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[bookmark: _Ref521334010]Introduction
In RAN#94-e meeting, AI/ML for NR air-interface was agreed and the several objectives were approved in the SID [1]. In RAN1 #109-e and RAN1 #110 meetings, evaluation methodology and KPIs for AI/ML based CSI feedback enhancement were discussed, and several agreements had been achieved. 
In this contribution, CSI payload for AI based evaluation and intermediate KPI for rank>1 are discussed. Evaluation results on spatial-frequency domain CSI compression using two-sided AI/ML model are also provided.
[bookmark: _Ref115441413]Intermediate KPI
In RAN1#109-e, for the evaluation of the AI/ML based CSI feedback enhancement, the intermediate KPIs of GCS/SGCS and/or NMSE were taken as part of the ‘Evaluation Metric’ to evaluate the accuracy of the AI/ML output CSI. One open issue is how to report GCS/SGCS for rank>1 cases if GCS/SGCS is adopted. The following three methods were provided in RAN1#109-e:
· Method 1: Average over all layers
·  is the jth eigenvector of the target CSI at resource unit i and K is the rank.  is the  jth output vector of the output CSI of resource unit i. N is the total number of resource units.   denotes the average operation over multiple samples.
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· Method 2: Weighted average over all layers
· Note: Companies to report the formula (e.g., whether normalization is applied for eigenvalues)
· Method 3: GCS/SGCS is separately calculated for each layer (e.g., for K layers, K GCS/SGCS values are derived respectively, and comparison is performed per layer)
In RAN1 #110 meeting, an agreement was achieved that between GCS and SGCS, SGCS was adopted. Therefore GCS in the candidate methods would not be further considered for comparison among companies. 
Down-selection among the above options is preferred for better performance comparison among companies.  Evaluating intermediate KPI is to evaluate the performance of AI/ML models directly without applying the output of AI/ML model in a system/link level platform, which can save plenty of simulation efforts. However, it is desired that the intermediate KPI can be able to reflect the performance of the system, i.e. eventual KPI, when AI/ML model is applied. Therefore intermediate KPIs that are more consistent with eventual KPIs are preferred.
In a realistic MIMO system, the gain on throughput of increasing precoding accuracy for high ranks would be much lower than that for low ranks. One reason is that the probability of scheduling UEs with high ranks would be lower than that for low ranks. Thus, lower layers should have higher weight than higher layers in either intermediate evaluation or eventual evaluation. For method 1, all layers have the same contribution to the calculation of SGCS, which is inconsistent with the reality that different layers would have different contributions to the throughput. Therefore method 1 is not preferred. On the contrary, by proper weighting, method 2 is able to take the differential of the contribution of layers to both intermediate KPI and eventual KPI into consideration, which can be more consistent with the reality. For method 2, normalizing metrics among layers can be considered, i.e. the following formula can be considered, where  is an eigenvalue of the channel covariance matrix corresponding to ,  is the jth eigenvector of the target CSI at resource unit i and K is the rank.  is the  jth output vector of the output CSI of resource unit i. N is the total number of resource units.   denotes the average operation over multiple samples:

Method 3 can provide the insights for per layer. Compared to codebook based CSI feedback, if better SGCS for each layer can be achieved by an AI/ML based CSI compression, better SLS throughput is expected. Therefore method 3 can also be considered. 
Proposal 1: For the evaluation of AI/ML based CSI feedback enhancement, as the intermediate KPI for rank>1 cases, either or both of the following two methods are selected:
· Method 2: Weighted average over all layers as follows, where  is an eigenvalue of the channel covariance matrix corresponding to ,  is the jth eigenvector of the target CSI at resource unit i and K is the rank.  is the  jth output vector of the output CSI of resource unit i. N is the total number of resource units.   denotes the average operation over multiple samples:

