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Introduction
In the RAN#94 plenary meeting [1], a new SID on artificial intelligence (AI)/machine learning (ML) for air-interface was approved for Rel-18, and the objectives of the SID are attached in the Appendix. For the AI/ML-based beam management, two cases are included: beam prediction in spatial domain and beam prediction in temporal domain [2]. In this contribution, we focus on the evaluations of AI/ML-based beam management (BM), including the EVM and evaluation results.
Evaluation methodology for beam prediction
Generic EVM for beam prediction
Beam prediction mechanisms
In RAN1#110, the beam prediction mechanisms have been discussed in the FL summary [3]:
	Proposal 1-2-1f: 
· If L1-RSRP is selected as AI/ML input for both spatial and temporal prediction evaluation, at least the following cases can be considered for the study and potential down selection: 
· Option 1: For Tx-Rx beam pair prediction:
· L1-RSRP of Tx-Rx beam pairs in Set B 
· Option 2: For DL Tx beam prediction 
· Case A: L1-RSRP of Tx beams in Set B, measured by a “best” Rx beam
· FFS on how to obtain the “best” Rx beam
· Case B: L1-RSRP of Tx beams in Set B, measured by the same Rx beam
· FFS on how to select/configure the same Rx beam
· Option 3: For DL Rx beam prediction, 
· L1-RSRP of Rx beams in Set B (where Set B of beams is for Rx beam)
· Note: DL Rx beam prediction may or may not have spec impact  
· Other inputs (e.g. CIR) are not preluded. 
· Note 1: Other assistance information is not precluded
· Note 2: The availability of above options as inputs to the AI/ML models may depend on whether the AI/ML model is UE-side or gNB side


As analyzed in our companion contribution [4], Tx beam prediction is a natural replacement of the legacy P-1/P-2 procedure for Tx beam sweeping, and is compatible to the number/pattern of Rx beams. It should be noted that Option 2 is compatible with legacy Rx beam sweeping to achieve the best Tx-Rx beam combination.
The benefit of overhead reduction for Rx beam prediction may be limited due to the small total number and wide beams of the Rx beams. For Tx-Rx beam pair prediction, the gNB needs to be aware of the Rx beam number/pattern, which is different from the legacy approach where the number/pattern of the UE Rx beam is transparent to the gNB; in addition, how much additional performance gain over Tx beam prediction could be seen may need to be justified, since for Option 2 (Tx beam prediction), the best Tx-Rx beam pair can also be obtained by legacy Rx beam sweeping. To justify the gain, the evaluation of Tx-Rx beam pair prediction can be performed in 9.2.3.1 in advance.
In our understanding, for the last note, Option 2 is straightforwardly applicable for UE-side and gNB-side; for Option 1, it can be applicable also for both UE-side and gNB-side, if the Rx beam number/pattern is known by gNB. For Option 3, as discussed above, it seems to be no strong benefit to only predict Rx beam especially for gNB-side model.
[bookmark: _Ref115430604]Observation 1: For the AI/ML-based beam prediction mechanism, Option 2 (DL Tx beam prediction) may also achieve best Tx-Rx beam combination by DL Tx beam prediction and legacy Rx beam sweeping.
[bookmark: _Ref115430280]Proposal 1: For the evaluation of AI/ML-based beam prediction mechanism, 
· Option 2 (DL Tx beam prediction) should be considered as the starting point.
· Both Case A (best Rx beam) and Case B (same specific Rx beam) can be adopted and reported by companies
· Option 1 (Tx-Rx beam pair prediction) can be also evaluated to justify the additional performance gain over Option 2.
· Option 3 (DL Rx beam prediction) can be considered with lower priority.
KPI on prediction accuracy
To present the evaluation results in details and as agreed in the last meeting, the following KPIs are considered for both spatial domain and temporal domain beam predictions in this contribution:
· Prediction Accuracy for Top-1 and Top-K beams
· Prediction Accuracy with 1dB L1-RSRP Margin
· Average L1-RSRP difference in dB
· CDF of L1-RSRP difference for Top-K predicted beams
· BM measurement overhead reduction compared to a baseline
For the evaluations of both spatial domain and temporal domain beam predictions, two options are provided for beam prediction accuracy in [2].
	Agreement
· To evaluate the performance of AI/ML in beam management, further study the following KPI options:
· Beam prediction accuracy related KPIs, may include the following options:
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”


[bookmark: OLE_LINK22]To measure the prediction accuracy, Option 2 in [2] is preferred. This method describes the probability that the genie-aided best beam is one of the inferred Top-K beams. Option 2 evaluates the performance of the AI/ML model to accurately generate output that can be used in a second round beam sweep (i.e. at P-2), where as long as the genie-aided best beam ID belongs to the inferred Top-K candidates, it will be reported as the best beam after the second round beam sweep. In contrast, Option 1 may not guarantee that the Top-1 genie-aided beam which is the globally best beam would be correctly predicted; on the other hand, capturing other suboptimal genie-aided beams other than the Top-1 genie-aided beam does not make strong sense to reflect as the eventual performance since they may have a large performance gap to the Top-1 genie-aided beam. Therefore, we are making the following proposal:
[bookmark: _Ref115430300][bookmark: _Ref111192795]Proposal 2: As KPI for the evaluation of the prediction accuracy, Option 2 should be selected, i.e., the beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”. 
The beam management phases P-1, P-2 and P-3 of beam management which are described in TR 38.912 can briefly be summarized as follows: 
· In P-1, the best TX beam candidates are identified through sparse beam sweeping. 
· In P-2, the best TX beam candidate is identified
· In P-3 the best RX is identified based on the best identified TX beam
We envision that the AI/ML model can be used in the P-1 procedure. The sparse beams can e.g. consist of wide beams based on SSB (i.e. Set B is different from Set A) or on narrow beams (Set B is a subset of Set A). Then, as output from P-1 the Top-K candidates are selected for refined beam sweeping in P-2. 
[bookmark: _Ref115430319]According to Proposal 2, the prediction accuracy of the AI/ML model can be obtained by evaluating the percentage that the Top-1 genie-aided beam is included in the Top-K selected beams; and according to Section 2.1.1, the DL Tx beam prediction may include two Cases: Case A and Case B. As different Cases have different assumptions on the Rx beam, it should be decided whether the Top-1 genie-aided beams is obtained based on one given Rx beam or based on the best global Rx beam. In our view, the definition of Top-1 genie-aided Tx beam should be clarified for Case A and Case B, respectively. E.g., if Case B is considered, it may not be reasonable to take the Tx beam of the globally best Tx-Rx beam pair as the genie-aided Top-1 Tx beam, but rather consider the best Tx beam for that given Rx beam.
Proposal 3: For DL Tx beam prediction, the Top-1 genie-aided Tx beam is defined as the Tx beam that results in the largest RSRP at the UE side
· For Case A (L1-RSRP of Tx beams in Set B, measured by a “best” Rx beam), the Top-1 genie-aided Tx beam should be the Tx beam ID that results in the largest RSRP over all Tx and Rx beams
· For Case B (L1-RSRP of Tx beams in Set B, measured by the same Rx beam), the Top-1 genie-aided TX beam should be the Tx beam ID that results in the largest RSRP over all Tx beams with that specific Rx beam
Generalization verification
Generalization is one of the key concerns when implementing AI/ML for beam management, it is therefore important that the AI/ML model will be trained under various conditions that can be encountered during inference. In the last meeting, the potential scenarios and configurations have been discussed in the FL summary [3].
	Proposal 1-3-1b
To investigate the model generalization capability, at least the following aspect(s) can be considered for the evaluation for AI/ML in beam management:
· Different UE parameters: UE speed, UE antenna config, UE trajectories, number of Rx beam, etc 
· Different NW settings: number of Tx beam, Tx beam width, Tx beam pattern, number of beams in Set B, etc
· FFS: Different inputs of AI/ML model: number/pattern of beams (pairs) in Set B, etc
· Different Scenarios, UMa, UMi including UE distribution, etc
· FFS on the subset of scenarios/configurations at least considering UE-side or NW-side AI/ML training/inference


