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Introduction
This discussion corresponds to the objectives related to the positioning use case described in RP-213599 (SID) below. In this contribution we address the following items of the SID:
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.
Use cases to focus on: 
· Initial set of use cases includes: 
· ….
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
…
For the use cases under consideration:
1. Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· ….


This contribution focuses on the following issues:
· For many scenarios “traditional methods” for positioning already provide a sufficient performance. To better evaluate the gain of AI/ML based solutions the evaluation shall focus on critical scenarios where a gain is expected or required including 
· LOS scenarios typical for industrial applications with dense clutter with strong multipath components caused by reflection at objects typical for factories etc.
· NLOS scenarios including those with changes of propagation conditions caused by changes in the environment to avoid overfitting of AI/ML based solutions
· The existing evaluations (based on TR38.901 models) cover only part of the effects relevant for AI/ML training and test data generation. Given that the development of enhanced simulation models are not in the scope of the SI, adjustments are feasible and necessary. Many effects can be covered with a proposed “merger” solution. The merger concept is already described in TR38.901. In the chapter 3 and 4 we give examples how we apply the evaluation methodology to AI/ML based enhancements and present first evaluation results. 

Considerations for the Simulation Methodology 
Following agreements were made in RAN1#109-e: 
	Agreement
The IIoT indoor factory (InF) scenario is a prioritized scenario for evaluation of AI/ML based positioning. 

Agreement
For evaluation of AI/ML based positioning, at least the InF-DH sub-scenario is prioritized in the InF deployment scenario for FR1 and FR2.

Agreement
For InF-DH channel, the prioritized clutter parameters {density, height, size} are:
· {60%, 6m, 2m};
· {40%, 2m, 2m}. 
· Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.




Further details of the simulation setups and the evaluation strategies are required to be defined so that the intended AI/ML positioning use cases can be evaluated in a meaningful manner by the simulation model. 
Requirements for evaluation of AI/ML based technologies
The use cases for AI/ML based positioning may provide enhancements for 
1. LOS/NLOS state identification 
2. ToA timing and/or angle measurement accuracy enhancement. Especially for critical scenarios including weak LOS path or multipath components arriving with low delay (“early cluster” (EC)) caused by reflections at objects close to the UE or TRP
3. Direct positioning with several TRPs based on CIR information. Two scenarios are critical for AI/ML based positioning:
· Low training data grid density: AI/ML must be able to interpolate between the “grid points” used for the training. This requires modelling of the spatial consistency of propagation conditions for UEs at similar position. 
· Changes of the environment (change of position of clutter, moving objects, …) causing changes in the CIRs (additional paths, blockage of paths, changes of the strength of a path, etc.) 
The resulting requirements for modelling are: 
1. Better support of critical scenarios and scenarios in between LOS and NLOS (weak LOS component, LOS component impaired by EC, multipath components caused by “diffuse” reflections, i.e. a cluster with high delay spread)
2. Spatial consistency: Different spatial consistency levels are distinguished:
· The large-scale parameters (key parameters of the channel characteristic in a (small) area) are correlated. This is covered by TR38.901 with de-correlation distance of the large scale parameters.
· Difference/commonality of CIRs for UEs at similar position: The spatial consistency procedure of TR38.901 emulates this effect. 
· Identical scatterers relevant for several UETRP links: These could be covered by ray-tracing based modelling approaches, for example. If reflecting objects are applicable to several links the respective relationships between related multipath components provide additional information. Examples are walls, floor, ceiling or other reflecting objects
· Impact of changes in the environment. Changes in the environment may result in additional reflectors hence generating more taps in the CIR; or paths are (temporally) blocked and are removed from the CIR
3. Modelling of relevant scatters and related spatial consistency:
· AI/ML-based methods may highly benefit from reflected signals. Especially in NLOS conditions or in scenarios with reduced number of TRP these components in the CIR help to localize the UE and can be considered as “additional TRP” (virtual TRP). Two types of reflectors generating virtual TRPs are distinguished 
· A wall, for example, may be considered as object with a “specular reflection”. Specular reflections are characterized by the emergent angle and can be derived from the angle of incidence. This causes that the “virtual TRP” position depends on the position of the reflector (e.g. a wall), the UE and the “primary TRP” position. 
· The reflecting object is considered as distributed object causing a diffuse reflection. In this case the position of the scatter may be independent from the UE position.
Consideration for AI/ML positioning evaluations 

