3GPP TSG RAN WG1 #110				R1-2207457
Toulouse, FR, Auguest 22th – 26th, 2022

Agenda item: 9.2.1
Source: Sharp Corporation
Title: Observation of Channel Matrix
Document for: Discussion/Decision

1．Introduction
Study item regarding artificial intelligence/machine learning for NR air interface has been approved, with the main goal which is AI/ML-based algorithms for enhanced performance along with reduced complexity/overhead. In RAN1 #109e meeting, the data collection procedure being described as “A process of collecting data by the network nodes, management entity, or UE for the purpose of AI/ML model training, data analytics and inference”, However, the working list of terminologies not defining the data preprocessing procedure at current moment, which occupied a significant role in ML based regression/prediction problems. Furthermore, following the current agreement of dataset selection, raw channel matrix as well as eigenvalue/eigenvector being introduced, Nevertheless, the procedure such as preprocessing of the raw channel matrix, efficiency of those different inputs not yet been testified.

Purpose1: Data preprocessing can be defined as:
Manipulation/modification of the dataset before it is used in order to ensure/enhance model performance.
This sentence should be merged into the working list of terminologies.

Observation1: Raw channel matrix and the eigenvalue/eigenvector drawn from the channel matrix being consider as the dataset for AI/ML-based algorithms. However, the efficiency regarding channel matrix as well as eigenvector has not yet been testified.

Purpose2, Companies should report related models (design of the network layer, hyper-parameters, optimization function, loss function, etc.) as well as different inputs (raw channel matrix and/or eigenvalue/eigenvector).
2. Methodology
2.1 DeepMIMO Scenarios [1]
Raw channel matrix, eigenvalue/eigenvector, etc. have been defined as the input for machine learning algorithms in order to enhance CSI feedback/beam management, following this idea, we run the SLS based on DeepMIMO scenarios O1_60 (Outdoor1 scenario with 60GHz operating frequency) as well as O1_3p5 (Outdoor1 scenario with 3.5GHz operating frequency). Subsequent to the settings of default parameters which are described in Table 1 below (O1_60 Python3.9 case)

	Scenario
	O1_60 (outdoor - 60Ghz scene:1)

	Dynamic_settings
	First_scene: 1, Last_scene: 1

	Num_paths
	5

	Active_BS
	Numpy.array([1]) # of activate BS = 1

	User_row first
	1

	User_row_last
	1

	Row_subsampling
	1

	User_subsampling
	1

	BS_antenna
	Shape: np.array([1,8,4])
(M,N,P) = (8,4,1)

	
	Spacing: 0.5*wave length

	
	Radiation_pattern: isotropic

	UE_antenna
	Shape: np.array([1,4,2])
(M,N,P) = (4,2,1)

	
	Spacing: 0.5*wave length

	
	Radiation_pattern: isotropic

	OFDM
	Subcarriers: 512

	
	Subcarriers: 64 (limit)

	
	Subcarriers_sampling: 1

	
	Bandwidth: 0.05Ghz

	
	

	
	

	
	

Table 1 Settings

2.2 Preprocessing for raw Channel Matrix
In observation, from the [i=0] BS_antenna to [j=0] UE_antenna (channel of the first transmission antenna of the base station to user’s first reception antenna, the channel matrix of first subcarrier (Index [0][0][0])) is described as Array1 (length=64 1-dimention array of complex value):

Purpose3: Companies should report the true value of ‘y’ to calculate the loss in AI/ML-based algorithms. Otherwise, understanding regarding model accuracy as well as efficiency can not be verified/cross-check.

Purpose4: Companies should report the training/teaching data (pre scenario and parameter settings) which represent the true value for calculating the loss after constructing the neural network.

Due to the value of each element in the channel matrix being the floating object (dtype=complex64), we can not direct reshape the 1-dimension NumPy array into a 2-dimension array in order to calculate the eigenvector and eigenvalue as the input for the neural network. Furthermore, if only use the function astype to convert the floating object into an integer, all values will be initialized (length 64 all 0 array as the output). Therefore, an intermediate (function tolist and function toarray) conversion for complex value takes place which results in the Array2 in the appendix.

