Page 1
3GPP TSG RAN WG1 #110	R1- 2207223
Toulouse, France, August 22-26, 2022

Agenda item:	9.2.1
Source: 	Qualcomm Incorporated
Title: 	General Aspects of AI/ML Framework
Document for:	Discussion/Decision

Introduction

At RAN #94, a new study on artificial intelligence/machine learning for NR air interface has been approved [1], with the main goal of exploring the benefits of augmenting the air interface with features enabling improved support of AI/ML-based algorithms for enhanced performance and/or reduced complexity/overhead.
Through studying a few carefully selected use cases, the goal is to identify a common AI/ML framework, including functional requirements of AI/ML architecture, which could be used in subsequent projects. The study should also identify areas where AI/ML could improve the performance of air-interface functions.
The study will serve to identify what is required for an adequate AI/ML model characterization and description establishing pertinent notation for discussions and subsequent evaluations. Various levels of collaboration between the gNB and UE are identified and considered.
Specification impact will be assessed in order to improve the overall understanding of what would be required to enable AI/ML techniques for the air interface.

The SI consists of studying individual use cases as well as deriving a general framework for AI/ML. Below we summarize the goal of the study as shown in [1] relevant to the general framework:
AI/ML model, terminology, and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g.,
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting separate or joint ML operations.
· Characterize lifecycle management of AI/ML model: e.g., model training, model deployment, model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference
· Identify common notation and terminology for AI/ML related functions, procedures, and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

Some progress has been made in RAN#1 109-e toward achieving the SI objectives, leading in Agenda 9.2.1 to some basic agreements on these aspects.
· General principles
· Working list of terminologies
· Network-UE collaboration levels

In this contribution, we further elaborate the above aspects, and also discuss life cycle management, RAN4 aspects, and other considerations.

Terminologies
From RAN1 #109-e, the following agreements were made:

Working Assumption
Include the following into a working list of terminologies to be used for RAN1 AI/ML air interface SI discussion.
The description of the terminologies may be further refined as the study progresses.
New terminologies may be added as the study progresses.
It is FFS which subset of terminologies to capture into the TR.

Table: Working list of terminologies (RAN1 #109-e agreement)
	Terminology
	Description

	Data collection
	A process of collecting data by the network nodes, management entity, or UE for the purpose of AI/ML model training, data analytics and inference

	AI/ML Model
	A data driven algorithm that applies AI/ML techniques to generate a set of outputs based on a set of inputs.

	AI/ML model training
	A process to train an AI/ML Model [by learning the input/output relationship] in a data driven manner and obtain the trained AI/ML Model for inference

	AI/ML model Inference
	A process of using a trained AI/ML model to produce a set of outputs based on a set of inputs

	AI/ML model validation
	A subprocess of training, to evaluate the quality of an AI/ML model using a dataset different from one used for model training, that helps selecting model parameters that generalize beyond the dataset used for model training.

	AI/ML model testing
	A subprocess of training, to evaluate the performance of a final AI/ML model using a dataset different from one used for model training and validation. Differently from AI/ML model validation, testing does not assume subsequent tuning of the model.

	UE-side (AI/ML) model
	An AI/ML Model whose inference is performed entirely at the UE

	Network-side (AI/ML) model
	An AI/ML Model whose inference is performed entirely at the network

	One-sided (AI/ML) model
	A UE-side (AI/ML) model or a Network-side (AI/ML) model

	Two-sided (AI/ML) model
	A paired AI/ML Model(s) over which joint inference is performed, where joint inference comprises AI/ML Inference whose inference is performed jointly across the UE and the network, i.e, the first part of inference is firstly performed by UE and then the remaining part is performed by gNB, or vice versa.

	AI/ML model transfer
	Delivery of an AI/ML model over the air interface, either parameters of a model structure known at the receiving end or a new model with parameters. Delivery may contain a full model or a partial model.

	Model download
	Model transfer from the network to UE

	Model upload
	Model transfer from UE to the network

	Federated learning / federated training
	A machine learning technique that trains an AI/ML model across multiple decentralized edge nodes (e.g., UEs, gNBs) each performing local model training using local data samples. The technique requires multiple interactions of the model, but no exchange of local data samples.

	Offline field data
	The data collected from field and used for offline training of the AI/ML model

	Online field data
	The data collected from field and used for online training of the AI/ML model

	Model monitoring
	A procedure that monitors the inference performance of the AI/ML model

	Supervised learning
	A process of training a model from input and its corresponding labels.

	Unsupervised learning
	A process of training a model without labelled data.

	Semi-supervised learning
	A process of training a model with a mix of labelled data and unlabelled data

	Reinforcement Learning (RL)
	A process of training an AI/ML model from input (a.k.a. state) and a feedback signal (a.k.a. reward) resulting from the model’s output (a.k.a. action) in an environment the model is interacting with.

