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Introduction
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]In last meeting, the evaluation assumptions of CSI compression and CSI prediction are discussed and some agreements are shown as follow. In this contribution, we discuss the details of remaining evaluation assumptions and provide more evaluation results for the performance gain comparison with different AI methods.
	Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if the GCS/SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’, between GCS and SGCS, SGCS is adopted
Agreement
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.
Agreement
For CSI enhancement evaluations, to verify the generalization performance of an AI/ML model over various scenarios, the set of scenarios are considered focusing on one or more of the following aspects as a starting point:
· Various deployment scenarios (e.g., UMa, UMi, InH)
· Various outdoor/indoor UE distributions for UMa/UMi (e.g., 10:0, 8:2, 5:5, 2:8, 0:10)
· Various carrier frequencies (e.g., 2GHz, 3.5GHz)
· Other aspects of scenarios are not precluded, e.g., various antenna spacing, various antenna virtualization (TxRU mapping), various ISDs, various UE speeds, etc.
· Companies to report the selected scenarios for generalization verification
Agreement
For CSI enhancement evaluations, to verify the generalization/scalability performance of an AI/ML model over various configurations (e.g., which may potentially lead to different dimensions of model input/output), the set of configurations are considered focusing on one or more of the following aspects as a starting point:
· Various bandwidths (e.g., 10MHz, 20MHz) and/or frequency granularities, (e.g., size of subband)
· Various sizes of CSI feedback payloads, FFS candidate payload number
· Various antenna port layouts, e.g., (N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)
· Other aspects of configurations are not precluded, e.g., various numerologies, various rank numbers/layers, etc.
· Companies to report the selected configurations for generalization verification
Companies are encouraged to report the method to achieve generalization over various configurations to achieve scalability of the AI/ML input/output, including pre-processing, post-processing, etc.
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, the throughput in the ‘Evaluation Metric’ includes average UPT, 5%ile UE throughput, and CDF of UPT.
Agreement
For the evaluation of the AI/ML based CSI compression sub use cases, companies are encouraged to report the specific quantization/dequantization method, e.g., vector quantization, scalar quantization, etc.
Agreement
For the evaluation of the AI/ML based CSI compression sub use cases, the capability/complexity related KPIs, including FLOPs as well as AI/ML model size and/or number of AI/ML parameters, are to be reported separately for the CSI generation part and the CSI reconstruction part.
Conclusion
If the AI/ML based CSI prediction sub use cases is to be selected as a sub use case, consider CSI prediction involving temporal domain as a starting point.
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, a one-sided structure is considered as a starting point, where the AI/ML inference is performed at either gNB or UE.
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, for evaluation,
· 100% outdoor UE is assumed for UE distribution.
· FFS: whether to add O2I carpenetration loss per TS 38.901 if the simulation assumes UEs inside vehicles
· UE speed is assumed for evaluation with 10, 20, 30, 60, 120km/h
· Note: Companies to report the set/subset of speeds
· 5ms CSI feedback periodicity is taken as baseline, while other CSI feedback periodicity values can be reported for the EVM
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, companies are encouraged to report the details of their models for evaluation, including:
· The structure of the AI/ML model, e.g., type (FCN, RNN, CNN,…), the number of layers, branches, format of parameters, etc.
· The input CSI type, e.g., raw channel matrix, eigenvector(s) of the raw channel matrix, feedback CSI information, etc.
· The output CSI type, e.g., channel matrix, eigenvector(s), feedback CSI information, etc.
· Data pre-processing/post-processing
· Loss function
· Others are not precluded





CSI compression
In this section, we express our views on the generalization of CSI compression in various scenarios and configurations respectively. On top of that, we discuss the performance of CSI compression with different training method and field data.
Discussions on per-area model

Principle of per-area model
AI/ML is data driven. Thus it would be natural to use a per-area model for CSI compression: training models based on data collected from a specific area, which will then be used within the corresponding area. By “specific area”, we refer to a relatively smaller region, such as one cell, one sector, or even a smaller one. One of the most promising advantage of per-area models compared with conventional general models is potentially higher performance gain. As presented in 2.1.2 and 2.1.3, SGCS performance of per-area models is higher than that of general models over 30%~50%. Note that SGCS of general models is only higher than that of legacy Rel-16 Type II codebooks by about 10%. Therefore, per-area models could offer much more performance gain compared with legacy R-16 Type II codebook than general models. The additional performance gain in per-area models comes from the fact that per-area models only need to fit data with less variety of characteristics. It should be clarified that there are no serious overfitting issues for per-area models, as the distribution of testing data (also collected from the same area as training data) is usually similar to that of training data. Our initial evaluation results on per-areas models in the following subsections also supported the above observations. 
[bookmark: _Ref115456088]Based on initial field test results, per-cell (region) models can provide more than 30%~50% improvement on SCGS of AI models.
Per-area models could be naturally deployed within each cell, i.e., each cell trains its own model based on data collected within each cell. However, one problem is that as a UE moves from one cell to another, CSI generation part at UE side should also be updated to adapt to the new cell. For training collaboration type 1, such procedure could be done via transferring the updated model to the target UE. For training collaboration type 2, another over-the-air training procedure is needed to update the model. For training collaboration type 3, new model input/output data will be shared from network to UE or vice versa to finish the updating of models. If the model structure of CSI generation part is simple(e.g., one-layer MLP), overhead of the model updating procedure will be very small (probably less than 100kB).
[bookmark: _Ref115456152]Further study the model update for per-cell (region) models
Training per-area models requires to enhance the data collection mechanism by some assistance information. Cell ID/sector ID or some other information that could represent the collecting area should be assigned to the corresponding data during dataset delivery. However, there could be some concerns on user privacy as some of the assistance information during data collection is sensitive. More studies on data collection for per-area models should be considered in the future meetings.
[bookmark: _Ref115456178]Further study the data collection for per-cell (region) models.
Performance of per-area models based on ray tracing data
AI/ML methods could fit the models into current data to achieve good performance. Therefore, if we could optimize the model based on data from specific cell or region, more gain could be achieved in principle. To verify this point, we evaluate per-cell (region) model performance in this subsection. 
[image: ]
[bookmark: _Ref115450535]Ray tracing map.
To model a per-cell (region) wireless environment, we utilize a typical ray-tracing channel model [1] in our experiment.  The outdoor scenario map [1] is plotted in Figure 1. Specifically, we collect the channel from BS3 to UEs in user grid 1 (nearly LoS scenario) and user grid 2 (nearly NLoS scenario) respectively and all channels (~50,000 samples) in one experiment are collected in an area of 100m*35m, which is similar to a cell range. Other parameters with regarding to ray tracing could be referred to the official website [1]. The initial results are presented in Table 1.
[bookmark: _Ref115453484]Results for per-cell (region) model in CSI compression.
	
	SGCS of General model*,**
	SGCS of per-cell model with Transformer structure**
	SGCS of per-cell model with one-layer fc structure**

	User grid 1 (LoS)
	0.841
	>0.99
	>0.99

	User grid 2
(NLoS)
	0.795
	>0.99
	>0.99


*General model is trained on channel data (~600,000 samples) collected from 21 cells generated from 38.901 model. 
**More simulation parameters: carrier frequency 3.5GHz, subcarrier spacing 15KHz, 13 subbands (10MHz, 4RBs/subband), 32 gNB antenna ([Mg Ng M N P; Mp Np] = [1 1 8 8 2; 2 8]), 4 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 2 2; 1 2]), horizontal beam sweeping along x-axis, vertical beam sweeping along z-axis, 180bits payload.
Following observations are drawn on per-cell (region) model:
[bookmark: _Ref115456188]Per-cell (region) model could achieve near-optimal CSI compression performance at the matched area/environment, which obviously surpasses that of general models trained on data collected from a variety of situations.
[bookmark: _Ref115456192]Even with simple (e.g., one layer fully connected structure) and small scale (e.g., ~200kB size) model, per-cell (region) model could achieve the near optimal gain.
Support to add map-based hybrid channel model in 38.901 as one of the optional channel models in EVM table, where the map can be generated based on open data set or based on per-company proposed ones.
Performance of per-area models based on field data
We provide some initial results for field test of CSI compression. The data is collected from actual 5G network and the collecting area is about 400m * 350m. About total outdoor 200000 samples are collected. The detailed parameter are provided below

Parameters of field test of CSI compression
	Parameters
	Value

	Scenario
	Actual 5G network, about 400m * 350m collecting area.
About total outdoor 200000 samples.

	Carrier frequency
	3.45GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	8 antenna ports

	UE antenna
	4 antenna ports

	CSI payload
	About 160bits payload

	eTypeII configuration
	L=4, mv=4, beta=1/2, 8psk phase quantization



There are 4 data collecting area. Area 1 is flat ground in front of a building. Area 2 is the main road of the industrial park, with many tall trees and cars along the road. Area 3 contains two gardens and there are also many tall trees in these gardens. Area 4 is the road behind several buildings.
[image: ]
The SGCS results of eType II codebook and multiple AI/ML models are provide in the following. In Table 3, the AI/ML models are trained by the data in each area separately, and multiple AI/ML models are used. In Table 4, only one hidden layer full-connected encoder is used and it is trained by the data of all 4 areas. 

It is seen that all AI/ML models achieve very good very good performance compared to eType II codebook. Even one hidden layer full-connected (FC) encoder can provide considerable performance gain, which is very simple and small. With much higher complexity, Transformer encoder has better performance than one hidden layer FC encoder, but the performance gain is small in Area 1 and Area 2. Then considering the performance and complexity, simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
[bookmark: _Ref115442916]The SGCS results of eType II codebook and multiple AI/ML models trained by the data in each area separately.
	
	eType II codebook
	AI with a area specific model (One layer MLP encoder) ~67kB
	AI with a area specific model (smaller CNN encoder) ~250kB
	AI with a area specific model (larger CNN encoder) ~2.4MB
	AI with a area specific model (Transformer encoder) ~3.6MB

	Area 1
	0.670
	0.9020
	0.9055
	0.9104
	0.9153

	Area 2
	0.576
	0.8504
	0.8559
	0.8647
	0.8746

	Area 3
	0.515
	0.6640
	0.6915
	0.7000
	0.7287

	Area 4
	0.516
	0.6640
	0.7077
	0.7185
	0.7290



[bookmark: _Ref115442961]The SGCS results of one hidden layer full-connected encoder trained by the data of all 4 areas.
	
