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1. Introduction
A new SI on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface [1] has been approved at the 3GPP TSG RAN Meeting #94e, with Rel–18 as the targeted potential release; its objectives are outlined below.
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.
Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels
Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 
AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation. 
· Characterize lifecycle management of AI/ML model: e.g., model training, model deployment, model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate



In this contribution, we provide some additional views on potential codebook enhancements as enabled by machine learning (ML). The following section collects for quick reference the formulation described in [1] (it can be skipped if preferred).
2. Motivation for Codebook Enhancements
For antenna arrays, it is well-known that the direction  of a propagation path in 3-D space (w.r.t. spherical coordinates) is related to a  spatial channel matrix  by means of the array response vector(s)  and ; here  are the number of receive and transmit antennas respectively —in the general case arranged as planar antenna arrays (2-D antenna arrays allow beamforming w.r.t. both azimuth and elevation).  The array response vector on the transmit side is

and similarly, at the receive side;   denote the vector of positions of the antenna elements in the respective arrays,  is the wave vector. The directionality angles will receive an additional subscript  that will refer to a path in the angular domain.  is the complex valued pattern of the antenna elements (assumed common among elements).
Single-polarized antennas will be assumed below, for simplicity.
The goal is to establish a connection between the array response vectors and the eigenvectors of the correlation matrix at the transmit [footnoteRef:1]side [1:  The terminology is potentially confusing; transmit-side correlation is not meant to suggest reciprocity of the channel—rather, it is one of the two ways in which one can form a Gram matrix from , namely of size .] 


Spatial Channel Matrix Vs. Array Response Vectors
For the case with one receive antenna and  angular paths, the channel matrix is a row vector, denoted , given by

The paths are modelled above in the angular domain;   models the complex gain along the –th angular path due to interaction with scatterers in the propagation medium; it is possible to link the coefficients of  to multipath delays, but that is not immediately relevant to this discussion.
N.B.: it is a classic result [4] that, regardless of orthogonality assumptions, the optimum beamforming weights are proportional to
,
which highlights the fact that the array response vectors play a key role.
Obviously, the addition of antennas at the receiver side will build a receiver-side (2-D) antenna array and cause the formation of an array response vector   (gain pattern  is of course included with the array response vector); it will also ‘build’ new rows into the spatial channel matrix, and thereby model the spatial filtering on the receive side, at arrival angles , one pair for each of the  angular paths departing from the transmitter. The spatial MIMO matrix  will be, clearly, expressed as 

Autocorrelation Matrix Vs. Array Response Vectors 
In the tradition set by the NR specifications, the gNB and the UE need not know each other’s spatial filtering (precoding vectors).
For the purpose of coping with precoding on the transmitter side, one would like to remove the influence of , . This can be achieved by relying on the transmit side correlation matrix since (cf. derivation in [5, Sec. 5.3.3])

where  is proportional with  and magnitude of channel coefficient. More importantly, this does not depend on the subcarrier index, which makes the transmit side autocorrelation a large-scale parameter. 

By inspection (cf., e.g., expansion of SVD in terms of the singular values and outer products of left and right singular vectors) this can be written as 

One can now recognize that if the columns of  are at least approximately orthogonal, the Hermitian becomes an inverse and  is an eigenvalue decomposition, whereby good approximations to  can be found efficiently via eigenvalue decomposition. Such approximation does become better and better as the number of antennas increases. 

One can assume, based on established state of the art, that the orthogonality approximation holds quite well [5], especially so for large number of antennas,

N.B.: Without a formal, self-contained proof—but rather an outline—it is worth pointing out that  has size —which, when the transmit antenna array is 2-D (uniform rectangular array), would equal the product of the number of antenna rows respectively columns. It was shown in [6] that (in one aspect) a channel with a dominant angular path (specifically, rank one) can be expressed as a Kronecker product between two ‘DFT-like’ vectors that can decouple azimuth from elevation and can serve as a basis for DFT-based precoding codebooks. A related result from [7] concludes that such a Kronecker product is an eigenvector of the channel correlation matrix.

