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Introduction
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]In RAN 94-e meeting [1], study on artificial intelligence (AI) / machine learning (ML) for multiple use cases was approved considering aspects such as performance, complexity, and potential specification impact. The following gives the detailed scope for the study. 
Regarding multiple use cases:
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

For the use cases under consideration:
1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.

2) Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
· PHY layer aspects, e.g., (RAN1)
· Consider aspects related to, e.g., the potential specification of the AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases
· Use case and collaboration level specific specification impact, such as new signaling, means for training and validation data assistance, assistance information, measurement, and feedback
· Protocol aspects, e.g., (RAN2) - RAN2 only starts the work after there is sufficient progress on the use case study in RAN1 
·  Consider aspects related to, e.g., capability indication, configuration and control procedures (training/inference), and management of data and AI/ML model, per RAN1 input 
· Collaboration level specific specification impact per use case 
· Interoperability and testability aspects, e.g., (RAN4) - RAN4 only starts the work after there is sufficient progress on use case study in RAN1 and RAN2
· Requirements and testing frameworks to validate AI/ML based performance enhancements and ensuring that UE and gNB with AI/ML meet or exceed the existing minimum requirements if applicable
· Consider the need and implications for AI/ML processing capabilities definition

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced.

In this contribution, we focus on the use case of beam management, including spatial domain beam prediction and time domain beam prediction. Simulation results, corresponding comparisons and observations are provided to verify the rationality and validity of the proposed beam management enhancements based on artificial intelligence (AI) / machine learning (ML).
Evaluation methodology
Beam number assumption
To align the performance gain for each sub use case among companies, EVM alignment is important. Besides, the performance of beam prediction can be greatly different if the number of beams for AI input and output are differently assumed across companies. Thus, the number of beam in gNB/UE should be aligned in EVM as much as possible. 
In RAN#110 meeting, two alternatives with some updates are discussed for Tx beam number,
· Alt 1: For the evaluation of both temporal and spatial domain prediction, Set A consists of 32 or 64 Tx beams are used at NW side. 
· Other values are not precluded and can be reported by companies.
· Note: other values can be considered for issues like generalization
· Alt 2: 
· For the evaluation of both temporal and spatial domain prediction, Set A consists of 32 or 64 or 256 Tx beams are used at NW side.
· For the evaluation of temporal domain prediction, Set A consists of 32 or 64 or 256 Tx beams are used at NW side. 
· Other values are not precluded and can be reported by companies. 
· Note: other values can be considered for issues like generalization
From our perspective, less options in Tx beam number assumption may improve calibration accuracy across companies. Thus, we slightly prefer Alt 1 but we can live with Alt 2.
Slightly prefer Alt 1 in evaluation assumption of Tx beam number, but we can live with Alt 2.
Similarly, we support 4 Rx beams per UE panel can be used at UE side. 
Support 4 Rx beams per UE panel used at UE side for the evaluation of both temporal and spatial domain beam prediction.
Baseline performance assumption
Previously, some evaluations for MIMO/eMIMO/FeMIMO are conducted without exposing absolute spectral efficiency. There may potentially be large difference among companies on the baseline performance, and it would be difficult to align on whether AI/ML has gains. To alleviate such misaligned understanding on the baseline performance, the definition of baseline performance should be clarified firstly. 
Two options of baseline schemes for each sub-use cases were approved,
BM-Case1: spatial domain beam prediction:
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
BM-Case2: temporal domain beam prediction:
· Option 1: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1

