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Introduction
Rel-18 study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface, agreed in [1], includes a use case of positioning accuracy enhancement, and the exact objectives are as follows: 
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation. 
· Characterize lifecycle management of AI/ML model: e.g.,  model training, model deployment , model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

For the use cases under consideration:

1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.

2) Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
· PHY layer aspects, e.g., (RAN1)
· Consider aspects related to, e.g., the potential specification of the AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases
· Use case and collaboration level specific specification impact, such as new signalling, means for training and validation data assistance, assistance information, measurement, and feedback
· Protocol aspects, e.g., (RAN2) - RAN2 only starts the work after there is sufficient progress on the use case study in RAN1 
·  Consider aspects related to, e.g., capability indication, configuration and control procedures (training/inference),  and management of data and AI/ML model, per RAN1 input 
· Collaboration level specific specification impact per use case 
· Interoperability and testability aspects, e.g., (RAN4) - RAN4 only starts the work after there is sufficient progress on use case study in RAN1 and RAN2
· Requirements and testing frameworks to validate AI/ML based performance enhancements and ensuring that UE and gNB with AI/ML meet or exceed the existing minimum requirements if applicable
· Consider the need and implications for AI/ML processing capabilities definition

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced




In this contribution, we mainly focus on proposals that were not agreed and topics for further study indicated as part of the agreements which were made as part of the RAN1-109-e meeting. We also discuss representative sub-use cases that could be considered as part of the study item. 
[bookmark: _Hlk510705081]Discussion on generic aspects of sub use-cases
In the following, a set of non-exhaustive representative sub use cases for AI/ML in positioning are identified. Specification impact is also discussed. 
Collaboration Levels
Regarding the collaboration levels, the following agreement was made during RAN1-109-e meeting:
Agreement
Study further on sub use cases and potential specification impact of AI/ML for positioning accuracy enhancement considering various identified collaboration levels.
· Companies are encouraged to identify positioning specific aspects on collaboration levels if any in agenda 9.2.4.2.
· Note1: terminology, notation and common framework of Network-UE collaboration levels are to be discussed in agenda 9.2.1 and expected to be applicable to AI/ML for positioning accuracy enhancement. 
· Note2: not every collaboration level may be applicable to an AI/ML approach for a sub use case

Currently there are two potential approaches for AI/ML solutions being discussed in 3GPP RAN1 [2], i.e., A. one-step positioning (Fig 1) and B. two-step positioning (Fig. 2). 
Observation-1: Collaboration levels NW-UE may be specified in relation to approaches A or B and whether the deployment of A or B is exclusively one-sided or not, i.e., if the full model resides only at the UE or NW side, or whether different parts of the model may reside at different sides. 
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Fig. 1: Proposed one-step positioning approach for AI/ML-based solutions in Rel-18.
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Fig. 2: Proposed two-step positioning approach for AI/ML-based solutions in Rel-18.
Proposal-1: Collaboration levels may be defined in relation to approaches A/B and specifically in relation to how A/B are deployed. For example, a set of collaboration levels may be considered:
· Approach A, Model-0 at UE: collaboration level a1;
· Approach A, Model-0 at NW: collaboration level a2;
· Approach A, partial Model-0 at NW, partial Model-0 at UE: collaboration level a3; and so on;
· Approach B, Model-1 at NW, Model-2 at UE: collaboration level a4; and so on;

AI/ML Model Training and Inference
One of the key topics that was discussed during RAN1-109-e meeting relates to the node where model training and inference occurs. The related proposal that was discussed, but not agreed is as mentioned below:
Proposal 1-2a
Study aspects in terms of potential benefit(s) and requirement(s)/specification impact(s) of AI/ML model training and inference in AI/ML for positioning accuracy enhancement considering
•	Training at UE and/or network side
· Offline and/or online training
•	Inference at UE and/or network side

