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1 Introduction
In RAN1#109e and RAN1#110, the evaluation methodology and KPIs for AI/ML based beam management were discussed and many fruitful consensuses have been achieved [1][2]. Particularly, system level simulation was agreed to be the baseline tool for dataset construction and most of the simulation assumptions have already been determined. Besides, many basic KPIs were agreed for performance evaluation of spatial-domain beam prediction and temporal beam prediction, such as beam prediction accuracy related KPIs, system performance related KPIs, etc. In this contribution, we will provide our views and preliminary simulation results of the AI/ML based beam prediction.

2 Spatial domain beam prediction 
General description:
The task of beam selection aims at aligning the best beam at both the transmitter and receiver, which is challenging due to mobility and large attenuation in mmWave communication systems. A typical way for beam selection is to exhaustively sweep all beam pairs to find the best beam pair. However, as the number of beams grows, the beam selection overhead and associated power consumption for measurement would be unacceptably high. Therefore, we utilize AI/ML technologies to assist beam selection and explore the spatial domain beam prediction with low overhead as shown in the figure below. The measured RSRPs of partial beam pairs are used as the AI input and the predicted RSRPs of all beam pairs are used as the AI output, where each beam pair includes a transmit beam at the gNB and a receive beam at the UE. Besides, the beam set for measurement (i.e., set B) is a subset of the whole beam set for prediction (i.e., set A). 
[image: spatial domain beam prediction]
Figure 2-1. Illustration of AI/ML based spatial domain beam prediction.
Observation 1: As the number of beams grows, the overhead of reference signals and associated power consumption for measurement would be unacceptably high.
Dataset construction:
To evaluate performance of the AI/ML based method for spatial-domain beam prediction, we generate the dataset for model training and validation according to agreed parameters in RAN1#109e, which is summarized in Table I in the appendix. Specifically, 10 UEs per sector per drop are randomly generated with a total of 500 simulation drops. 80% of UEs are located in indoor and 20% of UEs are located in outdoor as in TR 38.901. The UE speed is fixed to be 3 km/h. For antenna configuration, the baseline agreed in RAN#109e is adopted directly, where a single panel with (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5)λ and 2 panels with (M, N, P, Mg, Ng) = (1, 4, 2, 1, 2) are used by the gNB and UE, respectively. Besides, the gNB and UE are equipped with 64 Tx beams in total and 4 Rx beams per panel, respectively. Moreover, it is worth mentioning that in RAN1#110, parameters of BS antenna configuration and UE antenna configuration were undated as follows. 
· BS antenna configuration: antenna setup and port layouts at gNB: [4, 8, 2, 1, 1, 1,1 ], (dV, dH) = (0.5, 0.5) λ
· UE antenna configuration: antenna setup and port layouts at UE: [1, 2, 1, 4, 2, 1, 1], 2 panels (left, right)
As can be easily seen that descriptions in the brackets are not unified toward BS and UE. Unified descriptions of the antenna configuration for BS and UE are preferred to avoid confusion.
Proposal 1: Unified descriptions of the antenna configuration for BS and UE should be adopted to avoid confusion. 
· BS antenna configuration: antenna setup and port layouts at gNB: [4, 8, 2, 1, 1, 1, 1], (dV, dH) = (0.5, 0.5) λ
· UE antenna configuration: antenna setup and port layouts at UE: [1, 4, 2, 1, 2, 1, 1], 2 panels (left, right)
AI/ML model and training methodology:
[bookmark: OLE_LINK7][bookmark: OLE_LINK6][bookmark: OLE_LINK17]For the spatial domain beam prediction, a full connected network with 4 layers is used with measured RSRPs of partial beam pairs being used as the AI input and predicted RSRPs of all beam pairs being used as the AI output. Both the Tx-Rx beam pair prediction and Tx beam prediction are considered for comparison, which apparently correspond to the P1 initial beam selection procedure and P2 Tx beam refinement procedure, respectively. For ease of understanding, we use a simple notation <Tx Ry> for AI model input in the following, where x denotes the number of transmit beams picked out of 64 Tx beams and y denotes the number of receive beams picked out of 8 receive beams. Particularly, if multiple Tx or Rx beams are used for beam measurement, we assume all measured beams are obtained by uniformly sampling the whole beam space <T64 R8> with a pre-determined beam pattern. If only one receive beam is used for beam measurement (i.e., y=1 in the case of Tx beam prediction), we assume that the receive beam is randomly selected and kept fixed during the beam measurement procedure. Furthermore, we also consider mixed numbers of beams in set B as model input for the evaluation of model generalization capability. In this generalization case, zeros corresponding to the beam pairs without measured RSRPs are appropriately inserted to align the model input size, resulting of a fixed input size of 64×8.