· Method 3: SGCS is separately calculated for each layer.
Simulation results
In this section, our simulation results on spatial-frequency domain CSI compression using two-sided AI/ML models are provided, with the simulation assumptions shown in Annex. 
Joint training
The simulations in this section assume that AI/ML model for CSI compression are jointly trained and the encoder and decoder are deployed in UE side and network side respectively.
[bookmark: _Ref115387127]Scalable AI/ML model
Since variable payloads, ranks and ports for AI/ML model based CSI feedback should be supported as that for codebook based CSI feedback in Rel-16, AI/ML models that can adjust variable payloads and support variable ports should be considered. If AI/ML models are trained separately for each payload, each rank and each port, the training burden, storage memory and model transferring overhead would be increased linearly with the number of payloads, ranks and ports. In order to reduce model training burden, storage memory and model transferring overhead, scalable AI/ML based approaches for CSI feedback should be considered.
One possible payload-scalable AI/ML model is shown in Figure 1. Transformer based AI/ML model (two transformer encode blocks) is used in both encoder part (EN block) and decoder part (DE block), and fully-connected layers are used for down-sampling (DS-x block) and up-sampling (US-x block). A pair of DS-x block and US-x block corresponds to a payload configuration while EN block and DE block are shared among all payload configurations. At the training phase multi-task learning scheme is used and the loss function is the average SGCS over all payload configurations. At the inference phase, only one branch is activated according to the configured payload. The input data  is eigenvector base on SVD of channel matrix.
To support variable ports, payload-scalable AI/ML model can be further extended with the above idea as shown in Figure 2 (named as SCsiNet). Fully connected layers are used for linear pre-transforming (LPT-x block) and linear transforming (LT-x block) for the purpose of unifying input/output dimensions and probability distribution of eigenvectors from different port numbers. Similar to payload-scalable AI/ML model, EN block and DE block are shared among all payload and port configurations. The input of SCsiNet is eigenvector from all layers, i.e. ignoring layer index. Note that the proposed SCsiNet can be also extended for other aspects such as bandwidth etc.


Figure 1: Basic structure of payload-scalable AI/ML model.


Figure 2: Basic structure of SCsiNet.
Table 1: Parameters for AI/ML model training
	Parameter 
	Value

	Size of training and validation dataset
	

	Size of test dataset
	

	Epoch
	200~300

	Batch size
	1024

	Learning rate
	

	Optimizer
	Adam

	Loss function
	SGCS

	Input/output format
	Eigenvector

	Quantization
	Uniform, 2 bits


The training parameters of SCsiNet are given in Table 1. Figure 3 provide simulation results for SCsiNet and a family of layer-common AI/ML models, and the FLOPs and size of AI/ML model for each payload and port configuration are provided in Table 2. For each layer-common AI/ML model, the AI/ML model is trained for a specific payload and port with mixed eigenvectors from all 4 layers.


 Figure 3: Intermediate results of SCsiNet and layer-common AI models
Table 2: FLOPs and size of SCsiNet
	CSI feedback configuration
	Config1
	Config2
	Config3
	Config4
	Config5
	Config6
	Config7
	Config8

	Payload (bits)
	20
	40
	60
	80
	100
	120
	140
	160

	FLOPs of encoder (M)
	16ports
	9.8
	9.84
	9.87
	9.9
	9.93
	9.96
	9.96
	10.02

	
	32ports
	9.9
	9.93
	9.97
	10
	10
	10.06
	10.06
	10.12

	FLOPs of decoder (M)
	16ports
	9.8
	9.84
	9.87
	9.9
	9.93
	9.96
	9.96
	10.02

	
	32ports
	9.9
	9.93
	9.96
	10
	10.03
	10.06
	10.06
	10.12

	CSI feedback configuration
	Config9
	Config10
	Config11
	Config12
	Config13
	Config14
	Config15
	Config16

	Payload (bits)
	180
	200
	220
	240
	260
	280
	300
	320

	FLOPs of encoder (M)
	16ports
	10.1
	10.08
	10.11
	10.14
	10.17
	10.21
	10.24
	10.27

	
	32ports
	10.15
	10.18
	10.21
	10.24
	10.27
	10.3
	10.34
	10.37

	FLOPs of decoder (M)
	16ports
	10.05
	10.08
	10.11
	10.14
	10.17
	10.2
	10.24
	10.27