Merge two sets of clusters

[bookmark: _Ref111145270]Figure 1: Hybrid model (copy of Figure 8.4-1 of TR38.901, V17.0.0)
Many of the described effects may be covered by a ray-tracing based model. TR38.901 defines already a “alternative channel model methodology” (see chapter 8 of TR38.901) based on a map-based hybrid channel model: As depicted in Figure 1 the hybrid model merges deterministic clusters generated by Ray-tracing with randomly generated clusters.
This approach has the following advantages: 
· Generating deterministic clusters (for example by ray tracing) generates spatial consistent CIRs (including correlation of LOS/NLOS probability and virtual TRPs)
· Adding randomly generated clusters allows the statistical modelling of effects not covered by e.g. ray-tracing (objects not included in the map, moving devices (including movable parts of machines), warehouse with stock level, etc.)
The main drawback of ray-tracing based models is the availability of the related detailed “map data”. Furthermore, if simulation data generated by different companies are compared all companies should use the same map data base. Hence, for the comparison of technologies (especially at RAN1 level) simplified statistical models are preferred. 

Observation 1: 	TR38.901 describes an advanced methodology with the hybrid model. Due to the lack of related map data this methodology cannot be straightforwardly utilized. Approaches derived from this concept may be feasible in the SI.
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Figure 2: Principle of using merging two sets of channel data 

Using a second channel builder instead of a ray-tracer helps to better control the propagation characteristics relevant for AI/ML and maintains the advantages of statistical modelling. 
Proposal 1	Adopt the idea of the TR38.901 model to merge two sets of channel coefficients, and replace the Ray-tracer with a second channel builder.
The configuration of the second channel builder can depend on the use case. 

For ToA measurements with limited bandwidth it is difficult to distinguish the first arriving path (FAP) from multipath components caused by reflections at objects close to the UE or TRP. AI/ML based ToA measurement enhancements may significantly increase the performance for these scenarios. Instead of a ray-tracer the objects close to the UE can be also modeled statistically using a second builder adding clusters with a statistical property according to the distance of objects close to the UE and/or TRP. It is important that the training data covers these scenarios to achieve the full profit of AI/ML based concepts. 
Observation 2: 	For ToA measurement enhancements a gain through AI/ML is mainly expected for critical LOS scenarios. If the training data doesn’t include sufficient critical LOS data sets, the training may not cover these data sufficiently.
Proposal 2: 	The second channel builder generates additional clusters resulting in a better representation of critical data in the training data set. For the evaluation of ToA measurement enhancements the second builder is configured to add “early cluster” (EC) representing reflections at objects close to the UE or TRP. 

For the evaluation of direct positioning spatial consistent data must be generated and the test data set should not be included in the training data set. The training and the test data shall be spatial consistent. In contrast to this requirement, changes in the environment (additional moving objects, change of the position reflection objects, etc.) may cause variations of the channel characteristics. The spatial consistency procedures according to TR38.901 may generate training and test data representing “static conditions” not covering changes in the environment. Some changes in the data are typical for real-world usages scenario. Depending on the changes of the environment only parts of the CIR may remain, whereas additional components are added. 
Observation 3: 	The generation of spatial consistent training and test data in simulation may generate static conditions and may not cover variations in the CIR caused by moving objects or other changes in the environment. For the evaluation of AI/ML based positioning technologies it is be essential to test the robustness versus variations in the CIR. 
Proposal 3: 	For the evaluation of AI/ML based technologies a second channel builder shall add randomly generated clusters to the test data set to cover changes in the environment between the training phase and the operational phase. The power ratio between randomly generated clusters and static clusters shall be configurable. 