	Training SGCS on data from all 4 areas
	Testing SGCS in area1
	Testing SGCS in area2
	Testing SGCS in area3
	Testing SGCS in area4

	One hidden layer full-connected encoder
	0.7721
	0.8903
	0.8360
	0.6639
	0.6610



[bookmark: _Ref115456276]Per-cell (region) model demonstrate very good performance compared to Rel-16 Type II codebook.
[bookmark: _Ref115456280]Performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations. 
[bookmark: _Ref115456650]Study the performance and overhead of per-cell (region) model transfer in CSI compression.
Generalization of various scenarios
Carrier frequency
For the carrier frequency, we evaluate 2.2GHz, 3.5GHz, 5.5GHz for rank 1 with entire AI model. In the simulation, the antenna configuration is [8 8 2 1 1] and for each polarization, four adjacent vertical antennas are mapped into one TXRU with fixed 105 degrees DFT beam, i.e., a fixed analogy precoder is used. The total TXRU number is 32 and only rank 1 is considered. The total subband number is 13 with 4 PRB’s per subband. The evaluation results are shown below.

The SGCS for different frequency carrier.

The gain of average SE for different frequency.
[bookmark: _Ref111217176]According to the evaluation result, the SGCS and spectral efficiency among cases with different carrier frequency are similar to each other. Since the carrier frequency is all below 6GHz and the UE speeds are all 3Km/h, the influence of carrier frequency to channel state is tiny. The AI model perform well in carrier frequency generalization.
[bookmark: _Ref115456289]AI model performance does not degrade when a generic model (non-optimized for a specific area/cell) trained for a frequency is applied to another frequency.  
Scenarios
For generalization across different scenarios, we focus on UMi, UMa and InH. We train AI model with UMi samples and use it in UMi and UMa scenario, respectively. Also, the SGCS of eType2 is calculated for different scenarios. The evaluation results are shown below.
[bookmark: _Ref111215372]The SGCS in UMi and Uma.
	
	AI model trained based on UMi data
	eType II codebook

	UMi
	0.91
	0.831

	UMa
	0.913
	0.839



According to the evaluation result in the table above, the model trained by the UMi-based data set offers a fairly high channel SGCS in both UMi and UMa scenarios. 
[bookmark: _Hlk102160675]For a generic model (non-optimized for a specific area/cell), AI model performance does not degrade when generalized from UMi to UMa.
Then, we construct a synthetic dataset with samples from UMi and InH with different ratio including entire UMi dataset and InH dataset. The total number of samples in each dataset is fixed to 300000. The SGCS of each dataset composition is shown in the table below.

[bookmark: _Ref111215383]The SGCS of AI model with different training dataset composition in InH and UMi.
	Training dataset composition
	[300000, 0]
	[225000, 75000]
	[150000, 150000]
	[75000, 225000]
	[50000, 250000]
	[25000, 275000]
	[10000, 29000]
	[0, 300000]

	InH
	0.94780
	0.94907
	0.94953
	0.94520
	0.94660
	0.93090
	0.87230
	0.68597

	UMi
	0.74548
	0.84435
	0.87930
	0.90281
	0.90528
	0.90778
	0.90879
	0.90933



According to the evaluation results, the model trained by UMi dataset independently behaves worse in InH scenario and vice versa. The models trained by dataset constructed with mixed InH-based and UMi-based data behave well for both scenarios, even not as good as with the dataset from one entire scenario. It is shown that, the increasing number of correct samples in a mixed dataset can improve the performance and the wrong samples do not influence the performance. So, the AI model can deal with different scenarios by mixing the sample from different scenarios into one dataset.
Also, In comparison between  the dataset composition [225000 75000] and [50000 250000], the SGCS for InH is similar. However, the SGCS performed by the former is worse than that by the latter. It is because that the channel state of InH is simple and 50000 samples are enough. The extra InH samples cannot provide more gains. However, the channel state of UMi is much more complicated, reducing the number of UMi samples can lead to severe performance degradation.
[bookmark: _Ref111217181]For a generic model (non-optimized for a specific area/cell) AI model can generalize across different scenarios with a mixed dataset. A reasonable mixing ratio can provide better performance for each scenario.
Indoor/outdoor
For generalization between indoor users and outdoor users, we use data from different indoor/outdoor ratio to train two AI models. One is for 0.8 indoor and 0.2 outdoor and the other one is 0.2 indoor and 0.8 outdoor. Then we settle them in scenarios with different indoor/outdoor ratio, including 0.8/0.2, 0.5/0.5, and 0.2/0.8. The evaluation results are shown below. For each case, there are two ratio and the former is the indoor ratio of training data and the latter is the indoor ratio of deployment environment.

The SGCS of different indoor/outdoor scenarios
According to the evaluation results, no matter which training data set is used, the SGCS increases with the indoor ratio decreasing from 0.8 to 0.2. Since the floor of indoor user is random, it is more difficult to train than outdoor user. So, the learning results of AI model descend when there are more indoor users. For the same deployment scenario, the AI model trained with 0.8 indoor ratio data performs better than the one trained with 0.2 indoor ratio data. It is because the AI model trained with more indoor users have learned more complicated channel information and can perform better in a lighter environment. 
The gap between the two AI models in the case of 0.2 indoor user ratio scenario is about 0.02-0.03 and for the case of 0.8 indoor user ratio scenario, it is bout 0.01-0.02. The gap decreases when the deployment scenario becomes more severe i.e., there are more indoor users. It can be seen that, for more complicated deployment scenario, the SGCS loss of AI model trained with easier data may increase.
Then, we set the AI model in the SLS system and the evaluation results are shown below. The tendency of each curve is similar to SGCS but the gaps among all the curves are different.

The SE gain of different indoor/outdoor scenarios
According to the evaluation results of SE, it can be seen that AI model trained in complicated channel environment (more indoor users) performs better in the simple channel environment (more outdoor users). While, the AI model trained in simple channel environment performs worse in the complicated channel environment. And even in the simple channel environment its performance is slightly worse than the performance of AI model trained in complicated environment.
[bookmark: _Ref115456304]For a generic model (non-optimized for a specific area/cell), AI model trained in complicated channel environment (more indoor users) has good generalization ability of simple channel environment (more outdoor users).
[bookmark: _Ref115456307]The performance of AI model depends on the deployment environment
Antenna spacing
Since different antenna configurations mean different channel state with different beam width, the training data with different antenna configurations can lead to various spatial character. And, since the encoder and decoder focus on learning the channel state, different antenna configuration can lead to different inference results. We consider the antenna spacing first.
In the simulation above, we use the antenna spacing [0.8 0.5] at gNB side, which means the space between two antenna elements in vertical domain is 0.8 wave length. To verify the generalization of antenna size, two cases are compared with different antenna space. We use the training dataset with channel fading matrices based on 0.8 wave length antenna as baseline and compare the training dataset with channel fading matrices based on 0.5 wave length. Both cases are simulated in the environment with [0.8 0.5] antenna spacing. The evaluation results of entire AI model are shown below.

The SGCS of entire AI models based on different training dataset.

The gain of average SE of entire AI models based on different training dataset.
From the evaluation results, we can find that, for the case that antenna space is 0.8 wave length, there is almost 4% average SE loss if training dataset is constructed with channel fading matrices based on 0.5 wave length antenna. 
[bookmark: _Ref111217191][bookmark: _Ref115456313]For a generic model (non-optimized for a specific area/cell), there is obvious performance loss for antenna spacing mismatch of training data.
Also, we evaluate the influence of the antenna spacing to the AI models with pre-processing, i.e., the small AI models with spatial domain and frequency domain compression as discussed in 2.2.1 and the evaluation results are shown below.

The SGCS of small AI models based on different training dataset.

The gain of average SE of small AI models based on different training dataset.
According to the evaluation results, there are tiny performance loss between two cases. For the small AI model with pre-processing, since the beam and delay are restricted in pre-processing, the performance loss caused by mismatching dataset can be omitted. Therefore, the small AI may have a better generalization performance.
[bookmark: _Hlk102160699][bookmark: _Ref115456320]For a generic model (non-optimized for a specific area/cell), the influence of mismatch of training data may be reduced by pre-processing.
Antenna virtualization
Next, we consider the influence of antenna virtualization. In the simulation above, we use antenna configuration [8 8 2] with 4 successive vertical antenna elements mapping to one TXRU with a fixed 105 degrees DFT beam. We draw other two cases of antenna configuration [2 8 2] without antenna virtualization as contrast. 
Case 1: AI model is trained with dataset constructed by antenna configuration [8 8 2] and used in the case of antenna configuration [8 8 2].
Case 2: AI model is trained with dataset constructed by antenna configuration [8 8 2] and used in the case of antenna configuration [2 8 2]
Case 3: AI model is trained with dataset constructed by antenna configuration [2 8 2] and used in the case of antenna configuration [2 8 2]
The SGCS’s of the three cases and Rel-16 Type II codebook with antenna configuration [8 8 2] and [2 8 2] are shown below.

The SGCS of three cases and Rel-16 Type II codebook
According to the evaluation results, firstly, the SGCS’s of the three AI cases are at least 0.07 higher than Rel-16 Type II codebook. From the comparison between the Rel-16 Type II codebook with these two antenna configurations, the channel state is easier to learn for antenna configuration [2 8 2], while more difficult to learn for antenna configuration [8 8 2].
The AI model trained with antenna configuration [8 8 2] has similar SGCS performance in both antenna configurations [8 8 2] and [2 8 2]. It seems that, when antenna configuration changes from [8 8 2] to [2 8 2], the original AI model trained with antenna configuration [8 8 2] can still work in terms of SGCS. However, considering about the transmission ability, antenna configuration [8 8 2] can provide more spatial information than antenna configuration [2 8 2]. The SE may decrease if the same AI model is directed used in the case of antenna configuration [2 8 2].
The AI model trained with antenna configuration [2 8 2] performance better in antenna configurations [2 8 2]. So, in the case of antenna configuration [2 8 2], the AI model trained with antenna configuration [2 8 2] may achieve similar SE performance as the AI model trained with antenna configuration [8 8 2] in the case of antenna configuration [8 8 2].
[bookmark: _Ref115456327]For a generic model (non-optimized for a specific area/cell), SGCS performance of AI model may degrade slightly from 128 antennas with virtualization to 32 antennas without virtualization. While the SE performance may degrade heavily due to the less antennas.
[bookmark: _Ref115456332] For a generic model (non-optimized for a specific area/cell), in the case of 32 antennas,  AI model trained with 32 antennas may have similar SE performance compared with AI model trained with 128 antennas and settled in the case of 128 antennas, which is needed to be further studied.
As a consequence, the generalization performance of various scenarios is shown below.
	Generalization Parameter
	Comments

	Carrier Frequency
	AI model performance does not degrade when a generic model (non-optimized for a specific area/cell) trained for a frequency applied to another frequency.  