	
	32ports
	10.15
	10.18
	10.21
	10.24
	10.27
	10.3
	10.33
	10.36

	#Total parameters
(M)
	Encoder(16ports+32ports)
	Decoder(16ports+32ports)

	
	2.51
	2.52



It can be seen from this simulation results that compared with a family of layer-common AI/ML models, SCsiNet can achieve a similar performance for all layers. Note that the total number of layer-common AI/ML models should be  to support 20/40/…320-bit payloads and 16/32 ports. This means that the size of SCsiNet is approximately 1/32 as that of the family of layer-common AI/ML models, since all branches of SCsiNet use common transformer blocks (i.e. EN, DE), and the size of transformer blocks is usually much bigger than other blocks (i.e. DS-x, US-x, LT-x, LPT-x) of the AI/ML model.
Observation 1: Compared with a family of layer-common AI/ML models, the scalable AI/ML model (SCsiNet) can achieve a similar performance and can significantly reduce storage memory and model transferring overhead. 

AI/ML model for variable ranks
For CSI feedback with rank>1, several methods can be considered for AI/ML model design:
· Alt 1: Layer common, i.e., all layers uses the same AI/ML model for CSI compression.
· Alt 2: Layer specific AI/ML model, i.e., AI/ML models for layers are trained respectively. Then for maximum 4 MIMO layers, 4 AI/ML models would be used: one AI/ML model #1 for layer 1 of rank=1,2,3,4, one AI/ML model #2 for layer 2 of rank=2,3,4, one AI/ML model #3 for layer 3 of rank=3,4, and one AI /ML model #4 for layer 4 of rank=4.
· Alt 3: Rank specific AI/ML model, i.e., AI/ML models for different ranks are trained separately. Then for maximum 4 MIMO layers, 4 AI/ML models would be used, with each for a rank.
For Alt 1, since same AI/ML model is used for all layers and all ranks, the overhead of CSI feedback is proportional to the number of layers. That does not make sense. As have been pointed out in Section 2, in real deployment, the gain of increasing precoding accuracy for high ranks would be much lower than that for low ranks, and the probability of scheduling UEs with high ranks would be lower than that for low ranks. Therefore allocating much higher payloads for high ranks than low ranks is not a good idea. For DL Type II codebook based CSI feedback in NR systems, the overheads of PMI feedback for rank 3, 4 are comparable to that for rank 2. For AI/ML based CSI feedback, the overhead of PMI feedback for rank 3, 4 are also not expected to be much larger than rank 2. Therefore layer specific AI/ML model (i.e., Alt 2) or rank specific AI/ML model (i.e. Alt 3) should be considered.
Proposal 2: For AI/ML based CSI feedback, the overheads of CSI feedback for rank 3 and rank 4 are expected to be comparable to rank 2.
Figure 4, Figure 5, Figure 6 and Figure 7 provide simulation results of 16 ports and 32 ports respectively for rank 1, rank 2, rank 3 and rank 4 based on the SCsiNet proposed in section 3.1.1. In the simulation, six CSI feedback payload configurations are considered for 16 ports and 32 ports. The bit distributions among 4 layers are shown in Table 3. The payload of rank 1 is about half of the payload of rank 2/3/4. In the simulation, rank-adaptive scheduling is considered. It can be seen from the simulation results that compared to Rel-16 Type II codebook based CSI feedback, obvious performance gain can be achieved by CSI feedback with the proposed scalable AI/ML model for all ranks:
· Under the same CSI feedback payload, SGCS can be improved by 0.02~0.1 for rank 1, 0.03~0.17 for rank 2, 0.03~0.22 for rank 3 and 0.03~0.18 for rank 4;
· Under the same SGCS, payload can be saved by 40%~60% for rank 1, 50%~60% for rank 2, 30%~60% for rank 3 and 50%~60% for rank 4.
Observation 2: Compared to Rel-16 Type II codebook based CSI feedback, obvious performance gain can be achieved by CSI feedback with proposed scalable AI/ML model for rank=1, 2, 3, 4:
· SGCS can be improved by 0.02~0.22 under the same CSI feedback payload;
· Payload can be saved by 30%~60% bits under the same SGCS.
Table 3: Payload distribution among 4 layers
	Payload(bits)
	Rank1
	Rank2
	Rank3
	Rank4