For option 2 in both of beam management sub-use cases, the importance is to identify a state-of-the-art Set B subset selection method, otherwise exaggerated gains may be potentially obtained from AI based beam prediction, which may not highlight the actual benefit of AI/ML-based approaches and may lead to misinterpreted results/conclusions. Thus, the subset (i.e., set B) selection method should be reported by each company if AI performance compared to baseline defined by option 2. We believe Option 1 is a fair benchmark for performance comparison among companies, as option 1 is the solid upper bound of performance for system performance related KPIs or beam measurement related KPIs and easy to compare. We, thus, propose,
Support both option 1 and option 2 as baseline performance in spatial domain beam prediction and temporal domain beam prediction, and set B selection method in option 2 should be reported.
Common dataset 
Another aspect that influences the aligned observation on the performance of AI/ML over air interface is dataset. If the dataset to train AI/ML models is different for different companies, it would not be possible for companies to be aligned on the performance gain of AI/ML. There are two ways on table for companies to be aligned on this:
· Alt1: Provide details as much as possible for generation of the dataset
· Alt2: Directly provide publicly accessible dataset for training and testing 
It is preferable to go with Alt1+Alt2 since this would resolve the misalignment between companies to the largest extent.
It is encouraged for companies to provide publicly accessible dataset and disclose the details for the dataset generation as much as possible for training and validation for cross-check purposes.
Other assumptions 
Furthermore, companies can report the details of AI model per sub use cases for simulation calibration purpose, such as NN architecture type, AI model inputs/outputs, and training/validation dataset. From our perspective, at least the description of AI model inputs/outputs including assistance information should be reported per sub use case, as it may have significant impact on standardization. Besides, the generation of training dataset and inference dataset should be reported in each sub cases for generalization performance comparison. Thus, we propose,
At least AI model inputs/outputs and training/validation dataset should be reported per sub-use case by companies. Other parameters, such as NN architecture type, loss function, and data post/pre-processing method, are encouraged to be reported.
KPI discussion
In RAN1#109-e meeting, following agreements were approved in KPI aspects,
Agreement
· For evaluation of AI/ML in BM, the KPI may include the model complexity and computational complexity.
· FFS: the details of model complexity and computational complexity
Agreement
· To evaluate the performance of AI/ML in beam management, further study the following KPI options:
· Beam prediction accuracy related KPIs, may include the following options:
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
· CDF of L1-RSRP difference for Top-1 predicted beam
· Beam prediction accuracy (%) with 1dB margin for Top-1 beam
· The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam” 
· the definition of L1-RSRP difference of Top-1 predicted beam: 
· the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
· Other beam prediction accuracy related KPIs are not precluded and can be reported by companies. 
· System performance related KPIs, may include the following options:
· UE throughput: CDF of UE throughput, avg. and 5%ile UE throughput
· RS overhead reduction at least for spatial-domain beam prediction at least for top-1 beam:
· 1-N/M,
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement
· where (FFS) M is the total number of beams
· Note: Non-AI/ML approach based on the measurement of these M beams may be used as a baseline
· FFS on whether to define a proper value for M for evaluation.
· Other System performance related KPIs are not precluded and can be reported by companies.
· Other KPIs are not precluded and can be reported by companies, for example:
· Reporting overhead reduction: (FFS) The number of UCI report and UCI payload size, for temporal /spatial prediction
· Latency reduction:
·  (FFS) (1 – [Total transmission time of N beams] / [Total transmission time of M beams])
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) in the input beam set required for measurement
· where M is the total number of beams
· Power consumption reduction: FFS on details.
Beam management related KPIs
Regarding beam prediction accuracy (%) for Top-1 and/or Top-K beams, two options have been made for further down selection. 
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
For option1, we can consider an extreme case that huge L1-RSRP difference measured between Top-1 genie-aided beam and 2nd best genie-aided beam if quite narrow beams are used in FR2. Consequently, the beam prediction accuracy for Top-k beams may be precise sufficiently, but L1-RSRP difference seems terrible if other beams except the best beam are predicted by AI algorithm. However, the KPI target of option 2 is the Top-1 genie-aided beam which is unique and goal-oriented. Thus, we believe option 2 is more suitable. 
Support Option 2, i.e. the beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”, to be the definition of beam prediction accuracy (%) for Top-1 and/or Top-K beams.
Overhead from beam sweeping and UCI report should be considered as basic KPI. For example, as a representative use case for which this metric is useful, we can consider partial to whole beam prediction. Through measurement is performed on partial beams, the beam search space can be reduced as well as resources overhead, due to sweeping over a small number of beams. Thus, the metric of overhead reduction can be captured accurately for this sub use cases if compared to non-AI algorithm. The metric of beam sweeping overhead reduction can be equal to 1-N/M where N is the number of beams required for measurement in both non-AI algorithm and AI algorithm, and M can be the total number of all possible beams. 
Furthermore, the motivation of beam prediction in BM-Case 2 is to use fewer beam report to efficiently and accurately predict more beams in temporal domain. For example, originally it needs 40ms to track the beam accurately. With proper Case-2 beam prediction, the beam report can be reduced to once per 160ms. This would help to save UE power, RS overhead and also UL resources. UCI Payload size can also be reduced since it is possible that some prediction needs more input while other prediction needs fewer.
In addition, there are some solutions to share huge amount of training data or assistant information via RAN air interface. We think this could cause trouble for RAN2 study and design, and it’s beneficial to let RAN1 consider signaling overhead in its study from the beginning. We, thus, propose,
The metric of beam sweeping overhead reduction is calculated as 1-N/M where N is the number of beams required for measurement in both non-AI algorithm and AI algorithm, and M can be the total number of all possible beams to be predicted.
UCI reporting overhead reduction, including the number of UCI report and UCI payload size, should be considered as basic KPI.
RRC singling overhead can be considered as optional KPI if huge amount of data, such as training data, assistant information, and AI model data, is exchanged via RAN air interference.
Generalization performance related KPIs
Generalization should be seriously considered for all AI/ML based approaches, as generalization, including overfitting issues, is one of the key issues in AI/ML. The typical capability of AI/ML model is to learn the features of the training set, which may not be aligned or applicable to unseen features. As a possible consequence, AI model may work well for training data set but its performance on verification data set could be unacceptable. Besides, the generalization performance of AI model is affected by the AI model structure, the variety of training data set and the training strategy. It is better to keep the training loss to be an accurate approximation of the generalization loss uniformly distributed for all hypotheses.
Actually, as the procedure of beam management is highly dependent on specific implementation, such as, mapping relationship between TXRU and antenna, array size, AI/ML model deployment location, and beamforming realization, we believe generalization issue is critical for this use case since it not only brings performance deterioration but also causes AI function useless. For example, if one AI model for beam prediction is deployed in gNB side with a predefined fixed number of L1-RSRPs for output corresponding to a certain number of beam pairs, this AI model may be suitable for a UE with the same number of required Rx beams, whereas to another UE with a different number of Rx beams, the output of the AI model is mismatched, and thus this AI model is not applicable. To address this mismatch issue, one solution is to prepare multiple AI models in advance for adapting different number of Rx beams. We believe this solution may be effective but not feasible especially after considering more implementation aspects such as storage size. Too frequent update or switch of the AI model may cause large overhead in air interface or large UE storage size. Thus, from our view, the trained model should be generally applicable for dynamically changing working environment in each generalization scope, such as,
· Different scenarios, e.g. Umi, Uma, indoor hotspot, etc.
· Different UE speeds, e.g. 30km/h, 60km/h, etc.
· Different number of Tx beams and/or Rx beams
· Different gNB/UE antenna configurations, e.g. different number of antennas which corresponding to various beam shape pattern
Support to define generalization performance KPI. 
To study and evaluate generalization, at least the aspects including different scenarios, different UE speeds, different number of Tx beams and Rx beams, and different gNB/UE antenna configurations, should be prioritized.
We know this generalization performance related KPI is more complicated and should be discussed among companies to agree on priority of generalization scope in the study first. If companies agree to pursue including such generalization aspects, the discussion regarding how AI solutions can fulfill this KPI in each agreed aspect should be carried on. The following is an example to illustrate how to perform testing on generalization performance using spatial domain beam prediction in gNB side with different numbers of UE Rx beams. 
· Step-1: Generate the training dataset from a first set of parameters, including e.g., scenarios, speed, antenna configurations, Tx beams, Rx beams, etc. 
· Step-2: Train the AI/ML model using the training dataset (also include model validation to tune the hyperparameters with the same training dataset).
· Step-3: Generate a new dataset from a separate set of parameters with only 1 difference to the first parameter set, i.e. the number of Rx beams. It should be clarified that multiple parameters are different between two sets are not precluded in further study.
· Step-4: If this trained model in step 2 can be performed with the dataset generated in step 3, test its performance; Otherwise the trained model is inapplicable for the new dataset.
Through the above steps, generalization performance can be verified, and it can be found this KPI at least implies two levels of functionalities, i.e. AI model adaptability (inapplicable pre-trained model) and beam management related performance in different datasets. 
· For the first level, i.e., AI model trained for one configuration inapplicable to another configuration, any enhancement on training data set is not useful. Hence the above generalization procedure is necessary to test AI model’s adaptability and performance for this level. This can also be seen as a study of scalability of AI model.
· For the second level, i.e., AI model trained for one configuration/scenario applicable to another configuration/scenario with performance loss, some enhancement on training data set, such as mixed data set training, can also be considered on top of the procedure above.
Back to implementation in real life, we think for beam prediction use case, if the training is at gNB side, the training may base on a certain gNB configuration. It should not be forced to realize the same Rx beam number for all accessed UEs, thus model design should consider the output target of an AI model used for beam prediction with different numbers of Tx beams and/or Rx beams, as the UE in the cell may have different antenna configurations. Similarly, if the training is at UE side, different scenarios and gNB configurations may need to be considered as well. Thus, in SI, final conclusions for the beam prediction use case should only be drawn after comparing performance over at least above generalization aspects as it brings critical commercial issues in life.
For evaluation of generalization performance, support to evaluate KPIs for a separately generated testing dataset generation method with at least 1 target parameter difference. Multiple target parameters can also be verified in further study.
Performance evaluation results
In this section, we provide our simulation results for performance evaluation of AI/ML based beam prediction, including data generation and processing, set B pattern selection scheme, produce N output beams based expected beam information scheme and 2-step prediction scheme (i.e., sequential Tx and Rx beam prediction v.s., one-step beam pair prediction).
Evaluation assumption
AI model structure
In comparison with fully-connection neural network, superior AI model, such as transformer, convolution neural network, LSTM and so on, may increase performance gain and/or decrease model size/computation. However, the main purpose of the SID is to find an effective AI/ML algorithm with acceptable AI generalization, complexity and performance in beam prediction rather than to find an optimal AI model. Thus, a fully-connected AI model with 2 hidden layers and 1000 parameters per hidden layer is used in spatial domain beam prediction, whereas for the neural network structure in temporal domain beam prediction, MLP-mixer is attempted to obtain considerable gain in the following simulations. 
Data generation
373800 samples are generated, which are based on assumptions in appendix A for spatial domain beam prediction. 87.5% of samples are used to model training, and 12.5% of samples are used for validation, which are generated from different simulation drops compared with the training dataset. For temporal domain prediction, 418000 samples are generated, and 80% of data and 20% of data is used for model training and model validation respectively.
More simulation assumptions can be obtained in appendixes. 
Data processing
[bookmark: _Hlk110606638]To address the issue of using one AI model for multiple numbers of Tx and/or Rx beams, we study the performance of using expected information in AI model input, where expected Tx/Rx beam angle is the expected beam angle that the AI model want to predict. For example, if one UE has 8 Rx beams, but the AI model is just trained to output 4 Rx beams. Then introducing 4 expected Rx beam information into the input of the AI model, and the AI model can run twice with different sets of 4 expected Rx beam information as the input and output to get all the Rx beam RSRPs. To simplify solution for performance evaluation, we assume 1 expected beam information applied in this expected beam information-based scheme. As a consequence, the total number of samples should be multiplied by 8, 32 and 256 after introducing expected RX beam information, expected Tx beam information and expected TX/RX beam information in AI model input, respectively. 
Beam management related KPIs selection
Base on above KPI discussion, 4 KPIs are used in following performance evaluation, including,
· average L1-RSRP difference of Top-1 predicted beam
· beam prediction accuracy (%) for Top-1 beam
· beam prediction accuracy (%) with 1dB margin for Top-1 beam
· beam prediction accuracy (%) for Top-4 beams with option 2 definition represented, i.e., the beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”. 
Spatial domain beam perdition
4.2.1 Set B selection scheme
In RAN1#109-e meeting, two basic sets, i.e. Set A and Set B, are defined for AI input and AI output, which Set B is for DL beam measurement as AI input for beam prediction. For both spatial domain and temporal domain beam prediction, Set B contains a subset of beams selected from a full-set which may relate to AI output or gNB/UE beam configuration. Then, in RAN1#110 meeting, following agreement was approved for the selection of Set B,
Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· FFS on the beams of Set B
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each report/measurement during training and/or inference) 
· FFS on fixed or variable number of beams (pairs)
· FFS on the details 
· Other options are not precluded. 
· FFS on the number of beams (pairs) in Set B
· Note: This does not preclude the alternative that Set B is different from Set A.
From our understanding, only one pre-defined subset with fixed pattern in Set B is used in option 1 across training and inference stage, while option 2 brings much more selection schemes in Set B, such as, one fixed subset for training and another fixed subset for inference, variable subsets with random patterns in Set B for training and inference, and variable subsets with semi-random patterns in Set B for training and inference. One fixed set B in Option 1 may show good performance in theory, but it lacks flexibility as in practical implementation, a particular beam or beam pair may suffer performance loss due to unexpected channel variation like blockage, and may cause large interference. Hence it is needed to study option 2 and make sure it can provide comparable performance as option 1 with higher flexibility. We evaluate this aspect in this sub-section.  
4.2.1.1 Fixed subset selection
373800 samples are generated for spatial domain prediction where each sample includes a full-set of 256 L1-RSRP results. The output of AI model is designed to be L1-RSRP of the full-set and set B is a subset of the L1-RSRP results fed into AI model, as shown in figure 1.
[image: ]
Figure 1 beam prediction with fixed selection scheme
[bookmark: OLE_LINK7][bookmark: OLE_LINK8]4 fixed sets with number of 16 beams are generated with various fixed selection method:
· Set 1: Fixed subset with continuous beams
· Set 2: Fixed subset which is randomly selected
· Set 3: Well-designed subset 
· Set 4: Best fixed subset 
Set 1 selected continuous beams from all beam pairs which shall be the worst set among above 4 sets. Then, set 2 is selected by random generating a fixed beam subset from total beams, which represents all datasets, including training dataset and validation dataset, use same fixed beams in AI input. Set 3 is a well-designed set according to predefined rules, while Set 4 is statistically best beam subset among candidate subsets which have been enumerated with predefined searching criterion.
Two AI application mechanisms are considered, i.e. same or different fixed beam subsets used for training and validation, which may represent performance upper bound and lower bound for a given AI model respectively. 
Table 1: performance evaluation results for a fixed subset in Set B
	Training
dataset
	Validation
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4 [%]