Our views on the topic of the definition of offline and online training are discussed in [3].
Regarding the topic of training in general: there are both benefits and disadvantages of training the model (either online or offline) at the NW side versus the UE side. Among the benefits are:
1. Larger training datasets and different model types may be trained in parallel due to higher processing capability. 
2. More diverse training data (simulated, field-data, etc.) may be collected and used to derive and train a more robust model due to the larger data storage capability.
3. Model can be retrained/refined before a failure/degradation occurs at the UE side. For example, when a minimal subset of UEs report a model performance degradation, the NW may trigger a model update immediately, so that the upcoming positioning sessions of the remaining UEs do not experience the same degradation.
4. Model transferability is more easily realized. Since the NW is in control of the model training, the model can be trained for a generic positioning task and retrained to implement a similar positioning task via transfer learning, with minimal overhead in terms of new data collection. For example, a model for DL positioning may be tuned for UL positioning without requesting the same amount of training data as in the DL case.
Conversely, training the model at the NW side comes with the following disadvantages:
1. Collecting training data may require the UE to disclose/transfer sensitive UE specific data.
2. High signaling overhead due to NW requesting measurements from many UEs, over a long time for data collection
3. Data quality is subject to same, redundant, or useless measurements that can be reported by UEs
4. How many model types the NW should train needs to be considered. This is a prerequisite to ensure that the model functions well and is supported by different UE types.
5. Scalable means for model transfer, validation need to be defined i.e., how (what interfaces, how often, etc.) is the model transferred from NW to multiple UEs, to what degree is the UE allowed to retrain the model, etc.
Observation-2: While there are clear benefits of training the model at the NW side (in terms of model robustness and complexity), the disadvantages of such approach should be considered before choosing or prioritizing one option as compared to the other.  
Proposal-2: To decide whether model training should happen at the NW side, RAN1 may consider assessing if said model is scalable and robust i.e., can be deployed, performs well, and can be maintained simultaneously at multiple UEs. 
Regarding inference: where the inference takes place should be specific to at least the:
· use-case e.g., UL or DL positioning, UE location estimation or measurement collection, etc.; 
· approach A or B described in section 2.1.
and be considered together with the training part. 
Proposal-3: Selecting entities for model training and inference should be decided jointly, and should be at least use-case specific. 
· For example, if the inference is done by the NW, then the training should also be realized by the NW. Conversely, if the inference is done at the UE side, the model training may be done at the UE or NW side, depending on the use-case, approach (A/B) and UE capability.  
Here it is important to note that if the model training and inference is done by the UE, it would be challenging to ensure that the model performance is consistent across the UEs, even in scenarios where the same data is used for model training, validation and testing. Thus, it is important for the network to ensure that there are mechanisms to ensure consistent model performance across UEs.
Observation-3: If the model training and inference is done by the UE, it would be challenging to ensure that the model performance is consistent across the UEs, even in scenarios where the same data is used for model training, validation, and testing.
Proposal-4: Investigate mechanisms that enable the network to ensure that there are mechanisms to ensure consistent model performance across UEs.

Definition and Classification of Solutions for Sub-Use Cases
High-level Definition of Sub-Use Cases
As shown below, there were various proposals and questions raised during RAN1-109-e meeting in the context of sub-use cases for positioning. However, this is still an open topic that requires further discussions since no agreements were made during the previous meeting. As discussed in [4], the definition of sub-use cases for positioning use case could be made as part of this agenda item.

Proposal 1-4b (closed)
For selection of representative sub use case(s), at least the following aspects of AI/ML approaches for sub use cases of AI/ML for positioning accuracy enhancement are considered.
•	Evaluation results of KPIs
o	Note: KPIs are to be discussed and expected to be agreed in agenda 9.2.4.1
•	Potential specification impact

Discussion point 1-5b (closed)
Q1: In the context of AI/ML for positioning accuracy enhancement discussion, what is your understanding of “sub use case”?
•	Option 1: by scenario
•	Option 2: by {input, output} of an AI/ML model
•	Option 3: for estimation, tracking, and prediction etc. as different sub use cases
•	Option 4: by functionality that the AI/ML model is intended to fulfil where LOS/NLOS classification and Fingerprinting to directly estimate UE’s position as different sub use cases 
•	Other option(s), please elaborate
Q2: Do you think it’s necessary to categorize candidate sub use cases (note this is different from proposal 1-3a where categorization is for AI/ML approaches)? If so, for what purpose? 
Q3: If you think it’s necessary to categorize candidate sub use cases, please provide your preferred candidate sub use cases and way of categorization (if different from indicated option in Q1).

We believe that the categorization of sub-use cases could help define what elements of the model require standardization. Because of that, we believe that option 2 is the one for which standardization of various model elements is required and/or may be realized. We do not see helpful for standardization to use categorizations such as option 1, 3, 4, since: 
· Option 1 is too broad to allow for an opportunity to define a robust standard framework for using the model. In the same scenario, different models may be deployed, and such models may have different levels of collaboration, depending on the task that the model is solving.
· Using AI/ML in the context of options 3 and 4 may be seen as activating different positioning methods. Different positioning methods may require different inputs and produce different outputs, require various levels of interaction UE-NW, therefore no one standard procedure can be applied when such categorization is used. 

