEC, respectively. As shown in Fig. 5, a similar procedure can be followed to train the two sides sequentially starting at the UE.

[image: ]
Figure 6: One realization of Type 3-3 [Parallel training]

Similarly, in Type 3-2, collaborating vendors may share reference models. As an example, for auto-encoder-based CSI compression, a UE vendor and a network vendor can provide their reference decoder and encoder models, respectively. These vendors may not view these reference models as proprietary; thus, they can be shared with other vendors. Finally, these vendors train their respective proprietary models with respect to the shared reference models (e.g., a UE vendor trains its proprietary encoder with respect to the shared reference decoder). The performance might be impacted by the reference models, which requires further investigation. In order for the respective proprietary models to match, they may need to be trained with the same dataset (or, at least, datasets that are identically distributed). If the respective proprietary models can generalize across different datasets (e.g., datasets with similar distributions), they can be trained with datasets that are similarly distributed. Thus, these vendors have to share information (metadata) on these training datasets. Otherwise, if these vendors use mismatched training datasets, they may experience performance degradation.

Finally, in Type 3-3, collaborating vendors may independently train their respective models according to a common structure in the latent space. For example, these vendors may agree to use a reference dataset to guide (among various proprietary implementations) the mapping of the input space, V, to the latent space, c. They may then agree on a general mapping principle (e.g. conserving distances in the input and latent spaces; that may require an agreement on how to measure distance in those spaces). Finally, these vendors can separately train their respective models based on the agreed reference datasets and general mapping principle.  However, the feasibility and performance of this approach has not been studied.

In order to mitigate the aforementioned scalability issue in model development for Type 3, training inputs/aspects that are shared by the collaborating vendors (e.g. reference datasets, reference models, mapping principles) can be standardized.

For these two-sided model development approaches, models are assumed to be pre-stored in hardware. These models cannot be updated or fine-tuned for different scenarios if model transfer does not occur. Therefore, the generalization performance of these approaches needs to be carefully evaluated. 

Table 4: Challenges for two-sided model development approaches 
	No.
	Two-sided model development approach
	Model development
	Exchanged quantities
	Challenges

	1.
	Type 2 via gradient value sharing
	Offline or online
	· Training dataset 
· Inference output
· Backpropagation gradient values 
	· Scalability 
· Overhead for online development (dataset sharing and gradient values sharing)
· Not aligned with 3GPP’s philosophy of open development 

	3
	Type 3-1 via labeled-data sharing  [Sequential]
	Offline or online
	· Labeled training dataset
	· Scalability 
· Overhead for online development (dataset sharing and reference model sharing)
· Not aligned with 3GPP’s philosophy of open development

	2.
	Type 3-2 via reference model sharing [Parallel]
	Offline or online
	· Information on training dataset or metadata
· Reference models
	· Scalability 
· Overhead for online development (dataset sharing and reference model sharing)
· Not aligned with 3GPP’s philosophy of open development

	3.
	Type 3-3 via separate training based on structured latent space [Parallel]
	Offline or online
	· Reference dataset and distance measurement metric (if not standardized)
	· Performance has not been verified
· Overhead to align dataset



Proposal 2-4: Study the impact of the following factors on two-sided model development approaches:
· Requirements on privacy-sensitive dataset sharing 
· Scalability, i.e., whether the number of models one vendor should develop increases with the number of collaborating vendors
· Whether two-sided model development approaches adhere to 3GPP’s open and fair framework

Other issues

As we noted, Type 3, which entails separate training at the network and the UE, has several advantages, including 1) preserving proprietary information (e.g. training strategies, model structure, model parameters) and 2) eliminating the overhead of model transfer.

For Type 3, one approach to facilitate a competitive ecosystem for model development entails utilizing a reference decoder (e.g. DEC* for Type 3-2 [Parallel training] in Fig. 5), including training/testing an encoder with this reference decoder.  The performance impact of this approach should be assessed.

[bookmark: _GoBack]Proposal 2-5: For Type 3 training collaboration, study performance impact of training/testing an encoder with a reference decoder.

For model inference of AE-based CSI compression, the encoder and the decoder should be separately deployed at the UE and the gNB, respectively.  This sub-use case can be supported by the following methods:
· Offline training-based methods:
· For example, a gNB can either 1) use a specified AE(s) or 2) collect a dataset for cell-specific offline training using the current specifications (e.g. CSI measurements from SRS by exploiting DL-UL reciprocity, reconstructed CSIs from legacy CSI feedback, generated CSI from a channel model by applying second-order statistics that are measured from SRS, etc.). Thus, no signaling would be required to transfer a training dataset. After training the AE, the gNB configures the specified/trained encoder to the UE.
· [bookmark: _Hlk102061121]Online training-based methods:
· For example, if a gNB employs a proprietary training strategy, a UE could update the trained/specified encoder without knowledge of the gNB’s training strategy.  In this case, the gNB would also configure its specified/trained decoder to the UE, and the UE would report validation results for the updated encoder to the gNB.

