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Introduction
Rel-18 study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface, agreed in [1], includes a use case of positioning accuracy enhancement, and objectives of the SI is as follows,  
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation. 
· Characterize lifecycle management of AI/ML model: e.g.,  model training, model deployment , model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

For the use cases under consideration:

1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.

2) Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
· PHY layer aspects, e.g., (RAN1)
· Consider aspects related to, e.g., the potential specification of the AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases
· Use case and collaboration level specific specification impact, such as new signalling, means for training and validation data assistance, assistance information, measurement, and feedback
· Protocol aspects, e.g., (RAN2) - RAN2 only starts the work after there is sufficient progress on the use case study in RAN1 
·  Consider aspects related to, e.g., capability indication, configuration and control procedures (training/inference),  and management of data and AI/ML model, per RAN1 input 
· Collaboration level specific specification impact per use case 
· Interoperability and testability aspects, e.g., (RAN4) - RAN4 only starts the work after there is sufficient progress on use case study in RAN1 and RAN2
· Requirements and testing frameworks to validate AI/ML based performance enhancements and ensuring that UE and gNB with AI/ML meet or exceed the existing minimum requirements if applicable
· Consider the need and implications for AI/ML processing capabilities definition

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced




In this contribution, we mainly focus on proposals that were not agreed and topics for further study indicated as part of the agreements which were made as part of the RAN1-109-e meeting. Evaluation results for potential AI/ML based positioning accuracy enhancements are also presented.  
[bookmark: _Hlk510705081]General Evaluation Aspects
Deployment Scenarios and Simulation Assumptions
Deployment Scenarios 
Regarding the deployment scenario used for evaluations, the following agreement was made during RAN1-109-e meeting:
Agreement
For evaluation of AI/ML based positioning, at least the InF-DH sub-scenario is prioritized in the InF deployment scenario for FR1 and FR2.
As part of email discussions during the meeting, there were other scenarios considered such as InF-SH, DL and SL, along with UMi and UMa, as indicated in the following proposal that was discussed but not agreed.
[bookmark: _Hlk103700668]Proposal 2.1.4-3
For evaluation of AI/ML based positioning in InF scenario, which InF sub-scenario should be prioritized in addition to InF-DH?
Alt 1. None. (InF-DH with two clutter settings {60%, 6m, 2m} and {40%, 2m, 2m} are adequate)
Alt 2. InF-SH (i.e., same as in TR38.857)
Alt 3. InF-DL (e.g., BS height = 1.5 m as in TR38.901 calibration)
Alt 4. InF-SL (e.g., Clutter parameters = {20%, 2m, 10m} as in TR38.857, BS height = 1.5 m as in TR38.901 calibration)

Considering the significant number of aspects that needs to be considered as part of the study such as various simulation assumptions, methodology and performance aspects, it would be beneficial for RAN1 to limit the Rel-18 study on AI/ML for positioning accuracy enhancements to InF-DH sub-scenario. Thus, it could be agreed that other sub-scenarios would not be evaluated as part of the Rel-18 study item.
Observation-1: Considering the significant number of aspects that needs to be considered as part of the study such as various simulation assumptions, methodology and performance aspects, it would be beneficial for RAN1 to limit the Rel-18 study on AI/ML for positioning accuracy enhancements to InF-DH sub-scenario.
Proposal-1: For evaluation of AI/ML based positioning, only InF-DH sub-scenario is considered as part of the Rel-18 study item.

Simulation Methodology 
As part of the simulation methodology for dataset construction discussion during RAN1-109-e meeting, some of the key open topics related to network synchronization, Rx and Tx timing error, and clock drift modelling. The related open proposals which were not agreed during the meeting are as shown below:
[bookmark: _Hlk104367439]Proposal 2.3.4-4
For evaluation of AI/ML based positioning, the dataset construction may take into account the network synchronization and the UE/Gnb RX and TX timing error by reusing the assumptions in TR 38.857 Table 6-1 (see “Network synchronization”, “UE/Gnb RX and TX timing error”).
Proposal 2.3.4-5
For evaluation of AI/ML based positioning, UE clock drift is optionally modelled in the dataset construction.
· It’s up to proponent companies to describe the modeling method of UE clock drift and submit the evaluation results.  