Purpose5: Companies should reach an agreement and define the official procedure for data conversion as the preprocessing part for the dataset eventually goes into the neural network.

Subsequently, because of the shape (2, 32) of the converted 2d-array is not square, we need to take the transpose of the matrix and multiply itself (take the dot product of the converted channel matrix) to get the square array (shape of 32, 32 matrix (Array3), Which represent the [i=0] BS_antenna to [j=0] UE_antenna) that enable us to continue to calculate the eigenvalue (Array4) as well as eigenvector (Array5).

2.3 Other aspect regarding loss function and preprocess
In RAN1 #109e meeting, although companies mention several calculation method for loss. However, we considering that in case of channel matrix prediction belonging to the regression problem, MSE should have a higher priority because of it represent the fundamental for loss calculation in regression problem.

Purpose6: In the case of channel matrix prediction belonging to the regression problem, MSE should have a higher priority in a sense of calculation for loss.

On the order hand, we also consider that some of the data can be drop during the preprocessing section to reduce the overfitting in training section, firstly, the dataset can be assume following a Gaussian distribution as the starting point.

Observation2: Following an aspect of increasing the generalization of the AI/ML model, we consider that some of the elements in the channel matrix and eigenvalue/eigenvector can be dropped in data preprocessing. Reflect as function Numpy.random.choice.

3. Conclusion
In this contribution, we obtain the raw channel matrix through DeepMIMO scenarios O1_60 and O1_3p5, generating the dataset following the default parameter settings. Converting the channel matrix into a suitable shape and calculating the eigenvalue/eigenvector as the input for the neural network. We strongly recommend that the companies should take the mirror experiment to testify the different inputs for training the model along with defining the preprocessing procedure such as array conversion, dataset robust enhancement (randomly drop elements in channel matrix), and sharing the results to progress AI/ML algorithms in NR air interface.

Purpose1: Data preprocessing can be defined as:
Manipulation/modification of the dataset before it is used in order to ensure/enhance model performance.
This sentence should be merged into the working list of terminologies.

Observation1: Raw channel matrix and the eigenvalue/eigenvector drawn from the channel matrix being consider as the dataset for AI/ML-based algorithms. However, the efficiency regarding channel matrix as well as eigenvector has not yet been testified.

Purpose2, Companies should report related models (design of the network layer, hyper-parameters, optimization function, loss function, etc.) as well as different inputs (raw channel matrix and/or eigenvalue/eigenvector).

Purpose3: Companies should report the true value of ‘y’ to calculate the loss in AI/ML-based algorithms. Otherwise, understanding regarding model accuracy as well as efficiency can not be verified/cross-check.

Purpose4: Companies should report the training/teaching data (pre scenario and parameter settings) which represent the true value for calculating the loss after constructing the neural network.

Purpose5: Companies should reach an agreement and define the official procedure for data conversion as the preprocessing part for the dataset eventually goes into the neural network.

Purpose6: In the case of channel matrix prediction belonging to the regression problem, MSE should have a higher priority in a sense of calculation for loss.

Observation2: On the other hand, following an aspect of increasing the generalization of the AI/ML model, we consider that some of the elements in the channel matrix and eigenvalue/eigenvector should be randomly dropped in data preprocessing. Reflect as function Numpy.random.choice.

4. References
[1] Ahmed Alkhateeb, “DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications”, Feb. 2019.
[2] RAN1 Chair’s Notes. Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface. 3GPP TSG RAN WG1 #109-e e-Meeting, May 9th – 20th, 2022
[3] Moderator (Qualcomm) Summary of General Aspects of AI/ML Framework. May. 2022.