Observation-4: Sub-use case definition Options 1 and 2 might have overlaps in terms of how the options are defined – for e.g., considering scenario as a problem space addressed as part of the study, however from the standards perspective it is important to define the input and output parameters of the AI/ML model.
We have considered this combination of option 1 as potential problem space that could be addressed as part of the study as well as option 2 while proposing representative sub-use cases in Sec. 3.
Proposal-5: Option 2 may provide a useful categorization for standardization of the AI/ML model elements, where element may mean: training procedure, collaboration level, deployment, etc. If option 2 is adopted, then various sub-cases similar to the ones mentioned below can be defined:
1. Sub-use case 1:
a. Input: 
i. raw received P/SRS signal samples and
ii. raw transmitted P/SRS signal samples
iii. (optional) TRP location
b. Output (soft or hard): 
i. Selected (by the LMF) positioning measurements or 
ii. UE location. Note that in this case, an additional input (iii) consisting of the TRPs locations should be provided.
2. Sub-use case 2:
a. Input:
i. Post-processed received P/SRS signal samples, where post-processing is done autonomously by the positioning receiver (UE in DL, TRP in UL positioning).
ii. (optional) TRP location
b. Output (soft or hard): 
i. selected positioning measurements or 
ii. UE location. Note that in this case, an additional input (ii) consisting of the TRPs locations should be provided.
3. Sub-use case 3:
a. Input:
i. Post-processed received P/SRS signal samples, where post-processing is done by the positioning receiver (UE in DL, TRP in UL positioning) with help from the LMF. Specifically, the LMF indicates a preferred list of input features (e.g., CIR, CFR, LOS, etc.) which can be used by the model.
ii. (optional) TRP location.
b. Output (soft or hard): 
i. selected positioning measurements or 
ii. UE location. Note that in this case, an additional input (ii) consisting of the TRPs locations should be provided.

Classification of Sub-Use Cases
Regarding the aspects of AI/ML for positioning accuracy enhancement in the context of solution classification, the following agreement was made during RAN1-109-e meeting:

Agreement
For further study, at least the following aspects of AI/ML for positioning accuracy enhancement are considered.
· Direct AI/ML positioning: the output of AI/ML model inference is UE location
· E.g., fingerprinting based on channel observation as the input of AI/ML model 
· FFS the details of channel observation as the input of AI/ML model, e.g. CIR, RSRP and/or other types of channel observation
· FFS: applicable scenario(s) and AI/ML model generalization aspect(s)
· AI/ML assisted positioning: the output of AI/ML model inference is new measurement and/or enhancement of existing measurement
· E.g., LOS/NLOS identification, timing and/or angle of measurement, likelihood of measurement
· FFS the details of input and output for corresponding AI/ML model(s)
· FFS: applicable scenario(s) and AI/ML model generalization aspect(s)
· Companies are encouraged to clarify all details/aspects of their proposed AI/ML approaches/sub use case(s) of AI/ML for positioning accuracy enhancement 

The sub-use cases we propose in section 2.3.1 already include the categorization of the AI/ML output into direct vs assisted. 
Observation-5: It is expected that A. direct AI/ML vs. B. AI/ML-assisted positioning has different standardization requirements. For example, the two approaches have different requirements in terms of necessary and sufficient inputs: the latter may require that the TRP location is known, whereas the former typically does not. Similarly, the levels of collaboration between the UE and the NW (e.g. who defines and controls the inputs), and the model training and deployment aspects are also specific to the A vs. B.
Another key aspect for consideration is the possible network scenario and radio environment dependence in terms of the positioning approach used. Thus, it is important to study further about how these approaches could be configured by the network.
Proposal-6: RAN1 to study the radio environment and scenario dependence of using direct AI/ML vs. AI/ML-assisted positioning approaches.

Discussion on representative sub use-cases
In this section, we discuss various representative sub-use cases and potential related challenges.
Positioning Accuracy Improvement with Optimized Data Collection and Labelling 
In this section, we consider the challenges related to data collection and labelling in order to generate training and test / validation datasets for AI/ML based positioning.
Using On-Demand Labelling and Efficient Training 
Current considerations in the context of data labeling and training assumes that all the available training and test / validation datasets are accurately trained before the model refinement/finetuning phase process, after the initial model has been trained and deployed. However, it would be beneficial to consider scenarios where the labeling of the dataset is conducted on-demand or as per training requirements.
The main idea here is that during the model refinement/finetuning phase, LMF requests PRU for on-demand labelling of some channel observation on which current ML model is uncertain about its estimation. There are various options for requesting the on-demand labels:
· Option-1: LOS/NLOS detection model is deployed in UE, LOS/NLOS estimation uncertainty can be assessed in UE-based manner, UE report its uncertainty assessment to LMF, LMF requests PRU for labelling if it’s uncertain on the estimation and newly labelled data will be used to trigger ML model refinement/finetuning.
· Option-2: LOS/NLOS detection model is deployed in UE, UE can detect LOS/NLOS but cannot assess its estimation uncertainty, UE request LMF to assist on the estimation uncertainty assessment. LMF requests PRU for labelling if needed and sequentially triggers model refinement/finetuning.
· Option-3: LOS/NLOS detection model is deployed in LMF, LMF can assess its estimation uncertainty, and requests PRU for labelling if needed and sequentially triggers model refinement/finetuning.