For UE and gNB Rx and Tx timing error, there is already existing assumptions available in TR 38.857 [2] Table 6-1. Thus, it is possible to reuse the existing assumptions to optionally model the timing errors, if required. However, there are no existing assumptions that has been agreed for modelling UE clock drift. The benefits of modelling the UE clock drift together with other possible implementation issues could be studied further. The benefits of modelling such issues and the application of AI/ML for positioning under these constraints could be studied further.
Observation-2: Currently, there are no existing agreed assumptions for modelling issues introduced by implementation-specific issues such as UE clock drift. However it would be beneficial for RAN1 to study such issues further.
Proposal-2: For evaluation of AI/ML based positioning, the dataset construction can optionally utilize the network synchronization and the UE/Gnb RX and TX timing error by reusing the assumptions in TR 38.857 Table 6-1.
Proposal-3: RAN1 to study further issues introduced by implementation-specific issues such as UE clock drift, and develop an evaluation framework for AI/ML based positioning.

Performance Targets and Key Performance Indicators (KPI)
AI/ML Complexity
Regarding the AI/ML complexity topic for positioning, the following agreement was made during RAN1-109-e meeting, in particular clarifying the metric used for reporting computational complexity:
Agreement
For evaluation of AI/ML based positioning, the KPI include the model complexity and computational complexity.
· FFS: the details of model complexity and computational complexity

Agreement
For evaluation of AI/ML based positioning, the computational complexity can be reported via the metric of floating point operations (FLOPs).
· Note: For AI/ML assisted methods, computational complexity for the AI/ML model is only one component of the overall complexity for estimating the UE’s location.
· Note: Other metrics to measure the computational complexity are not precluded.

However, one aspect that is important to consider is the trade-off between model / computational complexity and model performance. For e.g., a solution with low model complexity and computational complexity (for e.g., in terms of FLOPs) with moderate positioning accuracy improvements as compared to the baseline scheme could be important in some scenarios as compared to a solution with high model complexity and computational complexity with high positioning accuracy improvement. Such scenarios could include ones where reduced capability UEs are deployed or with flexible positioning accuracy requirements.
For model complexity, the following proposal was discussed during the meeting, however, it was not agreed:
Proposal 7.3.1-3
For evaluation of AI/ML based positioning, the model complexity can be reported via the metric of AI/ML memory storage, in terms of the AI/ML model size and/or the number of AI/ML parameters.

On the topic of model complexity, we have presented various metrics for RAN1 to consider as part of our contribution in Agenda Item 9.2.1 [3]. It would be beneficial to have common assumptions related to model complexity across use cases as part of the study item. Thus, the model complexity metrics agreed as part of Agenda Item 9.2.1 could be reused for the positioning accuracy improvement use case.
Proposal-4: The model complexity metrics agreed as part of Agenda Item 9.2.1 could be reused for the positioning accuracy improvement use case.

Generalization of AI/ML Models
AI/ML model generalization was one topic that was discussed extensively during RAN1-109-e meeting, and the following agreement was made:
Agreement
For evaluation of AI/ML based positioning, companies are encouraged to evaluate the model generalization.
· FFS: the metrics for evaluating the model generalization (e.g., model performance based on agreed KPIs under different settings)

The details of the metrics that could be used for evaluating model generalization requires further study. From our perspective, it is important to clarify what type of generalization is relevant for positioning: for e.g., Option-1 could be comparing the performance in terms of positioning accuracy of a model trained using data from InF-DH scenario and tested using InF-SH or UMi scenarios. Option-2 could be comparing the performance of model trained using InF-DH scenario in a particular simulation drop with a certain set of small-scale and large-scale parameters, and tested using a different simulation drop of the same scenario with either the same or different sets of small-scale and large-scale parameters. In our opinion, the generalization capability of Option-1 is not relevant, whereas Option-2 is relevant and important. The model performance for Option-2 could be evaluated using horizontal positioning accuracy as the key metric.
Proposal-5: For the evaluation of model generalization aspects of AI/ML based positioning, the model performance in terms of horizontal positioning accuracy could be evaluated for a model trained using InF-DH scenario in a particular simulation drop with a certain set of small-scale and large-scale parameters and tested using a different simulation drop of the same scenario with either the same or different sets of small-scale and large-scale parameters.
· Other InF scenarios could also be considered as part of generalization evaluations.

