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Introduction

At RAN1 #109-e, the following were agreed:

Agreement
· For dataset construction and performance evaluation (if applicable) for the AI/ML in beam management, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted
Agreement
· At least for temporal beam prediction, companies report the one of spatial consistency procedures: 
· Procedure A in TR38.901
· Procedure B in TR38.901
Agreement
· At least for temporal beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.
· For spatial-domain beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.
Agreement
· At least for spatial-domain beam prediction in initial phase of the evaluation, UE trajectory model is not necessarily to be defined.
Agreement
· At least for temporal beam prediction in initial phase of the evaluation, UE trajectory model is defined. FFS on the details.

Agreement
· UE rotation speed is reported by companies.
· Note: UE rotation speed = 0, i.e., no UE rotation, is not precluded.
Agreement
· For AI/ML in beam management evaluation, RAN1 does not attempt to define any common AI/ML model as a baseline.
Conclusion
Further study AI/ML model generalization in beam management evaluating the inference performance of beam prediction under multiple different scenarios/configurations.
· FFS on different scenarios/configurations
· Companies report the training approach, at least including the dataset assumption for training
Agreement
· For evaluation of AI/ML in BM, the KPI may include the model complexity and computational complexity.
· FFS: the details of model complexity and computational complexity
Agreement
· For spatial-domain beam prediction, further study the following options as baseline performance
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)
· FFS CSI-RS/SSB as the RS resources
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
· FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
· FFS: how conventional scheme to obtain performance KPIs
· FFS: how to determine the subset of RS resources is reported by companies
· Other options are not precluded.
Agreement
· For dataset generation and performance evaluation for AI/ML in beam management, take the parameters (if applicable) in Table 1.2-1b for Dense Urban scenario for SLS
Table 1.2-1b Assumptions for Dense Urban scenario for AI/ML in beam management
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz
· SCS: 120 kHz

	Deployment
	200m ISD,
· 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	· For spatial domain beam prediction, 3km/h
· For time domain beam prediction: 30km/h (baseline), 60km/h (optional)
· Other values are not precluded

	UE distribution
	· FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded.
· For spatial domain beam prediction: FFS:
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	· [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline]
· [Four panels: (M, N, P, Mg, Ng) = (4, 8, 2, 2, 2), (dV, dH) = (0.5, 0.5) λ. (dg,V, dg,H) = (2.0, 4.0) λ as optional]
· Other assumptions are not precluded.

Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,2)]
· 2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
· Other assumptions are not precluded

Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	Companies to explain beam correspondence assumptions (in accordance to the two types agreed in RAN4)

	Link adaptation
	Based on CSI-RS

	Traffic Model
	FFS:
· Option 1: Full buffer
· Option 2: FTP model
Other options are not precluded

	Inter-panel calibration for UE
	Ideal, non-ideal following 38.802 (optional) – Explain any errors

	Control and RS overhead
	Companies report details of the assumptions

	Control channel decoding
	Ideal or Non-ideal (Companies explain how it is modelled)

	UE receiver type
	MMSE-IRC as the baseline, other advanced receiver is not precluded

	BF scheme
	Companies explain what scheme is used

	Transmission scheme
	Multi-antenna port transmission schemes
Note: Companies explain details of the using transmission scheme.

	Other simulation assumptions
	Companies to explain serving TRP selection
Companies to explain scheduling algorithm

	Other potential impairments
	Not modelled (assumed ideal).
If impairments are included, companies will report the details of the assumed impairments

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB



Agreement
· For temporal beam prediction, the following options can be considered as a starting point for UE trajectory model for further study. Companies report further changes or modifications based on the following options for UE trajectory model. Other options are not precluded. 
· Option #2: Linear trajectory model with random direction change.
· UE moving trajectory: UE will move straightly along the selected direction to the end of an time interval, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms. 
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· UE move straightly within the time interval with the fixed speed.
· FFS on UE orientation
· Option #3: Linear trajectory model with random and smooth direction change.
· UE moving trajectory: UE will change the moving direction by multiple steps within an time internal, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms.
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· The time interval is further broken into N sub-intervals, e.g. 100ms per sub-interval, and at the end of each sub-interval, UE change the direction by the angle of A_diff/N.  
· UE move straightly within the time sub-interval with the fixed speed.
· FFS on UE orientation
· Option #4: Random direction straight-line trajectories. 
· Initial UE location, moving direction and speed: UE is randomly dropped in a cell, and an initial moving direction is randomly selected, with a fixed speed.
· The initial UE location should be randomly drop within the following blue area