Proposal-7: Model training, retraining or finetuning can be triggered when the model detects LOS/NLOS estimation uncertainty and subsequentially new data are labelled on-demand. 
Assessment on estimation uncertainty and model retraining/ finetuning is AI/ML model dependent. For LOS/NLOS binary classification task, K nearest neighbors (KNN) and fully connected neural network (FCNN) are two typical realizations. Due to this, the following options could be considered as part of implementing an on-demand data labeling mechanism.
· Option-a: for KNN typed AI/ML model, with a channel observation (e.g., CIR, RSRP)  as input to KNN, KNN calculates the distance  (e.g., Euclidian distance) of  to pre-labelled data and sort the nearest K neighbors. N1 out of k belongs to class-0 (LOS) and N2 for class-1 (NLOS), respectively, with N1+N2=k. If =max (N1, N2)/k is higher than a threshold,  is labelled by PRU as demanded with newly generated data pair {} to be included for training in LMF. Otherwise, if  is smaller than the threshold,  is discarded without labelling. Whenever there are a batch of newly labelled data pair ready, retraining of KNN is conducted. 
· Option-b: for FCNN typed AI/ML model, similarly, with a channel observation (e.g., CIR, RSRP)  as input to FCNN, FCNN evaluates the estimation uncertainty of  e.g., by means Gaussian process based random neural connection dropout as depicted in Fig. 3. That is, by randomly dropping out neural connections from the original FCNN, a serial (J) of independent but corelated virtual models are created, denoted as MLt-j. With  as input, MLt-j comes up with J different  LOS/NLOS detection results, denoted as , a vector. The variance of  is  and its mean is used as the point estimation. By comparing  to a predefined threshold g0, inference uncertainty is assessed as high if ,  is labelled by PRU as demanded with newly generated data pair {} to be added in the training data pool in LMF. Otherwise, if  is smaller than the threshold,  is discarded without labelling. Whenever there are a batch of newly labelled data pair ready, retraining of FCNN is conducted.
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Fig. 3: Implementation of Gaussian based neural connection dropout for g calculation
The performance evaluation of model training and retraining/finetuning using on-demand labelled data is presented in [4], and compared with the random selection of data. 
Challenges related to accurate labelling of the training data 
For machine learning, especially in the context of positioning, without manual intervention, it is challenging to derive ground truth or the correct labelling information of the training data especially for important parameters or intermediate features such as the LOS/NLOS indicator. This challenge is valid even considering the use of PRUs for obtaining such information, due to the dynamic nature of the environment in which these nodes would be deployed. Challenges related to dynamic LOS blockages, lack of correlation between spatially collocated UEs with respect to LOS/NLOS, etc., provide additional layers of complexity to this issue. As shown in Fig. 4, consider an example with three PRUs 1-3 deployed in a network. PRU-1 has a LOS link to the gNB/TRP, PRU-2 has a static blocker which implies that the particular gNB/TRP-PRU link will always be NLOS, and PRU-3 has a mobile block. During measurement-1 time instance, the link with gNB/TRP is LOS and during measurement-2, the gNB/TRP is NLOS (or potentially even obstructed LOS / OLOS), with the link becoming LOS again during measurement-3 time instance.
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Fig. 4: Practical Deployment Scenario with Challenging Ground Truth Estimation for LOS/NLOS
From RAN1 perspective, it is important to investigate solutions that would enable solutions to derive the correct labels of the ground truth data for positioning, without relying on manual intervention which might limit the scalability and applicability of AI/ML solutions. Such mechanisms are essential to ensure that the AI/ML based enhancements investigated as part of the study would closely reflect real-world deployments. It is also important to note that the accuracy of the labelled data would be the main factor that determines model performance.
Proposal-8: RAN1 to study further solutions for estimating accurate labels or ground truth for important intermediate features such as LOS/NLOS indicator in a real-world, dynamic environment using PRUs without manual intervention / labelling.