Other Performance Metrics: Optional and Intermediate KPIs
Other performance metrics such as optional and intermediate KPIs were discussed during RAN1-109-e meeting, and the following proposals which were not agreed were made during the meeting:
Proposal 7.3.1-1
For evaluation of AI/ML assisted positioning, companies are encouraged to report the intermediate KPI(s), which provides the accuracy of the AI/ML model output.
· For example, accuracy of LOS/NLOS identification, accuracy of timing and/or angle of measurement, accuracy of the likelihood measurement. 
Proposal 3.6.1-1
For evaluation of AI/ML based positioning, the following are optional KPI to report by participating companies:
· Latency for estimating the position of the UE
· Radio resource efficiency
· higher layer signaling overhead

Intermediate KPIs are particularly relevant in the context of two-step or AI/ML assisted positioning, where the output of an AI/ML model could be used for deriving the UE location. As discussed in [4], there are various scenarios where two-step or AI/ML assisted positioning could perform better than direct or one-step positioning method. Thus, for such scenarios, it is important to quantify the intermediate KPIs together with the final KPI of horizontal positioning accuracy. Reporting intermediate KPIs will also help in having a better understanding of their impact on the final KPI of horizontal positioning error.
Proposal-6: For evaluation of two-step or AI/ML assisted positioning, intermediate KPI(s) such as the accuracy of LOS/NLOS identification, accuracy of timing and/or angle of measurement, accuracy of the likelihood measurement, etc., should be reported together with the horizontal positioning accuracy.
Various optional KPIs such as position estimation latency, radio resource efficiency – especially in terms of additional overhead for training/testing models and higher layer signaling overhead were proposed as part of the study. The position estimation latency is important since it provides additional clarity in terms of the cost of model complexity. For e.g., models with higher complexity and computational overhead could induce higher latency for position estimation. Radio resource efficiency KPI could take into account the overhead in terms of radio resource consumption for training and test data exchange between the network and the UE. It could also consider other factors such as positioning reference signal density. Higher layer signaling overhead could take into account the additional signaling required for a particular AI/ML based solution in comparison to the Rel-17 positioning mechanisms.
Proposal-7: Optional KPIs such as position estimation latency, radio resource efficiency and higher layer signaling overhead should be reported together with the horizontal positioning accuracy.
Sub-use cases for Positioning
As shown below, there were various proposals and questions raised during RAN1-109-e meeting in the context of sub-use cases for positioning. However, this is still an open topic that requires further discussions since no agreements were made during the previous meeting.
Proposal 4.1.1-1
For the purpose of evaluating AI/ML based positioning, only consider sub-use cases that use a single ML model. 
Proposal 4.1.1-2
For any sub-use case evaluated for AI/ML based positioning, the ML model may be located on the UE side or the network side.
Proposal 4.1.1-3
For the evaluation of AI/ML based positioning, one possible sub-use case uses the two-step approach:
· Step 1: the ML model is used to generate an output which is an intermediate quantity for position estimation. 
· FFS: possible measurement include: LOS/NLOS identification, TOA estimation;
· Step 2: Estimate the target UE’s position using an existing Rel-16/Rel-17 positioning method which utilizes the intermediate quantity. 

Proposal 4.1.1-4
For evaluation of AI/ML based positioning, one possible sub-use case uses the one-step approach where the ML model directly estimate the target UE’s position.
Question 4.1.1-5
For the two-step approach, the ML output is:
Option 1. LOS/NLOS identification
Option 2. LOS/NLOS identification and ToA
Option 3. AoA (for gNB side ML), AoD (for UE side ML)
Option 4. Other (please explain)

Question 4.1.1-6
For down-selection of sub-use cases, please indicate your preference between the following:
Option 1. One-step approach;
Option 2. Two-step approach;
 
The definition of sub-use cases together with an agreement on the list of potential sub-use cases should be a top priority for RAN1-110 meeting. However, this task should be handled as part of agenda item 9.2.4.2. The metrics for evaluating sub-use cases, including potential means for prioritizing sub-use cases should be discussed as part of agenda item 9.2.4.1.
Proposal-8: The definition of sub-use cases together with an agreement on the list of potential sub-use cases should be handled as part of agenda item 9.2.4.2.
Proposal-9: The metrics for evaluating sub-use cases, including potential means for prioritizing sub-use cases should be discussed as part of agenda item 9.2.4.1.

Dataset Related Aspects
During RAN1-109-e meeting, there were two aspects related to dataset that were discussed. One topic involved the use of real-world datasets as compared to simulated dataset, as indicated in the question below, which was discussed during the meeting:
Question 5.2-4
Should field data from actual deployment be used in the Rel-18 study item for the purpose of evaluating the performance of AI/ML based positioning?
There was also a further agreement on the use of simulated dataset, in the context of dataset size and UE distribution:
Agreement
For evaluation of AI/ML based positioning, details of the training dataset generation are to be reported by proponent company. The report may include (in addition to other selected settings, if applicable):
· The size of training dataset, for example, the total number of UEs in the evaluation area for generating training dataset;
· The distribution of UE location for generating the training dataset may be one of the following:
· Option 1: grid distribution, i.e., one training data is collected at the center of one small square grid, where, for example, the width of the square grid can be 0.25/0.5/1.0 m.
· Option 2: uniform distribution, i.e., the UE location is randomly and uniformly distributed in the evaluation area. 