Once the AE model has been trained, the dimension of the compressed vector (i.e., output of encoder) is fixed. 

Proposal 2-6: Study and verify model update of the encoder at the UE, where the gNB’s training strategy is not disclosed while transferring/configuring the AE.

For the legacy CSI feedback framework, a UE can use its reported PMI (i.e. precoder) to calculate CQI and report it to a gNB.  That approach cannot be directly applied to this sub-use case, as the UE does not know the PMI that will be reconstructed at the gNB by its decoder.  Thus, there are at least two options for the UE to report CQI to the gNB:
· Option 1: calculate CQI based on the input to its encoder
· Option 2: calculate CQI based on the output of the gNB’s decoder, where the gNB shares its decoder with the UE

Option 1 is relatively straightforward and avoids the above-mentioned issues that are inherent to model transfer (e.g. disclosing proprietary information, overhead).  That being said, it is unclear whether a significant performance gap exists between Options 1 and 2, which requires further investigation.

Proposal 2-7: Study performance impact of calculating CQI at UE using the input to its encoder (compared to CQI calculation that uses output of decoder at gNB).


Joint CSI Prediction and Compression

Motivation

The legacy codebooks (CBs) compress the CSI in spatial (angle) and frequency (delay) domains, i.e., spatial-domain compression in Rel. 15 CBs as well as spatial & frequency-domain compression in Rel. 16 and Rel. 17 CBs. Moreover, Rel. 17 port selection (PS) CB achieves further reduction in the CSI feedback overhead (higher compression) by exploiting angle-delay reciprocity. The remaining dimension (domain) that has not yet been exploited is the time-domain compression. Therefore, it is natural if AI/ML-based CSI feedback enhancement incorporates joint compression in spatial (angle), frequency (delay), and time (Doppler) domains. It is shown in our contribution [2] that by utilizing the three-dimensional (spatial-frequency-time) compression, the CSI overhead can be reduced significantly, i.e., higher compression ratio can be achieved.
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Figure 7: Non-linear compression of CSI via AI/ML

Additionally, one application area for joint prediction & compression is medium/high speed scenarios where CSI aging is observed in the legacy CSI feedback framework. Owing to the shorter channel coherence time/duration in medium/high speed scenarios, frequent CSI measurements and feedback might be required. However, frequent CSI measurements and feedback is inefficient in terms of both feedback overhead and computational complexity. In this regard, it may be helpful to investigate CSI feedback compression in the time domain. In Fig. 7, time-domain compressed CSI which can be applied to N coherence time intervals is depicted; in contrast, N CSI reports in legacy CBs would be required for this scenario.





Finally, another advantage of AI/ML-based CSI feedback enhancement is its ability to achieve non-linear compression. DFT basis vectors-based compression has been utilized in Rel. 15-17 CBs for spatial & frequency-domain compression. Basis vectors-based representation of precoding vectors is computationally advantageous. However, basis vectors-based representation may incur a non-trivial approximation error due to incomplete basis representation, fixed basis sampling, fixed (RRC-configured) number of basis vectors, etc. In particular, to reduce CSI feedback overhead and achieve efficient representation, the conventional schemes (Rel. 16-17 codebooks and their potential enhancement in Rel. 18 for Doppler-domain compression) represent the CSI with fewer number of basis vectors, i.e., L spatial, M[v] frequency and M[d] Doppler basis vectors, as compared to the full set of orthogonal basis vectors, the number of which are, N3, and N[4], respectively, where, and . This incomplete basis representation results in imperfect representation or approximation loss. Furthermore, the number of basis vectors, i.e., L, M[v] and M[d], and the dimension of the basis vectors (sampling), i.e., Ntx, N3 and N[4 ] are fixed (RRC configured), will result in lacking flexibility. Moreover, the existing codebooks rely on fixed (linear) quantization for amplitudes and phase coefficients reporting. In this regard, due to the non-linear approximation property of auto-encoders (AEs), AI/ML-based sampling and quantization may provide more flexibility (degrees-of-freedom) and reduce quantization/approximation error. The nonlinear compression of CSI is depicted in Fig. 7 by a broken yellow line as opposed to linear (basis-vector-based) compression along the axes of the three dimensions.

Description

[image: ]
Figure 8: CSI compression from M measurements and prediction/extrapolation to N time instants/intervals

Joint CSI prediction and compression allows the UE to report a CSI that may be used by the gNB to derive multiple CSI which can be applied to multiple future time instants/intervals. Thus, the CSI in this sub-use case involves time-domain CSI compression in addition to spatial & frequency-domain compression, i.e., spatial-frequency-time domain compression.