In our understanding, for different sub use cases (i.e., spatial domain and temporal domain beam management), the scenarios and configurations considered to enable generalization are different. Yet there is one common part, which is the methodology to verify the generalization of AI/ML. Therefore we are making the following proposal.
[bookmark: _Ref111192804]Proposal 4: To verify the generalization of AI/ML models on AI/ML-based beam management in both spatial and temporal domain, the following cases to construct the training dataset and testing dataset should be considered:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is tested on dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is tested on dataset from a different Scenario#B/Configuration#B
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is fine-tuned based on the fine-tuning dataset from a different Scenario#B/Configuration#B. After that, the AI/ML model is tested on dataset subject to the same Scenario#B/Configuration#B as the fine-tuning dataset
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios including Scenario#A/Configuration#A and Scenario#B/Configuration#B, and then the AI/ML model is tested on dataset from a single Scenario#A/Configuration#A or Scenario#B/Configuration#B from the multiple scenarios
The Case 1 can be regarded as an upper bound but is probably obtained by overfitting gains, while the Case 2 can be regarded as the baseline (possibly a lower bound) for evaluating the performance of the AI/ML model under an unseen situation. Case 3 can provide insights on how to improve the performance from the perspective of training dataset composition which adapts to various situations. Case 2A can provide insights from the perspective of fine-tuning which can also take Case 2 as a baseline. The specific scenarios and configurations for performing the generalization verification under spatial domain and temporal domain are suggested in Section 2.2 and Section 2.3, respectively.
Selection of Set A
In this part, we discuss two applicable cases for AI/ML-based beam prediction, which are different sub types of Set A: 
Type 1 is based on the 64 DFT codebook. The motivation of this approach is to employ AI/ML to enable sparse beam sweeping with low overhead and low power consumption, with the benefit of increasing the beam selection accuracy compared to the legacy approach. 
For Type 2, the main target is to improve the network coverage/performance from the network perspective. A denser beam sweeping codebook with more than 64 Tx beams (e.g. 256 Tx beams) is considered. By doing so, the angular resolution of the TX beams is refined, but the beam width and gNB antenna configuration compared to Type 1 is not changed. The AI/ML model infers the Top-K subset from the 256 dense beams to perform beam sweeping at P-2/3. Due to the more precisely selectable beam direction, this achieves better coverage than the legacy exhaustive 64 Tx beam sweeping as long as the AI/ML inferred Top-K beams are accurate.
It should be noted that from gNB configuration and AI/ML model perspectives, Type 1 and Type 2 are very similar. They use the same number of gNB antennas, perform the same sparse beam sweeping and use the same procedure to infer the Top-K beams out of Set A. They only difference is that in Type 1, Set A consists of 64 beams, whereas in Type 2 it consists of 256 beams.
Type 1 – Set A is composed of narrow codebook of 64 DFT beams
This evaluation method assumes that the beams are generated from a DFT codebook. The size of the DFT codebook is, where K denotes the number of gNB antenna elements. The mathematical expression of the DFT codebook can be given by

Where  and  are the indexes for gNB antenna and beam ID, respectively. One design example of the sparse beam pattern is illustrated in Figure 1 below, where Set B is considered as the subset of Set A, and 16 beams Set B are selected from Set A beams following the figure in below for sweeping. The L1-RSRPs for the beams contained in this sub set are then provided to the AI/ML model in P-1, where the Top-K beams from the full set of 64 Tx beams are inferred for P-2/3 sweeping. Accordingly, L1-RSRPs of 16 beams are sent into the AI/ML model in P-1, then Top-K beams are predicted from all 64 Tx beams for P-2/3 sweeping.
[image: ]
[bookmark: _Ref101955663][bookmark: _Ref101955597]Figure 1. 16 sparse beam pattern within 64 full beam set
Type 2 – Set A is composed of a dense codebook of 256 Tx beams
This dense codebook can achieve 4 times higher resolution than the 64 DFT codebook without changing the size of the gNB antenna array, it provides another option for Set A to explore additional coverage. As an example of this codebook, each gNB antenna element is supposed to correspond to 4 beams, and the mathematical expression to generate this codebook is given by

Similar to Type 1, 16 sparse beams are swept in P-1, so that the overhead will not change. For P-2/3, the Top-K beam is inferred by the gNB from the full set of 256 dense Tx beams. This is expected to improve the coverage due to a finer angular resolution of the beams compared to the 64 DFT codebook. Figure 2 shows how the sparse beam pattern (i.e., the red grids) is selected from the dense codebook.
[image: ]
[bookmark: _Ref102060932]Figure 2. 16 sparse beam pattern within 256 full beam set
Accordingly, we have the following proposal as
[bookmark: _Ref115430371]Proposal 5: For the evaluation of AI/ML-based beam management, for the construction of Set A, a DFT codebook with 64 DFT Tx beams and a denser codebook with 256 Tx beams should be considered.
Selection of Set B
In [3], it is agreed that the discussion of the definition of Set B can be based on the following options:
	Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· FFS on the beams of Set B
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each report/measurement during training and/or inference) 
· FFS on fixed or variable number of beams (pairs)
· FFS on the details 
· Other options are not precluded. 
· FFS on the number of beams (pairs) in Set B
· Note: This does not preclude the alternative that Set B is different from Set A.