	Set 1(worst)
	6.17
	35.29
	42.46
	68.57

	Set 2(fixed)
	2.77
	51.16
	59.77
	80.96

	Set 3(designed)
	2.25
	54.55
	63.39
	83.45

	Set 4 (best)
	1.91
	56.68
	68.10
	86.03



The above simulation results show performance of different Sets B following Option 1 set B generation rule, i.e., same set B across training and validation. Set 1 with a predefined worst fixed subset brings significant performance deterioration, especially in average L1-RSRP difference, whereas a modest performance gap can be observed among other sets in beam prediction accuracy aspect, and Set 4 has the best performance which is statistically best beam subset among the enumerated candidate subsets with predefined searching criterion.
Fixed subset selection scheme with different fixed patterns brings tremendous performance difference.
Better performance gain can be obtained for one fixed subset selected by well-designed rule or enumerated with predefined searching criterion.
From AI model applicability aspect, the AI model trained with one fixed subset can be applied the dataset generated by other fixed subsets for generalization performance study. Performance loss is expected. The following results show more details.
Table 2: performance evaluation results for one fixed subset in Set B with generalization consideration
	Training 
dataset
	Validation 
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4 [%]

	Set 4(best)
	1.91
	56.68
	68.10
	86.03

	Set 2(fixed)
	Set 1(worst)
	17.64
	3.20
	4.89
	9.49

	Set 3(designed)
	Set 2(fixed)
	21.07
	3.72
	13.26
	12.01

	Set 4(best)
	Set 2(fixed)
	20.67
	2.74
	12.08
	9.29

	Set 4(best)
	Set 3(designed)
	14.44
	9.94
	19.72
	27.52



Compared with the case of Set 4 with same fixed subset for training and validation, the performance with different training and validation fixed subsets is quite poor and not acceptable.
The performance with different training and validation fixed subsets is quite poor and not acceptable, i.e., fixed set B selection scheme suffers serious generalization issue.
Unless an excellent generalization performance can be proved in option 1, i.e. a fixed subset in Set B for training and same fixed subset in Set B for validation, fixed set B selection scheme should be deprioritized. 
4.2.1.2 Random subset selection
The fixed beam subset scheme has gains only when the same fixed set B is applied in both model training and validation, which bring significant restrictions on AI deployment for beam prediction. Such restriction may cause performance loss in real deployment. For example, one or more beams in the fixed Set B may suffer measurement loss due to unexpected channel conditions like blockage, or may cause large interference to neighbor cells. Thus, random subset selection worthy study as to use different beam subsets in Set B for measurement during inference may have a potential to obtain the beam prediction gain as well as reduce restrictions on AI deployment.
Fixed beam subset in Set B can have good performance in ideal scenarios but it lacks flexibility. Issues like blockage and inter-cell interference can bring negative impact on the performance of fixed subset.
In this selection scheme, each input sample with 16 beams are randomly selected from the total 256 beams. It seems almost inevitable that the flexibility of AI deployment can be improved by random subset selection scheme at the expense of lower performance compared with well-designed fixed beam subset. Thus, in below figure, assistance information is introduced to increase performance gain of beam prediction, such as Tx beam id, Tx beam pointing angle, Rx beam id, Rx beam pointing angle in both horizontal and vertical direction.
[image: ]
Figure 2 beam prediction with random selection scheme
Therefore, we have 5 input combinations as below:
· Set 5: Random subset selection which allows different beam subsets between training and inference
· Set 5 + Tx beam id: Random subset selection 
+ Tx beam id of horizontal direction + Tx beam id of vertical direction
· Set 5 + Tx beam angle: Random subset selection 
+ Tx beam pointing angle of horizontal direction 
+ Tx beam pointing angle of vertical direction
· Set 5 + Tx/Rx beam id: Random subset selection
+ Tx beam id of horizontal direction + Tx beam id of vertical direction 
+ Rx beam id of horizontal direction + Rx beam id of vertical direction
· Set 5 + Tx/Rx beam angle: Random subset selection
+ Tx beam pointing angle of horizontal direction 
+ Tx beam pointing angle of vertical direction
+ Rx beam pointing angle of horizontal direction 
+ Rx beam pointing angle of vertical direction
Each input sample of Set 5 has 16 L1-RSRP selected randomly from total 256 L1-RSRP, and each L1-RSRP in an input sample has its corresponding beam pair, i.e. Tx beam in gNB for transmitting and Rx beam in UE for receiving. The intention of remain combinations is to evaluate performance improvement of using different assistance information, including the performance comparison between Tx beam and Tx/Rx beam, as well as the difference between beam id and beam pointing angle. 
Table 3: performance comparison between fixed subset and random subset scheme
	Training 
dataset
	Validation 
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4 [%]

	Set 4(best fixed)
	1.91
	56.68
	68.10
	86.03

	Set 4(best fixed)
	Set 2(fixed)
	20.67
	2.74
	12.08
	9.29

	Set 5(random)
	10.83
	12.23
	13.24
	41.04



In table 3, compared with always using one subset for training, more than 10dB improvement is obtained from the random subset selection in training in KPI of average RSRP difference, and similar improvement can be acquired under the KPI of beam prediction accuracy for top-1 and top-4 beams. However, in comparison with the best fixed subset, i.e. Set 4, used for both training and validation, the performance of Set 5 seems not good enough. 
Random subset selection scheme, which allows multiple random subsets in training, can improve generalization performance as well as beam management related performance if compared to mismatched subset with always using one subset in training.
Set 5 with random beam subset still suffers tremendous performance deterioration due to huge number of combinations of selecting a target number of beams from total beam pairs. 
Through above results and observations, if AI inputs only include random subsets RSRPs in Set B, the beam prediction AI model is hard to train and relative performance may not reach that of the fixed pattern scheme, as the huge number of combinations of selecting a target number of beams from 256 beam pairs exist. Thus, some assistance information in connection with RSRP input can be used to improve AI performance in beam prediction with random beam subset scheme.
[bookmark: _Hlk111040543]Table 4: performance comparison between fixed subset and random subset with assistance information
	Training 
dataset
	Validation 
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4 [%]