1.1.1 Challenges related to availability of diverse data for AI/ML model 
The performance of AI/ML model for positioning use case is highly dependent on the way training is realized beforehand: including the selection of the AI/ML model as well the collected labelled data used for training. As mentioned in Sec. 2.4 of [4], assuming the availability of data from uniform or grid-based distribution of UEs in practical deployments is impractical.
Considering the positioning use case where the given AI/ML model is deployed either at the UE or Network side, several challenges should be handled to perform efficient AI/ML model training: 
· Positioning related dataset is collected at limited set of spatial and temporal conditions. However, the target positioning AIML model may exist in a variety of conditions such as RF environment, location, time.
· The procedure of data collection performed by the UE or the network can be time-consuming until reaching the targeted training dataset (in terms of size and quality)
· The network can provide additional data for the UE if AI/ML model details are known by the network. However, the quality of these provided additional data in terms of improving model performance is uncertain (for e.g., source, context). 

Therefore, in order to address such challenges, additional synthetically generated data, or Data Augmentation (DA) can be one possible way-forward. DA is well-known technique used in machine learning and can be used to increase the generalizability and robustness of trained data model, but the quality of the augmented data may be questionable.
Specifically, for AI/ML positioning, DA can be useful to estimate features related to localization such as LOS/NLOS classification or direct position estimation. For example, the target device may perform spatial interpolation and report corresponding quality of DA to NW to address challenges such as cost for positioning data collection, class imbalance and data scarcity.
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Fig. 5: Data augmentation example 
Observation-6: The AI/ML model deployed at UE used for positioning could be vendor specific or proprietary algorithm (e.g., black box).
Observation-7: The challenges related to AI/ML model training related to dataset collection, quality and required network assistance could be addressed with the help of additional synthetic data or data augmentation.
Proposal-9: RAN1 to study further data augmentation solutions and related impact on AI/ML model performance. 

1.1.2 Challenges related to AI/ML model testing and validation 
As discussed in the Rel-18 study item [1], it is important study to the potential specification impact of the AIML model validation and testing for the given use case.
Considering the positioning use case where the given AI/ML model is deployed either at the UE side or network side, it is relevant to understand how to test and validate the model potentially without knowing the model details. Specifically, it is expected that when the ML model is deployed at the UE side, there would be multiple challenges associated to test/validate the UE AI/ML model. Few of them are listed here:
· UE might not prefer to expose the AI/ML model details used for positioning, which could be implementation-specific. 
· The network would not have any knowledge about the performance in terms of positioning accuracy of the UE-based AI/ML model. 
· The UE might encounter a new environment that has significantly different characteristics from the environment where the AI/ML model is trained. In such scenarios, it would be beneficial for the network or UE to validate or test the performance of the AI/ML model before using it for inference.
Thus, network would want to validate or test the performance of the AI/ML model, to determine how reliable, the UE-based positioning estimates are, e.g., to respond to a positioning service request with certain QoS. For this, the required data or “labelled data” could be possibility make it available at the UE by the network to test/validate the accuracy performance of the model. In machine learning, process of testing and validation of ML models is well defined and can be represents in Fig. 6. Typically, the training data set is split into non-overlapping training, test, and validation data sets. As the name describes, training data set is used for training of the ML model. Test data set is used to evaluate the accuracy of the ML model training, while validation dataset is used to obtain accuracy of the model after the training. ML model could be described as a function with parameters , input , and output  i.e., 
One example of validation would be, taking the validation dataset, i.e., (, ), and comparing the neural network output with the validation labels i.e., 
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Fig. 6: Testing and validation of AIML Model
Specifically for the one-step or two step positioning as mentioned in [5], the testing and validation would be required. For example, in one-step positioning, to increase the confidence on the training data and the model output the intermediate feature extraction shall be test/validate against the “label data”. The “labels” are de facto trusted and thus are the ground truth and example of such labels could be true LOS/NLOS classification or true location of UE. Data labelling is not for free, it typically requires external gears/devices support for an in-field measurement. Positioning reference unit (PRU) which was introduced and discussed in 3GPP Release 17 in RAN1 #105e, is intrinsically suitable to accommodate real-world measurement and provides labels for AIML based model. For example, network assistance can be used to provide the PRU positioning measurement report to UE with the true labels to test/validate the given AIML model without knowing the details of AIML model at the UE.
Observation-8: The AI/ML model deployed at UE used for positioning could be implementation-specific.
Observation-9: Labelled data is required to test/validate the AI/ML model to increase the confidence of the model.
Proposal-10: RAN1 to study further solutions for the test and validation of UE-based AI/ML model by employing PRU labelled measurement. 