	Model activation
	enable an AI/ML model for a specific function

	Model deactivation
	disable an AI/ML model for a specific function

	Model switching
	Deactivating a currently active AI/ML model and activating a different AI/ML model for a specific function

In this meeting, we further propose to agree on the following basic terminologies:

From the RAN1 #109-e discussion, majority of companies think that time-scale should be relevant for the definition of online/offline training. Also, majority of companies had the view that training happening at a remote training server is an offline training. Also, majority of companies viewed that real-time training happening on a replica of a model while the model being used for inference remains unchanged is an offline training.

Based on these, we think that the online/offline distinction for the purpose of RAN1 study should be based on how frequently the AI/ML model being used for inference is updated. In case of an offline training, the training typically occurs at a training server outside the target device, and AI/ML model being used for inference at the target device is updated via model delivery after the training at the server is complete. Even if the training happens inside the target device, as long as the model used for inference is updated only after the training is complete in a similar manner as a training at a remote server, this should be viewed as an offline training. In short, in offline training, the mechanism for updating the inference model is via model delivery; the model for inference remains unchanged while the batch-level training (e.g. gradient descent) is happening at a separate replica.
In case of an online training, the model being used for inference is directly updated based on data. This results in frequent update of the model used for inference. In short, in online training, the model for inference is updated directly via e.g., gradient descent.

[bookmark: _Toc111196777]Proposal 1: Define the terminology online training and offline training as follows

	Online training
	An AI/ML training process where the AI/ML model used for inference is directly updated based on input data

	Offline training
	An AI/ML training process where the AI/ML model training is performed on a replica of an AI/ML model based on offline data, for the purpose of delivering the trained model to target device(s) for inference.

Network-UE collaboration levels
In RAN#1 109-e, the following agreement was made on the network-UE collaboration level:
Agreement
Take the following network-UE collaboration levels as one aspect for defining collaboration levels
1. Level x: No collaboration
2. Level y: Signaling-based collaboration without model transfer
3. Level z: Signaling-based collaboration with model transfer
Note: Other aspect(s), for defining collaboration levels is not precluded and will be discussed in later meetings, e.g., with/without model updating, to support training/inference, for defining collaboration levels will be discussed in later meetings
FFS: Clarification is needed for Level x-y boundary

The current agreement needs the following clarifications:
· Level x-y boundary
· What constitutes “model transfer” to clarify Level y-z boundary
· Other aspects for defining collaboration levels

Level x-y boundary
Level x includes implementation-based AI/ML models not needing new specification. These are implementation-based AI/ML algorithms
Level y involves AI/ML models requiring collaboration.

[bookmark: _Toc111024778][bookmark: _Toc111024829][bookmark: _Toc111196793]Observations 1: Level x includes implementation-based AI/ML algorithms that can be supported using existing (Rel-17) signaling.

Level y-z boundary
The main motivation for defining collaboration levels is to facilitate RAN1 discussion in this SI, such as specification impact, model development, life cycle management, and device capability.

[bookmark: _Toc111024779][bookmark: _Toc111024830][bookmark: _Toc111196794]Observations 2: Level y-z boundary should be defined such that there is major difference in terms of specification impacts, model development, life cycle management, and device capability of supporting the level.

Let us consider the following two types of AI/ML models.

[bookmark: _Hlk110604101][bookmark: _Hlk110604110]The first type is a “proprietary model”. In this case, the model is proprietary. The model delivery format is also proprietary and specific to certain target devices. For example, the model being delivered may be a run-time binary image. As such, there is no concern for interoperability. The model (structure and parameters) is developed offline, fully tested, and packaged offline into a proprietary format (e.g., run-time binary image) acceptable by the target devices, and stored at a server location if it cannot be stored at the target device. The developed/tested/packaged model is registered to the network and assigned a model ID. The model is delivered to the target device in a proprietary manner. The network addresses the model with the model ID for inference operation and model management. However, the network does not know the model structure or parameters. In other words, the model remains proprietary.

The second type is a “network-configurable model”. In this case, the model is known to the network and allows for the network to configure the model parameters. The model structure is developed offline and fully tested at the intended target devices for capability. The initial model parameters may also be determined via offline training. The model is then stored at a server location, registered to the network, and assigned a model ID. Once the initial model is delivered to a target device, the model allows for updating model parameters via Model Transfer. The network addresses a network-configurable model with a model ID for inference operation and model management, where the model ID for the network-configurable model only refers to the model structure and not a fixed set of parameters.

There are several aspects for consideration of network-configurable models.
· Firstly, delivery of a network-configurable model requires standardization of a model description format (e.g., ONNX) for interoperability.
· Secondly, while a network-configurable model allows for more flexible model parameter update and over-the-air training such as federated learning, the need and benefit of such operation need to be scrutinized. Furthermore, over-the-air training over the 3gpp air interface would require significant amount of specification with unclear benefit.
· Thirdly, handling of network-configured model requires advanced device capability. As the model is delivered in a standardized format, the target device becomes responsible for converting the standardized model description into an executable form. This includes run-time compiling of the model and going through various target-specific procedures for optimization such as quantization, compression, mapping to execution targets (hardware, firmware, neural accelerator, etc.), all inside the device in run-time, which would require advanced capabilities at the target device.

Table below summarizes proprietary models vs. network-configurable models.