	Channel Scenario
	For a generic model (non-optimized for a specific area/cell) AI model can generalize across different scenarios with a mixed dataset. A reasonable mixing ratio can provide better performance for each scenario.

	Indoor/outdoor
	For a generic model (non-optimized for a specific area/cell), AI model trained in complicated channel environment (more indoor users) has good generalization ability of simple channel environment (more outdoor users)

	Antenna Spacing
	For a generic model (non-optimized for a specific area/cell), there is obvious performance loss for antenna spacing mismatch of training data.

	Antenna virtualization
	For a generic model (non-optimized for a specific area/cell), SGCS performance may degrade slightly and SE performance may degrade heavily for large number antennas with virtualization applied to small number antennas with virtualization.



[bookmark: _Ref115456746]For a generic model (non-optimized for a specific area/cell), AI models perform well in generalization of carrier frequency, channel scenario, indoor/outdoor ratio.
[bookmark: _Ref115456750]For a generic model (non-optimized for a specific area/cell), AI models perform bad in antenna spacing and antenna virtualization, which can be further studied.
Generalization of various configurations
Frequency granularity and ports number
The input dimension of AI model is corresponding to the input precoder matrices, i.e., the subband number and port number for each single layer. Different frequency granularity or different ports number can cause different input dimension of AI model. The AI models for different input dimensions need to be trained independently, which may lead to difficult generalization of AI models.
To fix the input dimension of different frequency granularities, we pre-process the SVD-precoder before calling AI/ML models. Same as eType II, precoders of each subband can be transformed into angle-delay domain with selected beam and delay. With the projection from space-frequency domain to angle-delay domain, the dimension of input data is specific to the number of selected beams and delays among different antenna configurations and numerology. Also, the size of AI model can be reduced because the information to study is decreasing. For AI model, since the compression and quantification are managed together, the restriction of NZC is not needed. So, compared with the eType II codebook, the beta is 1 for AI model and the payload of UCI is influenced by the length of encoder output.
In the simulation, we choose some DFT orthogonal bases in spatial domain and frequency domain like in Rel-16 Type II codebook. Then, we use the effective coefficients calculated by the SVD precoder and the orthogonal bases as the encoder input. At the BS side, we use the same DFT orthogonal bases in spatial domain and frequency domain to reconstruct the precoder with the decoder output. Finally, we normalize the results as the recovered precoder. We evaluate different pre-processing methods to compare the influence of pre-processing.
Case1: DFT orthogonal bases in spatial domain are complete orthogonal bases i.e., 16 beams are selected and these beams are not sorted. DFT orthogonal bases in frequency domain are corresponding to 4 top strongest paths selected in delay domain.
Case2: DFT orthogonal bases in spatial domain are complete orthogonal bases, i.e., 16 beams are selected and the beams are sorted from the strongest to the weakest.  DFT orthogonal bases in frequency domain are corresponding to 4 top strongest paths selected in delay domain.
Case3: DFT orthogonal bases in spatial domain are corresponding to 4 top strongest beams selected and sorted. DFT orthogonal bases in frequency domain are corresponding to 4 top strongest paths selected in delay domain.

The SGCS of the different casesl

The SE gain of different cases for FTP1 model with 80% RU
According to the evaluation results, The AI model with pre-processing is better than the Rel-16 Type II codebook but less than the AI model without pre-processing. Since some precoder information is omitted during the pre-processing, the performance of pre-processing reduces while the generalization of subband number can be solved easily with the delay domain pre-processing.
Compared among different pre-processing methods, if spatial domain information is omitted, the performance will be influenced severely for high feedback bits. Beam sorting can achieve better performance but needs more feedback bits to report the beam order. So it is better to compress spatial domain lightly and not sort the beam even if it is beneficial to AI training.
[bookmark: _Ref111217159]Pre-processing with delay domain and spatial domain compression can solve different input dimensions caused by various frequency granularities and port numbers.
[bookmark: _Ref111217164]Frequency domain can be compressed more than spatial domain.
CSI payload
Similar to input dimension, AI models with different output dimensions also need to be trained independently. To generalize different payload without training a new AI model, we use payload truncation for different payload so the length of encoder output can be fixed. As shown in Figure 13, the output of the encoder is cut out from the beginning to the specific payload length. After truncation, the truncated output is sent to the decoder.
[image: ]
[bookmark: _Ref111214771]The schematic of payload truncation.
When the AI model is trained, the loss function is set to include the correlation of all decoder output. We give a weight for each decoder and accumulate the correlation of each decoder output with the weight as a total correlation. The weight is trained with the decoder. We choose four different payload and use the dedicated model for each payload as baseline. We train the joint encoder with different combination of payloads. For each payload combination, only the decoder corresponding to the given payload is used. The SGCS of each joint encoder is shown below.
Baseline: four dedicated models of which the payloads are 223, 199,176 and 132 bits.
Case 1: one joint encoder and two decoders of which the input sizes are 223 and 176 respectively.
Case 2: one joint encoder and three decoders of which the input sizes are 223,199, and 176 respectively.
Case 3: one joint encoder and three decoders of which the input sizes are 223, 176 and 132 respectively.
The SGCS of different payload truncation methods.
	
	223
	199
	176
	132

	Baseline
	0.922
	0.913
	0.902
	0.871

	Case 1
	0.915
	
	0.901
	

	Case 2
	0.911
	0.908
	0.9
	

	Case 3
	0.898
	
	0.887
	0.867


Compared with the case 1 and case 2, for the same span of decoder input size, more decoders may not influence SGCS. Compared with the case 2 and case 3, the span of decoder input size may influence the performance and the SGCS decreases obviously with increasing span. Compared with the baseline and case 1, the performance loss is tiny in reasonable span of decoder input size. Therefore, in a reasonable span of decoder input size, one common encoder can be utilized and corresponds to serval decoders based on payload truncation to save the overhead of AI model transmission and switching complexity.
[bookmark: _Ref111217187]Study payload generalization with payload truncation as baseline.
Rank
In case that rank number is larger than 1, we evaluate the per-rank model and per-layer model. The per-rank model means, for each rank, an independent AI model is trained. UE can use the corresponding AI model to infer the precoder of a given rank number. The per-layer AI model means an independent AI model is trained for each layer, especially, the AI model for each layer is the same. For each rank, UE can infer each layer with the single AI model, i.e., the generalization of rank number.
[image: ]
Two scheme of high rank AI model, per-ranks and per-layer AI models.
In the simulation, we use the same per-layer model for each layer and train the model with the dataset including all layers and only rank 2 is evaluated. For the per-rank models, one model is trained with rank 1 dataset and the other model is trained with rank 2 dataset. The former is for rank 1 CSI compression and the latter is for rank 2 CSI compression. For the per-layer model, the single model is trained with dataset from all layers. This single model can be applied for different layers and ranks.
The model sizes of the single per-layer model and each of the per-rank models are almost the same, while two models are trained for per-rank models and only one model is trained for per-layer model with the same dataset. So, the per-rank models are double size of the per-layer model.
The SGCS of per-rank models and per-layer model for rank 2.
	
	Layer 0
	Layer 1
	Average number

	Per-rank model
	0.91
	0.874
	0.892

	Common model across different layers Per-layer model
	0.924
	0.863
	0.893



According to the evaluation result, per-rank model and per-layer model can achieve similar SGCS, while the total size of per-rank AI model is double of per-layer model. Also considering the flexibility of layer selection, the per-layer model is better.
[bookmark: _Ref115456412]Rank generalization with per-layer model can achieve similar SGCS with half model size compared with per-rank model.
Also, we evaluate the SE of AI model compared with Rel-16 Type II codebook, the SE of FTP1 model is shown below. In the simulation UE report rank-2 CSI only without CSI adaption. We assume UE has the decoder and calculate the rank-2 CQI with recorded PMI. For the six AI model combination, we use specific AI model per layer and the AI models are corresponding to different payload. The combination includes [95-95], [159-95], [159-159], [207-95], [159-159], [207-159], [207-207]. The former of each combination is the payload of layer 0 and the latter is the payload of layer 1. No matter layer 0 or 1, same AI model is used for fixed payload.

The SE gain of AI models in the case of FTP1 model and rank 2
According to the evaluation results, AI model can provide about 12% SE gain than Rel-16 Type II codebook. The SE gain of rank-2 case is lightly more than rank-1 case and still have improvement space compared with the ideal SVD feedback.
[bookmark: _Ref115456418]In the case of rank-2, AI model can provide about 12% SE gain compared with Rel-16 Type II codebook.
As a consequence, the generalization can be summarized in the table as follows.
	Generalization Parameter
	Comments

	Frequency granularity and ports number
	Pre-processing with delay domain and spatial domain compression can solve different input dimensions caused by various frequency granularities and port numbers.

	Payload
	Payload truncation can be used to release payload generalization of AI models.

	Rank
	Rank generalization with per-layer model can achieve 12% SE gain compared with Rel-16 Type II codebook.


[bookmark: _Ref115456762]Pre-processing with delay domain and spatial domain compression can solve different input dimensions caused by various frequency granularities and port numbers.
[bookmark: _Ref115456765]Payload truncation can be used to release payload generalization of AI models.
[bookmark: _Ref115456768]For rank > 1 cases, the precoder of each layer can be compressed by a common AI model.