	
	Layer1
	Layer1
	Layer2
	Total
	Layer1
	Layer2
	Layer3
	Total
	Layer1
	Layer2
	Layer3
	Layer4
	Total

	Config1
	40
	60
	20
	80
	40
	20
	20
	80
	40
	20
	20
	20
	100

	Config2
	60
	80
	40
	120
	60
	40
	20
	120
	60
	20
	20
	40
	140

	Config3
	80
	100
	60
	160
	80
	40
	40
	160
	80
	40
	20
	40
	180

	Config4
	120
	160
	80
	240
	100
	80
	60
	240
	120
	60
	40
	40
	260

	Config5
	160
	220
	100
	320
	160
	120
	80
	360
	160
	100
	60
	60
	380

	Config6
	240
	320
	140
	460
	180
	140
	120
	440
	180
	140
	80
	60
	460



 Figure 4: Intermediate results of SCsiNet for rank=1

Figure 5: Intermediate results of SCsiNet for rank=2

Figure 6: Intermediate results of SCsiNet for rank=3

Figure 7: Intermediate results of SCsiNet for rank=4
Based on the proposed SCsiNet, the SLS evaluation results for 16 ports and 32 ports are provided in Figure 8. Rank adaption is applied in the simulation. It can be seen from the simulation results that compared to Rel-16 Type II codebook based CSI feedback, significant performance gain can be achieved by AI/ML based CSI feedback:
· The throughput can be improved by 3%~11% under the same CSI feedback payload.

 Figure 8: Eventual simulation results for rank adaption
Observation 3: Compared to Rel-16 Type II codebook based CSI feedback, 3%~11% throughput improvement under the same CSI feedback payload can be achieved by proposed scalable AI/ML model.
Separate training
For spatial-frequency domain CSI compression using two-sided AI/ML model, there are several challenges for joint training of AI/ML models: 1) Transferring AI/ML model would cause privacy problem. 2) If the two-sided AI/ML model is trained in one side and a part of AI/ML model (i.e. encoder or decoder) is transferred to the other side through air interface, the transferred AI/ML model may not match the hardware platform of the other side well. Then low operating efficiency, high power consumption and large operating delay may be incurred. 3) If the AI/ML model is transferred through air interface directly, a common model representation format (MRF) would be needed to exchange interpretable languages between network and UE, which needs more study within 3GPP at present. 
Training AI/ML models in two sides separately is an attractive solution that can avoid above problems. One possible solution for separate training is that each side trains part of AI/ML model (i.e., encoder for UE, and decoder for network) by a common training data set of {Channel, target CSI}. 
In this section, intermediate evaluations of separate training for rank 1 are provided, with the following two options considered:
· Option 1 (Separate encoder training): Training encoder A+ decoder A based on initial training dataset #A of {Channel}. Then based on encoder A, obtaining training dataset #B of {Channel, target CSI}, and training encoder B based on training dataset #B, with “Channel” as the input and “target CSI” as the output. 
· Option 2 (Separate decoder training): Training encoder A+ decoder A based on initial training dataset #A of {Channel}. Then based on encoder A, obtaining training dataset #B of {Channel, target CSI}, and training decoder B based on training dataset #B, with “target CSI” as the input and “Channel” as the output.
Note that in our preliminary design, for option 1 and option 2, “Channel” in training dataset are eigenvectors of channel matrixes. Other possible representations of “Channel” shall not be precluded at this stage.
Regarding the design of encoder and decoder, the following approaches are considered:
· Approach 1: Two transformer models with different number of layers are used by the UE side and the network side (i.e. the number of layers in UE side is smaller than that in network side for Option 1, and the number of layers in network side is smaller than that in UE side for Option 2);
· Approach 2: Two different model structures are used by encoder at the UE side and decoder at the network side (i.e., one side with transformer, and the other side with ResNet).
The simulation results on separate training are provided in Table 4. For reference, simulation result of Joint training based on transformer structure is applied. In the table, we also provided simulation results with dataset #B with only half size of dataset #A for Approach 1. It can be seen from the simulation results that:
· For Approach 1, even for the cases with the two transformer models have different number of layers, compared to joint training, the SGCS degradation of separate training is less than 0.5%.
· For Approach 2, with different structures for encoder and decoder, the SGCS degradation of separate training is 4.3%~11%.
· For separate training, compared to dataset #B has the same size as dataset #A, minor performance loss can be seen for dataset #B has half size of dataset #A.
Observation 4: For separate training for AI/ML based CSI compression, compared to joint training, 
· Performance loss is tiny when both the UE side and network side use transformer based AI/ML model;
· Performance loss is obvious when one of the UE side and network side uses transformer based AI/ML model and the other one uses ResNet based AI/ML model.
Observation 5: For separate training, compared to dataset #B has the same size as dataset #A, minor performance loss can be seen for dataset #B has half size of dataset #A.
Table 4: SGCS for separate training
	CSI feedback configuration
	Config1
	Config3
	Config6