When Set B is fixed across training and inference (i.e., Option 1), the AI/ML model can converge more easily, thus resulting into a better performance than when using a variable Set B. The fixed Set B is applicable for the Network-side model, or for the UE-side model given the model is also trained with that fixed Set B.
Regarding the issue that the gNB may vary the Set B number or pattern (i.e., Option 2), it should be clarified that the beam sweeping pattern is elaborately designed in general, and the gNB would not arbitrarily change the beam sweeping set in the realistic network, especially considering Set B also takes the role of beam sweeping over legacy UEs for compatibility. That is to say, even if there may be more than one variable Set B patterns, it should not be considered as a random pattern, but rather designed as a limited set of patterns (namely semi-fixed Set B). For example., assuming the 64 Tx beams of Set A in Figure 1, the limited set of Set B patterns may be: Pattern#1{0, 2, 4, 6, 16, 18, 20, 22, 32, 34, 36, 38, 48, 50, 52, 54}, Pattern#2{0, 1, 5, 6, 16, 17, 21, 22, 32, 33, 37, 38, 48, 49, 53, 54}, Pattern#3 {0, 7, 9, 14, 18, 21, 27, 28, 35, 36, 42, 45, 49, 54, 56, 63},… In that sense, the UE can mix multiple semi-fixed Set B patterns during training, and the generalized performance can be achieved during the inference.
Therefore, we have the following proposal:
[bookmark: _Ref115430617]Observation 2: For the selection of Set B, under Option 2 (variable Set B), it is more realistic for the gNB to vary among semi-fixed Set B including a limited number of deterministic Set B patterns rather than varying over totally random beams in Set B.
[bookmark: _Ref115430383]Proposal 6: For BM-Case-1 and Case-2, for the selection of Set B, consider Option 1 (Set B is fixed across training and inference) as a starting point.
· For Option 2 (Set B is variable), semi-fixed Set B can be assumed in the evaluation, which includes a limited number of deterministic Set B patterns.
Another issue is the number of beams in Set B. Since one of the main motivations to employ sparse beam sweeping is to save overhead compared to an exhaustive sweep, it can be considered to limit the number of beams in Set B relatively to the number of beams in Set A, e.g., number of beams in Set B should not exceed one fourth of the number of beams in Set A.
Assistance information
According to the discussion in [4], assistance information has been brought up for helping the opposite side with additional information to achieve potentially improved performance, e.g., when a random/unknown Set B is considered to UE, some assistance information is provided as additional input for prediction.
However, as mentioned above, in realistic networks, the gNB may not be configured with a totally random Set B for Tx beams, but rather with a semi-fixed Set B with a limited number of patterns. In that sense, even for the UE-side AI/ML model, the UE can train the model with mixed Set B patterns to achieve generalized performance. Alternatively, the model can be trained per fixed Set B pattern basis, so that the UE can switch the model when a new Set B pattern is configured. Even if it is desired to train one single model, then instead of using explicit information such as beam shape, 3dB beam width, etc., implicit beam IDs of Set B can be indicated to the UE which may also be greatly helpful for improving the prediction accuracy.
Moreover, some of the potential assistance information will disclose the proprietary implementation to the opposite side, so the indication of such assistance information is not feasible in realistic networks. As per our understanding for NW-side deployment of the AI/ML model, Rx beam angle or boresight direction, the Rx beam shape may not be feasible to be used as input to the AI/ML model. Similarly, for a UE-side deployment of the AI/ML model, at least the Tx beam angle or boresight information, the Tx beam shape, Tx 3dB beam width, should not be provided. Other assistance information should be further studied.
In addition, some of the potential assistance information that has been brought up causes privacy issues, for example the UE positioning information or UE speed information. 
For some other assistance information, such as expected Tx/Rx beam information, LOS probability, the meaning and method to obtain may need to be clarified before discussing.
Therefore we are making the following observation.
[bookmark: _Ref115430627][bookmark: _Ref115432905]Observation 3: For the AI/ML-based beam prediction, the provision of some assistance information may be infeasible due to the concern of disclosing proprietary information or privacy to the other side. For a NW-side model, this includes Rx beam angle or boresight direction, Rx beam shape, and FFS the UE speed and UE position. For a UE-side model, a list of infeasible assistance information includes at least the Tx beam angle or boresight direction, 3dB beamwidth, and Tx beam shape.
· The meaning and method to obtain expected Tx/Rx beam information, LOS probability may need to be clarified before discussing.
Model deployment
Though the AI/ML model for beam prediction can be also trained and inferred at the UE side under the UE-side operation mode (i.e. both model training and model inference at the UE side), in this paper we choose to focus on the one-sided AI/ML deployed model at the network (i.e. Network-side model), since in our understanding this is a simpler approach compared to the UE-side model with less necessary information that needs to be aligned between the network and the UE. 
In general, according to the analysis in [4], for simplicity and to achieve better progress we suggest a one-sided approach (either Network-side or UE-side AI/ML operations). 
[bookmark: _Ref111192800]Proposal 7: The evaluation for beam prediction should focus on a one-sided AI/ML model.
Traffic Model
In the last meeting there was still an open issue about the traffic model to be used. In our view, full buffer traffic model should be the baseline. This is simpler, sufficient for the evaluation purposes and also easier to align across companies.
[bookmark: _Ref115430410]Proposal 8: For the selection of the traffic model for beam prediction, full buffer considered as the starting point.
EVM for beam prediction in spatial domain
Generalization for spatial domain beam prediction
[bookmark: _Ref111192843]For spatial domain beam prediction, the training inputs to the AI/ML model are the L1-RSRPs of the P-1 sparse beams as previously described and the optimal beam ID is regarded as the training label. For the purpose of evaluation, this can be directly generated from the simulation platform as a starting point. For the construction of the sparse beam set (i.e., Set B), two options can be considered, wherein one option is that Set B is a subset of Set A with both have narrow beams, and the other one is that Set B is different from Set A while Set B consists of wide beams.
As discussed in Section 2.1, the generalization can be performed from the dataset composition perspective and/or from the fine-tuning perspective. When it comes to the specific scenarios or configurations for verifying generalization performance under the spatial domain beam prediction sub use case, we consider the following with relatively high priority:
Proposal 9: For verifying the AI/ML model generalization for spatial domain beam management, the scenarios/configurations for performing the inference for the AI/ML model should initially consider the following aspects:
· Various channel types, e.g., UMa, UMi, InH
· Various numbers of beams in Set A (including Tx beams and/or Rx beams)
· Various Tx beam widths of Set B, e.g., wide beam, narrow beam
· Various numbers of Set B (including Tx beams and/or Rx beams)
· Various patterns of Set B, if Set B is a subset of Set A
Overhead for spatial domain beam prediction
For the overhead KPI reporting of spatial domain BM, we prefer to support the report of both the RS overhead and overhead reduction. For the latter, obviously a baseline needs to be decided. The overhead itself can be obtained from the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement, as it is mentioned in [4]. When it comes to the overhead reduction, the Set A based full beam sweeping should be considered as the baseline.
This issue was discussed in the RAN1#110 meeting, but did not achieve an agreement. In our view, the reporting of the overhead is straightforward, which is simply the number of beams in Set B plus the Top-K inferred beams. For the overhead reduction, we propose to use as baseline the number of beams from Set A.
[bookmark: _Ref115430436]Proposal 10: For the evaluation of the overhead for spatial domain AI/ML-based BM, two metrics should be reported:
· The RS overhead, consisting of the beams being swept in Set B and the Top-K beams for P2 beam sweeping after inference (if applicable)
· RS OH = N + K for K > 1 and RS OH = N for K = 1, where N is the number of beams in Set B and K is the number of Top-K selected beams.
· The RS overhead reduction compared to an exhaustive beam sweep over set A
· RS OH RD [%] = 1-(N+K)/M for K > 1 and RS OH [%] = 1-N/M for K =1, where N is the number of beams in Set B, K is the number of Top-K selected beams and M is the number of beams in Set A.
EVM for beam prediction in temporal domain
Following the illustration in Figure 3 below, in temporal beam prediction, historical information is collected during an observation window (T1) consisting of N instances each of which includes beam sweeping for Set B, and M sets of Top-K beams are inferred by the AI/ML model to be separately used for P-2 sweeping in M instances during the prediction window (T2).
 [image: ]
[bookmark: _Ref110618044][bookmark: _Ref110618033]Figure 3. Diagram of the temporal domain beam prediction
[bookmark: _Ref115173066][bookmark: _Ref111192911]UE trajectory modeling
Regarding the UE trajectory, we prefer Option#4 (i.e., Random direction straight-line trajectories) as a starting point. In that option the UE is dropped randomly in the cell and the initial moving direction is also randomized. This model better matches the outdoor vehicle with straight & fast moving behavior. Other options may be also considered in the verification of the generalization scenarios.
[bookmark: _Ref111192924]Proposal 11: For the evaluation of temporal domain beam prediction, Option 4, i.e., random direction straight-line trajectories for randomly dropped UEs, should be considered as the starting point.
The key component to support temporal domain beam prediction is the spatial consistency. In this paper, we consider procedure B in TR38.901 which updates all small scale parameters and large scale parameters along with the trajectory.
Generalization for temporal domain beam prediction
For the generalization verification, our proposal is similar to the proposal for spatial domain prediction, with the addition that UEs with various types of trajectories and various speeds should be also considered for AI/ML inference.
[bookmark: _Ref111192949]Proposal 12: For verifying the AI/ML model generalization for temporal domain beam prediction, the scenarios/configurations for performing the inference for the AI/ML model should initially consider the following aspects: 
· Various channel types, e.g., UMa, UMi, InH
· Various numbers of beams in Set A (including Tx beams and/or Rx beams)
· Various Tx beam widths of Set B, e.g., wide beam, narrow beam
· Various numbers of Set B (including Tx beams and/or Rx beams)
· Various patterns of Set B, if Set B is a subset of Set A
· Various UE speeds (e.g., 30km/h, 60km/h, 90km/h, 120km/h)
· Various types of UE trajectories (e.g., Option 2/3/4)
Overhead for temporal domain beam prediction
For the evaluation of the overhead in temporal domain, since the sweeping methods in the observation window (i.e., Set B sweeping) and the prediction window (i.e., Top-K sweeping) are different, a different evaluation method compared to the spatial domain for overhead should be considered. 
To obtain the optimal Tx beam ID in each time instance a full sweep (i.e., Set A sweeping) is the baseline which is the same approach as for the spatial domain beam prediction. Let us consider the Set B sweeping in the observation window and Top-K sweeping in prediction window as an integer operation, then, the overhead for combined observation and prediction can be calculated as:

where  means the size of Set B and T1 denotes the number of observation instances,  means the Top-K beams and T2 denotes the number of prediction instances. 
For the overhead reduction, the overhead should be related to the size of Set A, i.e.,