Scenario-dependent Positioning Approach
As discussed earlier, there are two potential approaches for AI/ML solutions being discussed in 3GPP RAN1, which includes the one-step / direct and two-step / indirect positioning [5]. While the main goal of both of these approaches is to derive UE location with high accuracy, there are various ways in which this objective could be achieved. Currently, it is expected that each positioning approach would be considered for a particular scenario, and performance evaluated in terms of model complexity and positioning accuracy. However, such considerations do not take into the fact that different UEs might be traversing through different scenarios as part of its normal operation. Thus, evaluating positioning approaches from the standpoint of a particular scenario might not provide the complete picture.
As the evaluation results related to scenario dependence of positioning approaches shown in [4] indicate, there is significant scenario dependence – in terms of data used for model training as well as the overall radio environment in terms of clutter and NLOS occurrence. This problem requires further investigation, especially in the context of enabling the network and the UE to determine the appropriate positioning approach, depending on KPIs such as positioning accuracy and QoS, as well as UE capabilities.
Observation-10: There is significant scenario dependence – in terms of data used for model training as well as the overall radio environment in terms of clutter and NLOS occurrence.
Proposal-11: RAN1 to study further solutions that enable the network and the UE to determine the appropriate positioning approach, depending on KPIs such as positioning accuracy and QoS, as well as UE capabilities.

Network-based Feature Selection for UE-based Positioning Accuracy Improvements
AI/ML algorithms for classifying the channels as LOS or NLOS typically make use of the fact that the channel measurements or CIRs look different for LOS and NLOS links. Such differences are numerically expressed through the values of relevant features extracted from CIRs. For example, ​NLOS CIRs are usually associated to a higher delay spread, a less peaky CIR shape, a lower strongest-to-mean power ratio, a higher rise time, etc.​
However, the radio environment can be very diverse among different scenarios such as due to size, distribution, and material of the objects or blockers leading to differences in penetration, reflection, and diffraction of radio signals from such objects. Furthermore, available bandwidth, e.g., depending on the capability of the UE, impacts the shape of the CIRs significantly by determining their time resolution and further affecting the features extracted from CIRs.
To illustrate, as can be seen from Fig. 7, RMS delay spread can be used as  a distinguishing channel feature for LOS/NLOS classification when 500 MHz of BW is available in Scenario 1 (Fig. 7.a). Whereas its distinguishing ability is degraded for 50 MHz or lower BW in Scenario 1. On the other hand, in Scenario 2 (Fig. 7.b), RMS delay spread is not a good feature for classification even for a 500 MHz of available bandwidth.
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(a) Scenario 1
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(b) Scenario 2
Fig. 7: Distribution of RMS delay spread for LOS vs NLOS measurements with different available bandwidths in (a) Scenario 1 and (b) Scenario 2.
It is evident from the above discussion that the optimal selection of channel features to be used for LOS/NLOS classification is highly dependent on the environment setting and the available bandwidth of the channel for the measurements. 
To address this issue, network can determine a (ranked) set of features associated with a given setting (e.g., a specific set of cells) and the bandwidth reported by the UE that is best suitable for LOS/NLOS classification purposes using AI/ML models. Some examples of such features signalled by the network could include mean excess delay, RMS delay spread, Kurtosis, etc.
Proposal-12: For LOS/NLOS classification, study solution considering network assistance to determine suitable set of inputs for UE-based AIML model for given setting, scenario and UE -capabilities. 

Positioning Accuracy Improvement Under Heavy NLOS Using Reinforcement Learning based Positioning Anchor Selection
One of the challenges in positioning is selection of positioning anchors to do positioning measurements. Various factors related to anchors have a direct impact on the positioning accuracy. These include the channel quality between the target UE and the anchors (e.g., LOS/NLOS, SINR), geometric arrangement of anchors impacting the geometric dilution of precision (GDOP), confidence of anchor locations, relative distance and/or speed between the anchors and the target UE. The anchor selection problem is further complicated when a set of heterogeneous anchors having different mobility and characteristics available at a given time:
· Mobility: Mobility conditions constantly impact the above factors, thus requiring optimization of dynamic selection of anchors for a mobile target UE. Further, new nodes enter and exit the range of the target UE as it moves.
· Heterogeneity of anchors: When combined with mobility, a variety of anchor types may become available at a given time: gNB/TRP, GNSS, UE, RSU, PRU, etc. Different anchor types might have different characteristics such as being static or mobile, having a known/not known location, or different interfaces (UL/DL/SL) to the target UE. Further, depending on the scenario, UEs might make use of different types of anchors. For example, when there is not sufficient number of TRPs available, UEs can resort to other UEs for positioning. Similarly, for ranging purposes, which is of high importance for V2X use cases, UEs can simply select other UEs nearby as anchors to do relative distance and/or angle estimations using sidelink.