	Set 4(best fixed subset)
	1.91
	56.68
	68.10
	86.03

	Set 5(random subset)
	10.83
	12.23
	13.24
	41.04

	Set 5 + Tx beam id
	8.31
	17.21
	20.03
	56.21

	Set 5 + Tx beam angle
	8.02
	17.94
	21.79
	57.20

	Set 5 + Tx/Rx beam id
	5.49
	31.26
	36.63
	54.23

	Set 5 + Tx/Rx beam angle
	5.34
	32.01
	37.42
	66.61


[bookmark: _Hlk101896744]
Compared with Set 5, which only includes RSRP as baseline performance, approximate 2.5 dB and 3dB gain can be obtained for Set 5 + Tx beam information, i.e. Tx beam id or Tx beam angle, in KPI of average RSRP difference, respectively, whereas the performance of Set 5 with Tx/Rx beam information provides greater than 5 dB gain of average RSRP difference. Similarly, beam prediction accuracy has almost 6 and 20 improvement for Set 5 with Tx beam information and Tx/Rx beam information, and more gains can be obtained if considering KPI of beam prediction accuracy for top-1 beam with 1dB margin and beam prediction accuracy for top-4 beams. However, beam management related performance of Set 5 with assistance information still seems still have small loss compared to the performance of single Set 4 used for model training and validation.
Compared with Set 5, assistance information brings considerable gain in random subset selection scheme, especially for Tx/Rx beam angle as assistant information.
Assistance information, such as Tx/Rx beam ID or angle in connection with input RSRPs, should be used as AI input with random subset selection for both BM-Case1 and BM-Case2.
Suggest to use both Tx and Rx beam information as assistance information for further performance improvement in random subset selection.
4.2.1.3 Semi-random subset selection
In this section, assistance information of Tx/Rx beam angle will be used as a baseline function for AI/ML beam management with semi-random based subset selection scheme. Due to huge various performance gain among different fixed beam subsets and imperfect solution for random beam subset selection scheme even with some assistance information, a semi-random subset selection method shall be considered for further improving performance of random-based scheme.  
As Set 4 with the best performance gain is the statistically best beam subset from the enumerated candidate subsets based on predefined searching criterion, to improve the performance of purely random selection, more restricted beam subset searching from the best beam subsets can be used for sample selection. Specifically, each input subset with 16 beams can be selected randomly from a given number of candidate subsets with better performance. Thus, we have following Sets B,
· Set 6 from best 10 subsets: Semi-random subset selection within best 10 subsets 
+ Tx/Rx beam pointing angle 
· [bookmark: _Hlk110606983]Set 7 from best 50 subsets: Semi-random subset selection within best 50 subsets 
+ Tx/Rx beam pointing angle 
· Set 8 from best 100 subsets: Semi-random subset selection within best 100 subsets 
+ Tx/Rx beam pointing angle 
· Set 9 from best 500 subsets: Semi-random subset selection within best 500 subsets
+ Tx/Rx beam pointing angle 
· Set 10 from best 1000 subsets: Semi-random subset selection within best 1000 subsets 
+ Tx/Rx beam pointing angle 
Table 5: performance evaluation results for semi-random selection scheme
	Training dataset
	Validation dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4 [%]

	Set 4 (best fixed subset)
	1.91
	56.68
	68.10
	86.03

	Set 5 + Tx/Rx beam angle (random)
	5.34
	32.01
	37.42
	66.61

	Set 6 from best 10 subsets (semi-random)
	2.34
	51.47
	61.18
	83.73

	Set 7 from best 50 subsets (semi-random)
	2.79
	47.27
	56.50
	80.86

	Set 8 from best 100 subsets (semi-random)
	3.03
	45.35
	54.36
	79.35

	Set 9 from best 500 subsets (semi-random)
	3.74
	40.16
	47.92
	75.87

	Set 10 from best 1000 subsets (semi-random)
	4.01
	37.90
	44.89
	74.35



In table 5, such sets with different number of pre-defined best subsets archive considerable performance improvement compared to Set 5 with Tx/Rx beam pointing angle. Besides, it can be observed that this semi-random beam subset scheme has potential to approach the performance upper bound, i.e. Set 4, if the performance of each subset in top-N best subsets has similar performance of top-1 best subset.
[bookmark: OLE_LINK16][bookmark: OLE_LINK17][bookmark: _Hlk111040317]To restrict the selection of random subset from the best X beam subsets can improve the performance of BM Case 1 prediction. Such semi-random selection with Tx/Rx beam angle information as input barely suffers performance loss compared with the best beam subset.
Semi-random beam subset scheme has potential to approach the performance upper bound, i.e. the best fixed subset, if the performance of each subset in top-N best subsets has similar performance of top-1 best subset.
Support option 2 for Set B selected by semi-random beam subset selection scheme with both Tx and Rx beam information as AI input.
4.2.2 Beam pair prediction with expected beam information 
In section 4.2.1, output size of those AI models is associated with the total number of Tx beams and the total number of Rx beams, which limits AI model deployed in different UE capabilities with a distinct number of Tx/Rx beams. To address this issue, we propose to use the expected output Tx and/or Rx beam information as a part of the input to the AI model.
Consideration of this scheme is to use the AI model to predict the performance of expected Tx and/or Rx angles. For the example of using expected Rx angle, if all Rx angles could be searched and the best RSRP/beam pairs are selected based on the per angle prediction, then the model would be applicable for arbitrary number of Rx beams. Accordingly, the output size of the AI model is only associated with the number of total Tx beams by input expected Rx information into the model. Similarly, the AI output of expected Tx beam is L1-RSRP with all Rx beams and the expected Tx beam, and one predicted L1-RSRP can be obtained in an AI model running cycle by AI input with 1 expected Tx beam information and 1 expected Rx beam information. Figure 4 depicts the details about using expected Tx beam information and expected Rx beam information. 
To sum up, expected Rx beam scheme is adaptable to AI/ML operations on numerous UE antenna configurations, and expected Tx beam scheme can be used in a UE without any AI model changing even switching to a cell with a different number of Tx beams. Generalization performance can be further improved by using both expected Tx beam information and expected Rx beam information.
[image: ]
Figure 3: beam pair prediction with expected Rx beam information
For example, as figure 3, Set 7 with additional 1 expected Rx beam information is fed into AI model, and an expected output of L1-RSPR with all Tx beams and the expected Rx beam indicated in AI input can be obtained. Then, other expected outputs can be acquired by feeding same Set 7 + different expected Rx beam information per running cycle. After running all cycles which may equal to the number of Rx beams, all the Tx and Rx beam information (L1-RSRP) can be predicted based on this trained AI model. As a consequence, the number of AI model output per running cycle is decoupled with the number of UE Rx beams, which takes significant generalization performance improvement if we need to apply AI/ML operations on numerous UE antenna configurations. 
[image: ]
Figure 4: beam pair prediction with expected Tx beam information
Similarly, additional 1 expected Tx beam information can be fed into AI model to predict L1-RSPR of 8 Rx beams with indicated expected Tx beam per running cycle. Consequently, L1-RSRP of total 256 beam pairs can be obtained after combining all predicted results of 32 running cycles which each running cycle has same L1-RSRP and corresponding Tx/Rx beam angles as a part of AI input.
In performance evaluation, Set 7 including Tx/Rx beam pointing angle and best 50 subsets selected by semi-random subset selection scheme in section 4.2.1.3 is used as baseline AI model input in expected beam information study. Three types of expected information, including expected Rx beam pointing angle, expected Tx beam pointing angle, and expected Tx/Rx beam pointing angle, will be studied, which represent relative expected beam angles to be predicted. For AI model simplification, we assume 1 expected beam information applied in AI model input in the following expected beam-based simulation, and more expected beam information simultaneously used in each input sample can be further studied if needed.
According to above discussions on expected information schemes and simulation assumptions, we have following combinations:
· Set 7 + 1 expected Rx beam pointing angle
· Set 7 + 1 expected Tx beam pointing angle
· Set 7 + 1 expected Tx beam pointing angle + 1 expected Rx beam pointing angle
[bookmark: _Hlk115099787]The output of AI mode in Set 7 as baseline beam pair prediction solution is associated with the total number of Tx beams and the total number of Rx beams, i.e. beam pair prediction with semi-random subset selection and assistant information specified in section 4.1.2.3, while Set 7 with expected information in AI input can be used as enhanced beam pair prediction solution. 
Table 6: performance comparison for expected beam information
	Training 
dataset
	Validation
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4 [%]