Performance KPIs:
To evaluate the performance of AI/ML in spatial domain beam prediction, we provide our preliminary simulation results in terms of KPIs related to beam predicting accuracy, which include average L1-RSRP difference of Top-1 predicted beam, beam prediction accuracy for Top-1 and/or Top-K beams, and beam prediction accuracy with 1dB margin for Top-1 beam. Particularly, the beam prediction accuracy (%) for Top-K beams is defined as the percentage that the Top-1 genie-aided beam is one of the Top-K predicted beams. In this case, a refined second stage beam sweeping over these Top-K predicted beams may be needed to obtain an optimal beam. Nevertheless, whether to conduct the refined beam sweeping over Top-K beams is up to NW.
Besides, RS overhead reduction for beam measurement should also be considered as a basic KPI for evaluation. Specifically, RS overhead reduction can be defined as 1-N/M with N being the number of beams for measurement and M being the number of beams for prediction. However, the number of beams for measurement strongly depends on the number of UEs, especially if a second stage UE-specific beam sweeping is performed. Therefore, we prefer to consider the RS overhead reduction for fixed beam pattern and a second stage beam sweeping over these Top-K predicted beams is not considered.
Observation 2: If Top-K beams are predicted by the adopted AI model, a refined beam sweeping over these Top-K predicted beams may be needed to obtain an optimal beam, which is up to NW.
Proposal 2: RS overhead reduction should be considered as a basic KPI for evaluation and should be further studied with considering following factors: the number of UE, the beam pattern, and the refined beam sweeping procedure.
Simulation results:
Both Tx-Rx beam pair prediction and Tx beam prediction mentioned above are simulated and compared in term of beam prediction accuracy performance. For a fair comparison, the sampling rate on the whole beam space in both cases is fixed to be 25%, which means that the associated RS overhead reduction would be 75%. Besides, corresponding non-AI cases are also simulated as baseline performance, where the optimal beam is obtained by measuring the uniformly sampled partial beams and directly choosing the one with the largest measured RSRP.
· [bookmark: OLE_LINK9]In the <T32 R4> case for Tx-Rx beam pair prediction, 32 fixed beams picked out of 64 Tx beams by uniform sampling are transmitted by the gNB and measured by 4 receive beams picked out of 8 Rx beams by uniform sampling in the UE. In this case, RSRPs of selected beam pairs (32x4=128 beam pairs) are used as AI model inputs and predicted RSRPs of all beam pairs (64x8=512 beam pairs) are used as AI model outputs. 
· In the <T16 R1> case for Tx beam pair prediction, 16 fixed beams picked out of 64 Tx beams by uniform sampling are transmitted by the gNB and measured by one Rx beam that is randomly selected and kept fixed during the beam measurement procedure. In this case, RSRPs of selected beam pairs (16x1=16 beam pairs) are used as AI model inputs and predicted RSRPs of all beam pairs (64x1=64 beam pairs) are used as AI model outputs. 
All simulation results are summarized in Table II. As can be seen, the spatial domain beam prediction with a fixed beam pattern achieves a sufficiently high performance with only 25% beam overhead being used. Besides, even with a same sampling rate on the whole beam space, the Tx beam prediction obtains a better performance than that of the Tx-Rx beam pairs prediction. We also note that other assistance information such as beam shape or beam usage are not evaluated since they are implementation-related information of the gNB or UE, which may be difficult to be disclosed to the opposite node [3].
[bookmark: OLE_LINK2]Table II. Performance comparison of Tx-Rx beam pair prediction and Tx beam prediction
	
	Average L1-RSRP difference of Top-1 predicted beam
	Beam prediction accuracy with 1dB margin for Top-1 beam
	Beam prediction accuracy for Top-1 beam
	Beam prediction accuracy for Top-4 beams