where M is the number of beams in Set A. 
Accordingly, we are making the following proposal:
[bookmark: _Ref115430475]Proposal 13: For the evaluation of the overhead for temporal domain AM//ML-based BM, the observation and prediction window are jointly considered, and two metrics should be reported
· The RS overhead, consisting of the beams being swept in Set B during observation and the Top-K beams for P2 beam sweeping during prediction (if applicable)
· for K>1 and  for K = 1
· The RS overhead reduction compared to an exhaustive beam sweep over Set A during observation and the Top-K beams for P2 beam sweeping during prediction (if applicable)
·  for K > 1 and  for K = 1
· Where: M is beams in Set A, N is beams in Set B and K is the number of beams as inference output
[bookmark: _Ref129681832]Evaluations for spatial domain beam prediction
Procedure for spatial domain beam prediction
Figure 4 below provides a flow chart to illustrate how the AI/ML-based BM is operated. In the outlined approach, the Network-side AI/ML model is considered where the AI/ML model is assumed to be trained and performs inference at the gNB side. Supervised learning is considered in this evaluation, where the UE feeds back the L1-RSRP for each Tx beam as the ground-truth information for training input. For the AI/ML training phase, the gNB performs beam sweeping over sparse (narrow or wide) beams in Set B, and the UE feeds back the L1-RSRPs of the sparse beams and the optimal beam ID over the full beam set (i.e., Set A) to the gNB, which then will be used to train the AI/ML model. When the trained AI/ML model is used for inference, the gNB will sweep the sparse beams at P-1 (e.g., 16 beams), and the UE will report the corresponding L1-RSRPs for all the measured sparse beams to the gNB for inferring the Top-K beams. CSI-RS beam sweeping based on the inferred Top-K beams will then be carried out in P-2 as in the legacy system, and the optimal Tx beam from the Top-K beams will then be fed back from the UE. The Tx beam sweeping/prediction procedure is performed for each Rx beam, so the globally best Tx beam is reported after sweeping the Rx beams.
[image: ]
[bookmark: _Ref102039974]Figure 4. Flow chart for AI/ML-based spatial domain beam management
Description of the AI/ML model 
The AI/ML model related parameters for spatial domain beam prediction are given below.
Table 1. AI/ML model and training parameters for spatial domain beam prediction
	Parameter
	Value

	AI/ML (NN) model architecture type
	Convolutional Neural Network (CNN)

	AI/ML Model inputs and outputs
	Input: L1-RSRP, output: Top-K beams with highest probability

	Training/Testing dataset
	Dataset size
	45000/5000 samples

	
	Model validity area
	Trained for single sector

	Loss function
	Cross entropy (CE) loss, supervised learning, genie-aided Top-1 beam ID as label

	Activation function
	ReLu/Leaky ReLu

	Normalization
	Batch normalization

	Optimizer
	Adam

	Number of Epochs
	100

	Learning rate
	Starting at 0.001 with certain LR scheduler setting


Simulation results for beam prediction in spatial domain
System level simulations are performed for spatial domain beam prediction, based on the agreements in the session notes of RAN1 #109-e [2] and RAN1 #110 [5]. The AI/ML model performance together with the baseline scheme for spatial domain beam prediction is given in the tables (i.e., Table 2-Table 5) and figures (i.e., Figure 5 and Figure 6) below. Regarding the baseline solutions, both options proposed in [2] have been considered as the upper and lower bounds, respectively.
[bookmark: _Ref101955953][bookmark: _Ref111143692]Sparse beam sweeping based on 64 DFT codebook (Type-1)
According to Table 2 shown below, AI/ML schemes are simulated for different numbers of Top-K beams and compared with two non-AI/ML schemes. Option 1 (measuring all RS or all beams of Set A) and Option 2 (measuring RS of Set B) in [2] are both considered as baselines.
· Exhaustive 64 (Option 1), is the exhaustive beam sweeping over all 64 Tx beams, which can be regarded as the upper performance bound; with this method, the gNB will always get the genie-aided Top-1 beam. It gives the best performance but also requires the largest overhead and power consumption. 
· Baseline (Option 2), is the traditional sparse beam sweeping under non-AI/ML, where 16 sparse Tx beams are swept at P-1, and after the UE feeds back the optimal P-1 beam ID, the gNB will determine the Tx beams for P-2 to include this optimal P-1 beam as well as its 4 fixed neighboring beams; this is to align the overhead and to compare the accuracy with the AI/ML-based approach under K=5. In addition, the optimal P-1 beam directly applied to without P-2 sweeping is also provided to align the overhead with AI/ML-based K=1.
· AI/ML-based approach, where the inference output of Top-K Tx beams are swept for P-2. K = 1, 3, and 5 are considered, where K=5 can be regarded to align the overhead with the Baseline scheme.

[bookmark: _Ref101955388]Table 2. Schemes for evaluating the 64 DFT codebook Type
	Schemes
	P-1
	P-2/3

	Exhaustive 64 
(Option 1)
	64 beams
Exhaustive sweep
	Optimal beam
	

	Baseline
(Option 2)
	16 beams
Sparse beam sweep
	One best measured beam [and 4 neighbors]
	

	AI/ML
	16 beams
Sparse beam sweep
	Predicted Top-K beams from 64 narrow beams
	


The simulation results are shown in Table 3 below. It can be seen that the performance gap between the Baseline (legacy sparse beam sweeping) and the Exhaustive 64 (i.e., genie-aided Top-1) is large. The baseline only achieves a prediction accuracy of 55.3%, i.e. there is only a 55.3% chance that the optimal beam is included in the Top-5 candidates that are identified with the legacy method. The performance gap compared to the upper bound Exhaustive 64 is significantly narrowed when the AI/ML-based approach is taken instead. With the same overhead as the baseline (i.e. K=5), AI/ML can achieve a prediction accuracy as high as 94.95%. Additionally, even when the AI/ML model is configured to infer fewer beam candidates than the legacy baseline, i.e. K=1 or K=3, its performance is still better.
The simulation results are also illustrated in Figure 5 below where the CDF of the prediction accuracy is shown for various L1-RSRP differences. It can clearly be seen that all AI/ML-based approaches outperform the Baseline and that as larger the value of K is chosen, the better is the prediction result of the AI/ML-based method.
Based on the above discussion we make the following observations:
[bookmark: _Ref111192585]Observation 4: For spatial domain beam prediction, AI/ML-based schemes under the 64-DFT codebook outperform the legacy approach in most of the cases in terms of beam selection accuracy, e.g.,:
· AI/ML-based Top-5 prediction reaches almost the upper performance bound with a prediction accuracy of 94.95% but with an overhead reduction of 67.17%. On the other hand, for the same overhead reduction, the established legacy Baseline approach can only achieve a prediction accuracy of 55.3%
· With AI/ML-based Top-3 prediction, the overhead compared to the legacy Baseline approach can be further reduced by another 8%, while the prediction still is much higher (89.2% as opposed to 55.3%)
[bookmark: _Ref111192664]Observation 5: For spatial domain beam prediction, AI/ML-based schemes under the 64-DFT codebook outperform the legacy approach in most of the cases in terms in terms of average L1-RSRP difference, e.g.,:
· For AI/ML-based Top-5 prediction, the L1-RSRP difference compared to genie-aided beam prediction in Exhaustive 64 is as low as 0.03 dB, with an overhead reduction of 67.17%. On the other hand, for the same overhead reduction, the established legacy Baseline approach can only achieve an average L1-RSRP difference of 1.02dB
· With AI/ML-based Top-3 prediction, the overhead compared to the legacy Baseline approach can be further reduced by another 8%, while the average L1-RSRP difference is still is much smaller (0.08dB as opposed to 1.02dB)
[bookmark: _Ref110512540]Table 3. KPIs for AI/ML model performance for spatial domain beam prediction with 64-DFT
	 

	Prediction Accuracy [%]
	Prediction Accuracy with 1 dB L1-RSRP Margin [%]
	Average L1-RSRP differencee [dB]
	BM measurement overhead reduction [%] compare to Exhaustive 64

	Method
	Top-1
	Top-3
	Top-5
	Top-1
	Top-3
	Top-5
	Top-1
	Top-3
	Top-5
	Top-1
	Top-3
	Top-5

	Exhaustive 64
non-AI/ML beam selection (64 CSI-RS/SSB)
	100
	-
	-
	100
	-
	-
	0
	-
	-
	0
	-
	-