	CSI feedback payload (bits)
	49
	87
	242

	Joint training with size of dataset#A =360K
	0.677
	0.718
	0.816

	Approach 1
	Option 1(Separate encoder training with size of dataset#B =  360K/180K)
	0.676/0. 675
	0.716/0. 716
	0.814/0. 812

	
	Option 2(Separate decoder training with size of dataset#B = 360K/180K)
	0.674/0. 672
	0.716/0. 714
	0.813/0. 812

	Approach 2
	Option 1(Separate encoder training with size of dataset#B = 360K, ResNet as encoder, transformer as decoder)
	0.648
	0.674
	0.726

	
	Option 2(Separate decoder training with size of dataset#B =360K, transformer as decoder, ResNet as encoder)
	0.649
	0.686
	0.774


 
Generalization
For spatial-frequency domain CSI compression using two-sided AI model, evaluations on generalization of the AI/ML model for scenarios of UMi, UMa and InH are provided in Table 5. In the simulation, the following cases are considered:
· Case 1: The training dataset for AI/ML model is obtained from scenario #A, and the inference is performed in scenario #A;
· Case 2: The training dataset for AI/ML model is obtained from scenario #A, and the inference is performed in scenario #B;
· Case 3: The training dataset for AI/ML model is obtained from scenario #A and scenario #B (i.e. mixed dataset of scenario #A and scenario #B), and the inference is performed in scenario #A/ scenario #B.
For simplicity, only rank=1 is considered in this simulation.
Table 5: SGCS for generalization
	
	Scenario for inference

	
	UMa
	UMi
	InH

	CSI feedback configuration
	Config1
	Config2
	Config3
	Config1
	Config2
	Config3
	Config1
	Config2
	Config3

	CSI feedback payload (bits)
	49
	87
	242
	49
	87
	242
	49
	87
	242

	Scenarios for generating dataset for training
	UMa
	0.677
	0.718
	0.816
	0.615
	0.669
	0.800
	0.88
	0.895
	0.903

	
	UMi
	0.685
	0.733
	0.834
	0.646
	0.706
	0.840
	0.88
	0.897
	0.914

	
	InH
	0.584
	0.613
	0.645
	0.525
	0.547
	0.573
	0.841
	0.861
	0.904

	
	Mixed UMa & InH(6:4)
	0.581
	0.628
	0.783
	/
	/
	/
	0.880
	0.900
	0.925

	
	Mixed UMa & InH(9:1)
	0.664
	0.701
	0.805
	/
	/
	/
	0.881
	0.900
	0.923



Based on the simulation results, it can be seen that：
· For applying AI/ML model in UMa/UMi, the SGCS difference between training the AI/ML model with dataset of UMa and training the AI/ML model with dataset of UMi is less than 5%. 
· For applying AI/ML model in InH, the AI/ML model trained based on a dataset collected in UMa/UMi slightly outperforms the AI/ML model trained based on a dataset collected in InH.
· For applying AI/ML model in UMa, compared to the AI/ML model trained in UMa, the SGCS degradation of the AI/ML model trained in InH can be 13.7%~24.6%. Training the AI/ML model with mixed data of UMa and InH can alleviate the performance loss. 
Observation 6: For the generalization of AI/ML based CSI feedback, the following is observed:
· For applying AI/ML model in UMa/UMi, the performance difference between training the AI/ML model with dataset of UMa and training the AI/ML model with dataset of UMi is small.
· For applying AI/ML model in InH, the AI/ML model trained based on a dataset collected in UMa/UMi slightly outperforms the AI/ML model trained based on a dataset collected in InH.
· For applying AI/ML model in UMa, compared to the AI/ML model trained in UMa, significantly performance loss can be seen by the AI/ML model trained in InH. Training the AI/ML model with mixed data of UMa and InH can alleviate the performance gap.