	Set 7(semi-random + Tx/Rx angle)
baseline beam pair prediction
	2.79
	47.27
	56.50
	80.86

	Set 7 (enhanced beam pair prediction)
+ 1 expected Rx beam pointing angle
	3.09
	46.83
	55.62
	81.02

	Set 7(enhanced beam pair prediction)
+ 1 expected Tx beam pointing angle
	2.91
	46.59
	54.46
	79.91

	Set 7(enhanced beam pair prediction)
+ 1 expected Tx beam pointing angle
+ 1 expected Rx beam pointing angle
	3.27
	43.64
	49.97
	78.55



Based on the above simulation results, almost same beam prediction accuracy and marginal performance loss of average RSRP difference can be obtained by Set 7 with expected Rx beam scheme or expected Tx beam scheme in comparison with Set 7, while Set 7 with additional expected Tx beam and expected Rx beam brings a small performance deterioration. Thus, we have following observation and proposals,
More flexible AI model deployment for different number of Rx beams can be obtained by expected Rx beam information method with only marginal performance loss as well as expected Tx beam information scheme.
Study generalization performance of different number of Tx/Rx beams in BM-Case1.
Study beam pair prediction with expected information as the AI input as one of the solutions for generalization to different number of Tx/Rx beams in BM-Case1.
Further study expected information method in BM-Case2.
Further study multiple expected beam information simultaneously used in AI input.
4.2.3 DL Tx beam prediction 
One important issue for AI based BM study is whether we need to support P1 BM procedure (beam pair prediction) or P2 and P3 beam management procedures as in the current NR specification. In P1, AI predicts RSRPs of all beam pairs based on measurement with both Tx beams and Rx beams. For P2 or P3, AI only predicts Tx beam RSRPs or Rx beam RSRPs based on measurement with only Tx beams or Rx beams. For example, in P2, a given number of Tx beams configured along with beam management resources are received by UE with the best Rx beam acquired from previous P3 processing. Then, the best Tx beam and its beam quality can be obtained in gNB by relative beam report with maximum beam index and its L1-RSRP. Consequently, during P2 processing, there is no need to predict any Rx beam information from gNB’ perspective. 
Thus, in addition to enhanced beam pair prediction scheme, i.e. beam pair prediction with expected beam information, 2-step beam prediction scheme will be studied to imitate P2 + P3 beam management process in below two sub use cases, i.e.  spatial domain beam prediction and temporal domain beam prediction. Besides, we will focus on spatial domain beam prediction with P2 processing AI model firstly with exhaustive P3 beam searching to simplify the modeling process and performance evaluation. 
Random subset selection is used to select 16 L1-RSRP of 16 Tx beams with 1 specific Rx beam for each sample (i.e., each set B). Accordingly, not only selected RSRPs are fed into AI model, but also Tx beam pointing angle and Rx beam pointing angle are used as assistance information. Besides, the specific received Rx beam in P2 processing can be the best Rx beam, 2nd best Rx beam, worst Rx beam and random Rx beam searched per sample from total 256 beam pairs. 
To get the best Rx beam by P3 processing, at most 8 CSI-RS resources with repetition on should be costed in advance. As a consequence, two baseline subsets selected by random subset selection with multiple Rx beams can be considered with different numbers of measured beams in P1 procedure, i.e. 16 beams and 24 beams, which represent lower and upper performance bound. The value 24 is obtained from using the 8 CSI-RS resources with repetition on in P2/P3 as 8 extra CSI-RS resources for beam measurement in P1, so that CSI-RS overhead for P1 and P2/P3 can be aligned.  Due to all Rx beams are measured in P2/P3 processing, the selected random subset per sample should include all 8 Rx beams as predefined selecting criterion for performance improvement in P1 baseline subset selection. Thus, we have,
· Set 11 with 16 L1-RSRP (P1): Random subset selection with predefined selecting criterion
+ Tx/Rx beam pointing angle	
· Set 11 with 24 L1-RSRP (P1): Random subset selection with predefined selecting criterion
+ Tx/Rx beam pointing angle
· Set 12 with 1 random Rx beam (P2/P3): Random subset selection with 1 random Rx beam per sample
+ Tx beam pointing angle
· Set 12 with the worst Rx beam (P2/P3): Random subset selection with 1 worst Rx beam per sample
+ Tx beam pointing angle
· Set 12 with the best Rx beam (P2/P3): Random subset selection with 1 best Rx beam per sample
+ Tx beam pointing angle
· Set 12 with the 2nd best Rx beam (P2/P3): Random subset selection with 1 2nd Rx beam per sample
+ Tx beam pointing angle
Table 7: performance comparison for DL Tx beam prediction with different Rx assumptions
	Training 
dataset
	Validation 
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4 [%]

	Set 11 (beam pair)
with 16 L1-RSRPs
	4.93
	33.87
	40.34
	69.88

	Set 11 
with 24 L1-RSRPs
	3.67
	40.48
	47.91
	76.84

	Set 12 (DL Tx beam)
with 1 random Rx beam
	7.22
	19.81
	23.37
	55.02

	Set 12 
with the worst Rx beam
	7.49
	22.29
	26.73
	59.71

	Set 12 
with the best Rx beam
	1.88
	76.33
	79.36
	93.74

	Set 12 
with the 2nd best Rx beam
	5.47
	11.97
	20.21
	52.88



In table 7, significant performance deterioration can be observed in two-step beam prediction with non-best Rx beam, even for the 2nd best Rx beam, compared to each baseline. However, the performance of 2-step beam prediction with the best Rx beam provides considerable improvement, due to decreased prediction difficulty from predicting 256 beam pairs to 32 beam pairs by pre-acquiring precise best Rx beam of each sample, in comparison with the better baseline, i.e. Set 11 with 24 L1-RSRP.
Significant performance deterioration can be observed in two-step beam prediction with non-best Rx beam, even for the 2nd best Rx beam.
The performance of two-step beam prediction with the best Rx beam provides considerable improvement, as decreased prediction difficulty from predicting 256 beam pairs to 32 beam pairs by acquiring precise best Rx beam of each sample.
The best Rx beam can change dynamically due to aspects like channel time-varying, UE movement, rotation or blockage. Therefore, the study should include the case that the best Rx beam in training and inference is mismatched.  Table 8 shows the results considering this.
Table 8: performance comparison for mismatched DL Tx beam prediction
	Training dataset
	Validation dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4 [%]

	Set 11 with 16 L1-RSRPs (beam pair)
	4.93
	33.87
	40.34
	69.88

	Set 11 with 24 L1-RSRPs (beam pair)
	3.67
	40.48
	47.91
	76.84

	

Set 12 (DL Tx beam)
with the best Rx beam
	Set 12 
with the 2nd best Rx beam
	5.39
	0.13
	9.95
	45.25

	
	Set 12 
With 1 random Rx beam
	6.94
	19.41
	23.75
	47.31

	
	Set 11 (multiple Rx beams)
with 16 L1-RSRPs
	12.18
	9.98
	14.67
	29.84



Similar performance deterioration can be observed from this mismatched 2-step beam prediction which Set 12 with 1 best Rx beam is used for AI model training and other mismatch subsets are fed into AI model for generalization performance validation, and the relative beam management performance cannot be acceptable.
Large performance deterioration can be observed if the Rx beam assumptions of training and inference are different for DL Tx beam prediction scheme. 
To sum up, compared with AI based beam pair prediction procedure, we have,
-	DL Tx beam prediction with the best Rx beam assumption can achieve better performance.
-	DL Tx beam prediction with the 2nd best Rx beam assumption does not have clear loss in terms of RSRP difference but has some loss on beam accuracy.
-	If the Rx beam assumptions of training and inference are different, performance loss can be observed for DL Tx beam prediction.
Study DL Tx beam prediction with different Rx beam assumptions as one of the solutions for generalization to different number of Tx/Rx beams in BM-Case1.
4.2.4 Generalization study for different beam shape patterns
[bookmark: _Hlk111020011]In this section, we will focus on the influence of another generalization aspect, i.e. different gNB/UE antenna configurations, which bring various beam shape patterns. To simplify this issue, only antenna configurations at gNB with corresponding Tx/Rx pointing angles changed among measurement subsets are evaluated for the following generalization performance study. The number of UE side Rx beams is kept as 8. A universal AI model using Set 13 is generated from Table 9, where the input sample of each set B includes 16 L1-RSRPs and its corresponding Tx/Rx beam pointing angles, and relative AI output is the RSRPs of total 256 beam pairs. However, Set 14 and Set 15, which are generated by table 10 and table 11 respectively, have total 128 beam pairs and 64 beam pairs. As a consequence, except Set 13, available predicted beams should be selected after model inference for other sets, and the KPI evaluation should also be calculated based on available predicted beams and its total beam pairs. 
Table 9: beam shape pattern 1
	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 4 8 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	32 Tx beams
Horizontal angle = [-78.75 -56.25 -33.75 -11.25 11.25 33.75 56.25 78.75]
Vertical angle = [22.5 67.5 112.5 157.5]