Evaluations on Type 2: Joint training of the two-sided model at network and UE side
In RAN #110, following proposal was almost made to further study training collaboration type 2: 
Proposal 3.4.1: For the evaluation of Type 2: Joint training of the two-sided model at network side and UE side, respectively, companies are encouraged to report the following aspects:
· Interaction approach and necessary information that is exchanged between network side and UE side during the joint training, e.g., gradients, dataset, etc.
· The adopted AI/ML models for the CSI reconstruction part and the CSI generation part, and whether they are subject to the same or different structure(s).
· Support of one common CSI reconstruction part to multiple CSI generation parts of different UEs
· Support of one common CSI generation part to multiple CSI reconstruction parts of different networks
· Other aspects related with joint training, e.g., overhead of the exchanged information (if applicable), consumed time for completing the training procedure (if applicable), scalability (maintaining multiple models from multiple vendors), etc.
The interaction approach of training collaboration type 2 is to exchange necessary training information over the air to enable the training procedure. More precisely, the whole procedure contains three main steps: 1) UE computes the forward- propagation result on CSI generation model based on collected data, and sends the (last layer) forward-propagation result together with the input data to gNB; 2) gNB completes the remaining forward-propagation computation based on the received forward-propagation result, computes loss function based on the received data, and  back propagates through CSI reconstruction part to acquire the gradients on the first layer of CSI reconstruction model. The backward propagation results, i.e., the gradients on the first layer of CSI reconstruction model, will be then sent back to the corresponding UE. UE completes the remaining back propagation procedure for CSI generation part based on the received gradients. 3) UE and gNB update CSI generation/reconstruction part based on the exchanged information. The above procedure will be repeated each batch, until the whole training procedure ends.
In training collaboration type 2, it is not necessary for UE and gNB to fully align their model structure. Namely, it is feasible for the training procedure to converge to a reasonable (usually not optimal) performance with CSI generation part and CSI reconstruction part having totally different model structure, e.g., MLP and CNN for CSI generation part while Transformer for CSI reconstruction part. But from our view, it is necessary to align the quantization method at CSI generation model and dequantization method at CSI reconstruction model. Otherwise, the trained model could not be properly validated, and there would a risk in training failure.
[bookmark: _Ref115456426]Information that should be exchanged between network and UE during joint training for training collaboration type 2 includes: 1) forward propagation results; 2) back propagation results; 3) training datasets; 4) other information such as learning rate and quantization/dequantization method.

It is proposed to study the combinatorial problem of models in CSI compression in RAN #110, i.e., if dedicated models (CSI generation part and CSI reconstruction part) are made for specific scenarios/configurations, the number of required models for various conditions could be prohibitively high, which makes model management complicated. Basically, Combinatorial problem occurs in all generalization issues. However, given the fact that evaluation methodology for generalization is still under discussion, proposal in last meeting picked out one specific combinatorial issue, i.e., the support of one common CSI reconstruction part to multiple CSI generation parts of different UEs (and vice versa) to study in future meeting. In the following, we would like to report our results towards the above issue.
[image: ]
[bookmark: _Ref115450702]Training procedure of common CSI reconstruction part to multiple CSI generation parts of different UEs
We start with support of one common CSI reconstruction part to multiple CSI generation parts of different UEs. The basic procedure of the above method is: 1) the involved UEs compute their local forward-propagation results based on their local collected data (there could be some problems here, which will be discussed later.) and report them to gNB. The reported content contains not only the result of forward propagation but also the labels for loss function computation, which is paired with the forward-propagation results in reporting. 2) gNB computes the loss function as well as the gradients for back-propagation for each UE respectively and transmits the gradients to each UE. Note that different UEs’ gradients are computed based on their reported information, which are generally different for different UEs. 3) Each part of models completes the back-propagation procedure and updates the weights according to their gradients. Note that the gradients for CSI reconstruction part would take loss function for all UEs into account, thus achieving a common reconstruction part for multiple generation parts. For two-sided models, the ideal performance of joint training at a single entity and joint training at Network and UE side are almost the same. By “ideal”, we mean that the training data, training policy, training hyperparameters, optimizer, etc. are perfectly aligned for CSI generation and reconstruction part.
When UEs report their forward-propagation result to gNB, it could be challenging to strictly align the data from all UEs, as the amount of training data for different UEs is highly likely to be different. Such issue could bring some inconvenience to the joint training procedure. One way to relieve this problem is to broadcast training data in advance to all UEs, which is illustrated in step0 in Figure 16.
[bookmark: _Ref115456774]Study the potential specification impacts of supporting one common CSI reconstruction part to multiple CSI generation parts of different UEs for training collaboration type2.
Then we introduce our simulation settings: joint training for one common CSI reconstruction part to two/three CSI generation parts of different UEs is considered, where the basic model structures for CSI generation parts are Transformer, CNN, and MLP, while a Transformer CSI reconstruction part is adopted. Each involved UE generates its forward-propagation results based on datasets with the same configurations (i.e., the same number of subbands, antenna ports, antenna configurations, etc.). We optimize all involved CSI generation parts equally by using the average SGCS as the loss function. However, the optimizer and learning rate scheduling policy for different CSI generation parts are different, as UEs are considered to have their own training implementations. Joint training of one to one CSI reconstruction and generation part serves as the baseline. Results are presented in the following table.
[bookmark: _Ref115453605]Performance of one common CSI reconstruction part to two/three CSI generation parts of different UEs
	[bookmark: _Hlk114146280]
	Transformer CSI Generation part
	CNN CSI Generation part
	MLP CSI Generation part

	Baseline of Rel-16 Type II
	0.7950

	Baseline one-to-one model
	~0.87
	/
	/

	Transformer CSI reconstruction part to Transformer and MLP CSI generation part
	0.8601
	/
	0.8137

	Transformer CSI reconstruction part to Transformer and CNN CSI generation part
	0.8599
	0.8485
	/

	Transformer CSI reconstruction part to Transformer, CNN, and MLP CSI generation part
	0.8475
	0.8364
	0.8125



From Table 9, it could be observed that there are certain level performance degradations for one common CSI reconstruction part to two/three CSI generation parts of different UEs. As the number of CSI generation parts increases, the performance degradation also enlarges. Considering one common CSI reconstruction part matching three CSI generation parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.052, i.e., losing about 30% performance gain. Besides, performance of CSI generation part with MLP structure is lower than those of CSI generation part with CNN and Transformer structure, indicating that certain structures are more suitable for CSI compression.
[bookmark: _Ref115456428]One common CSI reconstruction part could be trained to match multiple CSI generation parts of different UEs in training collaboration type 2 at the cost of some performance loss. 
[bookmark: _Ref115456437]Considering one common CSI reconstruction part matching three CSI generation parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduces from 0.075 to 0.052, i.e., losing about 30% performance gain.

[image: ]
Training procedure of one common CSI generation part to multiple CSI reconstruction parts of different networks.
Next, we move on to the case of one common CSI generation part to multiple CSI reconstruction parts of different networks. We believe that such case is a little bit simpler than the other one, since the training data is naturally aligned among all involved CSI reconstruction parts. The basic procedure is similar: 1) UE computes the forward-propagation result based on the local data, which will be transmitted to all involved networks. 2) Involved networks compute the loss and the back-propagation results based on the reported information. Back-propagation results are then sent to UE. Note that the sent back-propagation results should be kept in the same order with forward-propagation results. 3) Finally, involved CSI reconstruction/generation parts update their own weights according to the computed gradients. Although technically feasible, we find the joint training of one common CSI generation part to multiple CSI reconstruction parts difficult to be implemented online, as one UE could not connect to multiple networks simultaneously. 
We consider one common CSI generation part to two/three CSI reconstruction parts in our experiments. The basic model structures for CSI reconstruction parts are Transformer, CNN, and MLP, while a Transformer CSI generation part is adopted. All involved CSI reconstruction parts equally by using the average SGCS as the loss function. The optimizer and learning rate scheduling policy for different CSI reconstruction parts are also different, as networks are considered to have their own training implementations. 
[bookmark: _Ref115453643]Performance of one common CSI generation part to two/three CSI reconstruction parts of different networks
	
	Transformer CSI reconstruction part
	CNN CSI reconstruction part
	MLP CSI reconstruction part

	Baseline of Rel-16 Type II
	0.7950

	Baseline one-to-one model
	~0.87
	/
	/

	Transformer CSI generation part to Transformer and MLP CSI reconstruction part
	0.8526
	/
	0.8350

	Transformer CSI generation part to Transformer and CNN CSI reconstruction part
	0.8633
	0.8582
	/

	Transformer CSI generation part to Transformer, CNN, and MLP CSI reconstruction part
	0.8563
	0.8525
	0.8434


Results in Table 10 demonstrate that one common CSI generation part to multiple CSI reconstruction parts of different networks also suffer from some performance loss, which enlarges as the number of supported CSI reconstruction parts increases. Considering one common CSI generation part matching three CSI reconstruction parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.061, i.e., losing about 19% performance gain. Interestingly, the performance loss in common CSI generation part is generally lower than that in common CSI reconstruction part, which needs further study and verification.
[bookmark: _Ref115456452]One common CSI generation part could be trained to match multiple CSI reconstruction parts of different networks in training collaboration type 2 at the cost of some performance loss.
[bookmark: _Ref115456456]Considering one common CSI generation part matching three CSI reconstruction parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.061, i.e., losing about 19% performance gain.

One major concern for joint training is the huge overhead of exchanged information. According to the procedure, the forward- and backward- propagation information should be exchanged each batch. Besides, the training data should also be exchanged during training to serve as the labels. The overall overhead could be roughly computed as 
Overhead ≈ # of epoch*(forward-propagation information + back-propagation information + input data)
Suppose the size of each forward- and backward-propagation sample is ~1/10 of the input (e.g., 13*32*2 floats are typically compressed into 50 floats without quantization), the total overhead could still be ten times of those for separate training and model transferring depending on the number of epochs. It is worth pointing out that there are still approaches to further reduce the overhead, but it is extremely challenging to reduce the over-the-air overhead to the similar level of separate training or model transfer.
[bookmark: _Ref115456460]Overhead in information exchange for training collaboration type 2 grows linearly with the number of iterations at training stage.