	<T32 R4> Non-AI
	2.622
	43.40%
	27.15%
	27.15%

	<T32 R4> AI 
	1.089
	78.30%
	60.85%
	86.85%

	<T16 R1> Non-AI
	3.096
	41.30%
	24.70%
	24.70%

	<T16 R1> AI
	0.322
	92.45%
	77.35%
	97.35%


For the evaluation of model generalization capability, we consider different number of beams in set B for AI model inputs. More specifically, mixed data samples generated under <T8 R1>, <T16 R1>, and <T32 R1> cases are input to the AI model to predict RSRPs of all transmit beams. For baseline comparison, non-AI cases are also simulated respectively. The simulation results of generalization performance are summarized in Table III. As observed, the case of generalization AI can achieve a better performance than that of the case of <T8 R1>, but is outperformed by the case of <T32 R1>. Additionally, the case of generalization AI can obtain significant performance gain over the non-AI case. 

Table III. Simulation results for generalization performance evaluation
	
	Average L1-RSRP difference of Top-1 predicted beam
	Beam prediction accuracy with 1dB margin for Top-1 beam
	Beam prediction accuracy for Top-1 beam
	Beam prediction accuracy for Top-4 beams

	Non-AI with mixed inputs
	2.997
	46.15%
	29.55%
	29.55%

	AI generalization with mixed inputs
	0.776
	87.95%
	72.90%
	94.95%

	<T8 R1> Non-AI
	5.292
	21.10%
	12.30%
	12.30%

	<T8 R1> AI
	1.923
	70.50%
	51.60%
	88.65%

	<T16 R1> Non-AI
	3.096
	41.30%
	24.70%
	24.70%

	<T16 R1> AI
	0.322
	92.45%
	77.35%
	97.35%

	<T32 R1> Non-AI
	0.607
	73.80%
	49.45%
	49.45%

	<T32 R1> AI
	0.095
	97.85%
	85.40%
	99.25%


Observation 3: With a same sampling rate on the whole beam space, the Tx beam prediction obtains a better performance than that of the Tx-Rx beam pairs prediction.
Observation 4: The case of AI generalization with different model inputs can achieve a better performance than that of the case of <T8 R1>, but is outperformed by the case of <T32 R1>.
Proposal 3: The AI/ML model can be utilized for spatial domain beam prediction, which can greatly reduce the RS overhead for measurement while maintain a high beam prediction accuracy.
Proposal 4: Different inputs of AI/ML model (number/pattern of beams (pairs) in Set B, etc) can be considered for the evaluation of model generalization capability.

3 Temporal beam prediction 
General description:
In high mobility environment, the task of fast beam tracking is more challenging. A typical way for beam tracking is periodic measurement and reporting, which introduces significant overhead that scales with the number of beams. Therefore, we utilize AI/ML technology to realize temporal beam prediction in this section. Specifically, recurrent neutral network is leveraged to implement the temporal beam prediction with assumption of a simple UE mobility pattern with random direction straight-line trajectories. The measured RSRPs of all or partial DL beams of some past time instances are used as the AI input and the predicted RSRPs of all DL beams of future time instances are used as the AI output. That is, the beam set for measurement and the beam set for prediction are the same, or the beam set for measurement is a subset of the beam set for prediction. Besides, for each time instance within the prediction window, Top-K beams predicted by the adopted AI model may be used for a refined beam sweeping.
[image: temporal beam prediction]
Figure 3-1. Illustration of AI/ML based temporal beam prediction.
Dataset construction:
The dataset for model training and evaluation is generated according to the agreed parameters in RAN1#109-e, which is summarized in Table I in the appendix. Specifically, one UE per sector per drop is randomly generated with a total of 20 simulation drops. For antenna configuration, the baseline agreed in RAN#110 is adopted directly, where a single panel with (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5)λ and 2 panels with (M, N, P, Mg, Ng) = (1, 4, 2, 1, 2) are used by the gNB and UE, respectively. Besides, the gNB and UE are equipped with 32 Tx beams in total and 4 Rx beams per panel, respectively. 
For temporal beam prediction, the random direction straight-line trajectories in Option #4 is adopted for modelling UE mobility, which means that multiple UEs are randomly dropped in multiple cells and move in a straight line trajectory along an initially random direction with fixed speed. More details about Option #4 is provided in the appendix for reference. Compared with other UE trajectory options, Option #4 is simpler and beneficial for model generalization. The modelling of UE orientation and rotation may cause the adopted model to be overly complex with excessive training overhead. Thus, it has not been considered for the time being for simplicity. Additionally, spatial consistency procedure B in TR38.901 is modeled along the mobility trajectory to ensure that propagation parameters maintain continuity across multiple realizations.
Table IV. Simulation assumptions for the temporal beam prediction
	UE distribution
	1 UE per sector per drop with a total of 21 sectors and 20 simulation drops