	Model type​
	Proprietary model​
	Network-configurable model​

	Differing Characteristics​
	· Proprietary structure and parameters​
· Delivery in a proprietary format​
· Runtime delivery out of scope​
	· Configurable model parameters​
· Configuration delivery in a standardized format​
· Runtime delivery of parameters procedure defined​

	Common characteristics​
	· Offline model structure development and testing​
· Signaling-based model management via model ID​ (activation, monitoring, deactivation)

From the above, we see that there are major differences between proprietary models and network-configurable models in terms of specification impact, life cycle management, proprietary nature, and required device capabilities. Thus, it is important to differentiate these two types for the purpose of RAN1 discussion.

[bookmark: _Toc111196778]Proposal 2: Consider Proprietary Model and Network-configurable Model as two separate categories for RAN1 discussion.

Depending on (sub-)use cases, a single universal model may suffice, or multiple regional/localized models may be desired to cover the given (sub-)use case. The latter may be achieved by either model switching among multiple (proprietary or network-configurable) models or via parameter updates in network-configurable models. Also including collaboration level x, we can think of the following four scenarios for the consideration of network-UE collaboration levels and their LCM impact.

[bookmark: _Ref111013429]Table 1: Network-UE collaboration and LCM scenarios. Purple colors indicate potential specification impact.
	(A)
Proprietary Model with no spec impact
	(B)
Single Proprietary Model​
	(C)
A family of Proprietary Models with model switching​
	(D)
One or a family of Network Configurable Models​

	Level x
	Level y
	Level y or z?
	Level z

	· Model generation (offline)​
· Proprietary AI/ML operation ​
	· Model generation (offline)​
· Initial model delivery​
· Activation​
· Monitoring​
· Deactivation​​
	· Model generation (offline)​
· Initial model delivery​
· Activation​
· Monitoring​
· Run-time model delivery​ (proprietary)
· Model switching​
· Deactivation​
	· Model generation (offline)​
· Initial model delivery​
· Model parameter configuration​
· Activation​
· Monitoring​
· Run-time model delivery​ (proprietary or 3gpp)
· Model switching
· Model parameter update​
· Deactivation​

Clearly, “B” does not involve any Model Transfer and hence belongs to Level y, and “D” involves Model Transfer and hence belongs to Level z. It is less clear whether RAN1 should view “C” as Level y or z. Our view is that “C” belongs to Level y, as model delivery in “C” is done in a proprietary manner.

[bookmark: _Toc111196779]Proposal 3: Define Level y-z boundary based on whether the AI/ML model being delivered is a Proprietary Model (in Level y) or a Network-configurable Model (in Level z).

We note that “B” and “C” also apply for two-sided models. A proprietary two-sided model can be developed offline, and the UE-side and network-side of the two-sided model can be delivered to the target UE and the network, respectively. Similarly, a family of proprietary two-sided models may be developed offline, and each part of the two-sided model can be delivered to the target devices initially and during run-time for model switching. In this respect, whether a model is one-sided or two-sided does not impact the above collaboration level discussion.

AI/ML model development
In this Section, we discuss AI/ML model development, which is applicable for both network-UE collaboration levels y and z, corresponding to columns B, C, and D of Table 1.

[image: Diagram

Description automatically generated]
[bookmark: _Ref111013527]Figure 1: Model development framework for AI/ML Models for modem

Figure 1 illustrates a typical model development process for AI/ML Models for modem. These AI/ML Models require careful optimization for power consumption, hardware area, latency, and concurrency with other PHY/MAC functionalities and require extensive testing. As such, they require elaborate offline design process for the ML model design, training, compilation to a target-device-specific run-time image, and testing.
As the first step, data may be collected from devices. It is highly desirable that data be collected in large scale from commercially deployed devices across diverse network deployments, devices, and environments. Such a large-scale data collection from commercially deployed devices is important for commercial-grade ML model development, in order to ensure proper performance, robustness, and coverage of the developed ML Model(s).
ML model development is typically an iterative process of data collection, model design, training, and performance validation.
After one ML Model or a family or ML Models are developed, they need to be compiled for on-device inference. This step may include model quantization and compression for a fixed-point inference. The fixed-point ML Models go through standalone and end-to-end performance evaluations for target KPIs such as throughput and BLER. The designed ML Models then may be mapped to a sequence of operations for execution targets (e.g., hardware, firmware, DSP, neural accelerator) and converted into run-time binary images. This process involves various optimization for power, area, and latency, via various levels of parallelism and optimization decisions. The model compilation process is often target-device specific. That is, multiple run-time images may have to be generated for a single ML Model. Finally, the run-time images are tested for correctness, and the UE with the run-time image goes through extensive modem testing to ensure error-free operations in conjunction with the rest of the modem implementation.
The entire process from data collection, model design, training, compile, and testing is an iterative engineering process, and key decisions are often made in the context of the overall modem design in consideration of optimization across performance, power consumption, chip area, latency, concurrency, memory efficiency, hardware reuse, etc.