Appendix
Array1 : Raw Channel Matrix (length-64 1D complex array):

array([-2.12103672e-07+1.31404505e-07j, -1.80568563e-07+1.68255497e-07j,
 -1.42990913e-07+1.97706328e-07j, -1.01083977e-07+2.18879379e-07j,
……
 -1.96119686e-07-1.36618084e-07j, -2.16832859e-07-9.45483052e-08j,
 -2.28562087e-07-4.98583290e-08j, -2.31151702e-07-4.45985915e-09j],
 dtype=complex64)

Array2: Converted Channel Matrix (shape (2, 32) complex array):

array([[-2.12103672e-07+1.31404505e-07j, -1.80568563e-07+1.68255497e-07j,
 -1.42990913e-07+1.97706328e-07j, -1.01083977e-07+2.18879379e-07j,
	……
 -1.75984610e-07-1.20452725e-07j, -1.96896565e-07-8.72590959e-08j,
 -2.11748201e-07-5.02131172e-08j, -2.19747633e-07-1.03809272e-08j],
 [-2.20283397e-07+3.09839088e-08j, -2.12974598e-07+7.24701295e-08j,
 -1.97716190e-07+1.12553032e-07j, -1.74714685e-07+1.49652209e-07j,
	……
 -1.96119686e-07-1.36618084e-07j, -2.16832859e-07-9.45483052e-08j,
 -2.28562087e-07-4.98583290e-08j, -2.31151702e-07-4.45985915e-09j]])

Array 3: Channel Matrix (2, 32).dot (Channel Matrix (32, 2)) --- (32, 32) Complex array:

array([[7.52855958e-14-6.93932373e-14j, 6.08590849e-14-8.19778830e-14j,
 4.44156567e-14-9.16434728e-14j, ...,
 1.03922877e-13+6.74397128e-15j, 1.03404039e-13-1.32730658e-14j,
 9.90304465e-14-3.28535466e-14j],
	……
 [4.44156567e-14-9.16434728e-14j, 2.65062807e-14-9.80580092e-14j,
 7.78211612e-15-1.01047530e-13j, ...,
 9.89191603e-14-3.21619040e-14j, 9.10076507e-14-5.05514967e-14j,
 7.96786944e-14-6.70961579e-14j],
 ...,
 [1.03922877e-13+6.74397128e-15j, 1.03266971e-13-1.29501979e-14j,
 9.89191603e-14-3.21619040e-14j, ...,
 6.92312142e-14+7.53643912e-14j, 8.21566924e-14+6.07848288e-14j,
 9.20613362e-14+4.40409944e-14j],
	……
 [9.90304465e-14-3.28535466e-14j, 9.09788098e-14-5.09010352e-14j,
 7.96786944e-14-6.70961579e-14j, ...,
 9.20613362e-14+4.40409944e-14j, 9.86200616e-14+2.57765487e-14j,
 1.01592478e-13+6.62417645e-15j]])

Array4: Eigenvalue of (32, 32) complex array:

(array([-1.29515693e-13+2.63611673e-14j, 1.97437701e-14+5.53017604e-15j,
 1.61827332e-28-2.01271382e-28j, -2.23858931e-28+7.02628085e-29j,
	 ……
 5.81809888e-30-9.83864744e-30j, -1.41420057e-29-4.13914305e-30j,
 -1.45811699e-29+4.37429866e-30j, -5.85865929e-30+5.41815662e-30j])

Array5: Eigenvector of (32, 32) complex array:

array([[0.18713889+0.j , -0.13602571-0.0552509j ,
 -0.17938927+0.10251069j, ..., 0.26672457+0.04541955j,
 0.36215643+0.j , 0.20299232+0.09062373j],
	 …
 [0.17165648-0.06902399j, -0.15542137+0.00093552j,
 0.10668659+0.19024069j, ..., 0.20586938+0.09604082j,
 0.12356279+0.0560118j , -0.0216936 -0.04579233j],
 ...,
 [0.1147229 +0.13309495j, -0.13694288-0.09371049j,
 -0.06086534+0.00195953j, ..., -0.01059574+0.18232898j,
 0.07896144+0.20792138j, -0.08197707-0.04994411j],
 …
 [0.15686174+0.08209292j, -0.15498835-0.02984871j,
 0.03714352-0.06627535j, ..., 0.26604046-0.02075544j,
 0.25323805+0.00659995j, -0.01941751+0.04169357j]]))