Table 10: beam shape pattern 2
	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 2 8 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	16 Tx beams
Horizontal angle = [-78.75 -56.25 -33.75 -11.25 11.25 33.75 56.25 78.75]
Vertical angle = [22.5 112.5]



Table 11: beam shape pattern 3
	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 2 4 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	8 Tx beams
Horizontal angle = [-56.25 -11.25 11.25 56.25]
Vertical angle = [22.5 112.5]



· Set 13 generated from Table 10: Random subset selection scheme for 32 Tx beams and 8 Rx beams
+ Tx/Rx beam pointing angle	
· Set 14 generated from Table 11: Random subset selection scheme for 16 Tx beams and 8 Rx beams
+ Tx/Rx beam pointing angle	
· Set 15 generated from Table 12: Random subset selection scheme for 8 Tx beams and 8 Rx beams
+ Tx/Rx beam pointing angle	
To get a fair comparison result in generalization aspect, same dataset used for training and validation can be considered as an upper bound performance, while an AI model trained by Set 13 can be used for inference with Set 14 and Set 15. 
Table 12: performance evaluation results for different beam shape patterns
	Training 
dataset
	Validation
dataset
	Ave. RSRP 
diff. [dB]
	Accuracy
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy
for Top-4 [%]

	Set 14 (Baseline)
	4.08
	36.50
	43.61
	71.58

	Set 13 (32 antennas)
	Set 14 (16 antennas)
	5.10 (+25%)
	31.92 (-12%)
	39.98 (-8%)
	67.06 (-6%)

	Set 15 (Baseline)
	1.89
	51.12
	62.91
	85.71

	Set 13(32 antennas)
	Set 15(8 antennas)
	2.95 (+56%)
	41.01 (-20%)
	52.56 (-16%)
	78.41 (-9%)



Compared to upper bound performance of Set 14, approximately 1 dB performance deterioration of average RSRP difference and 5 points of beam prediction accuracy loss can be observed by pre-defined AI model trained by Set 13 and inferenced by Set 14. With distinction of beam shape pattern between training subset and validation subset increasing, 10 points of beam prediction accuracy loss is obtained for validation Set 15 as well as 1.1 dB average RSRP difference loss.  
As the difference of beam shape pattern increases, the performance loss of both average RSRP difference and beam prediction accuracy increases along with the difference of the antenna configurations between training subset and validation subset.
Further study generalization performance for different antenna configurations and different beam shapes in BM-Case1.
Further study assistance information, such as beam shape pattern, 3dB beam width, etc., as model input to address performance deterioration for generalization of different beam shapes in BM-Case1.
4.3 Temporal domain beam prediction
4.3.1 Beam pair Prediction
[image: ]
Figure 5: beam pair prediction in temporal domain (P1)
For beam pair prediction scheme, 8 beam pairs from 256 beam pairs are selected with random beam set-B selection scheme and measured at each time instant within a time duration T1, and different beam pairs are selected for measurement among time instants within T1. As a consequence, total of 64 difference beams are used in AI input to predict L1-RSRP of 256 beam pairs at each time instant within T2. In figure 5, input of AI model includes measured L1-RSRP of beam pair, corresponding Tx beam ID and Rx beam ID, and output of AI model is L1-RSRP of all beam pairs in future time instants.
For non-AI scheme, beam pair measurement in time duration T1 is the same as beam pair prediction scheme, and the best beam pair is decided based on measurement of T1 and regarded as best beam pair for time instants within T2.
BM evaluation metrics are calculated based on difference between decided/predicted best beam pair and real best beam pair in T2. Time duration T1 is fixed to 8*40ms, and time duration T2 is equal to 1*40ms, 4*40ms, or 8*40ms respectively.
Table 13: performance comparison between non-AI and beam pair prediction in temporal domain (T2=1*40ms)
	Scheme
	Ave. RSRP
 diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy 
for Top-4[%]

	Non-AI
	6.62 
	21.42
	27.82
	21.92

	Beam pair prediction
	0.67
	78.11
	87.61
	94.51



Table 14: performance comparison between non-AI and beam pair prediction in temporal domain (T2=4*40ms)
	Scheme
	Ave. RSRP 
diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy 
for Top-4[%]

	Non-AI
	6.79 
	21.24
	27.58
	21.84

	Beam pair prediction
	0.85
	77.04
	86.58
	94.00



Table 15: performance comparison between non-AI and beam pair prediction in temporal domain (T2=8*40ms)
	Scheme
	Ave. RSRP 
diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]
	Accuracy 
for Top-4[%]

	Non-AI
	7.04 
	20.93
	27.20
	21.72

	Beam pair prediction
	1.11
	75.47
	84.92
	93.27



For BM-Case2, compared with non-AI scheme, beam pair prediction scheme improves beam prediction accuracy and reduces average L1-RSRP difference significantly.
Further study beam pair prediction scheme with expected information as AI input for improving generalization performance in BM-Case2.
4.3.2 DL TX beam prediction
[image: ]
Figure 7: two-step beam prediction in temporal domain (P2+P3)
The two-step scheme includes both Tx beam prediction and Rx beam prediction. The time duration T1 is further divided to T1-1 and T1-2, where T1-1 is a time duration to obtain the measurements of Tx beams for Tx beam prediction with the assumption that best Rx beams is used from the last prediction cycle, called P2 step, and T1-2 is the time duration to obtain the measurements of Rx beams for Rx beam prediction with the predicted best Tx beam, regarded as P3 step.  Based on P2 and P3, the best beam pair is decided and used for T2, as in Figure 7.
In the evaluation, at P2, 4 Tx beams are uniformly random selected and measured from 32 Tx beams at each time instant within T1-1 using the same best Rx beam predicted from P3 procedure of the last prediction cycle. Further, to reduce the complexity in evaluation, we model this P3 non-AI procedure by using the Rx beam with not greater than 1dB RSRP difference compared with the real best Rx beam. Input of AI model includes measured L1-RSRP of Tx beams and corresponding Tx beam IDs, and output of AI model is L1-RSRP of all Tx beams. Time period T1-1 is equal to 4*40ms.
In P3 step, Rx beams are measured at the time instants within T1-2 with the assumption that the best predicted Tx beam is used from the above P2. Input of AI model includes measured L1-RSRP of Rx beams and corresponding Rx beam IDs, and output of AI model is L1-RSRP of all Rx beams at time instances in T2. Time period T1-2 is equal to 4*40ms.
For non-AI 2-step scheme, at P2, measured Tx/Rx beams are the same as 2-step scheme, and best Tx beam is decided based on measured beams, and regarded as best Tx beam for P3. In P3 step, Rx beams are measured at the time instants within T1-2 with the assumption that the best Tx beam is used from the above P2 of non-AI scheme.
BM evaluation metrics are calculated based on difference between decided/predicted best beam pair and real best beam pair in T2. For comparison, non-AI and AI based 2-step scheme are evaluated. For AI based 2-step scheme, best pair is predicted based on P2+P3 procedure, and for non-AI 2-step scheme, best pair is decided based on measurement in P2+P3 procedure without prediction. Time duration T1 is fixed to 8*40ms, and time duration T2 is equal to 1*40ms, 4*40ms or 8*40ms respectively. 
Table 16: performance comparison between non-AI/AI 2-step prediction and beam pair prediction (T2=1*40ms)
	Scheme
	Ave. RSRP 
diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]

	Non-AI 2-step
	5.17
	39.03
	44.79

	2-step prediction
	0.67
	86.2
	92.55



Table 17: performance comparison between non-AI/AI 2-step prediction and beam pair prediction (T2=4*40ms)
	Scheme
	Ave. RSRP 
diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]