Evaluations on Type 3: Separate training at network and UE side
In RAN #110, following proposal was almost made to further study training collaboration type 3: 
	Proposal 3.4.2: For the evaluation of Type 3: Separate training at network side and UE side, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE side and network side, respectively, companies are encouraged to report the following aspects:
· Interaction approach and necessary information that is exchanged between network side and UE side during the separate training, e.g., dataset.
· Interaction approach includes, e.g., whether the sequential training starting with UE side training, or sequential training starting with network side training [, or parallel training] at UE and network
· Whether the adopted AI/ML models for the CSI reconstruction part and the CSI generation part are subject to the same or different structure(s).
· Support of one common CSI reconstruction part to multiple CSI generation parts of different UEs
· Support of one common CSI generation part to multiple CSI reconstruction parts of different networks
· Other aspects related with joint training, e.g., overhead of the exchanged information (if applicable), consumed time for completing the training procedure (if applicable), scalability (maintaining multiple models from multiple vendors), etc.



During our evaluation of training collaboration type3, we consider sequential training starting with UE side training. Meanwhile, we find the results of sequential training starting with UE side training almost the same with the those of sequential training starting with network side training. Therefore, we believe our observations will hold for both cases. Besides, we think the term “starting with UE side training” or “starting with network side training” are not very suitable to cover all cases for separate training. For example, network and UE could train their model separately in advance, and UE then share the input/output for CSI reconstruction part to network to help to finetune the model trained by network. In such case, it is difficult to say the separate training procedure strictly starting at which side. We propose to define “active” and “passive” side for separate training, where the “active” side actively shares the data for the model at “passive” side to align them. Then we can clearly categorize the interaction approaches for separate training into two types: 1) UE is active side and network is the passive side; 2) network is active side and UE is passive side. Although we propose to modify the terms, we still use “sequential training starting with UE side training” to depict our interaction approach in the remaining part of this subsection.
[bookmark: _Ref115456779]For discussion purpose, define the interaction approaches for separate training via “active” and “passive” side, where “active” side actively shares the input/output data for model at “passive” side. The interaction approaches for separate training include two options: 1) UE is the active side and network is the passive side; 2) network is the active side and UE is the passive side.
[image: ]
[bookmark: _Ref111214830]An illustration of separate training procedure.
Detailed procedure of sequential training starting with UE side training is presented as follows: (also illustrated in Figure 18, where “Encoder” refers to CSI generation part and “Decoder” refers to CSI reconstruction part.)
Step 1: The encoder is trained firstly at UE or a server at UE side using collected dataset0. Specifically, a complete model containing both encoder and decoder is trained and then the encoder is picked out for separate training. The decoder obtained in step 1 is termed as decoder0.
Step 2: UE passes dataset1 into encoder to obtain the encoded feature1, and combines the dataset1 (encoder input) and encoded feature1 (encoder output) into the exchanging dataset, i.e., the encoder output serves as the label of encoder input.
Step 3: UE transmits the exchanging dataset to gNB.
Step 4: gNB utilizes the exchanging dataset to train the decoder via supervised learning. The decoder obtained in this step is termed as decoder1.
Step 5: Test the SGCS of joint inference of encoder and decoder based on dataset2.
Results for separate training in CSI compression.
	Samples in exchanging dataset
	Joint training with 300000 samples in step1
	600000
	300000
	100000
	50000
	25000
	10000
	5000
	2500
	1000

	Test SGCS for setting0
	0.830
	0.832
	0.827
	0.815
	0.804
	0.793
	0.776
	0.761
	0.733
	0.650

	Test SGCS in setting1 
	/
	/
	0.830 
	/
	/
	/
	/
	/
	/
	/

	Test SGCS in setting2 
	/
	/
	0.800 
	/
	/
	/
	/
	/
	/
	/

	Test SGCS in setting3 
	/
	/
	0.712
	/
	/
	/
	/
	/
	/
	/



The table above presents the results and the details of each setting are given as follows:
1) Setting0: Decoder1 and decoder0 share the same model design as well as the hyperparameters in training. The dequantization method in decoder1 also matches the quantization method in encoder. Note that Setting0 is an ideal baseline as gNB could not know any information about the decoder0 which is at UE side.
2) Setting1: Decoder1 and decoder0 share the same model backbone structure, but decoder1 has more parameters than decoder0, i.e., decoder1 is an enlarged decoder0. The dequantization method in decoder1 also matches the quantization method in encoder.
3) Setting2: Decoder1’s structure is completely different from decoder0. But the dequantization method in decoder1 matches the quantization method in encoder.
4) Setting3: Decoder1’s structure is completely different from decoder0 (but the same with the decoder1 in Setting2), and the dequantization method in decoder1 does not match the quantization method in encoder.
Generally, performance of separate training could reach that of joint training if the number of exchanged data samples is large enough, i.e., similar level to the scale of training data, and some key information of encoder and decoder is aligned, such as the quantization and dequantization method. In addition, we find that it is possible to train a pair of encoder and decoder subject to different structures, e.g., an MLP encoder and a Transformer decoder, to a reasonable performance. It is not necessary to fully align the model structure of encoder at UE and decoder at network. Finally, the quantization and dequantization methods play an important role in separate training. Our simulation shows that when the quantization approach at UE and dequantization approach at network do not match, there will be an unacceptable performance loss for the model.
[bookmark: _Ref111217210]With the assumption that the model structure is aligned from the two sides, when the number of exchanged data samples is large enough (e.g., similar to the number of samples utilized in joint training), separate training could achieve near-joint training performance.
[bookmark: _Ref111217220]If the model structure is not aligned (e.g., dequantization method at decoder and the quantization method in encoder could not match), there will be an obvious performance loss compared with that in case where the dequantization and quantization method are matching.

[image: ]
Procedure of training one common CSI reconstruction part to multiple CSI generation parts of different UEs for sequential training starting with UE side training.
It is possible for separate training collaborations to develop one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts. For sequential training starting with UE side training, it is trivial to realize one common CSI generation part to multiple CSI reconstruction parts of different networks, since it is natural for UEs to broadcast the input/output of the same CSI generation part to multiple gNBs. Supporting one common CSI reconstruction part to multiple CSI generation parts of different UEs is also not difficult. One gNB could collect paired input/output data from multiple UEs and then train one CSI reconstruction part based on a mixed dataset of all collected data. The discussion for sequential training starting with gNB side training follows the similar principle and the procedures are almost in reciprocity with those for sequential training starting with UE side training. So the detailed analysis is omitted here for brevity. 
However, as the UEs tend to have different model structure for CSI generation part and it is also hard to strictly align the data for exchange among UEs, supporting one common CSI reconstruction part to multiple CSI generation parts of different UEs still takes the risk of obvious performance degradation. To this end, we try to verify the performance of the above case. Consider UE-active separate training with three UEs, each of which uses different backbone structures for their CSI generation part, i.e., Transformer, CNN, and MLP. Each UE reports 10,000, 50,000, or 300,000 data samples for separate training, and the gNB combines all reported data to train the CSI reconstruction model. In this experiment, we consider separate training with one to one CSI generation/reconstruction part (assumed to exchange 300,000 data samples between UR and gNB) to serve as the baseline. Various combinations of amounts of reported samples are simulated, and the results are presented in the table below.
[bookmark: _Ref115453922]Performance of one common CSI reconstruction part to multiple CSI generation parts of different UEs for UE-active separate training.
	
	Transformer CSI generation part
	CNN CSI generation part
	MLP CSI generation part

	SGCS for Baseline
	0.8528
	0.8424
	0.8025

	SGCS for Setting0
	0.8128
	0.8021
	0.7637

	SGCS for Setting1
	0.8358
	0.8303
	0.7942

	SGCS for Setting2
	0.8434
	0.7999
	0.7631

	SGCS for Setting3
	0.8439
	0.7957
	0.6983

	SGCS for Setting4
	0.7313
	0.8016
	0.7938



	
	Data samples from Transformer CSI generation part
	Data samples from CNN CSI generation part
	Data samples from MLP CSI generation part

	Setting0
	50,000
	50,000
	50,000

	Setting1
	300,000
	300,000
	300,000

	Setting2
	300,000
	50,000
	50,000

	Setting3
	300,000
	50,000
	10,000

	Setting4
	10,000
	50,000
	300,000



The table on top side of  Table 12 presents the SGCS results for different settings, where each of the three UE shares different amount of data to gNB for separate training. Specific data amount for each setting is given in the table on bottom side of Table 12. Compared with one-to-one model, one common CSI reconstruction part to multiple CSI generation parts of different UEs demonstrates a degraded performance. Such degradation gets worse as the amount of exchanged data decreases. 
[bookmark: _Ref115456511]One common CSI reconstruction/generation part could be trained to match multiple CSI reconstruction/generation parts of different UEs in training collaboration type 3 at the cost of some performance loss.
[bookmark: _Ref115456515]Performance of one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts of different networks/UEs is affected by the amount of exchanged data from each network/UE.
Following observations hold for all training collaborations:
[bookmark: _Ref115456519]Performance loss in supporting common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts gets worse as the number of supported UEs/networks increases.
CSI prediction
Basic SLS assumptions for CSI prediction
In the AI-based CSI prediction design, the AI model is designed to derive the prediction of CSIs as the output of model when using the historical CSIs as the input. The block diagram of AI-based CSI prediction is illustrated in Figure 20.


[bookmark: _Ref111237779]The block diagram of AI-based CSI prediction.
For CSI prediction, the data for training is derived from the SLS platform. If not specifically stated, the simulation parameters are set according to [2] and [3].










2D fully connected networks (FCN) is used as the backbone of AI-based CSI prediction model, which is illustrated in Figure 21. In detail, the CSI prediction model is composed of 3 layers of 2D FCN where the first two layers are with ReLU activation function. Each basic block (the dotted box in Figure 21) conducts the operation of where  is the right multiplication matrix,  is the left multiplication matrix, and  is the bias matrix. The bias matrix of first two blocks are with the dimension of , and the size of hidden layer is defined as . The dimension of the last bias matrix is decided by the dimension of predicted channel. Dimension of  and  can be calculated from the dimension of  and .


[bookmark: _Ref115451071]The structure of 2D FCN.