	Baseline
(top 5 beams)
non-AI/ML beam selection (16SSB + 5 CSI-RS)
	-
	-
	55.3
	-
	-
	59.65
	-
	-
	1.0260
	
	-
	67.19

	non-AI/ML beam selection (16SSB)
(top 1 beam)
	22.13
	-
	-
	29.45
	-
	-
	1.5428
	-
	-
	75
	-
	-

	AI/ML-based beam selection (input 16 narrow beam Set B, output Top-K IDs in 64 DFT codebook)
	65.5
	89.2
	94.95
	69.5
	92.5
	97.95
	0.4062
	0.0832
	0.0304
	75
	70.31
	67.19

	AI/ML-based beam selection (input 16 wide beam Set B, output Top-K IDs in 64 DFT codebook)
	46.2
	80.2
	91.1
	51.2
	84.4
	95.3
	1.0501
	0.1027
	0.0489
	75
	70.31
	67.19
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[bookmark: _Ref110522972]Figure 5. CDF of L1-RSRP difference of Top-K prediction beam for 64 DFT codebook
Furthermore, it can be seen that the larger the K, i.e. the more beams are inferred by the AI/ML model, the better becomes the prediction accuracy of the AI/ML-model. We are therefore making following proposal: 
[bookmark: _Ref111192963]Proposal 14: Since the prediction accuracy obtained from the AI/ML increases significantly with a larger K and then clearly outperforms the legacy baseline, adopt Top-K, K>1 (e.g., K=3, 5) for evaluation of spatial beam prediction accuracy.
It had also been discussed whether Set B (the input to the AI/ML model) should be a subset of Set A (the full set of possible beams) or if Set B also could contain beams that are not part of Set A. As seen the last two rows of Table 3, we performed simulations for both cases. In the second last row, Set B is a sparse subset with 16 beams from the 64 narrow beams contained in Set A, and in the last row, Set B consists of wide beams. 
[bookmark: _Ref111192685]Observation 6: It can be observed that better prediction accuracy is achieved when Set B is a subset of Set A compared to the case where Set B is a wide beam set, especially when K=1; with the increase of K, the gap between two options becomes narrower.
To further illustrate the advantages of AI/ML in spatial domain beam prediction, from both overhead and performance perspectives, both Option 1 and Option 2 should be considered as the upper bound and lower bound, respectively. It can be found from the simulation results that AI/ML can provide near optimal performances with much lower overhead than the upper bound and much better performances than the lower bound for approximately the same overhead.
[bookmark: _Ref115430539][bookmark: _Ref111192968]Proposal 15: For spatial domain beam prediction, both of the two baselines for performance evaluation shall be considered:
· An upper performance bound obtained by exhaustive sweep over Set A
· A lower performance bound obtained by non-AI/ML-based legacy sparse beam sweeping with the same overhead as the AI/ML-based approach
Sparse beam sweeping based on 256 dense codebook (Type-2)
The schemes for the 256 dense codebook are provided in Table 4, where two non-AI/ML schemes are also considered for comparison. 
· The exhaustive 64 Tx beam sweeping under the 64 DFT codebook described in Section 2.1.4 is considered as the upper bound achievable with the legacy 64 Tx beam sweeping. This is also taken as the baseline to evaluate the relative gain of the following two schemes under the 256 dense codebook.
· The exhaustive 256 Tx beam sweeping under the dense codebook of 256 Tx beams described in Section 2.1.4 can lead to genie-aided Top-1 beam ID and is considered as the upper performance bound of the 256 Tx beams scheme.
· AI/ML-based approach, where the inference output of Top-K Tx beams are swept for P-2. K = 1, 3, and 5 are considered, where K=5 can be regarded to align the overhead with the Baseline scheme. Hence, the overhead is the same as the AI/ML-based scheme in Section 3.3.1, but the inferred beams are taken from the dense codebook of 256 Tx beams.

[bookmark: _Ref101955887]Table 4.  Schemes for evaluating the 256 dense codebook
	Schemes
	P-1
	P-2/3

	Exhaustive 64
	64 beams
Exhaustive sweep
	Optimal beam
	

	Exhaustive 256
(Option 1)
	256 beams
Exhaustive sweep
	Optimal Beam
	

	AI/ML
	16 beams
Sparse beam sweep
	Predicted Top-K beams from 256 dense beams
	


[bookmark: _Ref110522915]The simulation results are shown in Table 5 below.
[bookmark: _Ref110615871][bookmark: _Ref110615859]Table 5. KPIs for AI/ML model performance for spatial domain beam prediction with 256 dense codebook
	 

	Prediction Accuracy [%]
	Prediction Accuracy with 1 dB L1-RSRP Margin [%]
	Average L1-RSRP differencee [dB] of Top-K predicted beams
	Average L1-RSRP over Exhaustive 64 
no-ML beam selection 

	Method
	Top-1
	Top-3
	Top-5
	Top-1
	Top-3
	Top-5
	Top-1
	Top-3
	Top-5
	Top-1
	Top-3
	Top-5

	Exhaustive 256: non-AI/ML beam selection 256 dense DFT codebook
	100
	-
	-
	100
	-
	-
	0
	-
	-
	1.2
	
	

	AI/ML -based beam selection (input 16 narrow beam Set B, output Top-K IDs in 256 dense codebook )
	44.9
	65.5
	73.2
	51.8
	71.2
	81.5
	0.75
	0.23
	0.1
	
	
	1.1

	AI/ML -based beam selection (input 16 wide beam Set B, output Top-K IDs in 256 dense codebook)
	33.7
	61.45
	73.1
	41.1
	68.9
	80.55
	1.1198
	0.2377
	0.12
	
	
	1.08
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[bookmark: _Ref110522975][bookmark: _Ref110615919]	Figure 6. CDF of L1-RSRP difference of Top-K prediction beam for 256 dense codebook	
From the simulation results shown in Figure 6, it can be seen that by using a dense 256 codebook (i.e. applying Exhaustive 256), the upper bound performance of the legacy approach given by Exhaustive 64 can be pushed higher, where an increased L1-RSRP with 1.2 dB can be achieved. However, the overhead and the power consumption of the legacy Exhaustive 64 method is already very high. Going straightforward to a non-AI/ML based Exhaustive 256 approach is therefore not feasible, since the already high costs would be further increased by 400%.
AI/ML-based solutions, can here be applied instead to reduce the beam sweeping overhead, but at the same time, to enhance the coverage of the legacy system. The dense codebook containing 256 beams, only increases the number of beams in Set A from 64 to 256. The number of beams in Set B remains unchanged compared to the settings in Section 3.3.1, i.e. 16 sparse narrow beams or 16 wide beams can be used. Therefore, the beam sweeping overhead is the same as for the AI/ML approached described in the previous section.
It can be found from the simulation results that Set B with 16 sparse dense beams can offer 1.1 dB gain in terms of the L1-RSRP while the overhead is only 33% of the Exhaustive 64. When the Set B contains wide beams and Set A is 256 dense codebook, it can offer 1.08dB over the Exhaustive 64. This motivates the following observation that:
[bookmark: _Ref111192698]Observation 7: The AI/ML-based beam prediction based on the Set A with 256 beams (Type-2) provides a considerable gain over the legacy upper bound Exhaustive 64 (Type-1) in achievable L1-RSRP for a small fraction of the overhead associated with an Exhaustive 64 sweep.
The previous discussion has shown that it is clear that AI/ML-based solutions are not only suitable to reduce overhead of legacy based solutions. They can also be used to increase the legacy performance. Or even better, they could also increase the system performance and still reduce the overhead. We are therefore making the following proposal: 
[bookmark: _Ref111192988]Proposal 16: For the evaluation of beam prediction, RAN1 should study Set A with size of 64 and 256 beams to improve beam management related system performance, complexity and coverage over the legacy baseline.
Evaluations for beam prediction in temporal domain
Procedure of AI/ML-based temporal domain beam prediction
Below provides a flow chart to illustrate how the AI/ML-based temporal domain BM is operated. The Network-side operation mode is considered here as an example where the AI/ML model is assumed to be trained and inferred at the gNB side.