[image: ]
Figure 9: Approach 1: prediction at gNB vs. Approach 2: prediction at UE

	
Conclusion
· Further discuss temporal-spatial-frequency domain CSI compression using two-sided model as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion.
· Further discuss improving the CSI accuracy based on traditional codebook design using one-sided model as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion.
· Further discuss CSI prediction using one-sided model as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion
· Further discuss CSI-RS configuration and overhead reduction as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion
· Further discuss resource allocation and scheduling as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion
· Further discuss joint CSI prediction and compression as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion. 




The conclusion above was made in RAN1#109 regarding possible sub-use cases for CSI feedback enhancement after the evaluation methodology discussion. In our view, joint CSI prediction and compression is identical to temporal-spatial-frequency domain CSI compression. Therefore, these sub-use cases can be merged.

Proposal 3-1: Study joint CSI prediction and compression as a representative sub-use case of AI/ML based CSI feedback enhancement. 
· Consider joint CSI prediction and compression as temporal-spatial-frequency-domain compression.

Two approaches can be considered for this sub-use case.

Approach 1: A UE measures CSI from M CSI-RS resources and derives a single compressed CSI report from these measurements. The gNB then reconstructs the M CSIs corresponding to the M measurements. Moreover, the gNB performs prediction/extrapolation to future time instants based on the reconstructed M CSIs.

Table 5: Input variants for AE: Approach 1
	Variants  (Inputs to the Autoencoder)
	Compression Domain for AI
	Advantage

	Explicit eigenvectors
	Spatial, frequency and time domain
	- Lower complexity (no need to compute PMI)
- May achieve higher compression ratio

	PMI information based on conventional codebook (Rel. 15, 16, 17 CBs)
	Time domain
	· May have better convergence and/or complexity  

	Full channel matrix (angle-delay domain)
	Time domain
	· May have better convergence and/or complexity
· Lower processing at the UE



Fig. 10 shows two reporting settings that are suitable for (a) aperiodic burst CSI-RS resources and (b) periodic and semi-persistent CSI-RS resources. 


[image: ]
Figure 10: Two reporting settings based on the time-domain property of the CSI measurement configuration (CSI-RS resources)






For aperiodic CSI-RS resources, as shown in Fig. 10 (a), the UE may compress CSI from  measurements after receiving a burst of CSI-RS resources at different time instants. For periodic and semi-persistent CSI-RS resources, as shown in Fig. 10 (b), the UE can perform measurement-by-measurement reporting of CSI. Then the decoder reconstructs the CSI by concatenating the reported codewords for the past  measurements, i.e., , with the current codeword. This enables the gNB to exploit time-domain correlation for spatial-frequency-time domain CSI compression – even if the UE performs measurement-by-measurement reporting of CSI.

Therefore, the CSI reporting method could depend on the time-domain property of the CSI measurement (periodic, aperiodic or semi-persistent).

Approach 2: A UE measures CSI from M CSI-RS resources and predicts/extrapolates the CSIs corresponding to N predefined time intervals. One way to do such prediction/extrapolation is based on Doppler components estimation. The encoder at the UE then compresses the CSI corresponding to these N time intervals. As the N time intervals are ideally within the Doppler stationary time interval, i.e., the time interval where the Doppler components of the channel are constant, the N CSI are correlated thus compressible. The gNB then reconstructs the CSI for these N time instants (sub time units) from the compressed CSI feedback.  

A comparison between these two approaches is provided in the table below. 

Table 6: Comparison of Approach 1 and Approach 2
	No. 
	Metric
	Approach 1
	Approach 2

	1. 
	Burden (complexity) on UE
	Moderate
	Moderate

	2.
	Suitability for CQI reporting
	May require study
	Suitable (CQI can be derived from corresponding PMI)

	3. 
	Time granularity in predicted PMI
	Flexible (gNB has control)
	Configured application interval (subtime unit)



Moreover, Approach 2 can further be categorized as: Approach 2-1 eigenvector-based prediction and Approach 2-2 full channel matrix-based prediction.

                             [image: ]
Figure 11: Eigenvector-based prediction and full channel matrix-based prediction

In our contribution for 9.2.2.1 [2], we showed that eigenvector-based prediction is outperformed by full-channel matrix-based prediction. One challenge for Approach 1 is that making the full channel matrix  available at the gNB incurs significant overhead. Note that the full channel matrix can be decomposed as ; for the right eigenvectors in V, , and for the left eigenvectors in U, . Conventionally, the right eigenvectors in V are sent to the gNB via CSI feedback. Significant reporting overhead is incurred by sending the full channel matrix , which consists of an  matrix per reporting subband. However, the gNB is usually interested in channel information corresponding to the dominant layers (low rank). In this case, the UE may send the channel matrix corresponding to the dominant layers, e.g.,   for layers, .  Note that .