Results for CSI prediction
For the legacy CSI feedback procedure, the CSI measurement, CSI feedback and DL transmission utilizing the CSI feedback for precoding are conducted at different time (slots). If the CSI feedback from a previous time is directly used to generate DL precoding, the spectral efficiency will degrade due to the channel aging (especially in high mobility scenarios). To this regard, in addition to AI-based CSI compression mechanism AI-based CSI prediction is an inevitable way to solve such an issue.  In the following simulations, it is shown that AI-based CSI prediction outperforms the non-prediction case and non-AI based CSI prediction. Furthermore, the AI-based CSI prediction is also an approach to reduce the RS overhead and feedback frequency. Finally, CSI prediction is a one-sided model while CSI compression is a two-sided model, whose monitoring, updating and finetuning processes are different (from the viewpoint of studying the life cycle management). Therefore, we propose to study the sub use case of AI/ML for CSI prediction with high priority. Our concrete simulation results, provided in what follows, support our proposals.
The necessity of AI-based CS prediction
In this subsection, the necessity of AI-based prediction is strengthened by comparing the spectral efficiency (SE) of the AI-based CSI compression without scheduling delay, the AI-based CSI compression with scheduling delay and the sequential processing of CSI prediction (both AI-based and non-AI-based) and AI-based CSI compression with scheduling delay. These three schemes are illustrated in the following Figure 22. As for the non-AI CSI prediction, we adopt auto-regression (AR) based method whose details are provided in appendix I.
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a) AI-based CSI compression without scheduling delay
[image: ]
b) AI-based CSI compression with 4ms scheduling delay
[image: ]
c) Sequential processing of CSI prediction (both AI-based and non-AI-based) and AI-based CSI compression with scheduling delay.
[bookmark: _Ref111214877]The illustration of schemes for pointing out the necessity of AI-based CSI compression
The SE of above-mentioned schemes are provided in the following table. In this simulation, the period of CSI is 5 ms, the scheduling delay is 4ms, the AI-based CSI compression is using the 200 bits Transformer model, and the AI-based CSI prediction is with 15 historical CSIs as the input. For the bandwidth, 52PRBs and 13 sub-bands are used for transmission while the AI-based CSI prediction is conducted with the PRB-based granularity. The UE is travelling at the speed of 30km/h in the NLOS scenario. The carrier frequency is 4GHz.
[bookmark: _Ref111215458]The spectral efficiency comparison of AI-based compression and AI-based prediction
	Scheme
	Predicting time
	UE Average SE (bps/Hz)
	SE loss percentage

	AI-based CSI compression without scheduling delay
	
	0.447
	

	AI-based CSI compression with 4ms scheduling delay
	
	0.298
	33.3%

	Chained AI models with scheduling delay (first AI-based CSI prediction and then AI-based CSI compression).
	+4ms
	0.372
	16.8%

	
	+5ms
	0.386
	13.6%

	
	+6ms
	0.388
	13.2%

	Sequential processing of non-AI CSI prediction and AI-based CSI compression with scheduling delay
	+5ms
	0.354
	20.8%



[bookmark: _GoBack]It is shown that the scheduling delay will lead to significant degradation of SE when only using AI-based CSI compression, due to the mismatch between the scheduling channel and measurement channel, which is also known as the channel aging phenomenon. By adding the AI-based CSI prediction, this mismatch can be relieved so as to improve the SE significantly. Specifically, the SE gain of the chained AI models over the pure AI-based CSI compression is up to 20%. The AI-based CSI prediction also outperforms the non-AI based one. Furthermore, AI-based CSI prediction can predict CSIs of any future time while the predicting time of AR-based method is limited to the periodic future time. This flexibility of the predicting time also brings about some benefit.
[bookmark: _Ref115456532]Without CSI prediction, using AI/ML based CSI compression, there exist significant spectral efficiency loss at least for moderate and high-speed scenarios. 
[bookmark: _Ref111218901]The AI-based CSI prediction can make up the spectral efficiency loss caused by channel aging.
[bookmark: _Ref115456538]The AI-based CSI prediction outperforms the non-AI based one.
[bookmark: _Ref111219003]To ensure the enhancement of CSI at both low and high-speed scenarios, study AI/ML for time domain CSI prediction with high priority.
The prediction accuracy of AI and non-AI CSI prediction
The NMSE of AI-based CSI prediction and non-AI CSI prediction is compared in the following Figure 23. In this simulation, the period of CSI is 4ms, the scheduling delay is 4ms, and the CSI prediction (both the AI-based and non-AI method) is with 15 historical CSIs as the input. For the bandwidth, 52 PRBs and 13 sub-bands are considered. The UE is travelling at the speed of 30km/h in the NLOS scenario. The carrier frequency is 3GHz.
In this case, the raw historic channel in PRBs is considered as AI-input, and the raw channel in PRBs in scheduling delay is predicted as AI-output. The AI-based CSI prediction or non-AI CSI prediction is conducted with the PRB-based granularity.
[image: ]
[bookmark: _Ref111214901]The NMSE of AI-based and non-AI CSI prediction
It is shown that the NMSE of AI-based CSI prediction is lower than that of the case without CSI prediction and the non-AI CSI prediction (AR). In other words, to achieve the same prediction accuracy, the AI-based CSI prediction requires lower CSI-RS and feedback overhead. Besides, the AI-based CSI prediction can predict arbitrary future slots while the AR-based CSI prediction can only predict the future slots with the same spacing of CSI period. At last, in the case of hardware with discontinuous phases, AI has the potential to extract the phase variation law from the historical CSIs and compensate for it to achieve prediction with high accuracy, which is hard to be solved by non-AI approaches. 
[bookmark: _Ref111218906]The advantages of AI prediction over AR-based non-AI prediction:
a) Higher accuracy;
b) Less CSI-RS and feedback overhead;
c) Fewer historical CSIs, i.e., shorter measurement window;
d) Flexibility of predicting time;
[bookmark: _Ref111219012]For AI/ML for time domain CSI prediction, nearest historical CSI (sample-hold without prediction) and other non-AI CSI prediction method (e.g., auto-regression) can be used as the baseline.
Furthermore, the concern of simultaneous studies in the AI-based CSI prediction and in R18 MIMO is expressed.
· Firstly, the work in R18 MIMO concentrates on the enhancement of codebook and time domain compression. In R18 MIMO, the role of CSI prediction is only reflected when the time window includes the future time. However, AI-based CSI prediction needs to study more specific details, e.g., the monitoring process (may introduce impacts on CSI-RS configuration and CSI report configuration), the generalization aspects, the finetuning (and online learning) process, the input and output format of model and so on. 
· Secondly, the CSI prediction in R18 MIMO is dedicated for R18 CSI codebook while the AI-based CSI prediction is an independent module which can be sequentially combined with arbitrary compression (e.g., AI-based compression and R15, R16, R17, R18 codebook-based compressions).
· Lastly, the work in R18 MIMO will not specify a prediction algorithm as a baseline. Therefore, even we wait for the process of R18 MIMO, they will not provide us any agreed-on non-AI algorithm as a baseline. If we want to compare AI-based CSI prediction with the non-AI scheme, we should discuss it in the AI/ML study item.
In conclusion, the study of AI/ML based CSI prediction is independent of the study of R18 MIMO.
[bookmark: _Ref115456805][bookmark: _Ref111219014][bookmark: _Hlk115440668]The study of AI/ML based CSI prediction is independent with the R18 MIMO since Rel-18 MIMO’s focus is codebook design for feedback while CSI prediction algorithm itself is out of the scope of Rel-18 MIMO. 
The generalization of AI-based prediction over different PRBs
The generalization describes the adaptability of an AI model to fresh data, which is one of the key capabilities for evaluating the performance of an AI model. In this subsubsection, the generalization of AI-based CSI prediction over different PRBs is evaluated. Firstly, the AI model is trained using the data only collected from 1-st PRB. Then, the trained model is directly inferred on the 10-th, 20-th, 30-th, 40-th and 50-th PRB to evaluate the generalization performance. In this simulation, the period of CSI is 4 ms, and the prediction is with 15 historical CSIs as the input. For the bandwidth, 52 PRBs are considered while the AI-based CSI prediction is conducted with the PRB-based granularity. The UE is travelling at the speed of 30km/h in the NLOS scenario. The carrier frequency is 3GHz. The corresponding performance is provided in Table 14. 
[bookmark: _Ref111215676]The generalization performance of AI-based CSI prediction over different PRBs
	Inferred PRB
	1st PRB (trained)
	10th PRB
	20th PRB
	30th PRB
	40th PRB
	50th PRB

	NMSE (dB)
	-20.205
	-20.379
	-20.188
	-20.271
	-20.445
	-20.111


It is shown that the single PRB CSI prediction model trained from one specific PRB achieves almost the same performance on other PRBs, i.e., the generalization of AI-based CSI prediction with respect to PRBs is good. Therefore, it is preferable to train and save only one single PRB AI model and derive prediction of all PRBs in parallel way, just as shown in Figure 24.

[image: ]
[bookmark: _Ref111214987] The process of deriving CSI prediction of all PRBs using one common single-PRB model
[bookmark: _Ref111218935]The generalization of AI-based CSI prediction with respect to PRBs is good
[bookmark: _Ref111219029]The generalization performance across frequency domain should be studied.
The generalization of AI-based prediction over different speeds
In this subsubsection, the generalization of AI-based CSI prediction over different speeds is evaluated. Firstly, the AI model is trained using the data with the UE speed of 30km/h. Then, the trained model is directly inferred on the validation data with the UE speed of 10, 15, 20 and 30km/h to evaluate the generalization performance. In this simulation, the period of CSI is 4 ms, and the prediction is with 15 historical CSIs as the input. The carrier frequency is 3GHz.The corresponding performance is provided in Figure 25. 
[image: ]
[bookmark: _Ref115182884] The generalization performance of AI-based CSI prediction over different speeds









[bookmark: _Hlk115187285]It is shown that the model trained using the data of 30km/h also well performed in the case with the speed of 10, 15 and 20 km/h. This is because the Doppler shift is given by , where  is the speed of UE,  is the speed of light,  is the carrier frequency and  is the angle between the moving direction of UE and gNB-UE connecting line. Therefore, the Doppler range of speed  contains the Doppler range of speeds smaller than . As a result, the model trained with the data of speed  can also perform well in the case where the speed is smaller than .