[bookmark: _Toc111024780][bookmark: _Toc111024831][bookmark: _Toc111196795]Observations 3: AI/ML model development belongs to an offline engineering domain.

[bookmark: _Toc111024781][bookmark: _Toc111024832][bookmark: _Toc111196796]Observations 4: Development of an AI/ML Model for a modem is an iterative and extensive engineering process of data collection, model design, training, compile, and testing.

Considering the above discussion, it is clear that, for any collaboration level (x, y, and z), UE is NOT REQUIRED to support arbitrary models without testing. That is, a new AI/ML model should be tested before being transferred and configured to run at the devices. This is to ensure necessary timelines, functional operations with the rest of modem implementation, and related performance requirements if applicable, device-specific optimizations for area, power, latency, and to determine UE capability. Here, testing refers to the one done by UE-side vendors, network-side vendors, and service providers in controlled environments (e.g., in a lab) and is out of scope of 3gpp.

[bookmark: _Toc111196780]Proposal 4: For any collaboration level (x, y, and z), UE is NOT REQUIRED to support arbitrary models without testing.

While the above illustration was given for initial model development, the same engineering process (i.e., further data collection, model re-design, re-training, and testing) can be repeated for model re-training and/or new model development after initial models are deployed. That is, after initial ML Models are deployed at the target devices, the models may be re-trained as needed, and updated models may be deployed to the target devices. The model re-training can be based on continual or on-demand data collection and could be aided/triggered by results from model performance monitoring. Framework-wise, the model re-training framework is mostly an offline engineering procedure, akin to initial model development.

[bookmark: _Toc111024782][bookmark: _Toc111024833][bookmark: _Toc111196797]Observations 5: Once initial AI/ML Models are deployed, the initial models may be updated via re-training them or developing new models through offline engineering process.

Model development of two-sided AI/ML Models
For the same reasons as in one-sided AI/ML models, the development of two-sided AI/ML models take place in an offline engineering. Taking the (sub)use-cases where the data source is UEs (e.g. two-sided CSF), in the following we list several illustrations on how offline training may be performed for two-sided AI/ML models:

· Centralized training:
· UE-side model and NW-side model are trained by a single entity at the same time in a single training session
· Distributed training:
· UE-side model is trained by one entity and NW-side model is trained by another entity at the same time in a single training session
· Separate training:
· UE-side model is trained by one entity and NW-side model is trained by another entity separately in different training sessions, with collaboration outside the training process to ensure compatibility of the two-sided models.

[image:][image:][image:]
Figure 2: various options for training two-sided AI/ML models

Note that in all these cases, after the training process, each of the UE-side vendor and the NW-side vendor have the trained UE-side and NW-side model, respectively, which they can further perform device-specific compilation and deliver to their respective target devices.

Our companion contributions in Agenda 9.2.2.1 and 9.2.2.2 discuss in more detail the offline training options for two-sided CSF, along with evaluation results.

[bookmark: _Toc111196798]Observations 6: Development of two-sided AI/ML models belongs to an offline engineering domain.

Discussion on AI/ML operation for Proprietary Models

In this Section, we summarize key points for AI/ML operation for Proprietary Models. This corresponds to columns B and C of Table 1.

· Offline data collection, model development, compiling, and testing​
· Potential specification impacts: assistance information for training

· Fully developed and tested models are stored at a repository and downloaded at UE/network for inference.​

· Model remains proprietary, and UE-side model design remains hidden from the network.​

· Signaling-based (Model-ID only) inference operation​

· Potential specification impacts: activation, deactivation, switching, model monitoring​

· Once AI/ML Model is deployed, model update (finetuning, retraining, new model development) is achieved via additional data collection, model monitoring, and offline engineering.​

· Out of scope of standards

Input to Proprietary Model is implementation-specific

From RAN1 #109-e, the following agreement was madeConclusion
As indicated in SID, although specific AI/ML algorithms and models may be studied for evaluation purposes, AI/ML algorithms and models are implementation specific and are not expected to be specified.

Further extending the above conclusion, for Proprietary Models, input to the model CANNOT be specified, because specific input and its format to the model is up to the device implementation. For example, for “CSI-RS channel” input, UE may want to use either time or frequency domain inputs, apply certain averaging across subcarriers, apply certain timing and frequency offset correction, certain scaling, and certain noise whitening. All those decisions are implementation-specific and cannot be mandated. UE may also want to use other auxiliary inputs, such as an SNR estimate, a Doppler estimate, sensor measurements, map information, etc. Whether to use any of these auxiliary inputs to the model is implementation-specific and cannot be mandated. Similarly, any pre-processing or post-processing UE performs is up to UE implementation. Also, whether UE uses an end-to-end ML approach, or a conventional signal processing for feature extraction followed by an ML model that takes the features as input, is also up to UE implementation. Therefore, input to Proprietary Model cannot be specified.
We note that, for 3gpp study purpose, 3gpp may discuss and agree on a nominal input for the evaluation purpose (such as “CSI-RS channel observations from a reference resource”).

[bookmark: _Toc111196781]Proposal 5: Input to a Proprietary Model CANNOT be specified. 3gpp may still agree on nominal input for the purpose of evaluation study.