where d1 is the minimum distance that UE should be away from the BS. 
· Each sector is a cell and that the cell association is geometry based.
· During the simulation, inter-cell handover or switching should be disabled.
For training data generation
· For each UE moving trajectory: the total length of the UE trajectory can be set as T second if it is in time, of set as D meter if it is in distance.
· The value of T (or D) can be further discussed
· The trajectory sampling interval granularity depends on UE speed and it can be further discussed. 
· UE can move straightly along the entire trajectory, or
· UE can move straightly during the time interval, where the time interval is provided by using an exponential distribution with average interval length 
· UE may change the moving direction at the end of the time interval. UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°]
· If the UE trajectory hit the cell boundary (the red line), the trajectory should be terminated. 
· If the trajectory length (in time) is less than the length of observation window + prediction window, the trajectory should be discarded. 
· At the current stage, the length of observation window + prediction window is not fixed and the companies can report their values.
· FFS on UE orientation
· Generalization issue is FFS 

Agreement
· For temporal beam prediction, further study the following options as baseline performance
· Option 1a: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1 
· Companies explain the detail on how to select the best beam for T2 from Set A based on the measurements in T1
· Where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 and T2 are aligned with those for AI/ML based methods
· Whether Set A and Set B are the same or different depend on the sub-use case
· Other options are not precluded.
Agreement
· For dataset generation and performance evaluation for AI/ML in beam management, take the following assumption for LLS as optional methodology
	Parameter
	Value

	Frequency
	30GHz.

	Subcarrier spacing
	120kHz

	Data allocation
	[8 RBs] as baseline, companies can report larger number of RBs
First 2 OFDM symbols for PDCCH, and following 12 OFDM symbols for data channel

	PDCCH decoding
	Ideal or Non-ideal (Companies explain how is oppler)

	Channel model
	FFS:
LOS channel: CDL-D extension, DS = 100ns
NLOS channel: CDL-A/B/C extension, DS = 100ns
Companies explains details of extension methodology considering spatial consistency

Other channel models are not precluded.

	BS antenna configurations
	· One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline
· Other assumptions are not precluded. 
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS antenna element radiation pattern
	Same as SLS

	BS antenna height and antenna array downtile angle
	25m, 110°

	UE antenna configurations
	Panel structure: (M, N, P) = (1, 4, 2), 
· 2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
· 1 panel as optional
· Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE antenna element radiation pattern
	Same as SLS

	UE moving speed
	Same as SLS

	Raw data collection format
	Depends on sub-use case and companies’ choice. 



Agreement
· For UE trajectory model, UE orientation can be independent from UE moving trajectory model. FFS on the details. 
· Other UE orientation model is not precluded.
Agreement
· Companies are encouraged to report the following aspects of AI/ML model in RAN 1 #110. FFS on whether some of aspects need be defined or reported.
· Description of AI/ML model, e.g, NN architecture type
· Model inputs/outputs (per sub-use case)
· Training methodology, e.g.
· Loss function/optimization function
· Training/ validity /testing dataset:
· Dataset size, number of training/ validity /test samples
· Model validity area: e.g., whether model is trained for single sector or multiple sectors
· Details on Model monitoring and model update, if applicable
· Others related aspects are not precluded

Agreement
· To evaluate the performance of AI/ML in beam management, further study the following KPI options:
· Beam prediction accuracy related KPIs, may include the following options:
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”

· CDF of L1-RSRP difference for Top-1 predicted beam
· Beam prediction accuracy (%) with 1dB margin for Top-1 beam
· The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam” 

· the definition of L1-RSRP difference of Top-1 predicted beam: 
· the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
· Other beam prediction accuracy related KPIs are not precluded and can be reported by companies. 
· System performance related KPIs, may include the following options:
· UE throughput: CDF of UE throughput, avg. and 5%ile UE throughput
· RS overhead reduction at least for spatial-domain beam prediction at least for top-1 beam:
· 1-N/M,
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement
· where (FFS) M is the total number of beams
· Note: Non-AI/ML approach based on the measurement of these M beams may be used as a baseline
· FFS on whether to define a proper value for M for evaluation.
· Other System performance related KPIs are not precluded and can be reported by companies.
· Other KPIs are not precluded and can be reported by companies, for example:
· Reporting overhead reduction: (FFS) The number of UCI report and UCI payload size, for temporal /spatial prediction
· Latency reduction:
· (FFS) (1 – [Total transmission time of N beams] / [Total transmission time of M beams])
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) in the input beam set required for measurement
· where M is the total number of beams
· Power consumption reduction: FFS on details
In this contribution, we discuss evaluation of AI based beam management.
Evaluation Methodology 
AI Model candidates
There can be different kinds of AI models, e.g. neural networks. For different types of datasets and use cases, different neural networks can be used. For example, for spatial domain beam prediction, if the dataset is based on channel impulse response (CIR), CNN might provide better performance. For time domain beam prediction, some RNN networks may provide better performance. The neural network can be optimized for certain use case. Thus, during the use case study phase, it is not necessary to limit the neural network. If a certain neural network might be specified in future, some further study on the neural network architecture could be necessary.
Proposal 1: During the use case study phase, it is not necessary to define a common AI architecture.