[bookmark: _Ref111146032]Use-case 1: ML-based ToA measurement enhancements
The given example shall demonstrate the evaluation methodology described above. Complementary to the methods for generation of training data and test data we propose a metric useful to identify for which channel conditions a gain is achieved. 
ML-based ToA measurement enhancement using the estimated CIR derived from reference signal transmissions. 
The ML model learns the spatial correlations of the multipath components with the first direct path of arrival (FDPoA) to identify the TOA of the FDPoA. During a training phase, the model learns to map the CIR to a corresponding ToA. For measured CIRs (e.g.: the correlation function) with unknown ToA the ML model predicts the ToA or assists other methods. 
Different options are considered for the deployment of the concept: 
· The measurement unit (regardless whether it is at network or UE side) includes already the model. The model can be installed by the vendor or deployed by the network. Existing reporting protocols may be used or extended. Especially for TDOA based methods it may be worthwhile to inform the positioning algorithm about the used method or the positioning algorithm requests a common method from all measurement units. 
· The model is implemented in the network (e.g.: part of the LMF). In this case sufficient input data shall be provided to the model. The measured correlation may be preprocessed and reported to the model.
Preprocessing/preparation of input data. In our evaluation we preprocessed the CIR in two variants: 
· Magnitude: The first variant uses the magnitude of the CIR to have 1D input sequence for the neural network, not exploiting the phase information of the signal. 
· IQ: The second variant uses IQ information of the CIR by creating a 2D vector with the stacked I and Q parts. To accelerate the processing of the neural network, the input vectors are normalized with a constant factor. 
Training phase. For the training, a representative dataset has to be provided, representing CIR with similar propagation conditions and channel parameters (i.e. bandwidth, …) of the target environment. Furthermore, the training data shall cover a wide range of possible CIRs. The training data can be either captured by measurement or generated in simulation. If generated in simulation, the true ToA is known which simplifies the generation of high accuracy training data. A careful selection of the channel parameter is required to ensure that also critical scenarios are well covered by the training. 
Estimation phase. After training, the model can be deployed on the target device to estimate TOA of the FDPoA. 

Generation of training and test data
For the generation of the test and training data we used the “merger” approach. This approach offers more flexibility of the adjustment of the power delay profile characteristics. For the testing of the ToA estimator performance we studied the impact of the early cluster. Adding a second set of clusters covering the components arriving with a low delay is an efficient method to generate channels with different “level-of–difficulty”. Hence, the training covers a wider range of channel conditions. 
Furthermore, it is possible to evaluate the performance gain versus “level-of-difficulty”. 

[image: ]
[bookmark: _Ref111218816]Figure 3: Generate CIR with different level-of-difficulty 

In case of LOS conditions, the LOS path is the FAP. For NLOS conditions the FAP may result from distributed scattering objects and may already include several subpaths. The CIR generation methodology defined by TR38.901 offers limited flexibility for the adjustment of the EC characteristics. A simple method for better control of the EC is depicted in Figure 3 . The method is characterized by: 
· Two sets of channels are generated by two “channel builders”. Each builder generates a CIR including several clusters using the same input data (base station (TRP) positions, UE positions).
· The first channel builder generates the clusters according to the delay spread (DS) defined by the statistical properties of the measured channel. These clusters are called “LC”. 
· The second builder (“EC”) generates a second set of clusters with reduced delay spread representing the clusters related to objects close to the UE (and/or TRP). 
· The merger combines the two sets 
· The LOS component (if present) is copied to the output 
· The LC and EC clusters (without LOS) are merged to a new CIR
· The merger allows to adjust the power ratio between LC and EC
· The merger can work in two modes
· The LC and EC are just added 
· The LC and EC are renormalized to maintain the overall K-Factor statistics 
· Optionally, the merger can also remove some clusters to emulate blockage of multipath components. 
An example for an EC is the ground reflection. In line with the merger approach the channel builder related to the “EC” may be just include one (specular) cluster representing the ground reflection. This method is already covered by TR38.901. If ground reflections are used as only source for EC a random UE height shall be used, taking into account that the delay of the ground reflection depends highly on the UE height. 