	TTI number per simulation drop
	150000

	BS Antenna Configuration
	One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5)λ

	UE Antenna Configuration
	Two panel:  (M, N, P, Mg, Ng) = (1, 4, 2, 1, 2)

	Spatial consistency
	Procedure B in TR38.901

	UE Speed
	30 km/h and 90 km/h

	UE trajectory model
	Option #4: Random direction straight-line trajectories

	UE orientation
	Initially random and keeps fixed

	UE rotation speed
	0


Proposal 5: The random direction straight-line trajectories in Option #4 can be adopted for modelling UE trajectory, which is simpler than other UE trajectory options and beneficial for model generalization.
AI/ML model and training methodology:
For cross-checking and reproducibility, the adopted AI model for temporal beam prediction is captured in Table V. The LSTM network is used, where the model input is measured RSRPs of all or partial DL beams of past 5 time instances, and the model output is predicted RSRPs of all DL beams of future 5 time instances. The sampling interval between two adjacent time instances is 160ms. For the evaluation of generalization performance, data samples generated by mixed UE speeds of 30km/h and 90km/h are used for AI model training and testing. The corresponding dataset size is 122,683 and 156,002 for the case of UE speed of 30km/h and for the case of mixed UE speeds of 30km/h and 90km/h, respectively. Besides, model complexity is also taken into consideration, which includes the model size and the amount of computation (measured in FLOPs). Among them, the former describes the required memory size and the latter describes the required computing complexity, which directly impacts the inference time of the model. 
Table V. Description of the adopted AI model for temporal beam prediction
	Model architecture
	LSTM, FC layer

	Number of layers
	4

	Model input
	Measured RSRPs of past time instances

	Model output
	Predicted RSRPs of future time instances

	Observation window length
	5

	Prediction window length
	5

	Dataset size
	[bookmark: OLE_LINK14]122,683 (for UE speed of 30km/h)
156,002 (for mixed UE speeds of 30km/h and 90km/h)

	Percentage
 of training/validity samples
	90%, 10%

	Model size
	11.225M

	FLOPs
	43.090M


Performance KPIs:
To evaluate the performance of AI/ML in temporal beam prediction, we provide our preliminary simulation results in terms of beam prediction accuracy for Top-1 and Top-K beams. All adopted KPIs are appropriately defined according to the agreement achieved in RAN1#109e. Particularly, the beam prediction accuracy (%) for Top-K beams is defined as the percentage that the Top-1 genie-aided beam is one of the Top-K predicted beams. Besides, the RS overhead reduction for each time instance within the prediction window can be considered for evaluation and defined as 1-N/M, where M is the number of measured beams at each time instance within the observation window, and N is the number of measured beams at each time instance within the prediction window. As with the spatial domain beam prediction, a second stage beam sweeping over these Top-K predicted beams is not considered for RS overhead counting. Otherwise, the RS overhead for the second stage beam sweeping would be the product of the number of UEs per sector and the number of Top-K beams. Thus, the RS overhead of the temporal beam prediction method may be even higher than that of an exhaustive sweeping of all beams.
Simulation results:
To evaluate the performance of the temporal beam prediction, five different cases of AI model inputs for each past time instance are considered as follows.
· [bookmark: OLE_LINK28]Case 1a: RSRPs of all measured beam pairs are used as model input
· Case 1b: RSRPs of Top-8 measured beam pairs are used as model input
· Case 1c: RSRPs of Top-4 measured beam pairs are used as model input
· Case 1d: RSRP of Top-1 measured beam pairs are used as model input
· [bookmark: OLE_LINK29]Case 2: RSRPs of 32 partial beam pairs with fixed beam pattern are used as model input
In all cases, RSRPs of all measured beam pairs in future 5 time instances are used as model outputs. Apparently, Case 1a-1d correspond to the model input alternative provided in RAN1#110 that the beam set for measurement and the beam set for prediction are the same, and Case 2 corresponds to another model input alternative that the beam set for measurement is a subset of the beam set for prediction. For baseline comparison, a non-AI method is also simulated, where the selected Top-4 beams with higher RSRP are maintained during the prediction window based on measurements of all the RS resources during the observation window. As can be seen from the simulation results in Table VI, a slightly better performance can be obtained by the AI based temporal beam prediction in terms of beam prediction accuracy for Top-4 beams, especially for cases 1a, 1b, 1c, and case 2. Besides, the more future time instances that are predicted, the more significant gain can be achieved with AI based method. Although the non-AI method outperforms the AI method in case 1d, the reporting overhead of case 1d is lower since only one beam with the largest RSRP needs to be reported in each past time instance. According to the generalization evaluation results shown in Table VII, the AI based method in case 1a and case 2 can also achieve a better performance than that of the non-AI method in scenarios with mixed UE speeds.  