AI Model generalization
At RAN1 #109-e, the following was reached:
Conclusion
Further study AI/ML model generalization in beam management evaluating the inference performance of beam prediction under multiple different scenarios/configurations.
· FFS on different scenarios/configurations

There are several factors to consider for AI/ML model generalization:
· Analog beam design for narrow beams and wide beams
· Antenna configurations:
· In RAN1, notations with (M, N, P, Mg, Ng; Mp, Np) have been used to describe an antenna configuration: 
· M: Number of vertical antenna elements within a panel, on one polarization
· N: Number of horizontal antenna elements within a panel, on one polarization
· P: Number of polarizations
· Mg: Number of panels in a column;
· Ng: Number of panels in a row;
· Mp: Number of vertical TXRUs within a panel, on one polarization
· Np: Number of horizontal TXRUs within a panel, on one polarization
· Antenna element spacings:
· (dH, dV)=(0.5, 0.5)λ for example
· (dg,H,dg,V) = (4.0, 2.0)λ for example
· Antenna panel orientation
· Deployment scenarios:
· Umi, UMa, inH, etc.
· Carrier frequency:
· 30 GHz, 41 GHz, etc.

Assume RSRP measurements from Set B provide points for interpolation/exterpolation with the AI/ML inference model, it is plausible AI/ML inference model trained for one carrier frequency may be applicable to another. And the inference model trained with UMa data may be applicable to UMi. However, the generalization to different M/N may not be so obvious, and a key part is actually in the analog beam design for narrow beam and wide beams. As shown by the wide interest from companies on assistance information for BM-Case 1 and BM-Case 2, it is acknowledged that beam shape information can be quite relevant. Actually the very term “beam shape information’ suggests the proponents may have a view the analog beam design can be adequate described by well defined beam shape and beam orientation. From our initial study, it seems with DFT beams assumed for the vertical domain and horizontal domain, the loading on each Tx beam may be not even, that may create the need to equalize the Tx beam loading, e.g., by combining lightly loaded Tx beams in practice. While by no means RAN1 should be tasked to consider all practical matters into consideration, factors of importance to the very foundation of the AI/ML aided BM should not be ignored. From open literature, it can be seen also the analog beam design itself may utilize AI/ML, whether the resulted analog beams are still amenable to simple description is not clear. 
We have 
Proposal 2: For generalization, discuss aspects related to analog beam design, antenna configurations including M/N, and antenna spacing.
KPI
For beam management design, it seems with a few exceptions, the discussions in previous releases have not relied on simulation evaluation. Note due to the consideration of BM-case 2, the time span of the evaluation can be long, additionally with 80 MHz for channel bandwidth, the evaluation effort can be even larger. With the agreed evaluation assumptions, it should be clear that RSRP values should be a sufficient metric for discussion.

Usually L1-RSRP is a good metric to judge whether a selected beam is good or not. In Rel-17 intra-cell and inter-cell beam management, L1-RSRP distribution is agreed as a metric for beam management. For AI based beam management, the same metric can be used, where the L1-RSRP measured from the AI predicted beam can be used as the metric. In addition, for time and spatial domain beam prediction, another possible metric is the beam prediction accuracy, with which, it is possible to judge whether the model can be used for beam prediction or not.
Proposal 3: The KPI for AI based beam prediction could be the beam prediction accuracy and the L1-RSRP distribution for the AI predicted beam.
Simulation results
In our companion paper, we provide some discussions on the following use cases for AI based beam management:
· Case 1: Spatial domain beam prediction with measurement for limited number of beams
· Case 1a: Spatial domain beam prediction with FR1 measurements
Simulation Results for Case 1

For spatial domain beam prediction with measurement for limited number of beams, a classification network is used with fully connected layers. The input is the normalized L1-RSRP for limited number of network beams.
As shown in Figure 1, UE does not need to measure the all the beams, but it only needs to measure a subset of beams at the initial stage and with the help of machine learning, a new beam search space (BSS) can be identified for next step measurement. The final beam selection can be performance based on the measurement result from the BSS.
[image: ]
Figure 1: AI based beam prediction for Case 1a
Table 1 illustrates the preliminary results for BSS prediction accuracy. The simulation is based on 21000 L1-RSRP measurement results between each UE and gNBs beam pairs, which are generated from a system level simulator. Regarding Rx beam, the best Rx beam for beams in Set B is used.  70% of the data is used for training and 15% is used for validation, and 15% for test. The machine learning is based on multiple hidden layers. It can be observed that it is possible to use AI to predict the beam search space (BSS) to reduce the beam management overhead and latency. The simulation assumptions are compliant with the agreements from RAN1 109-e. 