[image: ]
[bookmark: _Ref111218876]Figure 4: Merge randomly generated clusters with “ground reflection” (as defined by TR38.901)

In the same way a combination of LC, EC and GR can be generated. Resulting channel characteristics are depicted in Figure 4. Here, the channels are compared using the K-factor statistics (right) and the  KFEC introduced in the following section.

Metric for the evaluation of the “level-of-difficulty” 
Simulations performed in the context of Rel. 16 and Rel. 17 positioning study items demonstrated that the ToA estimator accuracy highly depends on the characteristics of the first arriving path. Depending on the delay spread and the number of clusters generated by the channel model the probability that early arriving clusters (EC) are included may be low or the clusters have a low power. Comparison of CIRs generated in simulation with CIR measured showed that the models of TR38.901 may be optimistic according to this criterion. For communication the impact of EC may be partly covered by the shadow fading, but the testing of high accuracy ToA estimation algorithms may require a more detailed modelling of these effects. Note: The proposed metric is applicable to “link level simulations” (one TRPUE link is simulated) as well as to data generated in a system level simulation. 
For positioning applications, when measuring the ToA of the first arriving path, especially the multipath components arriving with a low delay have a high impact to the accuracy. The randomly generated channel impulse response according TR38.901 may have different “levels-of-difficulty”. For better evaluation of the ToA accuracy performance versus level-of-difficulty we introduced as metric for the “level-of-difficulty” something similar to the K-factor, called “KF-early cluster” (KFEC). The KFEC is defined by 

where  is the set of indices of clusters having a delay less than , i.e.,   and  is the delay relative to the LOS delay. 
The proposed metric can be calculated for any CIR generated by the channel model. The metric is mainly used to sort the generated channel representations according the level-of-difficulty.  Optionally, modified parameter sets can be selected to generate data with the desired level-of-difficulty. 
As an example we considered the multipath components arriving with a delay less than  = 20ns for the evaluation and generated a separate ToA error CDF for each  range. The methodology was implemented by: 
· All CIRs for the randomly dropped UEs are generated inline with TR38.901 using InF_LOS parameter. 
· For each drop we extracted the  from the channel coefficients generated by the model. The  was calculated for each gNBUE link using a system level setup with InF_LOS configuration or other scenario tables according TR38.901
· We sorted the ToA-Error results for all links according to this . Drops with sufficient SINR are taken into account only, assuming ideal power control.  
· Low represents critical LOS scenarios. 
The metric allows to evaluate the level of difficulty of CIRs generated by the model. Similar metrics can be also applied to measured data. 
Examples for the resulting channel characteristics according to this metric are depicted in Figure 5 . For four different channel parameter settings the statistics of the metric  (in the example with  = 20ns) metric is compared to the metric “K-Factor” (KF) as defined by TR38.901.  
Four configurations are compared: 
· 104.20: Statistic of InF_LOS channels. It is observed that for many cases the multipath components arriving with low delay are very weak (only in 50% of the cases a KFEC less than 
20 dB, meaning that in 50% of the cases the EC are very weak (20 dB below the LOS component) or no multipath components arrive within 20ns (KFEC = 50 dB). Note that the delay of the ground reflection alone is less than 20 ns. This means, that in 50% of the cases no or a very weak ground reflection is generated only and objects close to the UE or TRP do not cause no or minor multipath effects. This is considered as too “optimistic”. 
· 104.60: adds the ground reflection inline with TR38.901. This has a significant impact to the K-factor (KF) and the KFEC.
· 104.64 adds EC. The overall KF statistics is maintained, but more channels with low KFEC are generated. 
· 104.66: EC and GR are added to InF_LOS channel. 

[image: ][image: ]
[bookmark: _Ref111218973]Figure 5: Comparison of channel statistics, on the left the introduced KFec (proposed for its meaningfulness for timing-based-positioning), on the right the KF (K-Factor of the overall channel)

Observation 4: 	The merger concept allows to control the level-of-difficulty for the training and test data. This ensures that the training data cover a wide range of possible propagation conditions.  