Discussion on AI/ML operation for Network-configurable Models
In this Section, we discuss AI/ML operation for Network-configurable Models. This corresponds to column D of Table 1.

As noted earlier, Network-configurable Models allow for
· Flexible model parameter update​
· Over-the-air training such as federated learning (managed by 3gpp network or by an OTT ML server)​

However, as noted earlier, supporting Network-configurable model requires additional standardization and advanced device capability. Therefore, the need and benefit of Network-configurable Models need to be scrutinized.

Need and benefit of flexible model parameter update

As elaborated earlier, AI/ML Models in modem need offline engineering for model development and testing. This includes model development, training, quantization, compiling the model to hardware primitives with power, area, and latency consideration, target-chip-specific run-time binary image generation, and going through full UE testing. Note that non-ML algorithms running at the device go through similar offline development and extensive UE testing, and ML algorithms will not be exceptions. So, even for Network-configurable models, the model development (at least for the model structure) and testing need to be done offline.

It is important to note that, the preferable means for ensuring reliable AI/ML performance should be done in a proactively manner through a large-scale data collection and offline engineering to develop one or multiple models for a good and robust coverage, rather than reactively through inference-time model monitoring. Appropriate offline engineering, and if needed, developing a family of models and relying on model switching during inference should large be able to address the AI/ML model coverage.

As an example, if an AI/ML operation is desired for a new cell site, it is better to collect new data from the new cell site and validate if the existing AI/ML model performs well on the new data. If the performance is not good, either re-train the existing AI/ML model, or add a new AI/ML model to the family of existing AI/ML models and rely on model switching during inference. All of these should be done offline (either manual engineering or automated) prior to enabling the AI/ML inference for the new site.

[bookmark: _Toc111024783][bookmark: _Toc111024834][bookmark: _Toc111196799]Observations 7: Primary means for robust AI/ML performance should be proactive through large-scale data collection and offline model development and performance validation, rather than be reactive through inference time model monitoring.

Nevertheless, once the AI/ML model is deployed for inference, proper model monitoring can be defined to ensure robust inference operation against unexpected situations, and if needed, performance issues and KPIs can be notified to appropriate entities that may trigger offline engineering efforts to address the performance issue by re-training the model, re-developing the model, or adding one or more models to the family of existing models for an updated model switching boundaries.

It is envisioned that the combination of offline engineering based on large-scale data collection, model switching, and model monitoring should be sufficient in most scenarios. In particular, the need and benefit of flexible model parameter update is unclear, considering that multiple models, if needed, could be developed via offline data collection and model development.

Need and benefit of over-the-air training

Specifying over-the-air training for Network-configurable models would require significant specification efforts. However, the benefit of over-the-air training is unclear for the following reasons.

Firstly, training AI/ML model takes lots of epochs. From over-the-air resource utilization point of view, it’s usually better to train the AI/ML model offline based on a collected data, rather than exchanging gradients or parameters of the model over-the-air.

Secondly, the same AI/ML model will be used for millions of identical UEs. Therefore, unless the training is for developing UE-specific personalized models, it’s questionable why one would want to train the model over-the-air, exchanging gradients or parameters with the UEs, instead of training the model offline and deploy the trained model to millions of UEs.

[bookmark: _Toc111196782]Proposal 6: Deprioritize Network-configurable AI/ML Models until clear needs and benefits are identified.

[bookmark: _Ref101736028]Specification impact: assistance information
Training data assistance

Assistance information for dataset collection could be helpful in the model development process. For example, a family of ML models may have to be developed for the given functionality (e.g., site-specific ML Models for positioning), and the decision of how many models to develop in the family can be aided by assistance information provided during the dataset collection process.

[bookmark: _Toc111024784][bookmark: _Toc111024835][bookmark: _Toc111196800]Observations 8: Model development can benefit from training data assistance.

Here, training data assistance refers to various types of assistance information that could be used during model development process. Below we provide several illustrative examples.

Meta-data for data collection
Model development process may involve decision on whether one ML model or a family of ML models should be used. For example, a model developer may decide in favor of developing one large model across various deployment scenarios or several smaller models one for each deployment scenario. As another example, a model developer may want to develop one model across SNRs or two separate models for high and low SNRs. As yet another example, a model developer may want to develop one model across different CSI-RS beam configurations or several smaller models one for each CSI-RS beam configuration. For these model development purposes, it will be helpful if certain meta-data is made available at the UEs collecting data. While certain meta-data, such as a serving cell ID, RSRP, etc., may be readily available, other information such as CSI-RS beam configuration may not be known at UEs. In such a case, it may be beneficial to introduce signaling of such meta-data (such as CSI-RS beam configuration) to UEs as assistance signaling for data collection.
As an example, consider two-sided CSF as an example, and suppose that a given gNB site may use several different CSI-RS beam configurations. These could include, for example, combinations of antenna to TxRU mapping, digital/analog precoding, and downtilt angles. In this scenario, a given CSI-RS port would present different channel distributions observed at UE, just like different deployment scenarios or different SNRs would do. In this case, it may be beneficial to let UE know which underlying beam configuration was used for the given CSI-RS instance. Suppose the gNB uses N different beam configurations for CSI-RS and that the configuration ID is signaled to UE as a meta information. This would allow the model developer to categorize the collected CSI-RS observations into N different groups and help the model developer determine whether one model or a family of K<=N models may have to be developed.
We refer to the offline decision process determining how many (K) models to develop and the applicable coverage area of each model as scenario discovery.