Basis for Codebook Enhancement
While DFT codebooks (in the form of Kronecker product of two 1-D DFT codebooks) have a proven track record, they start to fail when the angular spread of the channel increases; in essence, this is due to the fact that summing many array response vectors (see above MIMO channel expansion) is less well approximated by a DFT vector.
One remedy is to resort to SVD methods.
3. Codebook Enhancement and Quantization via Self–Organizing–Maps (SOM)
The main observation in our earlier contribution [1] was that the SVD precoding vectors can be obtained as (normalized) eigenvectors of the transmit side correlation matrix—which, in turn, are directly linked to beam directionality on the transmit–side.
This can be alternatively understood from the viewpoint of an angular representation of the MIMO spatial channel on the transmitter side—namely, on a 2D map based on resolvable transmit–side beamwidths w.r.t. the elevation  and azimuth  angles; resolvability is, of course, understood as a function of the vertical and horizontal (normalized) apertures of the 2D transmit antenna array.
Without going into a detailed mathematical analysis, the qualitative correspondence between the higher dimensional beamforming vectors (from ), on one hand, and the 2D ‘manifold’ map on another hand, can be intuitively grasped via  the well-known fact that the codebook for a 2D transmit antenna array is the Kronecker product between two codebooks that are functions (within the angular domain representation of the MIMO channel) of the elevation and respectively azimuth directions of spatially resolvable beams. The question of how can such a dimensionality reduction be meaningfully achieved is answered below, via self–organizing–maps (SOMs), aka Kohonen feature maps, which are a type of stochastic clustering algorithms [8]. Like the stochastic gradient descent (SGD) algorithm, it lends itself to batch implementation and to adding momentum (in order to increase speed).
The Kohonen method [9] is a type of Artificial Neural Network (ANN) which follows an unsupervised learning approach and trained its network using a competitive learning algorithm. It is used for clustering and mapping (or dimensionality reduction) techniques in order to map multidimensional data onto lower-dimensional maps. The preservation of neighbourhood topology relations between input space and the map is an important performance (cost) parameter that can be measured; it is desired to preserve the topological proximity in the higher dimensional space while mapping to the lower-dimension map—thus enabling a vector–quantization–like behaviour. During training, the 2D map is ‘shaped’ so as to essentially follow the probability mass of the inputs, and to eventually inherit the sparsity of the MIMO channel in the angular domain. 
Notably, the dimensionality of the input data points is not lost (despite of moving to the 2D map), in the sense that the ‘weights’—being updated by the algorithm and residing at the nodes of the SOM—preserve the dimensionality of the input data points (the recent beamforming vectors used for training the SOM). Eventually, w.r.t. a short-term ‘beamforming horizon’ a dynamic codebook will emerge that can dynamically replace fixed codebooks, e.g. traditional DFT–based codebooks.
The algorithm can be summarized as follows, and is rather intuitive. The first step is to randomize the weight vectors individually associated with (stored in) the nodes of the 2D map, then randomly pick an input vector, followed by computing a metric (Euclidean distance) to each of the map nodes. The minimum among the Euclidean distances is then used to find the similarity between the current input vector and the winning map node. Then, the winning node is tracked (this node is the best matching unit). Then weight vectors of the nodes in a neighbourhood of the best matching unit are updated—in effect, pulling them closer to the input vector. This is repeated until convergence (training completed). The distinguishing feature from SGD is the notion pf modulating the learning rate by a neighbourhood scaling factor (somewhat similar to SGD with momentum). 
Based on the above considerations and those in [1], a dynamic non-fixed codebook can be (in essence) enabled in at least two ways, by exploiting channel reciprocity in TDD scenarios: the gNB either infers the DL channel matrix (during UL transmissions, while channel reciprocity holds) based on, e.g., CSI-RS, or has it fed back by the UE when it cannot (e.g., FDD). In either case, the transmit side correlation matrix (or a singular vector itself) could be computed/estimated by the gNB, or the side information can be fed back from the UE (e.g., via a digital feedback channel).  
The gNB builds, maintains, and updates over some recent past, datasets consisting of derived eigenvectors of the transmit side correlation matrix , collected from many UEs (e.g., as described above, relying on channel reciprocity and MIMO channel estimates on UL). These can be arranged in a 2-D, image–like shape, as discussed above. Finally, efficient vector quantization can be achieved using the SOM algorithm, directly on the eigenvectors collected from various transmit–side correlation matrices corresponding to the MIMO DL channels associated with multiple UEs. The updated codebook can be used at the gNb and/or periodically exchanged with the UEs (e.g., in FDD scenarios).
Alternative to Fixed Codebooks
A dynamic codebook that adapts to varying channel conditions differs from a fixed DFT based codebook in that it is based on a recent history of beamforming vectors—as collected at the gNb and used for training the SOM. New datapoints are subject to updating and quantization. This dynamic codebook provides a finite set of quantization vectors that can quantize beamforming vectors. Newly measured beamforming vectors are clustered using a SOM algorithm and used as current codebook vectors. 
Every successful beam selection generates a dataset. The dataset is a collection of many possible BF vectors from a collection of UEs in the recent past. Over a short time, UEs will have not moved substantially since the channel was last observed.
An illustrative simulation will be shared at a later opportunity.

Observation 1: DFT based codebooks break down when the angular spread on the transmit array side increases (correlation decreases); it is possible to train a ML network in order to dynamically derive and update a vector-quantized codebook for beam management on the gNB side.

Proposal 1: Consider the option to enhance beam management with a dynamic vector–quantized codebook based on SVD and ML; it can be used and/or exchanged with the UE using e.g. a digital feedback channel between gNB and UE(s).
4. Conclusion
In this contribution, we discuss the option to replace DFT codebooks with codebooks obtained on the gNB side via Deep Learning.

Observation 1: DFT based codebooks break down when the angular spread on the transmit array side increases (correlation decreases); it is possible to train a ML network in order to dynamically derive and update a vector-quantized codebook for beam management on the gNB side.

Proposal 1: Consider the option to enhance beam management with a dynamic vector–quantized codebook based on SVD and ML; it can be used and/or exchanged with the UE using e.g. a digital feedback channel between gNB and UE(s).
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