Conclusions
In this contribution, we provide our views on evaluation and KPIs for AI/ML based CSI feedback. We have the following observations and proposals:
Observation 1: Compared with a family of layer-common AI/ML models, the scalable AI/ML model (SCsiNet) can achieve a similar performance and can significantly reduce storage memory and model transferring overhead. 
Observation 2: Compared to Rel-16 Type II codebook based CSI feedback, obvious performance gain can be achieved by CSI feedback with proposed scalable AI/ML model for rank=1, 2, 3, 4:
· SGCS can be improved by 0.02~0.22 under the same CSI feedback payload;
· Payload can be saved by 30%~60% bits under the same SGCS.
Observation 3: Compared to Rel-16 Type II codebook based CSI feedback, 3%~11% throughput improvement under the same CSI feedback payload can be achieved by proposed scalable AI/ML model.
Observation 4: For separate training for AI/ML based CSI compression, compared to joint training, 
· Performance loss is tiny when both the UE side and network side use transformer based AI/ML model;
· Performance loss is obvious when one of the UE side and network side uses transformer based AI/ML model and the other one uses ResNet based AI/ML model.
Observation 5: For separate training, compared to dataset #B has the same size as dataset #A, minor performance loss can be seen for dataset #B has half size of dataset #A.
Observation 6: For the generalization of AI/ML based CSI feedback, the following is observed:
· For applying AI/ML model in UMa/UMi, the performance difference between training the AI/ML model with dataset of UMa and training the AI/ML model with dataset of UMi is small.
· For applying AI/ML model in InH, the AI/ML model trained based on a dataset collected in UMa/UMi slightly outperforms the AI/ML model trained based on a dataset collected in InH.
· For applying AI/ML model in UMa, compared to the AI/ML model trained in UMa, significantly performance loss can be seen by the AI/ML model trained in InH. Training the AI/ML model with mixed data of UMa and InH can alleviate the performance gap.

Proposal 1: For the evaluation of AI/ML based CSI feedback enhancement, as the intermediate KPI for rank>1 cases, either or both of the following two methods are selected:
· Method 2: Weighted average over all layers as follows, where  is an eigenvalue of the channel covariance matrix corresponding to ,  is the jth eigenvector of the target CSI at resource unit i and K is the rank.  is the  jth output vector of the output CSI of resource unit i. N is the total number of resource units.   denotes the average operation over multiple samples:

· Method 3: SGCS is separately calculated for each layer.
Proposal 2: For AI/ML based CSI feedback, the overheads of CSI feedback for rank 3 and rank 4 are expected to be comparable to rank 2.
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Annex
Table 6 Simulation assumptions
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Scenario
	Dense Urban (Macro only), UMi, InH 

	Frequency Range
	FR1 only

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ
16 ports: (8,4,2,1,1,2,4), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for (rank 1-4)

	BS Tx power
	41 dBm

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Coding on PDSCH
	LDPC
Max code-block size=8448bit

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz for 2GHz

	Simulation bandwidth
	10MHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	CSI feedback
	CSI feedback periodicity: 5 ms,
Scheduling delay: 4 ms

	Traffic model
	Full buffer, FTP

	Traffic load (Resource utilization)
	~20%

	UE distribution
	80% indoor (3km/h), 20% outdoor (30km/h)

	UE receiver
	MMSE-IRC

	Feedback assumption
	Ideal

	Channel estimation         
	Realistic

	Evaluation Metric
	Throughput, SGCS.

	Baseline for performance evaluation
	R16 Type II codebook
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