	Non-AI 2-step
	5.35
	38.31
	44.26

	2-step prediction
	0.86
	84.38
	91.23



Table 18: performance comparison between non-AI/AI 2-step prediction and beam pair prediction (T2=8*40ms)
	Scheme
	Ave. RSRP diff. [dB]
	Accuracy
 for Top-1 [%]
	Accuracy for Top-1
with 1dB margin [%]

	Non-AI 2-step
	5.62
	37.38
	43.49

	2-step prediction
	1.14
	81.91
	89.31



For BM-Case2, compared with non-AI 2-step scheme, AI based 2-step scheme improves beam prediction accuracy and reduces average L1-RSRP difference significantly.
Further study performance comparison between enhanced beam pair prediction and DL Tx beam prediction with various Rx beam assumptions, such as worst Rx beam, second best Rx beam, random Rx beam per sample, etc., in BM-Case2.
4.3.3 Generalization study of different beam shape patterns
In this section, we will focus on the influence of a generalization aspect, i.e. different gNB/UE antenna configurations, in temporal domain beam prediction, which brings various beam shape patterns. In the above simulations, including both spatial domain beam prediction and temporal domain beam prediction, beam pointing angle is used as AI input for performance improvement with random or semi-random beam subset. As a same mapping from beam angle to beam ID, which can be called as global beam ID or beam pointing angle, is used for evaluation, it implies that there has another option which uses local beam ID. For local beam ID, different mapping from beam angle to beam ID exists between datasets generated from different antenna configurations. Thus, for generalization study, we evaluate the generalization performance applying a trained AI model learned from a certain set of beams pointing angles/global beam IDs or local beam IDs based on a certain number of antennas for unlearned beam shape. 

[image: ]
Figure 8: different mapping methods: local beam ID vs beam pointing angle
For the case using local beam ID as model input, the training dataset 32x8 has 32 Tx local beam ID, e.g. Tx beam ID = 0 ~ 31, and for validation dataset 16x8 and 8x8, the range of Tx local beam ID is 0~15 and 0~7 respectively. Further, the beam ID used in model input of validation dataset is 0~15 and 0~7 respectively. For the case using beam angle as model input, the training dataset 32x8 has 32 Tx beams with different pointing angles, denoted as beam 0~31, and for validation dataset 16x8 and 8x8, the beam ID used in model input of validation dataset is mapped according to beam pointing angle. The difference between mapping based on local beam ID and beam angle (global beam ID) is displayed in Figure 8.
Table 19: beam shape pattern 1
	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 4 8 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	32 Tx beams
Horizontal angle = [-78.75 -56.25 -33.75 -11.25 11.25 33.75 56.25 78.75]
Vertical angle = [22.5 67.5 112.5 157.5]



Table 20: beam shape pattern 2
	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 2 8 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	16 Tx beams
Horizontal angle = [-78.75 -56.25 -33.75 -11.25 11.25 33.75 56.25 78.75]
Vertical angle = [22.5 112.5]



Table 21: beam shape pattern 3
	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 2 4 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	8 Tx beams
Horizontal angle = [-56.25 -11.25 11.25 56.25]
Vertical angle = [22.5 112.5]



To simplify this issue, only antenna configuration at gNB with corresponding Tx/Rx beam pointing angles is changed among different validation datasets, while the number of UE side Rx beams is kept as 8. For training dataset, beam shape pattern is generated from table 19, and for validation dataset, beam shape patterns are generated from Table 19, 20 and 21 respectively. 
For AI scheme, beam pair prediction is considered, where 8 beam pairs from 256 beam pairs are selected with random beam set-B selection scheme and measured at each time instant within a time duration T1=8*40ms, and different beam pairs are selected for measurement among time instants within T1. As a consequence, total of 64 different beams are used in AI input to predict L1-RSRP of 256, 128 and 64 beam pairs at each time instant within T2 for datasets generated from table 19, table 20 and table 21 respectively. Input of AI model includes measured L1-RSRPs of beam pairs, corresponding Tx beam angles/IDs and Rx beam angles/IDs, and output of AI model is L1-RSRPs of all beam pairs in future time instants. 
For comparison in generalization aspect, same dataset used for training and validation can be considered as an upper bound performance, and different AI input are evaluated and compared in table 22~24. 
Table 22: performance comparison for different beam shape pattern(T2=1*40ms)
	Method and input
	Tx/Rx beam config.
	Ave. RSRP
 diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy 
for Top-4[%]

	
	Training Data
	Validation Data
	
	
	

	AI (baseline)
	16 x 8 
	16 x 8
	0.57 
	79.11
	95.05

	AI w beam angle
	32 x 8
	16 x 8 
	0.80 (+40%)
	74.01
	92.96

	AI w local beam ID
	32 x 8 
	16 x 8
	12.58 
	9.17
	45.17

	AI (baseline)
	8 x 8
	8 x 8
	0.33 
	84.78
	97.45

	AI w beam angle
	32 x 8
	8 x 8
	0.64 (+93%)
	74.37
	95.28

	AI w local beam ID
	32 x 8
	8 x 8
	8.06 
	20.90
	67.33



Table 23: performance comparison for different beam shape pattern (T2=4*40ms)
	Method and input
	Tx/Rx beam config.
	Ave. RSRP
 diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy 
for Top-4[%]

	
	Training Data
	Validation Data
	
	
	

	AI (baseline)
	16 x 8 
	16 x 8
	0.71 
	78.06
	94.53

	AI w beam angle
	32 x 8
	16 x 8 
	0.95 (+33%)
	73.15
	92.43

	AI w local beam ID
	32 x 8 
	16 x 8
	12.78 
	8.93
	44.28

	AI (baseline)
	8 x 8
	8 x 8
	0.45 
	83.64
	96.98

	AI w beam angle
	32 x 8
	8 x 8
	0.75 (+66%)
	73.70
	94.88

	AI w local beam ID
	32 x 8
	8 x 8
	8.30 
	20.33
	66.76



Table 24: performance comparison for different beam shape pattern (T2=8*40ms)
	Method and input
	Tx/Rx beam config.
	Ave. RSRP
 diff. [dB]
	Accuracy 
for Top-1 [%]
	Accuracy 
for Top-4[%]

	
	Training Data
	Validation Data
	
	
	