Probably not surprisingly, the loading of different Tx beams are not even. In our evaluation, we first specify a targeted range for the elevation angles, and a targeted range for the azimuth angles. Then analog beams are designed to follow equally spaced angles in both azimuth and elevation domains. 
	Number of beams in BSS
	Number of measured Beams in the first step

	
	4
	8
	16

	
	AI
	non-AI
	AI
	non-AI
	AI
	non-AI

	1
	53%
	22%
	61%
	42%
	69%
	44%

	4
	91%
	49%
	94%
	85%
	97%
	86%




Observation 1: For case 1, AI based beam search space prediction can provide up to 30% gain compared to non-AI based approach.

Simulation Results for Case 1a
For spatially correlated UEs, the beam network beam could be highly correlated. Based on spatial correlation, it is possible that the network can predict the best beam for some UEs without beam measurement and report. The spatial correlation can be determined based on some fast-fading parameters, e.g. delay/power/direction for each path. It is not easy to make a hard decision on whether two channels are spatially correlated or not. But with the help of machine learning, it is possible to predict whether two channels are spatially correlated, and they should share the same best network beam.
For case 1a, a UE is assumed to work in a FR1+FR2 CA mode. It is possible to determine the spatial correlation based on some FR1 feedback, and the network can predict the FR2 beam based on the FR1 feedback. In this contribution, we select the normalized channel impulse response (CIR) as the FR1 feedback to predict the FR2 beam. Figure 2 illustrates the procedure for FR1 assisted FR2 beam selection.
[image: ]
Figure 2: Procedure for FR1 assisted FR2 beam selection
The input for the neural network is the first 40 samples for the normalized CIR between UE and FR1 cell. 50000 UEs are dropped within a cell with 3 sectors, where 70% UEs are used for training and 30% UEs are used for validation. For FR2, it is assumed 32 network beams are unitized and each UE contains 2 panels with 4 beams per panel. Detailed simulation results are provided in Table A-1 in appendix.
Figure 3-5  illustrates some system level results for AI based beam selection for LOS only status.



[image: ]
Figure 3: Distribution of RSRP gap between ideal beam and AI selected beam for LOS only
[image: ]
Figure 4: Distribution of RSRP gap between ideal beam and AI selected beam for mixed NLOS/LOS




Conclusion
In this contribution, we provided some discussion on evaluation for AI based beam management. Based on the discussion, the following observations have been achieved.
Proposal 1: During the use case study phase, it is not necessary to define a common AI architecture.
Proposal 2: For generalization, discuss aspects related to analog beam design, antenna configurations including M/N, and antenna spacing.
Proposal 3: The KPI for AI based beam prediction could be the beam prediction accuracy and the L1-RSRP distribution for the AI predicted beam.

Observation 1: For case 1, AI based beam search space prediction can provide up to 30% gain compared to non-AI based approach.

Appendix – Simulation assumption
Table A-1: Simulation Assumptions for Case 1a
	Parameter
	Value

	Scenario
	Dense Urban Macro

	Number of cells
	1, 7

	Number of sectors per cell
	3

	Number of UEs
	50000, 100000

	Carrier frequency
	FR1: 3GHz
FR2: 28GHz

	Subcarrier spacing
	FR1: 30kHz
FR2: 120kHz

	Bandwidth
	FR1: 20MHz
FR2: 80MHz

	gNB antenna configuration
	FR1: (M, N, P, Mp, Np, Mg, Ng) = (2, 8, 2, 2, 8, 1, 1)
FR2: (M, N, P, Mp, Np, Mg, Ng) = (4, 8, 2, 1, 1, 1, 1)

	UE antenna configuration
	FR1: (M, N, P, Mp, Np, Mg, Ng) = (1, 2, 2, 1, 2, 1, 1)
FR2: (M, N, P, Mp, Np, Mg, Ng) = (1, 4, 2, 1, 1, 1, 2)

	UE distribution
	Uniformly distributed

	UE orientation
	Random

	Slow fading model
	38.901

	Fast fading model
	38.901 with spatial consistency

	FR2 gNB beam pattern
	Case 1: 4 beams in vertical * 8 beams in horizontal 
Case 2: 2 beams in vertical * 6 beams in horizontal

	FR2 UE beam pattern
	4 beams in horizontal per panel
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