Applying the metric KFEC for the evaluation of simulation results
We found that the performance highly depends on the characteristics of the early cluster. Hence, the evaluations characterizes the ToA measurement accuracy performance versus the early clusters strength. The  considers multipath components arriving within a time window of 10ns relative to the LOS delay. The scenarios where a LOS component is still available, but impaired by multipath components with low delay may be called “obstructed LOS” (OLOS). For the statistical evaluation we sorted the data into three sets. 
· Mainly (good) LOS	 = [0,20] dB
· OLOS-Moderate 	 = [-10,10] dB
· OLOS-Heavy 	 = [-100,-10] dB
The performance of the ML-based variants are compared with a method that estimates the rising edge of the FDPoA as used for simulations performed in the context of Rel. 16 and 17. The results are depicted in Figure 6.

	[image: ](a)  = [0,20] 
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The results show that especially for critical LOS conditions (“OLOS”) with low  ML based ToA estimator provide a high gain.  


[bookmark: _Ref111150291][bookmark: _Ref111150281]Figure 6: ToA performance with ML-Magnitude, ML-IQ and a classical approach in an early cluster (a) light, (b) moderate, (c) heavy scenarios

Observation 5: 	AI/ML assisted ToA measurement can provide a significant gain especially for critical LOS conditions. Even for very weak first arriving paths can be detected with a measurement error in the range of 1m. 
Observation 6:  	Using the complex valued CIR (I and Q value or magnitude and phase) as input to the AI/ML assisted ToA measurements outperforms the measurements using the magnitude only. 

 
[bookmark: _Ref111146057]Use case 2: ML based positioning with heavy NLOS conditions
Evaluation using simulated data 
Training data typically cover CIRs for selected positions. For the training data positions a regular grid may be used. For an important area a higher training grid density may be selected, whereas for other areas a lower grid density is applied. Furthermore, it may not be possible to capture all areas by training data. AI/ML based positioning should be able to interpolate between these grid positions and shall be able to generate also positions for UEs not placed on and outside the training data grid. This is typically tested by splitting the data sets – generated either in simulation or by measurements – into two subsets. The first set is used for training, the second subset for testing. The test data set should NOT include the positions used for training, or the positions are identical with low probability only. 
Using the spatial consistency procedure the channel characteristics for UEs close to each other correlate. The training grid can be selected according to the de-correlation distance of the CIRs. This allows the testing of AI/ML algorithms if the “test data position” is not covered by the training data set. But using the spatial consistency procedure of TR38.901 without modification, the testing of AI/ML based positioning applies for “fully static” (= at a given position the CIR does not change) propagation conditions only. This means, changes in the propagation conditions caused by changes in the environment or moving devices contributing to the multipath components are not considered. As a result for practical use cases a “fully static” propagation condition like this is not realistic. AI/ML based positioning should also work for at least minor changes in the propagation conditions caused by additional (moving) objects (machines, peoples, ATV, etc.), for example. 
To overcome these drawbacks the “merger” approach can be used as depicted in Figure 7 channel builder is used only (output of channel builder #2 is disabled). For the test data the output of the second channel builder is added to the first data set. The merger allows the adjustment of the ratio between the “static part” seen during the training phase and the additional path generated by the builder #2. Optionally, some paths from channel builder #1 can be removed to emulate blockages of selected paths. 