If the model developer decides to develop K>1 different models in the family, then at inference time, the right model would have to be chosen during inference time that matches with the CSI-RS beam configuration used at inference. During the model registration, the configuration IDs {1,...,N} that each of the K models support could be provided to the network during the model registration, so that the gNB may know which of the K models to activate at UE in preparation for a CSI-RS beam configuration the gNB intends to use. We refer to this process as scenario association.

[bookmark: _Ref101884363][bookmark: _Ref102057611][bookmark: _Toc102120435][bookmark: _Toc111196783][bookmark: p10]Proposal 7: Study meta-data assistance signaling for UE’s training data collection for AI/ML Model development. Here, meta-data refers to auxiliary information on data, such as an ID assigned for each distinct beam configuration. Meta-data can be used for scenario discovery during offline model development and scenario association during inference.

(Noisy) ground truth
Example 1: For UE-based positioning, ground truth information may be provided by the network to the UE to aid Model development and training. The ground truth may be approximate or noisy, and the model development can utilize ML training techniques involving noisy ground truth. Confidence level of the ground truth (such as its variance) may also be provided.
Example 2: For UE-assisted positioning where UE is using AI/ML Model to report measurements, network may provide measurement error feedback to the UE. The measurement error feedback may be based on approximate ground truth the network has, and the model development can utilize ML training techniques involving noisy ground truth.

[bookmark: _Ref101884368][bookmark: _Toc102120436][bookmark: _Toc111196784][bookmark: p11]Proposal 8: Study (noisy) ground truth assistance signaling for UE’s training data collection

Dataset assistance

There are scenarios where dataset from the network side may be downloaded at UE to improve the UE-side model. One example scenario is when a proprietary AI/ML model for beam prediction running at UE shows performance issues. In such a case, the network may initiate a download of a set of RSRP measurement values collected from the geographic region of interest to the UE. The downloaded RSRP measurements could be sent to a training entity to examine the AI/ML model performance and potentially trigger re-training or finetuning the AI/ML model.

[bookmark: _Toc111196785]Proposal 9: Study dataset download from the network to the UE.

Assistance information for training and inference
Assistance information for training and inference refers to various types of assistance information that may be used as input to the ML Model.

Example: Beam information, such as boresight angle, 3dB beam width, and/or beam shape information, could be provide as assistance information to UE. Such assistance information may be used as an auxiliary input to AI/ML Models for beam prediction.
It is noted that the use of more explicit input such as beam information, as opposed to logical beam IDs, as an input to an ML Model has several well-known benefits, such as
· Better sample efficiency, i.e., requires a smaller number of training samples
· Better model generalization performance, i.e., allows a single model to cover diverse scenarios, and avoids the need of developing multiple models across different beam codebook deployments.

[bookmark: _Ref101884374][bookmark: _Toc102120437][bookmark: _Toc111196786][bookmark: p12]Proposal 10: Study assistance information signaling to UE for AI/ML Model training and inference.

Specification impact: model activation, switching, monitoring, and deactivation
Once AI/ML Models are deployed and operational, we may want to monitor their performance. Reasons for model performance monitoring may include:
· Data-driven models may not have performance guarantee.
· Data distribution may shift after deployment due to e.g., environment changes
· A family of models has been deployed, and we want to make model selection decision (i.e., decision on which model among a family of models to use for inference) based on performance.
· Over time, models and/or their parameters may be updated by further engineering without indicating the change to the network.
· Models may not have been fully developed at the time of initial UE deployment

Certain decisions, either dynamically or offline, may be made based on the model performance monitoring result. The ML Model may be deactivated upon performance issue. Further engineering decisions may be made such as further data collection and/or model retraining or re-development. Based on UE mobility or other considerations, a model used for inference may be switched from one model to another within a family of models for the same functionality.