[bookmark: _Ref115456561]The AI-based CSI prediction model trained with the data of speed  can also perform well in the case where the speed is smaller than .
[bookmark: _Ref115456819]The generalization performance across speeds should be studied.

The impact of CSI-RS periodicity






It is well known that the maximum Doppler shift is given by , where  is the speed of UE,  is the speed of light,  is the carrier frequency. By considering the coherence time of channel, we think the CSI-RS periodicity  should satisfy  to derive a good CSI prediction performance. We calculated some typical value of maximum CSI-RS periodicity, which is provided in the following table. Furthermore, in Figure 26 and Figure 27, we have evaluated the performance of AI-based CSI prediction with respect to different carrier frequency and CSI-RS periodicity.
[bookmark: _Ref115187862]The maximum CSI period to ensure CSI prediction performance
	Carrier frequency
	Speed
	Maximum CSI-RS periodicity

	4GHz
	30km/h
	4.5ms

	4GHz
	20km/h
	6.7ms

	4GHz
	10km/h
	13.5ms

	3GHz
	30km/h
	6ms

	3GHz
	20km/h
	9ms

	3GHz
	10km/h
	18ms



[image: ]
[bookmark: _Ref115189228]The NMSE performance of AI-based CSI prediction where carrier frequency is 4GHz and UE speed is 30km/h

[image: ]
[bookmark: _Ref115189233]The NMSE performance of AI-based CSI prediction where carrier frequency is 3GHz and UE speed is 30km/h
It is shown that the performance of AI-based CSI prediction is highly related with the CSI-RS periodicity. When the CSI-RS periodicity is too large, the prediction accuracy will be unacceptable. For our point of view, 5ms CSI feedback periodicity (chosen as baseline in #110) is too large for the case of 4GHz carrier frequency and 30km/h speed.

[bookmark: _Ref115456573]The performance of AI-based CSI prediction is highly related with the CSI-RS periodicity. 5ms CSI-RS periodicity (chosen as baseline in #110) is too large for the case of 4GHz carrier frequency and 30km/h or higher speed.
[bookmark: _Ref115456844]The choice of CSI-RS periodicity (especially the baseline parameters) should depend on the speed and carrier frequency.

Conclusions
1.  Based on initial field test results, per-cell (region) models can provide more than 30%~50% improvement on SCGS of AI models.
1. Further study the model update for per-cell (region) models
1. Further study the data collection for per-cell (region) models.
1. Per-cell (region) model could achieve near-optimal CSI compression performance at the matched area/environment, which obviously surpasses that of general models trained on data collected from a variety of situations.
1. Even with simple (e.g., one layer fully connected structure) and small scale (e.g., ~200kB size) model, per-cell (region) model could achieve the near optimal gain.
1. Per-cell (region) model demonstrate very good performance compared to R-16 Type II codebook.
1. Performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
1. AI model performance does not degrade when a generic model (non-optimized for a specific area/cell) trained for a frequency is applied to another frequency.
1. For a generic model (non-optimized for a specific area/cell), AI model performance does not degrade when generalized from UMi to UMa.
1. For a generic model (non-optimized for a specific area/cell) AI model can generalize across different scenarios with a mixed dataset. A reasonable mixing ratio can provide better performance for each scenario.
1. For a generic model (non-optimized for a specific area/cell), AI model trained in complicated channel environment (more indoor users) has good generalization ability of simple channel environment (more outdoor users).
1. The performance of AI model depends on the deployment environment
1. For a generic model (non-optimized for a specific area/cell), there is obvious performance loss for antenna spacing mismatch of training data.
1. For a generic model (non-optimized for a specific area/cell), the influence of mismatch of training data may be reduced by pre-processing.
1. For a generic model (non-optimized for a specific area/cell), SGCS performance of AI model may degrade slightly from 128 antennas with virtualization to 32 antennas without virtualization. While the SE performance may degrade heavily due to the less antennas.
1. For a generic model (non-optimized for a specific area/cell), in the case of 32 antennas,  AI model trained with 32 antennas may have similar SE performance compared with AI model trained with 128 antennas and settled in the case of 128 antennas, which is needed to be further studied.
1. Pre-processing with delay domain and spatial domain compression can solve different input dimensions caused by various frequency granularities and port numbers.
1. Frequency domain can be compressed more than spatial domain.
1. Study payload generalization with payload truncation as baseline.
1. Rank generalization with per-layer model can achieve similar SGCS with half model size compared with per-rank model.
1. In the case of rank-2, AI model can provide about 12% SE gain compared with Rel-16 Type II codebook.
1. Information that should be exchanged between network and UE during joint training for training collaboration type 2 includes: 1) forward propagation results; 2) back propagation results; 3) training datasets; 4) other information such as learning rate and quantization/dequantization method.
1. One common CSI reconstruction part could be trained to match multiple CSI generation parts of different UEs in training collaboration type 2 at the cost of some performance loss.
1. Considering one common CSI reconstruction part matching three CSI generation parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduces from 0.075 to 0.052, i.e., losing about 30% performance gain.
1. One common CSI generation part could be trained to match multiple CSI reconstruction parts of different networks in training collaboration type 2 at the cost of some performance loss.
1. Considering one common CSI generation part matching three CSI reconstruction parts, SGCS performance gain of AI/ML models over Rel-16 Type II codebook reduce from 0.075 to 0.061, i.e., losing about 19% performance gain.
1. Overhead in information exchange for training collaboration type 2 grows linearly with the number of iterations at training stage.
1. With the assumption that the model structure is aligned from the two sides, when the number of exchanged data samples is large enough (e.g., similar to the number of samples utilized in joint training), separate training could achieve near-joint training performance.
1. If the model structure is not aligned (e.g., dequantization method at decoder and the quantization method in encoder could not match), there will be an obvious performance loss compared with that in case where the dequantization and quantization method are matching.
1. One common CSI reconstruction/generation part could be trained to match multiple CSI reconstruction/generation parts of different UEs in training collaboration type 3 at the cost of some performance loss.
1. Performance of one common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts of different networks/UEs is affected by the amount of exchanged data from each network/UE.
1. Performance loss in supporting common CSI generation/reconstruction part to multiple CSI reconstruction/generation parts gets worse as the number of supported UEs/networks increases.
1. Without CSI prediction, using AI/ML based CSI compression, there exist significant spectral efficiency loss at least for moderate and high-speed scenarios.
1. The AI-based CSI prediction can make up the spectral efficiency loss caused by channel aging.
1. The AI-based CSI prediction outperforms the non-AI based one.
1. The advantages of AI prediction over AR-based non-AI prediction:
1. The generalization of AI-based CSI prediction with respect to PRBs is good
1. The AI-based CSI prediction model trained with the data of speed  can also perform well in the case where the speed is smaller than .
1. The performance of AI-based CSI prediction is highly related with the CSI-RS periodicity. 5ms CSI-RS periodicity (chosen as baseline in #110) is too large for the case of 4GHz carrier frequency and 30km/h or higher speed.
1. Study the performance and overhead of per-cell (region) model transfer in CSI compression.
For a generic model (non-optimized for a specific area/cell), AI models perform well in generalization of carrier frequency, channel scenario, indoor/outdoor ratio.
For a generic model (non-optimized for a specific area/cell), AI models perform bad in antenna spacing and antenna virtualization, which can be further studied.
Pre-processing with delay domain and spatial domain compression can solve different input dimensions caused by various frequency granularities and port numbers.
Payload truncation can be used to release payload generalization of AI models.
For rank > 1 cases, the precoder of each layer can be compressed by a common AI model.
Study the potential specification impacts of supporting one common CSI reconstruction part to multiple CSI generation parts of different UEs for training collaboration type2.
For discussion purpose, define the interaction approaches for separate training via “active” and “passive” side, where “active” side actively shares the input/output data for model at “passive” side. The interaction approaches for separate training include two options: 1) UE is the active side and network is the passive side; 2) network is the active side and UE is the passive side.
To ensure the enhancement of CSI at both low and high-speed scenarios, study AI/ML for time domain CSI prediction with high priority.
For AI/ML for time domain CSI prediction, nearest historical CSI (sample-hold without prediction) and other non-AI CSI prediction method (e.g., auto-regression) can be used as the baseline.
The study of AI/ML based CSI prediction is independent with the R18 MIMO since Rel-18 MIMO’s focus is codebook design for feedback while CSI prediction algorithm itself is out of the scope of Rel-18 MIMO.
The generalization performance across frequency domain should be studied.
The generalization performance across speeds should be studied.
The choice of CSI-RS periodicity (especially the baseline parameters) should depend on the speed and carrier frequency.
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Appendix I: the non-AI CSI prediction based on AR
In statistics and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it is used to describe certain time-varying processes. The autoregressive model specifies that the output variable depends linearly on its own previous values and on a stochastic term (an imperfectly predictable term). 
An AR model is described as

	,	







where  is the sample at time, the  are the parameters of the model, and  is white noise. For CSI prediction,  is the CSI at time .The parameters  can be directly derived from some samples using least square estimation. However, this estimation will be impacted by the noise. Another solution is to estimate the parameters based on the Yule-Walker equations.
There is a direct correspondence between these parameters and the covariance function of the process, and this correspondence can be inverted to determine the parameters from the autocorrelation function (which is itself obtained from the covariances). This is done using the Yule-Walker equations. The Yule-Walker equations is given by

		









where, yielding  equations. Here  is the autocovariance function of , is the standard deviation of the input noise process, and  is the Kronecker delta function. Because the last part of an individual equation, i.e., , is non-zero only if, the set of equations can be solved by representing the equations for in matrix form, thus getting the equation

		

which can be solved for all  Then the parameters of AR model can be estimated by

                                                                                     	                                                                        

The average cosine similarity

5.5GHz	85	95	111	127	159	175	191	207	223	0.82399999999999995	0.84399999999999997	0.85499999999999998	0.86399999999999999	0.873	0.88500000000000001	0.89500000000000002	0.89400000000000002	0.91200000000000003	3.5GHz	85	95	111	127	159	175	191	207	223	0.82299999999999995	0.84299999999999997	0.85699999999999998	0.86399999999999999	0.872	0.88300000000000001	0.89700000000000002	0.89700000000000002	0.91	2.2GHz	85	95	111	127	159	175	191	207	223	0.82199999999999995	0.84399999999999997	0.85899999999999999	0.86099999999999999	0.874	0.88100000000000001	0.89800000000000002	0.89700000000000002	0.91100000000000003	payload (bits)