The availability of good quality data for model training and testing/validation is one of the key challenges in machine learning, especially in the context of positioning, where obtaining the ground truth labels in terms of UE location, LOS / NLOS condition, etc., is challenging. These challenges are best understood through the evaluation of model performance using real-world data from actual deployments. They could also be emulated in a simulated environment by assuming the availability of a limited dataset which could be a subset of the grid-based or uniform distribution of UEs. As discussed in Sec. 3.1.3 of [4], there are various techniques such as data augmentation that needs to be applied in such scenarios in order to ensure sufficient model performance.
Observation-3: The availability of good quality data with sufficient diversity of positioning ground truth labels with accurate information, for model training and testing/validation is one of the key challenges in AI/ML based positioning.
Proposal-10: For evaluation of AI/ML based positioning, consider additional UE distribution options such as sparse or clustered deployment of UEs, while evaluating model performance.

Model Refinement / Tuning
As discussed in [3], for ML model training, the network or UE may use a pre-trained base (initial) ML model instead of a model with random weights. The base model can be refined/tuned using a small training dataset measured in the environment. The base model can be obtained from training with samples measured/simulated in an echo-chamber. In this case, the model is only trained in the LOS condition, and reusing the learned weights can be seen as transfer learning (domain adaptation). Although an echo-chamber is a general source domain, adaptation to new environment may need a large dataset measured in the deployed environment. Another option of obtaining base ML model is to use meta learning approach. Here, a general (meta) model is trained using the training samples measured in different environments.
Proposal-11: For evaluation of AI/ML based positioning, RAN1 should assess the need for standardizing the procedures for triggering and/or controlling the ML model adaptation and fine-tuning after model deployment.

Evaluation Results for Positioning Sub-Use Cases
Positioning Accuracy Improvement with Optimized Data Collection Using On-Demand Labelling and Efficient Training
Deployment Scenario and Simulation Assumptions 
AI/ML model training is essential for inference performance and computationally intensive and typically data hungry. How to evaluate and improve training efficiency is therefore important, especially taking into account the following agreement that was made during RAN1-109-e meeting:
Agreement
Companies are encouraged to study and provide inputs on potential specification impact at least for the following aspects of AI/ML approaches for sub use cases of AI/ML for positioning accuracy enhancement.
· AI/ML model training
· training data type/size
· training data source determination (e.g., UE/PRU/TRP)
· assistance signalling and procedure for training data collection

Simulation Setup and Dataset: 
LOS/NLOS detection is a typical sub use case in AI/ML based positioning enhancement applications, since it determines the proper choice of positioning approach e.g., using traditional non-AI/ML approach typically based on ToA, TDoA or AoA which are suitable only for LoS propagation cases, or fingerprint-matching, which is an approach based on AI/ML algorithms which are typically suitable for NLOS cases. 
Observation-4: LOS/NLOS detection is essential for determining the proper choice of positioning approach, for e.g., using traditional non-AI/ML approach typically based on ToA, TDoA or AoA which are mainly suitable for LoS propagation cases, or fingerprint-based approach which could be applied to heavy NLOS scenarios.
In practice, AI/ML based LOS/NLOS detector requires massive volume of data for training, retraining or finetuning to optimize its performance in deployment. As an initial investigation, we proposed assessing LOS/NLOS detector’s classification uncertainty on a given channel observation (e.g., CIR) and selectively label the data that current detector is unable to confidently classify, as the flowchart illustrated in Fig. 1. Labelling of LOS or NLOS in practice can be conducted by a positioning reference unit (PRU). 
For the study of the necessity of estimation-uncertainty assessment, we investigated the training efficiency between two approaches, i.e., traditional training with random data selection and training with deliberate selection on the data that current model cannot infer with high confidence. The data used for training is collected from an agreed simulation environment of InF-DH scenario with clutter setting of {40%, 2m, 2m}, with details listed in Table 1. 
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Fig. 1: Workflow of LOS/NLOS detection with detection uncertainty assessment and on-demand labelling

Channel observation data (for e.g., CIR) from 18 TRPs are combined for a generic model training using supervised learning. The two of the above-mentioned training approaches are conducted in parallel with their estimation accuracy monitored with the increase of training data. In traditional training approach, the data is randomly selected from the data pool to train the AI/ML model, so with the increase of training data, LOS/NLOS detection accuracy increase gradually. On the contrary, with on-demand training, channel observation is initially evaluated by the AI/ML model, if and only if the model is uncertain with its LOS/NLOS estimation, the data with their corresponding labels are then selected for model training, in contrary, data that current model can estimate with high confidence are not used for training the classifier model.