[bookmark: _GoBack]Table VI.  Beam prediction accuracy for different cases (UE speed 30km/h)
	Cases
	Top-K
	Top-K Prediction Accuracy [%]

	
	
	T+1
	T+2
	T+3
	T+4
	T+5

	Case 1
	Case 1a
	4
	98.47
	97.07
	95.55
	93.81
	91.60

	
	Case 1b
	4
	98.42
	97.23
	95.86
	94.28
	92.34

	
	Case 1c
	4
	98.03
	96.45
	94.69
	92.75
	89.84

	
	Case 1d
	4
	95.91
	92.68
	89.50
	85.74
	81.90

	
	Non-AI
	4
	96.14
	93.22
	91.23
	88.70
	86.01

	Case 2
	Case 2 with AI
	4
	92.76
	90.90
	88.77
	85.57
	82.33

	
	Non-AI
	4
	27.89
	27.65
	27.55
	27.49
	27.26



Table VII.  Beam prediction accuracy for different cases (mixed UE speeds of 30km/h and 90km/h)
	Cases
	Top K
	Top K Prediction Accuracy [%]

	
	
	T+1
	T+2
	T+3
	T+4
	T+5

	Case 1
	Case 1a
	4
	90.65
	85.92
	80.72
	76.13
	71.96

	
	Case 1b
	4
	89.90
	84.45
	77.78
	72.41
	68.54

	
	Case 1c
	4
	87.85
	81.54
	75.58
	70.10
	65.22

	
	Case 1d
	4
	81.27
	73.36
	67.03
	61.67
	57.32

	
	Non-AI
	4
	90.37
	80.99
	72.85
	66.50
	60.36

	Case 2
	Case 2 with AI
	4
	77.45
	71.49
	66.68
	62.41
	58.78

	
	Non-AI
	4
	32.55
	32.71
	32.88
	33.13
	33.26


Observation 5: A better beam prediction accuracy is achieved if more measured RSRPs are input to the AI model. However, for a NW-side model, more measured RSRPs used as AI input also means increasing of the UE reporting overhead.
Observation 6: Compared with the selected non-AI method, a more significant performance gain is observed if the beam set for measurement is a subset of the beam set for prediction.
Observation 7: The AI/ML method  suffers from a little performance loss for scenarios with mixed UE speeds.
Proposal 6: Different UE speeds can be considered for the evaluation of model generalization capability for temporal beam prediction.

4 Conclusions
In this contribution, we discuss the potential specification impacts and enhancements for AI/ML based beam management. We have the following observations and proposals.
[bookmark: OLE_LINK1]Observations:
Observation 1: As the number of beams grows, the overhead of reference signals and associated power consumption for measurement would be unacceptably high.
Observation 2: If Top-K beams are predicted by the adopted AI model, a refined beam sweeping over these Top-K predicted beams may be needed to obtain an optimal beam, which is up to NW.
Observation 3: With a same sampling rate on the whole beam space, the Tx beam prediction obtains a better performance than that of the Tx-Rx beam pairs prediction.
Observation 4: The case of AI generalization with different model inputs can achieve a better performance than that of the case of <T8 R1>, but is outperformed by the case of <T32 R1>.
Observation 5: A better beam prediction accuracy is achieved if more measured RSRPs are input to the AI model. However, for a NW-side model, more measured RSRPs used as AI input also means increasing of the UE reporting overhead.
Observation 6: Compared with the selected non-AI method, a more significant performance gain is observed if the beam set for measurement is a subset of the beam set for prediction.
Observation 7: The AI/ML method  suffers from a little performance loss for scenarios with mixed UE speeds.