There are several different ways based on which the performance of an Model may be monitored.
· Firstly, the performance may be monitored by the device running the inference.
· Secondly, the UE may occasionally send inference results or inference related KPIs to an over-the-top (OTT) server(s) managed by the UE-side vendor or other entities, where performance dashboards may be monitored across UEs and decisions such as model re-training or re-development may be made autonomously or by engineering teams. New data may be continuously collected and sent to the OTT server(s) for performance monitoring, re-training, and model re-development. Decisions to fallback to a non-ML model may be made based on coverage areas, performance monitoring, or other factors. Similarly, model switching decisions within a model family can be made based on coverage areas, performance monitoring, or other considerations.
· Thirdly, 3gpp network (e.g., MNO or infra-vendor network) may explicitly monitor the Model performance. In this scenario, 3gpp network may configure the ML Model inference at the device, activate the ML model, switch inference to another ML model within a model family, and deactivate the ML model. These decisions can be made by several factors such as the serving cell ID, coverage region, performance monitoring results, or other considerations.
KPIs for performance monitoring will be use-case specific, and in case performance monitoring by 3gpp network is desired, 3gpp may define use-case-specific reporting from the UE to aid performance monitoring. For example, in case of beam prediction, the network may ask the UE to occasionally perform and report an actual measurement in addition to a predicted measurement, which would allow the network to assess the accuracy of prediction by comparing the actual and predicted measurements.
Performance monitoring results by a 3gpp network and performance KPIs may be communicated back to the UE. This can in turn be sent to OTT server(s) managing the model for further decision on model re-training or model re-development.

[bookmark: _Toc111024785][bookmark: _Toc111024836][bookmark: _Toc111196801]Observations 9: Model life cycle management (LCM) includes model activation, model switching, model deactivation, and model monitoring.
[bookmark: _Toc111024786][bookmark: _Toc111024837][bookmark: _Toc111196802]Observations 10: Model monitoring may be performed at the UE, at the proprietary OTT server(s) managed by the vendor or other entities, and/or at the 3gpp network (e.g., MNO or infra-vendor network).
[bookmark: _Toc111024787][bookmark: _Toc111024838][bookmark: _Toc111196803]Observations 11: Model update, such as model re-training and new model development may be performed offline, similar to the initial model development. Model update decision may be based on model monitoring results. New data may be continually collected from the device for model monitoring, model update decision, re-training, and new model training.

Signaling for performance monitoring
Performance monitoring of AI/ML Models may be facilitated by introducing the following types of signaling:
· Dedicated RS for the purpose of performance monitoring
· Feedback needed for performance monitoring
· Indication of performance monitoring result to UE or UE-side vendor (3gpp or outside 3gpp)
· Could be used by the UE-side vendor to re-train the model or train a new model.

[bookmark: _Ref101891095][bookmark: _Toc102120438][bookmark: _Toc111196787]Proposal 11: For performance monitoring of UE-side Models, study the following aspects:
- Dedicated RS for the purpose of performance monitoring
- Feedback needed for performance monitoring
- Indication of performance monitoring result to UE

For performance monitoring of network-side models:

[bookmark: _Ref101884273][bookmark: _Toc102120439][bookmark: _Toc111196788][bookmark: p9b]Proposal 12: For performance monitoring of network-side models, study the following aspects for general specification frameworks
- Dedicated RS for the purpose of performance monitoring
- Feedback needed for performance monitoring (in case the performance monitoring is done at gNB)
- Reporting of performance monitoring result to gNB (in case the performance monitoring is done at UE)

Specification impact: RAN4

Given that AI/ML Models may be updated rather frequently, 3gpp may want to consider how to define core requirements for devices with frequently updated AI/ML models. In particular, we propose that 3gpp study model performance monitoring.
[bookmark: _Ref101884378][bookmark: _Ref102057670][bookmark: _Toc102120440][bookmark: p13]
[bookmark: _Toc111196789]Proposal 13: Consider the role of model performance monitoring in relation to RAN4 tests.

Aspects related to RAN 1 study

[bookmark: _Toc111196790]Proposal 14: There is no need of agreeing on the dataset. Agreeing on evaluation methodology should be sufficient.

[bookmark: _Toc111196791]Proposal 15: There is no need of agreeing on reference AI/ML models. It is sufficient for each company to describe their AI/ML model design and training procedure.

Model generalization

We propose to define the following model generalization categories to facilitate RAN1 discussion.

[bookmark: _Toc111196792]Proposal 16: Consider the following categories for definition of scenarios/configurations for evaluating the generalization capability of AI/ML models:
Type 1: Heterogeneous inter-site: performance of AI/ML model on unseen deployment type (i.e., trained on Dense Urban and tested on UMi)
Type 2: Homogeneous inter-site: performance of AI/ML model on unseen site of the same deployment type (i.e., trained on Dense Urban and tested on a new drop of Dense urban)
Type 3: Intra-site: performance of AI/ML model on unseen variations within the same site (i.e., unseen UE locations, speeds, and trajectories within the drop, changes in moving objects in the environment)
Type 4: Cross-configuration: performance of AI/ML models across configurations (i.e., unseen beam configuration)

At a high level, there may be tradeoff between model generalization performance, inference accuracy, model complexity, and model management complexity.
For example, a “global model” could be trained on a large dataset collected from multiple scenarios (I.e., deployment types, sites, variations, configurations). This model may generalize well but may have a large model size and may not perform as well as locally specialized models.
Alternatively, multiple “local models” each specializing on a specific scenario (I.e., deployment types, sites, variations, configurations) could be trained. This approach may give better inference accuracy and smaller model sizes but requires model switching and model management overhead.
The choice between first and second methodology at least partially depends on how ‘different’ the dataset distribution is across different scenarios. A practical approach to tackle this methodology selection is to collect a large amount of data that naturally represents different scenarios and determine how many models are needed for a given use case through offline engineering. Assistance information for training, such as meta-information as we proposed earlier, could help UE identify the scenario (“scenario discovery”) that it is deployed in, and the performance of AI/ML model could improve through this identification.