[image: ]
Figure 7. Flow chart of AI/ML-based temporal domain beam management
Different from the spatial domain BM, temporal beam prediction includes an observation phase. During the observation window, sparse beam sweeping at P-1 (e.g., 16 beams) is performed N times in N observation instances and the corresponding L1-RSRPs are fed back from the UE and regarded as historical information, which is utilized for beam prediction in the temporal domain. This historical information is given as input to the AI/ML network to infer M Top-K subsets from the full beam set (e.g. from 64 beams), each of the M subsets are to be applied for P-2 sweeping over the Top-K beams in a prediction instance to determine the corresponding optimal beam ID for that prediction instance. The above Tx beam sweeping/prediction procedure is performed for each Rx beam, so the globally best Tx beam is reported after sweeping the Rx beams.
Another approach as opposed to use the L1-RSRPs from the sparse beams as input to the AI/ML model, would be to perform a full beam sweep and to feed the AI/ML model with the L1-RSRPs from all beams out of Set A. This has been mentioned in RAN1#110 AI 9.2.3.2 as Alt.3, i.e., Set B = Set A. However, this concept requires too much overhead in our view for practical implementation. Overhead reduction is one of the mains reasons why sparse beam sweeping has been introduced. Additionally, a full beam sweep might not be compatible with non-AI/ML-based UEs that and it would also cause unnecessary interference to UEs in other cells.
We think the same principle as for spatial domain beam management should be taken for temporal beam prediction and we are making the following proposal:
[bookmark: _Ref111192825]Proposal 17: For AI/ML-based temporal domain beam prediction, regarding the relationship between Set A and Set B:
· The size of Set B smaller than Set A should be considered as baseline.
· Both can be considered in evaluations: Set B is a subset of Set A; Set B contains wide beams with full direction which are different from Set A with narrow beams.
· Set B equal to Set A can be optionally used for performance comparison in evaluations.
Description of the AI/ML model
For the design of the AI/ML structure, Table 6 gives a detailed introduction, while RNN is considered for the temporal domain prediction. N=M=2 is assumed. Same as the spatial domain method, L1-RSPP is chosen to be the input and the output are the Top-K candidates with the highest probability to represent the optimal beam. Please note that the time distance between the two prediction instances is assumed as 0.08s or 0.16s, to evaluate the impact of spatial consistency: the spatial consistency becomes weaker for longer instances.
[bookmark: _Ref109721039]Table 6. AI/ML model and training parameters for temporal domain beam prediction
	Parameter
	Value

	AL/ML (NN) model architecture type
	Recurrent Neural Network (RNN)

	AI/ML Model inputs and outputs
	Input: L1-RSRP, output: Top-K beams with highest probability

	Training/Testing dataset
	Dataset size
	10000/1000 samples

	
	Trajectory length
	20 time instances, 0.08s/0.16s per time instance

	
	UE speed
	30km/h, 90km/h

	
	Observation window
	2 observation instances

	
	Prediction window
	2 prediction instances

	
	Model validity area
	Trained for single sector

	Loss function
	Cross entropy (CE) loss, supervised learning, genie-aided Top-1 beam ID as label

	 Activation function
	ReLu/Leaky ReLu

	Normalization
	Batch normalization

	Optimizer
	Adam

	Number of Epochs
	At least 100

	Learning rate
	0.00001


Simulation results for beam prediction in temporal domain
For the simulations for temporal domain beam prediction, we follow the agreement in [2] to define baselines, where the upper bound baseline is the Option 1a which exhaustively sweeps all beams in each prediction instance so that the genie-aided Top-1 beam ID can be obtained for each predicted instance. For the lower bound baseline, the Option 2 is selected which means that the selected beam ID for each predicted instance is kept as same as the optimal beam ID resulting from the exhaustive sweeping for the latest observation instance. The detailed setup for simulation schemes can be found in Table 7, for the AI/Ml-based scheme, the values of K are assumed to be 1, 2, 4 and 8 for the inference of Top-K beams for P-2. Two speeds are selected (i.e., 30km/h, 90km/h), and combined with two sets of prediction instances (i.e., 0.08s, 0.16s), 4 sets of evaluation results are provided for evaluating the temporal domain beam prediction. 

[bookmark: _Ref109720823][bookmark: _Ref109720815]Table 7. Schemes for evaluating the temporal domain beam prediction
	Schemes
	P-1
	P-2/3

	Exhaustive 64
(Option 1a)
	64 beams
Exhaustive sweep
	Optimal beam
	

	Baseline
(Option 2)
	64 beams
Exhaustive sweep
	Same as the optimal beam in previous observation instance
	

	AI/ML
	16
Sparse beam sweep
	Predicted Top-K beams from 64 narrow beams
	


As discussed earlier, the main benefit of temporal domain beam prediction is that it can reduce the beam sweeping overhead, for example compared to very frequent spatial domain beam prediction that otherwise could be required in case of UE mobility. 
According to the simulations results illustrated in the following tables and figures, the AI/ML-based Top-K (K>1) can achieve significant gain over Top-1 with only a slight increase of overhead. Moreover, in most cases (except 90km/h, 0.16s time interval), Top-1 inference has even lower performance than the baseline. This motivates us to encourage Top-K, K>1 prediction in addition to only inferring K=1 beam with the AI/ML model. We are making the following proposal:
[bookmark: _Ref111193022]Proposal 18: For temporal beam prediction evaluation, results for Top-K, K>1 should be presented in addition to Top-1 results.
· The Top-1 predicted beam can be derived as the eventual result after the second round sweeping based on the AI/ML inferred Top-K beams.
[bookmark: _Ref110618420][bookmark: _Ref111124961]The performances of temporal domain beam prediction in different set of scenarios are shown in Table 8 - Table 11 and Figure 8, Figure 9 in below.
Table 8. Simulation results for UE at 30km/h with 0.08s between 2 prediction instances
	

	Prediction Accuracy [%]
	Prediction Accuracy with
1dB margin [%]
	Average L1-RSRP differencee to exhaustive sweep (Option 1) [dB]
	BM measurement overhead reduction [%] compare to exhaustive sweep (Option 1)

	Method
	Top-1 
	Top-2 
	Top-4
	Top-8
	Top-1
	Top-2 
	Top-4 
	Top-8 
	Top-1 
	Top-3 
	Top-4 
	Top-8 
	Top-1 
	Top-2 
	Top-4 
	Top-8 

	non-AI/ML beam selection(option 2)  
	63.25
	-
	
	
	69.19
	
	
	
	2.1407
	-
	-
	
	50
	-
	-
	

	AI/ML-based beam selection
	56.35
	71.54
	81.73
	89.58
	62.11
	75.83
	84.68
	91.98
	2.9567
	1.8333
	0.9908
	0.4210
	87.5
	85.94
	84.38
	81.25






Table 9. Simulation results for UE at 30km/h with 0.16s between 2 prediction instances
	

	Prediction Accuracy [%]
	Prediction Accuracy with
1dB margin [%]
	Average L1-RSRP differencee to exhaustive sweep (Option 1) [dB]
	BM measurement overhead reduction [%] compare to exhaustive sweep (Option 1)

	Method
	Top-1
	Top-2
	Top-4
	Top-8
	Top-1
	Top-2
	Top-4
	Top-8
	Top-1
	Top-3
	Top-4
	Top-8
	Top-1
	Top-2
	Top-4
	Top-8

	non-AI/ML beam selection(option 2)
	58.45
	-
	
	
	64.01
	
	
	
	3.1223
	-
	-
	
	50
	-
	-
	

	AI/ML-based beam selection
	52.73
	65.17
	75.37
	86.23
	57.71
	69.19
	79.01
	88.85
	3.8485
	2.5848
	1.4712
	0.6119
	87.5
	85.94
	84.38
	81.25
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[bookmark: _Ref110618458]Figure 8. CDF of L1-RSRP difference for UE at 30km/h

Table 10. Simulation results for UE at 90km/h with 0.08s between 2 prediction instances
	

	Prediction Accuracy [%]
	Prediction Accuracy with
1dB margin [%]
	Average L1-RSRP differencee to exhaustive sweep (Option 1) [dB]
	BM measurement overhead reduction [%] compare to exhaustive sweep (Option 1)