Common approaches to solve the anchor selection problem rely on various channel metrics between the UEs and anchors, such as LOS/NLOS classification, ToA, etc. Based on such metrics, anchors are then (not) selected if they (not) satisfy certain criteria, e.g., a channel metric value below/above threshold. However, such approaches might become inefficient under mobile conditions, where the thresholds need to be dynamically adjusted, e.g., according to the varying channel conditions.
To help make efficient decisions on anchor selection under dynamically mobile conditions with a multitude of candidate anchors available, AI/ML methods could be instead utilized. In particular, reinforcement learning (RL) based methods have been shown to be successful in handling tasks in time-varying dynamic environments under uncertainty, and have recently found promising applications in the wireless communications domain, making them a strong candidate for this problem.
Proposal-13: Study reinforcement learning based methods for the anchor selection problem for AI/ML based positioning.

Utilizing Sidelink for AI/ML Data Collection
In order to collect data for training, validating, and testing AI/ML models, the traditional methods used by network might not be efficient in terms of signalling overhead over UL/DL and latency, due to following reasons: 
· First, network needs to acquire capability information of a UE, to make sure whether the UE can perform the required measurements at all. For example, a UE with reduced capabilities (RedCap) supporting only 10 MHz of bandwidth cannot perform positioning measurements on a 50 MHz channel. 
· Second, the requested UE may not be available to conduct and/or report the requested measurements even if it has the capability, such as because of the following reasons: in a mobile scenario, UE may simply leave the area of interest associated with the data collection or it may have other higher-priority traffic to transmit/receive. 
· Third, the reported measurements from a UE may not be useful for the AI/ML model when it includes outliers (input data that can mislead the training process), redundant, or unnecessary measurements (e.g., same or similar measurements reported by another UE previously).
· Fourth, in a dense or heavy traffic scenario, the network might be heavily loaded, limiting its ability to configure extensive measurement reports from UEs over the Uu interface.

Consequently, it may typically take a long list of steps for the network to collect required data, which might include UE capability information requests/reports and measurement requests/reports from a wide variety of UEs. The measurements reported by the UEs, which are used to generate the dataset for AI/ML model training might have significant overlaps, due to physical colocation or other attributes of the radio environment.

Based on the above discussion, it becomes evident that the current procedure for collecting data from the UEs for AI/ML purposes is not optimized. That is, using conventional procedures to collect data for AI/ML purposes might incur significant amount of signalling, and as a consequence, cause significant delays. Conventional procedures are also not efficient from network resource utilization point of view.
Observation-11: The current procedure for collecting data from the UEs for AI/ML purposes is not optimized, potentially incurring significant amount of signalling overhead and latency.
To overcome this problem, one of the approaches could be to exploit the sidelink interface that would enable cooperation among the UEs in order to efficiently collect and report the data required by the network.
Proposal-14: Study mechanisms to enable efficient data collection in terms of signaling overhead and latency, by exploiting the sidelink interface. 

Conclusion
In this contribution we make the following observations and proposals:
Observation-1: Collaboration levels NW-UE may be specified in relation to approaches A or B and whether the deployment of A or B is exclusively one-sided or not, i.e., if the full model resides only at the UE or NW side, or whether different parts of the model may reside at different sides. 
Observation-2: While there are clear benefits of training the model at the NW side (in terms of model robustness and complexity), the disadvantages of such approach should be considered before choosing or prioritizing one option as compared to the other.  
Observation-3: If the model training and inference is done by the UE, it would be challenging to ensure that the model performance is consistent across the UEs, even in scenarios where the same data is used for model training, validation, and testing.
Observation-4: Sub-use case definition Options 1 and 2 might have overlaps in terms of how the options are defined – for e.g., considering scenario as a problem space addressed as part of the study, however from the standards perspective it is important to define the input and output parameters of the AI/ML model.
Observation-5: It is expected that A. direct AI/ML vs. B. AI/ML-assisted positioning has different standardization requirements. For example, the two approaches have different requirements in terms of necessary and sufficient inputs: the latter may require that the TRP location is known, whereas the former typically does not. Similarly, the levels of collaboration between the UE and the NW (e.g. who defines and controls the inputs), and the model training and deployment aspects are also specific to the A vs. B.
Observation-6: The AI/ML model deployed at UE used for positioning could be vendor specific or proprietary algorithm (e.g., black box).
Observation-7: The challenges related to AI/ML model training related to dataset collection, quality and required network assistance could be addressed with the help of additional synthetic data or data augmentation.
Observation-8: The AI/ML model deployed at UE used for positioning could be implementation-specific.
Observation-9: Labelled data is required to test/validate the AI/ML model to increase the confidence of the model.
Observation-10: There is significant scenario dependence – in terms of data used for model training as well as the overall radio environment in terms of clutter and NLOS occurrence.
Observation-11: The current procedure for collecting data from the UEs for AI/ML purposes is not optimized, potentially incurring significant amount of signalling overhead and latency.