The average cosine similarity




The gain of average SE 

5.5GHz	85	95	111	127	159	175	191	207	223	0.15797788309637895	1.1058451816745531	2.6066350710900394	2.9225908372827689	4.4233807266982552	4.9763033175355389	6.3191153238546747	6.0821484992101205	6.9510268562401336	3.5GHZ	85	95	111	127	159	175	191	207	223	0.23696682464454	1.3428120063191216	2.5276461295418642	2.9225908372827689	4.186413902053701	5.0552922590837426	6.3191153238546747	6.3191153238546747	7.3459715639810526	2.2GHZ	85	95	111	127	159	175	191	207	223	0	1.2638230647709321	2.5276461295418642	2.9225908372827689	4.186413902053701	4.9763033175355389	6.240126382306471	6.5560821484992147	7.0300157977883089	payload (bits)


The gain of average SE (%)




The SGCS of different indoor/outdoor scenarios

training_0.8_inferring_0.8	78	95	111	127	143	159	180	207	223	0.78400000000000003	0.81399999999999995	0.83199999999999996	0.83699999999999997	0.85099999999999998	0.86299999999999999	0.879	0.89200000000000002	0.89800000000000002	training_0.8_inferring_0.5	78	95	111	127	143	159	180	207	223	0.82299999999999995	0.84699999999999998	0.86199999999999999	0.86599999999999999	0.878	0.88800000000000001	0.90100000000000002	0.91100000000000003	0.91700000000000004	training_0.8_inferring_0.2	78	95	111	127	143	159	180	207	223	0.86599999999999999	0.88300000000000001	0.89500000000000002	0.89900000000000002	0.90700000000000003	0.91500000000000004	0.92400000000000004	0.93100000000000005	0.93500000000000005	training_0.2_inferring_0.8	111	127	143	159	180	207	223	0.80500000000000005	0.81599999999999995	0.82399999999999995	0.84599999999999997	0.85299999999999998	0.86199999999999999	0.875	training_0.2_inferring_0.5	111	127	143	159	180	207	223	0.84199999999999997	0.85099999999999998	0.85799999999999998	0.875	0.88100000000000001	0.88800000000000001	0.89800000000000002	training_0.2_inferring_0.2	111	127	143	159	180	207	223	0.88200000000000001	0.88900000000000001	0.89400000000000002	0.90700000000000003	0.91100000000000003	0.91500000000000004	0.92300000000000004	payload (bits)


SGCS




The SE gain of different indoor/outdoor scenarios compared with eType II parameter combination 1

training_0.8_inferring_0.8	78	95	111	127	143	159	180	207	223	7.1965979718678454	8.7994766110566047	9.5191364082433836	9.7154072620215999	10.336931632319278	11.089303238469085	11.874386653581936	12.463199214916585	12.626758259731758	training_0.8_inferring_0.5	78	95	111	127	143	159	180	207	223	9.1920183186130231	10.238796205430162	10.762185148838739	10.925744193653912	11.514556754988533	11.743539417729806	12.266928361138369	12.528622832842657	12.757605495583917	training_0.8_inferring_0.2	78	95	111	127	143	159	180	207	223	10.893032384690883	11.187438665358201	11.383709519136403	11.579980372914633	11.90709846254498	11.90709846254498	12.168792934249268	12.23421655217534	12.365063788027484	training_0.2_inferring_0.8	111	127	143	159	180	207	223	7.9489695780176532	8.5050703303892732	9.224730127576052	10.107948969578032	10.500490677134451	10.893032384690883	11.579980372914633	training_0.2_inferring_0.5	111	127	143	159	180	207	223	9.8462544978737299	10.206084396467134	10.631337912986609	11.22015047432123	11.449133137062489	11.743539417729806	12.103369316323182	training_0.2_inferring_0.2	111	127	143	159	180	207	223	11.154726856395158	11.350997710173388	11.612692181877662	11.808963035655879	11.776251226692835	12.005233889434081	11.939810271508009	payload (bits)


SE gain (%)




The SGCS of different antenna sapces

0.8λ antenna space for training	85	95	111	127	159	175	191	207	223	0.82299999999999995	0.84299999999999997	0.85699999999999998	0.86399999999999999	0.872	0.88300000000000001	0.89700000000000002	0.89700000000000002	0.91	0.5λ antenna space for training	85	95	111	127	159	175	191	207	223	0.80800000000000005	0.82399999999999995	0.83699999999999997	0.85199999999999998	0.873	0.88	0.88700000000000001	0.89500000000000002	0.89900000000000002	payload (bits)


SGCS




The gain of average  SE compared with 
85 bits baseline AI model 

0.8λ antenna space for training	85	95	111	127	159	175	191	207	223	0	1.1041009463722276	2.3659305993690936	2.7602523659305831	4.0220820189274491	4.8107255520504708	6.1514195583596347	6.1514195583596347	7.1766561514195644	0.5λ antenna space for training	85	95	111	127	159	175	191	207	223	-2.9968454258675052	-1.5772870662460576	-0.47318611987381587	0.55205047318611378	2.3659305993690936	3.0757097791798174	3.5488958990536332	4.4164037854889528	4.8107255520504708	payload (bits)


The gain of average SE (%)




The SGCS of small AI models

0.8λ antenna space for training	87	117	147	177	207	237	267	297	327	0.78300000000000003	0.81599999999999995	0.83499999999999996	0.84499999999999997	0.85099999999999998	0.85499999999999998	0.85699999999999998	0.85799999999999998	0.85799999999999998	0.5λ antenna space for training	87	117	147	177	207	237	267	297	327	0.78900000000000003	0.82099999999999995	0.83899999999999997	0.84799999999999998	0.85399999999999998	0.85699999999999998	0.85899999999999999	0.86	0.86	payload (bits)


SGCS




The gain of average  SE of small AI models compared with 
87 bits baseline AI model 

0.8λ antenna space for training	87	117	147	177	207	237	267	297	327	0	3.0176026823135089	4.6940486169320934	5.6160938809723291	6.4543168482816355	6.8734283319362959	7.1248952221290835	7.292539815590942	7.292539815590942	0.5λ antenna space for training	87	117	147	177	207	237	267	297	327	0.58675607711651878	3.5205364626990701	5.1131601005867537	6.2028499580888479	6.621961441743494	6.8734283319362959	7.2087175188600128	7.4601844090528004	7.5440067057837297	payload (bits)


The gain of average SE (%)




The SGCS of Rel-16 Type II codebook and AI model 

Rel-16 Type II with [2 8 2]	64	96	116	180	244	302	0.69099999999999995	0.73899999999999999	0.77400000000000002	0.82699999999999996	0.84099999999999997	0.86599999999999999	AI Case 2	78	95	111	127	143	159	180	207	223	0.79	0.81799999999999995	0.83699999999999997	0.84499999999999997	0.86499999999999999	0.86899999999999999	0.88500000000000001	0.89800000000000002	0.90400000000000003	Rel-16 Type II with [8 8 2]	64	96	116	180	244	302	0.68500000000000005	0.72799999999999998	0.76500000000000001	0.81200000000000006	0.82399999999999995	0.84499999999999997	AI Case 1	78	95	111	127	143	159	180	207	223	0.79500000000000004	0.82199999999999995	0.84	0.84499999999999997	0.85699999999999998	0.871	0.88600000000000001	0.89700000000000002	0.90300000000000002	AI Case 3	85	95	111	127	159	175	191	207	223	0.82299999999999995	0.84299999999999997	0.85699999999999998	0.86399999999999999	0.872	0.88300000000000001	0.89700000000000002	0.89700000000000002	0.91	feedback bits


SGCS




The SGCS of Rel-16 Type II codebook and AI model 

no pre-processing	78	95	111	127	143	159	180	207	223	0.79500000000000004	0.82199999999999995	0.84	0.84499999999999997	0.85699999999999998	0.871	0.88600000000000001	0.89700000000000002	0.90300000000000002	Rel-16 Type II	64	96	116	180	244	302	0.68500000000000005	0.72799999999999998	0.76500000000000001	0.81200000000000006	0.82399999999999995	0.84499999999999997	Case 1	104	164	214	254	0.78300000000000003	0.83699999999999997	0.86499999999999999	0.876	Case 2	149	209	259	299	0.81399999999999995	0.85699999999999998	0.878	0.88800000000000001	Case 3	121	181	231	271	0.80700000000000005	0.83799999999999997	0.84599999999999997	0.84899999999999998	feedback bits


SGCS




The gain of average  SE compared with 
64 bits Rel-16 Type II codebook 

Rel-16 Type II	64	96	116	180	244	302	0	2.4206738632646392	4.7432122996401631	7.5237160614981917	8.1452404317958695	8.9957474648348068	no pre-processing	78	95	111	127	143	159	180	207	223	7.1965979718678454	8.7994766110566047	9.5191364082433836	9.7154072620215999	10.336931632319278	11.089303238469085	11.874386653581936	12.463199214916585	12.626758259731758	Case 1	104	164	214	254	6.0189728491985619	9.4537127903172973	11.023879620543028	11.678115799803734	Case 2	149	209	259	299	7.6872751063133791	10.271508014393206	11.54726856395159	12.070657507360167	Case 3	121	181	231	271	7.1638861629048023	9.02845927379785	9.4864245992803546	9.5845600261694557	feedback bits


The gain of average SE (%)




The gain of average  SE compared with 
113 bits Rel-16 Type II codebook 

Rel-16 Type II	113	169	207	319	431	539	0	7.3875553484036089	16.522955022139342	24.679561873689096	26.707061291074339	29.620135166627819	AI	190	254	302	318	366	414	28.408296434397556	31.088324399906753	33.418783500349548	34.980191097646241	36.984385924027009	38.755534840363538	SVD	113	169	207	319	431	539	51.526450710790016	51.526450710790016	51.526450710790016	51.526450710790016	51.526450710790016	51.526450710790016	feedback bits


The gain of average SE (%)
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