[image: ]
[bookmark: _Ref111150411]Figure 7: Generation of data for AI based positioning

Evaluation using measured data 
Figure 8 shows a real world evaluation of ML-based direct positioning of an indoor scenario. The main scope of this analysis was the study of “selective training”. The training is performed for scenarios with “heavy NLOS” areas. The other parts of the areas may be well covered by TDOA-or RTT-based positioning technologies focusing on LOS ToA measurements. In areas where the number of TRPs received under LOS conditions is not sufficient (“NLOS areas”) or areas with low accuracy due to the deployment layout according to the dilution-of-precision (DOP) criterion (typically in the corners of an area) these methods may fail. For ML based concepts a gain is especially expected for “critical areas”, whereas the “traditional methods” provide sufficient accuracy for LOS areas. Hence, the evaluation of the gain achieved by ML based concepts shall focus on “critical areas”. Note that in order to reduce the effort for training it may be worthwhile to support ML-based technologies especially for areas where other technologies tend to fail or provide a low accuracy only.
As an example, shown in Figure 8 (a), we selected for the scenario three areas (A1, A2 and A3) where we expect reduced performance for multi-RTT- or TDoA-based positioning due to NLOS reception. A ML model is trained only using data from these areas. For the other areas we assume multi-RTT- or TDoA-based positioning methods are used and no training data are generated for these areas. For the evaluation, we tested the performance of the trained model on the areas used for the training entire area to test the behavior of the AI/ML based positioning if only for parts of the deployment training data are generated.
For the visualization we use two scales. 
· Figure 8 (b): Depicts the error and shall demonstrate in which area the ML-based approach is able to provide good position estimates.
· Figure 8 (c): For the accuracy evaluation in the areas covered by the training we set errors exceeding 1.2m to the value 1.2m to better see the behavior inside the area covered by the training. 
For the areas covered by the training data a high accuracy can be achieved. At the edge of the training area the performance degrades. As expected, the performance in areas not covered by the training the performance of ML based positioning is reduced, or the position is considered as invalid. However, in some transition areas between the training sections (i.e. A1 and A3 and partly also between A2 and A1/A3 the model can interpolate in between. 
	    [image: ]
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	(a)
	(b) (without clipping)
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	(c) (large errors clipped to 1.2m)
	


[bookmark: _Ref111150506]Figure 8 - ML based positioning in a real world scenario: (a) scenario TRPs in green, blockers/reflectors in Red and highlighted training areas A1, A2 and A3,  (b) and (c) Performance in the whole positioning area
 


Conclusion 
[bookmark: _GoBack]On the consideration for AI/ML positioning evaluations we made the following :

Proposal 1	Adopt the idea of the TR38.901 model to merge two sets of channel coefficients, and replace the Ray-tracer with a second channel builder.
The configuration of the second channel builder can depend on the use case. 

Proposal 2: 	The second channel builder generates additional clusters resulting in a better representation of critical data in the training data set. For the evaluation of ToA measurement enhancements the second builder is configured to add “early cluster” (EC) representing reflections at objects close to the UE or TRP. 

Proposal 3: 	For the evaluation of AI/ML based technologies a second channel builder shall add randomly generated clusters to the test data set to cover changes in the environment between the training phase and the operational phase. The power ratio between randomly generated clusters and static clusters shall be configurable. 

and observations
Observation 1: 	TR38.901 describes an advanced methodology with the hybrid model. Due to the lack of related map data this methodology cannot be straightforwardly utilized. Approaches derived from this concept may be feasible in the SI.

Observation 2: 	For ToA measurement enhancements a gain through AI/ML is mainly expected for critical LOS scenarios. If the training data doesn’t include sufficient critical LOS data sets, the training may not cover these data sufficiently.
Observation 3: 	The generation of spatial consistent training and test data in simulation may generate static conditions and may not cover variations in the CIR caused by moving objects or other changes in the environment. For the evaluation of AI/ML based positioning technologies it is be essential to test the robustness versus variations in the CIR. 
Observation 4: 	The merger concept allows to control the level-of-difficulty for the training and test data. This ensures that the training data cover a wide range of possible propagation conditions.  
Observation 5: 	AI/ML assisted ToA measurement can provide a significant gain especially for critical LOS conditions. Even for very weak first arriving paths can be detected with a measurement error in the range of 1m. 
Observation 6:  	Using the complex valued CIR (I and Q value or magnitude and phase) as input to the AI/ML assisted ToA measurements outperforms the measurements using the magnitude only. 
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