Conclusions
In this paper, we discussed general aspects for AI/ML framework for Rel-18 SI and made the following observations and proposals.
Proposal 1: Define the terminology online training and offline training as follows
Proposal 2: Consider Proprietary Model and Network-configurable Model as two separate categories for RAN1 discussion.
Proposal 3: Define Level y-z boundary based on whether the AI/ML model being delivered is a Proprietary Model (in Level y) or a Network-configurable Model (in Level z).
Proposal 4: For any collaboration level (x, y, and z), UE is NOT REQUIRED to support arbitrary models without testing.
Proposal 5: Input to a Proprietary Model CANNOT be specified. 3gpp may still agree on nominal input for the purpose of evaluation study.
Proposal 6: Deprioritize Network-configurable AI/ML Models until clear needs and benefits are identified.
Proposal 7: Study meta-data assistance signaling for UE’s training data collection for AI/ML Model development. Here, meta-data refers to auxiliary information on data, such as an ID assigned for each distinct beam configuration. Meta-data can be used for scenario discovery during offline model development and scenario association during inference.
Proposal 8: Study (noisy) ground truth assistance signaling for UE’s training data collection
Proposal 9: Study dataset download from the network to the UE.
Proposal 10: Study assistance information signaling to UE for AI/ML Model training and inference.
Proposal 11: For performance monitoring of UE-side Models, study the following aspects: - Dedicated RS for the purpose of performance monitoring - Feedback needed for performance monitoring - Indication of performance monitoring result to UE
Proposal 12: For performance monitoring of network-side models, study the following aspects for general specification frameworks - Dedicated RS for the purpose of performance monitoring - Feedback needed for performance monitoring (in case the performance monitoring is done at gNB) - Reporting of performance monitoring result to gNB (in case the performance monitoring is done at UE)
Proposal 13: Consider the role of model performance monitoring in relation to RAN4 tests.
Proposal 14: There is no need of agreeing on the dataset. Agreeing on evaluation methodology should be sufficient.
Proposal 15: There is no need of agreeing on reference AI/ML models. It is sufficient for each company to describe their AI/ML model design and training procedure.
Proposal 16: Consider the following categories for definition of scenarios/configurations for evaluating the generalization capability of AI/ML models: Type 1: Heterogeneous inter-site: performance of AI/ML model on unseen deployment type (i.e., trained on Dense Urban and tested on UMi) Type 2: Homogeneous inter-site: performance of AI/ML model on unseen site of the same deployment type (i.e., trained on Dense Urban and tested on a new drop of Dense urban) Type 3: Intra-site: performance of AI/ML model on unseen variations within the same site (i.e., unseen UE locations, speeds, and trajectories within the drop, changes in moving objects in the environment) Type 4: Cross-configuration: performance of AI/ML models across configurations (i.e., unseen beam configuration)

Observations 1: Level x includes implementation-based AI/ML algorithms that can be supported using existing (Rel-17) signaling.
Observations 2: Level y-z boundary should be defined such that there is major difference in terms of specification impacts, model development, life cycle management, and device capability of supporting the level.
Observations 3: AI/ML model development belongs to an offline engineering domain.
Observations 4: Development of an AI/ML Model for a modem is an iterative and extensive engineering process of data collection, model design, training, compile, and testing.
Observations 5: Once initial AI/ML Models are deployed, the initial models may be updated via re-training them or developing new models through offline engineering process.
Observations 6: Development of two-sided AI/ML models belongs to an offline engineering domain.
Observations 7: Primary means for robust AI/ML performance should be proactive through large-scale data collection and offline model development and performance validation, rather than be reactive through inference time model monitoring.
Observations 8: Model development can benefit from training data assistance.
Observations 9: Model life cycle management (LCM) includes model activation, model switching, model deactivation, and model monitoring.
Observations 10: Model monitoring may be performed at the UE, at the proprietary OTT server(s) managed by the vendor or other entities, and/or at the 3gpp network (e.g., MNO or infra-vendor network).
Observations 11: Model update, such as model re-training and new model development may be performed offline, similar to the initial model development. Model update decision may be based on model monitoring results. New data may be continually collected from the device for model monitoring, model update decision, re-training, and new model training.

References
[1] [bookmark: _Ref101451885]RP-213599, “New SI: Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface”, 3GPP RAN Plenary
[2] [bookmark: _Ref101453495]3GPP TR 37.817, Technical Specification Group RAN; Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Study on enhancement for Data Collection for NR and EN-DC (Release 17)
[3] R1-2205023, “General Aspects of AI/ML Framework”, Qualcomm

2/9
image1.png
Model
repository

2. Model development
- Model design Offline
- Model training engineering
- Model compile
- Model testing

Training data (e.g., CSI-RS)

Training dat ist:
raining data assistance oNB

1. Data
collection

image2.png

image3.png

image4.png