Proposal-1: Collaboration levels may be defined in relation to approaches A/B and specifically in relation to how A/B are deployed. For example, a set of collaboration levels may be considered:
· Approach A, Model-0 at UE: collaboration level a1;
· Approach A, Model-0 at NW: collaboration level a2;
· Approach A, partial Model-0 at NW, partial Model-0 at UE: collaboration level a3; and so on;
· Approach B, Model-1 at NW, Model-2 at UE: collaboration level a4; and so on;
Proposal-2: To decide whether model training should happen at the NW side, RAN1 may consider assessing if said model is scalable and robust i.e., can be deployed, performs well, and can be maintained simultaneously at multiple UEs. 
Proposal-3: Selecting entities for model training and inference should be decided jointly and should be at least use-case specific. 
· For example, if the inference is done by the NW, then the training should also be realized by the NW. Conversely, if the inference is done at the UE side, the model training may be done at the UE or NW side, depending on the use-case, approach (A/B) and UE capability.  
Proposal-4: Investigate mechanisms that enable the network to ensure that there are mechanisms to ensure consistent model performance across UEs.
Proposal-5: Option 2 may provide a useful categorization for standardization of the AI/ML model elements, where element may mean: training procedure, collaboration level, deployment, etc. If option 2 is adopted, then various sub-cases similar to the ones mentioned below can be defined:
1. Sub-use case 1:
a. Input: 
i. raw received P/SRS signal samples and
ii. raw transmitted P/SRS signal samples
iii. (optional) TRP location
b. Output (soft or hard): 
i. Selected (by the LMF) positioning measurements or 
ii. UE location. Note that in this case, an additional input (iii) consisting of the TRPs locations should be provided.
2. Sub-use case 2:
a. Input:
i. Post-processed received P/SRS signal samples, where post-processing is done autonomously by the positioning receiver (UE in DL, TRP in UL positioning).
ii. (optional) TRP location
b. Output (soft or hard): 
i. selected positioning measurements or 
ii. UE location. Note that in this case, an additional input (ii) consisting of the TRPs locations should be provided.
3. Sub-use case 3:
a. Input:
i. Post-processed received P/SRS signal samples, where post-processing is done by the positioning receiver (UE in DL, TRP in UL positioning) with help from the LMF. Specifically, the LMF indicates a preferred list of input features (e.g., CIR, CFR, LOS, etc.) which can be used by the model.
ii. (optional) TRP location.
b. Output (soft or hard): 
i. selected positioning measurements or 
ii. UE location. Note that in this case, an additional input (ii) consisting of the TRPs locations should be provided.
Proposal-6: RAN1 to study the radio environment and scenario dependence of using direct AI/ML vs. AI/ML-assisted positioning approaches.
Proposal-7: Model training, retraining or finetuning can be triggered when the model detects LOS/NLOS estimation uncertainty and subsequentially new data are labelled on-demand. 
Proposal-8: RAN1 to study further solutions for estimating accurate labels or ground truth for important intermediate features such as LOS/NLOS indicator in a real-world, dynamic environment using PRUs without manual intervention / labelling.
Proposal-9: RAN1 to study further data augmentation solutions and related impact on AI/ML model performance. 
Proposal-10: RAN1 to study further solutions for the test and validation of UE-based AI/ML model by employing PRU labelled measurement.
Proposal-11: RAN1 to study further solutions that enable the network and the UE to determine the appropriate positioning approach, depending on KPIs such as positioning accuracy and QoS, as well as UE capabilities.
Proposal-12: For LOS/NLOS classification, study solution considering network assistance to determine suitable set of inputs for UE-based AIML model for given setting, scenario and UE -capabilities.
Proposal-13: Study reinforcement learning based methods for the anchor selection problem for AI/ML based positioning.
Proposal-14: Study mechanisms to enable efficient data collection in terms of signaling overhead and latency, by exploiting the sidelink interface. 
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