	AI (baseline)
	16 x 8 
	16 x 8
	0.91 
	76.33
	93.70

	AI w beam angle
	32 x 8
	16 x 8 
	1.17 (+28%)
	71.64
	91.63

	AI w local beam ID
	32 x 8 
	16 x 8
	13.04 
	8.57
	42.99

	AI (baseline)
	8 x 8
	8 x 8
	0.61 
	81.94
	96.32

	AI w beam angle
	32 x 8
	8 x 8
	0.91 (+49%)
	72.63
	94.22

	AI w local beam ID
	32 x 8
	8 x 8
	8.64 
	19.48
	65.72



From above tables for beam shapes pattern study, performance loss can be observed in AI method of inference with difference dataset which represents validation dataset has different beam shape pattern compared to training dataset. As assumption of 30km/h is used for dataset generation, beam prediction performance of AI based scheme without considering various beam shape pattern seems sufficient. Thus, the absolute performance deterioration is limited directly compared to the baseline, for example approximately 0.3 dB loss in L1-RSRP difference KPI between validation dataset with 8 Tx antennas in table 22, but with large relative performance loss, e.g. up to 93% degradation at same situation.
Besides, it can be observed that local beam ID used in AI input brings significant performance deterioration as the beam ID has different understanding between model training and model inference. Thus, we have following observation and proposal.
Performance loss can be observed with difference datasets represented different beam shape patterns for training and validation in BM-Case2.
For the case using local beam ID as model input, beam loss and accuracy degenerate significantly compared to the performance of AI model training and inference with beam pointing angle.
Further study generalization performance for different antenna configurations and different beam shapes in BM-Case2.
Further study assistance information, such as beam shape pattern, 3dB beam width, etc., as model input to address performance deterioration for generalization of different beam shapes in BM-Case2.
[bookmark: _GoBack]Suggest to use beam pointing angle or global beam ID as assistance information for AI model input.
5 Conclusions
In this contribution, we discuss some issues on AL/ML for beam management and have the following observations:
1. Fixed subset selection scheme with different fixed patterns brings tremendous performance difference.
Better performance gain can be obtained for one fixed subset selected by well-designed rule or enumerated with predefined searching criterion.
The performance with different training and validation fixed subsets is quite poor and not acceptable, i.e., fixed set B selection scheme suffers serious generalization issue.
Fixed beam subset in Set B can have good performance in ideal scenarios but it lacks flexibility. Issues like blockage and inter-cell interference can bring negative impact on the performance of fixed subset.
Random subset selection scheme, which allows multiple random subsets in training, can improve generalization performance as well as beam management related performance if compared to mismatched subset with always using one subset in training.
Set 5 with random beam subset still suffers tremendous performance deterioration due to huge number of combinations of selecting a target number of beams from total beam pairs. 
Compared with Set 5, assistance information brings considerable gain in random subset selection scheme, especially for Tx/Rx beam angle as assistant information.
To restrict the selection of random subset from the best X beam subsets can improve the performance of BM Case 1 prediction. Such semi-random selection with Tx/Rx beam angle information as input barely suffers performance loss compared with the best beam subset.
Semi-random beam subset scheme has potential to approach the performance upper bound, i.e. the best fixed subset, if the performance of each subset in top-N best subsets has similar performance of top-1 best subset.
More flexible AI model deployment for different number of Rx beams can be obtained by expected Rx beam information method with only marginal performance loss as well as expected Tx beam information scheme.
Significant performance deterioration can be observed in two-step beam prediction with non-best Rx beam, even for the 2nd best Rx beam.
The performance of two-step beam prediction with the best Rx beam provides considerable improvement, as decreased prediction difficulty from predicting 256 beam pairs to 32 beam pairs by acquiring precise best Rx beam of each sample.
Large performance deterioration can be observed if the Rx beam assumptions of training and inference are different for DL Tx beam prediction scheme. 
As the difference of beam shape pattern increases, the performance loss of both average RSRP difference and beam prediction accuracy increases along with the difference of the antenna configurations between training subset and validation subset.
For BM-Case2, compared with non-AI scheme, beam pair prediction scheme improves beam prediction accuracy and reduces average L1-RSRP difference significantly.
For BM-Case2, compared with non-AI 2-step scheme, AI based 2-step scheme improves beam prediction accuracy and reduces average L1-RSRP difference significantly.
Performance loss can be observed with difference datasets represented different beam shape patterns for training and validation in BM-Case2.
For the case using local beam ID as model input, beam loss and accuracy degenerate significantly compared to the performance of AI model training and inference with beam pointing angle.
and proposals:
1. Slightly prefer Alt 1 in evaluation assumption of Tx beam number, but we can live with Alt 2.
Support 4 Rx beams per UE panel used at UE side for the evaluation of both temporal and spatial domain beam prediction.
Support both option 1 and option 2 as baseline performance in spatial domain beam prediction and temporal domain beam prediction, and set B selection method in option 2 should be reported.
It is encouraged for companies to provide publicly accessible dataset and disclose the details for the dataset generation as much as possible for training and validation for cross-check purposes.
At least AI model inputs/outputs and training/validation dataset should be reported per sub-use case by companies. Other parameters, such as NN architecture type, loss function, and data post/pre-processing method, are encouraged to be reported.
Support Option 2, i.e. the beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”, to be the definition of beam prediction accuracy (%) for Top-1 and/or Top-K beams.
The metric of beam sweeping overhead reduction is calculated as 1-N/M where N is the number of beams required for measurement in both non-AI algorithm and AI algorithm, and M can be the total number of all possible beams to be predicted.
UCI reporting overhead reduction, including the number of UCI report and UCI payload size, should be considered as basic KPI.
RRC singling overhead can be considered as optional KPI if huge amount of data, such as training data, assistant information, and AI model data, is exchanged via RAN air interference.
Support to define generalization performance KPI. 
To study and evaluate generalization, at least the aspects including different scenarios, different UE speeds, different number of Tx beams and Rx beams, and different gNB/UE antenna configurations, should be prioritized. 
For evaluation of generalization performance, support to evaluate KPIs for a separately generated testing dataset generation method with at least 1 target parameter difference. Multiple target parameters can also be verified in further study.
Unless an excellent generalization performance can be proved in option 1, i.e. a fixed subset in Set B for training and same fixed subset in Set B for validation, fixed set B selection scheme should be deprioritized. 
Assistance information, such as Tx/Rx beam ID or angle in connection with input RSRPs, should be used as AI input with random subset selection for both BM-Case1 and BM-Case2.
Suggest to use both Tx and Rx beam information as assistance information for further performance improvement in random subset selection.
Support option 2 for Set B selected by semi-random beam subset selection scheme with both Tx and Rx beam information as AI input.
Study generalization performance of different number of Tx/Rx beams in BM-Case1.
Study beam pair prediction with expected information as the AI input as one of the solutions for generalization to different number of Tx/Rx beams in BM-Case1.
Further study expected information method in BM-Case2.
Further study multiple expected beam information simultaneously used in AI input.
Study DL Tx beam prediction with different Rx beam assumptions as one of the solutions for generalization to different number of Tx/Rx beams in BM-Case1.
Further study generalization performance for different antenna configurations and different beam shapes in BM-Case1.
Further study assistance information, such as beam shape pattern, 3dB beam width, etc., as model input to address performance deterioration for generalization of different beam shapes in BM-Case1.
Further study beam pair prediction scheme with expected information as AI input for improving generalization performance in BM-Case2.
Further study performance comparison between enhanced beam pair prediction and DL Tx beam prediction with various Rx beam assumptions, such as worst Rx beam, second best Rx beam, random Rx beam per sample, etc., in BM-Case2.
Further study generalization performance for different antenna configurations and different beam shapes in BM-Case2.
Further study assistance information, such as beam shape pattern, 3dB beam width, etc., as model input to address performance deterioration for generalization of different beam shapes in BM-Case2.
Suggest to use beam pointing angle or global beam ID as assistance information for AI model input.
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Appendix A: SLS simulation assumptions for spatial domain beam prediction
	Parameter
	Value

	Scenario
	Uma with Dense Urban 38.901,7 sites, 3 cells per site

	Carrier frequency
	30GHz

	Subcarrier spacing
	120kHz

	System BW
	80 MHz

	BS and RRH Tx power
	40dBm

	UE receiver NF
	10

	ISD
	200m

	o2i
	0.5

	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 4 8 2], [dV, dH] = [0.5,0.5] λ

	Antenna configuration at UE
	[Mg Ng M N P] = [1 2 1 4 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	32 Tx beams
Horizontal angle = [-78.75 -56.25 -33.75 -11.25 11.25 33.75 56.25 78.75]
Vertical angle = [22.5 67.5 112.5 157.5]

	UE RX beam pattern
	4 Rx beams per panel
Horizontal angle = [-67.5 -22.5 22.5 67.5]
Vertical angle = [/]

	Indoor UE fraction
	80%

	UE speed
	3 km/s

	Spatial consistency 
	False

	Rotation
	False


Appendix B: SLS simulation assumptions for temporal domain beam prediction
	Parameter
	Value

	Scenario
	Uma with Dense Urban 38.901,7 sites, 3 cells per site

	Carrier frequency
	30GHz

	Subcarrier spacing
	120kHz

	System BW
	80 MHz

	BS and RRH Tx power
	40 dBm

	UE receiver NF
	10

	ISD
	200m

	o2i
	0.5

	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 4 8 2], [dV, dH] = [0.5,0.5] λ

	Antenna configuration at UE
	[Mg Ng M N P] = [1 2 1 4 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	32 Tx beams
Horizontal angle = [-78.75 -56.25 -33.75 -11.25 11.25 33.75 56.25 78.75]
Vertical angle = [22.5 67.5 112.5 157.5]

	UE RX beam pattern
	4 Rx beams per panel
Horizontal angle = [-67.5 -22.5 22.5 67.5]
Vertical angle = [/]

	Indoor UE fraction
	0%

	UE speed
	30km/h (baseline), 60km/h (optional)

	Spatial consistency 
	True, Spatial consistency procedure A

	Rotation
	False

	UE trajectory model
	Option #4,
Random direction straight-line trajectories, including direction change at the end of time interval

	Orientation model
	Option 1b,
Randomly per-UE chosen for UE orientation initially, and UE orientation is fixed during SLS.
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