	Method
	Top-1
	Top-2
	Top-4
	Top-8
	Top-1
	Top-2
	Top-4
	Top-8
	Top-1
	Top-3
	Top-4
	Top-8
	Top-1
	Top-2
	Top-4
	Top-8

	non-AI/ML beam selection(option 2)
	55.48
	-
	
	
	60.85
	
	
	
	3.5468
	-
	-
	
	50
	-
	-
	

	ML-based beam selection
	45.37
	57.58
	69.16
	81.98
	50.23
	62.12
	73.40
	85.40
	4.6884
	3.1618
	1.8800
	0.8234
	87.5
	85.94
	84.38
	81.25



[bookmark: _Ref110618423]Table 11.  Simulation results for UE at 90km/h with 0.16s between 2 prediction instances
	

	Prediction Accuracy [%]
	Prediction Accuracy with
1dB margin [%]
	Average L1-RSRP differencee to exhaustive sweep (Option 1) [dB]
	BM measurement overhead reduction [%] compare to exhaustive sweep (Option 1)

	Method
	Top-1 
	Top-2 
	Top-4
	Top-8
	Top-1
	Top-2 
	Top-4 
	Top-8 
	Top-1 
	Top-3 
	Top-4 
	Top-8 
	Top-1 
	Top-2 
	Top-4 
	Top-8 

	non-AI/ML beam selection (option 2) 
	45.92
	-
	
	
	50.09
	
	
	
	5.2119
	-
	-
	
	50
	-
	-
	

	AI/ML-based beam selection 
	45.97
	55.36
	66.18
	81.05
	50.43
	59.22
	70.07
	84.34
	5.1366
	3.5828
	2.2035
	0.9421
	87.5
	85.94
	84.38
	81.25
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[bookmark: _Ref110618460]Figure 9. CDF of L1-RSRP difference for UE at 90km/h
Comparing both 30km/h and 90km/h results for different time prediction instances, we can make the following observations:
[bookmark: _Ref111192742]Observation 8: For temporal beam prediction, AI/ML based methods are more robust than legacy approaches to variations of the UE speed.
· When the time instance is 0.08s in the observation and prediction window, for UE speed 30km/h, the AI/ML Top-8 approach is 42% better than for the legacy baseline but for a UE speed of 90 km/h, the AI/ML Top-8 prediction accuracy is 47% better than for the legacy baseline 
· When the time interval is 0.16s in the observation and prediction window, for UE speed 30km/h, the AI/ML Top-8 approach is 48% better than for the legacy baseline but for UE speed 90 km/h, the AI/ML Top-8 prediction accuracy is 77% better than for the legacy baseline.
[bookmark: _Ref111192769]Observation 9: For temporal beam prediction, lower spatial consistency has more impact on the prediction accuracy achieved by the legacy approach than on accuracy achieved by the AI/ML-based methods. This can be seen from the results when different time instances are evaluated.
· For UE at 30km/h, the accuracy of AI/ML Top-8 degrades 3.35% but the baseline degrades 4.8% when stretching the two prediction instances from 0.08s to 0.16s
· For UE at 90km/h, the accuracy of AI/Ml Top-8 degrades 0.93% but the baseline degrades 9.56% when stretching the two prediction instances from 0.08s to 0.16s
When comparing different simulation results for different UE speeds and prediction time instances, it can be found that the AI/ML-based approach shows significant robustness against increased speed (i.e., from 30km/h to 90km/h) and prediction time instance (from 0.08s to 0.16s), whereas the performance of the legacy approach deteriorates largely. The gap shown in Figure 9 between the legacy and the AI/ML-based curves becomes wider with increased speed and increased time instances. 
In the last meeting, the RS pattern in time domain has been discussed in FL summary [3].
	Proposal 1-2-5c: 
· At least for temporal beam prediction, further study on the time domain assumptions, at least including:
· RS pattern in time domain for L1-RSRP measurement 
· SSB period = 20ms, FFS other values 
· FFS on CSI-RS time domain pattern
· timeRestrictionForChannelMeasurements is set to "Configured" as baseline and other assumption are not precluded and reported by companies.
· The periodicity of future time instance=10ms/20ms, FFS other values
· Beam management procedure are reported by companies when applicable 