[image: ]
Figure 12: gNB-side prediction with availability of left and right eigenvectors at the gNB

Spec impact

In case the encoder part of the AE is shared by the gNB via model transfer (collaboration level (D)) the values of M and/or N along with other parameters that describe the input to the AE such as the number of sub-bands, quantization bits per port, etc., can be configured as part of the model transfer. Thus, M and N may not be needed to be specified as part of CSI resource and reporting configurations. This facilitates the use of models with different input types without the need for specification support, i.e., inputs including eigenvectors, full channel matrix across angle-delay domains, even PMI information based on legacy CBs etc., giving vendors/operators flexibility in their AI/ML model development.

One of the essential configurations from the gNB is the size of the AE’s output. This information could be included in model transfer description/registration. Then, when the gNB triggers, activates or configures a CSI report based on a certain AI model, the UE will implicitly figure out the size of the AE’s output. One open issue, however, concerns the mapping of feedback bits to the UCI payload. Another open issue is whether an AE-based CSI feedback can be split into multiple parts, which would allow dropping of some feedback bits in case the UCI payload is not large enough to carry all of the feedback bits.

It is essential to spare the UE from the burden of heavy processing as much as possible. In this regard, it is preferred to perform essential training offline. Various approaches can be considered to tackle scenario-sensitivity (generalization issues) of the AE including training with a mixed dataset, transfer learning, assistance information exchange in model selection, update, etc.

Proposal 3-2: Study joint CSI compression and prediction: gNB-side CSI prediction/extrapolation (Approach 1) and UE-side prediction/extrapolation for joint CSI prediction and compression (Approach 2) including signaling requirements, CSI configurations, and training strategies.


Conclusions

In this contribution, we discussed the potential specification impact of the CSI feedback enhancement use case and finalization of its sub-use cases.  Our proposals are summarized as follows.

Proposal 1-1: Study CSI prediction/extrapolation as one sub-use case for AI/ML for CSI feedback enhancement, including signaling requirements, input/output requirements, CSI configurations, and training strategies.

Proposal 1-2: Study CSI prediction/extrapolation at the UE under collaboration level y, where limited information exchanges (without model transfer) are required to configure/enable AI/ML.

Proposal 2-1: For CSI compression, study signaling requirements, input/output requirements and CSI configurations.

Proposal 2-2: Study the various types of AI/ML model training collaborations under agenda item 9.2.1: general aspects of AI/ML framework.

Proposal 2-3: Deprioritize two-sided model training collaboration that requires extensive sharing of training, validation and testing datasets in this study item.

Proposal 2-4: Study the impact of the following factors on two-sided model development approaches:
· Requirements on privacy-sensitive dataset sharing 
· Scalability, i.e., whether the number of models one vendor should develop increases with the number of collaborating vendors
· Whether two-sided model development approaches adhere to 3GPP’s open and fair framework

Proposal 2-5: For Type 3 training collaboration, study performance impact of training/testing an encoder with a reference decoder.

Proposal 2-6: Study and verify model update of the encoder at the UE, where the gNB’s training strategy is not disclosed while transferring/configuring the AE.

Proposal 2-7: Study performance impact of calculating CQI at UE using the input to its encoder (compared to CQI calculation that uses output of decoder at gNB).

Proposal 3-1: Study joint CSI prediction and compression as a representative sub-use case of AI/ML based CSI feedback enhancement. 
· Consider joint CSI prediction and compression as temporal-spatial-frequency-domain compression.

Proposal 3-2: Study joint CSI compression and prediction: gNB-side CSI prediction/extrapolation (Approach 1) and UE-side prediction/extrapolation for joint CSI prediction and compression (Approach 2) including signaling requirements, CSI configurations, and training strategies.

References

[1] RP-213599, New SI: Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface, Dec, 2021.
[2] R1-2209722, Samsung, “Views on Evaluation of AI/ML for CSI feedback enhancement”, 3GPP TSG RAN1#110b



17

image3.png

image4.png

image5.png

image6.png

image7.png

image8.wmf
tx

N


oleObject1.bin

image9.wmf
tx

LN

<


oleObject2.bin

image10.wmf
3

v

MN

<


oleObject3.bin

image11.wmf
[4]

D

MN

<


oleObject4.bin

image12.png

image13.png

image14.png

image15.wmf
M


oleObject5.bin

oleObject6.bin

image16.wmf
1

M

-


oleObject7.bin

image17.wmf
11

,,

mMm

-+-

cc

L


oleObject8.bin

image18.wmf
m

c


oleObject9.bin

image19.png

image20.png

image1.png

image2.png