Proposals:
Proposal 1: Unified descriptions of the antenna configuration for BS and UE should be adopted to avoid confusion. 
· BS antenna configuration: antenna setup and port layouts at gNB: [4, 8, 2, 1, 1,1,1], (dV, dH) = (0.5, 0.5) λ
· UE antenna configuration: antenna setup and port layouts at UE: [1,4,2,1,2,1,1], 2 panels (left, right)
Proposal 2: RS overhead reduction should be considered as a basic KPI for evaluation and should be further studied with considering following factors: the number of UE, the beam pattern, and the refined beam sweeping procedure.
Proposal 3: The AI/ML model can be utilized for spatial domain beam prediction, which can greatly reduce the RS overhead for measurement while maintain a high beam prediction accuracy.
Proposal 4: Different inputs of AI/ML model (number/pattern of beams (pairs) in Set B, etc) can be considered for the evaluation of model generalization capability.
Proposal 5: The random direction straight-line trajectories in Option #4 can be adopted for modelling UE trajectory, which is simpler than other UE trajectory options and beneficial for model generalization.
Proposal 6: Different UE speeds can be considered for the evaluation of model generalization capability for temporal beam prediction.
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6 Appendix
For dataset generation and performance evaluation for AI/ML in beam management, take the parameters (if applicable) in the following table for Dense Urban scenario for SLS.
Table I. Assumptions for Dense Urban scenario for AI/ML in beam management
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz
SCS: 120 kHz

	Deployment
	200m ISD,
2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	For spatial domain beam prediction, 3km/h
For time domain beam prediction: 30km/h (baseline), 60km/h (optional)
Other values are not precluded

	UE distribution
	FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded.
 
For spatial domain beam prediction: FFS:
Option 1: 80% indoor ,20% outdoor as in TR 38.901
Option 2: 100% outdoor
For time domain prediction: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	· [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline]
· [Four panels: (M, N, P, Mg, Ng) = (4, 8, 2, 2, 2), (dV, dH) = (0.5, 0.5) λ. (dg,V, dg,H) = (2.0, 4.0) λ as optional]
· Other assumptions are not precluded.
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,2)]
·         2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
·         Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	Companies to explain beam correspondence assumptions (in accordance to the two types agreed in RAN4)

	Link adaptation
	Based on CSI-RS

	Traffic Model
	FFS:
Option 1: Full buffer
Option 2: FTP model
Other options are not precluded

	Inter-panel calibration for UE
	Ideal, non-ideal following 38.802 (optional) – Explain any errors

	Control and RS overhead
	Companies report details of the assumptions

	Control channel decoding
	Ideal or Non-ideal (Companies explain how it is modelled)

	UE receiver type
	MMSE-IRC as the baseline, other advanced receiver is not precluded

	BF scheme
	Companies explain what scheme is used

	Transmission scheme
	Multi-antenna port transmission schemes
Note: Companies explain details of the using transmission scheme.

	Other simulation assumptions
	Companies to explain serving TRP selection
Companies to explain scheduling algorithm

	Other potential impairments
	Not modelled (assumed ideal).
If impairments are included, companies will report the details of the assumed impairments

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB




	UE trajectory model Option #4: Random direction straight-line trajectories. 
· Initial UE location, moving direction and speed: UE is randomly dropped in a cell, and an initial moving direction is randomly selected, with a fixed speed.
· The initial UE location should be randomly drop within the following blue area


where d1 is the minimum distance that UE should be away from the BS. 
· Each sector is a cell and that the cell association is geometry based.
· During the simulation, inter-cell handover or switching should be disabled.
· For training data generation
· For each UE moving trajectory: the total length of the UE trajectory can be set as T second if it is in time, of set as D meter if it is in distance.
· The value of T (or D) can be further discussed
· The trajectory sampling interval granularity depends on UE speed and it can be further discussed. 
· UE can move straightly along the entire trajectory, or
· UE can move straightly during the time interval, where the time interval is provided by using an exponential distribution with average interval length 
· UE may change the moving direction at the end of the time interval. UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°]
· If the UE trajectory hit the cell boundary (the red line), the trajectory should be terminated. 
· If the trajectory length (in time) is less than the length of observation window + prediction window, the trajectory should be discarded. 
· At the current stage, the length of observation window + prediction window is not fixed and the companies can report their values.
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