According to the analysis in above observations, AI/ML shows advantages over the legacy method from both performance and overhead perspectives. Therefore, we have the following proposal on the time domain RS pattern for temporal domain beam prediction:
[bookmark: _Ref115430594][bookmark: _Ref115432858]Proposal 19: Considering the robustness of AI/ML against longer prediction time instances and higher UE speeds, CSI-RS patterns for the observation/prediction window should be assumed with a large time domain distance between observation/prediction instances, for example 80ms or 160ms.
Conclusions
Based on the previous discussions, following observations and proposals are provided.
Proposal 1: For the evaluation of AI/ML-based beam prediction mechanism,
· Option 2 (DL Tx beam prediction) should be considered as the starting point.
· Both Case A (best Rx beam) and Case B (same specific Rx beam) can be adopted and reported by companies
· Option 1 (Tx-Rx beam pair prediction) can be also evaluated to justify the additional performance gain over Option 2.
· Option 3 (DL Rx beam prediction) can be considered with lower priority.
Proposal 2: As KPI for the evaluation of the prediction accuracy, Option 2 should be selected, i.e., the beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”.
Proposal 3: For DL Tx beam prediction, the Top-1 genie-aided Tx beam is defined as the Tx beam that results in the largest RSRP at the UE side
· For Case A (L1-RSRP of Tx beams in Set B, measured by a “best” Rx beam), the Top-1 genie-aided Tx beam should be the Tx beam ID that results in the largest RSRP over all Tx and Rx beams
· For Case B (L1-RSRP of Tx beams in Set B, measured by the same Rx beam), the Top-1 genie-aided TX beam should be the Tx beam ID that results in the largest RSRP over all Tx beams with that specific Rx beam
Proposal 4: To verify the generalization of AI/ML models on AI/ML-based beam management in both spatial and temporal domain, the following cases to construct the training dataset and testing dataset should be considered:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is tested on dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is tested on dataset from a different Scenario#B/Configuration#B
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is fine-tuned based on the fine-tuning dataset from a different Scenario#B/Configuration#B. After that, the AI/ML model is tested on dataset subject to the same Scenario#B/Configuration#B as the fine-tuning dataset
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios including Scenario#A/Configuration#A and Scenario#B/Configuration#B, and then the AI/ML model is tested on dataset from a single Scenario#A/Configuration#A or Scenario#B/Configuration#B from the multiple scenarios
Proposal 5: For the evaluation of AI/ML-based beam management, for the construction of Set A, a DFT codebook with 64 DFT Tx beams and a denser codebook with 256 Tx beams should be considered.
Proposal 6: For BM-Case-1 and Case-2, for the selection of Set B, consider Option 1 (Set B is fixed across training and inference) as a starting point.
· For Option 2 (Set B is variable), semi-fixed Set B can be assumed in the evaluation, which includes a limited number of deterministic Set B patterns.
Proposal 7: The evaluation for beam prediction should focus on a one-sided AI/ML model.
Proposal 8: For the selection of the traffic model for beam prediction, full buffer considered as the starting point.
Proposal 9: For verifying the AI/ML model generalization for spatial domain beam management, the scenarios/configurations for performing the inference for the AI/ML model should initially consider the following aspects:
· Various channel types, e.g., UMa, UMi, InH
· Various numbers of beams in Set A (including Tx beams and/or Rx beams)
· Various Tx beam widths of Set B, e.g., wide beam, narrow beam
· Various numbers of Set B (including Tx beams and/or Rx beams)
· Various patterns of Set B, if Set B is a subset of Set A
Proposal 10: For the evaluation of the overhead for spatial domain AI/ML-based BM, two metrics should be reported:
· The RS overhead, consisting of the beams being swept in Set B and the Top-K beams for P2 beam sweeping after inference (if applicable)
· RS OH = N + K for K > 1 and RS OH = N for K = 1, where N is the number of beams in Set B and K is the number of Top-K selected beams. 
· The RS overhead reduction compared to an exhaustive beam sweep over set A
· RS OH RD [%] = 1-(N+K)/M for K > 1 and RS OH [%] = 1-N/M for K =1, where N is the number of beams in Set B, K is the number of Top-K selected beams and M is the number of beams in Set A.
Proposal 11: For the evaluation of temporal domain beam prediction, Option 4, i.e., random direction straight-line trajectories for randomly dropped UEs, should be considered as the starting point.
Proposal 12: For verifying the AI/ML model generalization for temporal domain beam prediction, the scenarios/configurations for performing the inference for the AI/ML model should initially consider the following aspects:
· Various channel types, e.g., UMa, UMi, InH
· Various numbers of beams in Set A (including Tx beams and/or Rx beams)
· Various Tx beam widths of Set B, e.g., wide beam, narrow beam
· Various numbers of Set B (including Tx beams and/or Rx beams)
· Various patterns of Set B, if Set B is a subset of Set A
· Various UE speeds (e.g., 30km/h, 60km/h, 90km/h, 120km/h)
· Various types of UE trajectories (e.g., Option 2/3/4)
Proposal 13: For the evaluation of the overhead for temporal domain AM//ML-based BM, the observation and prediction window are jointly considered, and two metrics should be reported
· The RS overhead, consisting of the beams being swept in Set B during observation and the Top-K beams for P2 beam sweeping during prediction (if applicable)
· for K>1 and  for K = 1
· The RS overhead reduction compared to an exhaustive beam sweep over Set A during observation and the Top-K beams for P2 beam sweeping during prediction (if applicable)
·  for K > 1 and  for K = 1
· Where: M is beams in Set A, N is beams in Set B and K is the number of beams as inference output
Proposal 14: Since the prediction accuracy obtained from the AI/ML increases significantly with a larger K and then clearly outperforms the legacy baseline, adopt Top-K, K>1 (e.g., K=3, 5) for evaluation of spatial beam prediction accuracy.
Proposal 15: For spatial domain beam prediction, both of the two baselines for performance evaluation shall be considered:
· An upper performance bound obtained by exhaustive sweep over Set A
· A lower performance bound obtained by non-AI/ML-based legacy sparse beam sweeping with the same overhead as the AI/ML-based approach
Proposal 16: For the evaluation of beam prediction, RAN1 should study Set A with size of 64 and 256 beams to improve beam management related system performance, complexity and coverage over the legacy baseline.
Proposal 17: For AI/ML-based temporal domain beam prediction, regarding the relationship between Set A and Set B:
· The size of Set B smaller than Set A should be considered as baseline.
· Both can be considered in evaluations: Set B is a subset of Set A; Set B contains wide beams with full direction which are different from Set A with narrow beams.
· Set B equal to Set A can be optionally used for performance comparison in evaluations.
Proposal 18: For temporal beam prediction evaluation, results for Top-K, K>1 should be presented in addition to Top-1 results.
· The Top-1 predicted beam can be derived as the eventual result after the second round sweeping based on the AI/ML inferred Top-K beams.
Proposal 19: Considering the robustness of AI/ML against longer prediction time instances and higher UE speeds, CSI-RS patterns for the observation/prediction window should be assumed with a large time domain distance between observation/prediction instances, for example 80ms or 160ms.
Observation 1: For the AI/ML-based beam prediction mechanism, Option 2 (DL Tx beam prediction) may also achieve best Tx-Rx beam combination by DL Tx beam prediction and legacy Rx beam sweeping.
Observation 2: For the selection of Set B, under Option 2 (variable Set B), it is more realistic for the gNB to vary among semi-fixed Set B including a limited number of deterministic Set B patterns rather than varying over totally random beams in Set B.
Observation 3: For the AI/ML-based beam prediction, the provision of some assistance information may be infeasible due to the concern of disclosing proprietary information or privacy to the other side. For a NW-side model, this includes Rx beam angle or boresight direction, Rx beam shape, and FFS the UE speed and UE position. For a UE-side model, a list of infeasible assistance information includes at least the Tx beam angle or boresight direction, 3dB beamwidth, and Tx beam shape.
· The meaning and method to obtain expected Tx/Rx beam information, LOS probability may need to be clarified before discussing.
Observation 4: For spatial domain beam prediction, AI/ML-based schemes under the 64-DFT codebook outperform the legacy approach in most of the cases in terms of beam selection accuracy, e.g.,:
· AI/ML-based Top-5 prediction reaches almost the upper performance bound with a prediction accuracy of 94.95% but with an overhead reduction of 67.17%. On the other hand, for the same overhead reduction, the established legacy Baseline approach can only achieve a prediction accuracy of 55.3%
· With AI/ML-based Top-3 prediction, the overhead compared to the legacy Baseline approach can be further reduced by another 8%, while the prediction still is much higher (89.2% as opposed to 55.3%)
Observation 5: For spatial domain beam prediction, AI/ML-based schemes under the 64-DFT codebook outperform the legacy approach in most of the cases in terms in terms of average L1-RSRP difference, e.g.,:
· For AI/ML-based Top-5 prediction, the L1-RSRP difference compared to genie-aided beam prediction in Exhaustive 64 is as low as 0.03 dB, with an overhead reduction of 67.17%. On the other hand, for the same overhead reduction, the established legacy Baseline approach can only achieve an average L1-RSRP difference of 1.02dB
· With AI/ML-based Top-3 prediction, the overhead compared to the legacy Baseline approach can be further reduced by another 8%, while the average L1-RSRP difference is still is much smaller (0.08dB as opposed to 1.02dB)
Observation 6: It can be observed that better prediction accuracy is achieved when Set B is a subset of Set A compared to the case where Set B is a wide beam set, especially when K=1; with the increase of K, the gap between two options becomes narrower.
Observation 7: The AI/ML-based beam prediction based on the Set A with 256 beams (Type-2) provides a considerable gain over the legacy upper bound Exhaustive 64 (Type-1) in achievable L1-RSRP for a small fraction of the overhead associated with an Exhaustive 64 sweep.
Observation 8: For temporal beam prediction, AI/ML based methods are more robust than legacy approaches to variations of the UE speed.
· When the time instance is 0.08s in the observation and prediction window, for UE speed 30km/h, the AI/ML Top-8 approach is 42% better than for the legacy baseline but for a UE speed of 90 km/h, the AI/ML Top-8 prediction accuracy is 47% better than for the legacy baseline 
· When the time interval is 0.16s in the observation and prediction window, for UE speed 30km/h, the AI/ML Top-8 approach is 48% better than for the legacy baseline but for UE speed 90 km/h, the AI/ML Top-8 prediction accuracy is 77% better than for the legacy baseline.
Observation 9: For temporal beam prediction, lower spatial consistency has more impact on the prediction accuracy achieved by the legacy approach than on accuracy achieved by the AI/ML-based methods. This can be seen from the results when different time instances are evaluated.
· For UE at 30km/h, the accuracy of AI/ML Top-8 degrades 3.35% but the baseline degrades 4.8% when stretching the two prediction instances from 0.08s to 0.16s
· For UE at 90km/h, the accuracy of AI/ML Top-8 degrades 0.93% but the baseline degrades 9.56% when stretching the two prediction instances from 0.08s to 0.16s
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Appendix
Objectives in SID
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.
Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 
……
For the use cases under consideration:
1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI/ML model(s) for calibration
· AI/ML model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.
……
Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced.


Simulation configuration
Table 12.  Simulation assumptions
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz with SCS of 120 kHz

	Deployment
	200m ISD

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	Spatial domain: 3km/h
Temporal domain: 30km/h, 90km/h

	UE distribution
	FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded. 
Spatial domain and temporal domain: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	         [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline] 
Spatial domain: number of BS beams equals to 64 and 256 for different types
Temporal domain: number of BS beams equals to 64

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,1)]
        single panel 
Number of UE beams equals to 4

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Traffic Model
	Full buffer

	Inter-panel calibration for UE
	Ideal

	Control channel decoding
	Ideal 

	BF scheme
	EZF

	Other potential impairments
	Not modelled (assumed ideal).

	BS Tx Power
	40 dBm

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB
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