The two AI/ML models are considered herein for evaluation include the first model that is based on k-nearest neighbors (KNN) and the other model is fully connected neural network (FCNN).
Option-1: LOS/NLOS detection model is KNN typed:
· Input of KNN: CIR of [100,1] vector;
· In KNN, Euclidian distance is used as the metric to measure the distance of x to its k nearest neighbors that falls respectively to LOS (as class-0) and NLOS (as class-1). The hyperparameter k in KNN is set as 32.
· Output of KNN is the LOS/NLOS detection results.

Option-2: LOS/NLOS detection model is FCNN typed:
· Input of DNN: CIR of [100,1] vector;
· FCNN model consists of 4 hidden fully connected layers each with 100, 70, 70 and 70 neurons, respectively, ReLU is used as the activation function, Adam as the optimizer, neural connection dropout rate is 0.2 in the last hidden layers.
· Output of FCNN is a Boolean number indicating LOS and NLOS.

Table 1: Parameters used in the simulation setup.
	
	FR1 Specific Values 

	Channel model
	InF-DH

	Layout 
	Hall size
	InF-DH: 120x60 m

	
	BS locations
	18 BSs on a square lattice with spacing 20m, located 10m from the walls.

	
	Room height
	10m

	Number of macro sectors per site
	1

	Penetration loss
	0dB

	Path loss model
	NR_InF_DH

	UE horizontal drop procedure
	UE's are dropped in a uniform random fashion across the entire layout while adhering to specified constraints on minimum distances.

	UE antenna height
	Baseline: 1.5m

	UE mobility
	3km/h

	Min gNB-UE distance (2D), m
	randomCircle (gNBs are placed in a random circle located a given distance from the site location with min distance 1m.)

	gNB antenna height
	Baseline: 8m
(Optional): FFS

	Clutter parameters: {density r, height hc,size d_clutter}
	Low clutter density: {40%, 2m, 2m}

	Note 1: According to Table A.2.1-7 in 3GPP TR 38.802




Performance Evaluation 
Performance comparison between traditional training with random data selection and with on-demand labelled data are illustrated in Fig. 2 using KNN typed model and in Fig. 3 using FCNN, respectively. From the results, we can observe that if the model type is KNN, with the increase of data volume used for training, the LOS/NLOS estimation accuracy increases before eventually saturating. To reach a close-to-optimal accuracy level of 81 % for training based on random data selection, the number of required labelled data for training can be reduced by approximately 65% using on-demand labelling. When the model type is FCNN, similarly, to reach a close-to-optimal accuracy level of training based on random data selection like 79%, the number of required labelled data for training can also be roughly reduced by 65% using on-demand labelling.
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Fig. 2: Accuracy vs the number of required labelled data in training between using random data selection and using on-demand labelled data when the ML model is KNN
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Fig. 3: Accuracy vs the number of required labelled data in training between using random data selection and using on-demand labelled data when the ML model is FCNN 
Observation-5: if the model is KNN typed, with the increase of data volume used for training, the LOS/NLOS estimation accuracy climbs before it saturates. To reach a close-to-optimal accuracy level of training based on random data selection like 81%, the number of required labelled data for training can be roughly reduced by 65% using on-demand labelling.
Observation-6: if the model is FCNN typed, similarly, to reach a close-to-optimal accuracy level of training based on random data selection like 79%, the number of required labelled data for training can also be roughly reduced by 65% using on-demand labelling. 
It is noteworthy that for LOS/NLOS classification using KNN typed ML model, KNN’s intermedia results can be used directly to assess its estimation uncertainty without introducing extra computational complexity. While for FCNN typed ML model, taking the FCNN structure presented as option-b in Sec. 3.1.1 of [4] as an example, most of original NN parameters and intermediate results could be reused and only the last layer should be recalculated for estimation uncertainty assessment. As listed in Table 2, parameter number will increase from 0.24M (using random data selection) to 0.31M (using on-demand data selection) and FLOPs will increase from 2.38M to 4.33M accordingly. The gross number of training data for both training approaches is the same (13k samples).
Table 2: Computational complexity, model complexity and training dataset size.
	AI models
	FCNN training based on random data selection
	FCNN training based on on-demand labeled data

	FLOPs (floating point operations)
	2.38M
	4.33M

	Model size (parameter #)
	0.24M
	0.31M

	Training data requirements
	13k
	13k



Observation-7: In general, it is evident that the use of on-demand labelling significantly reduces the required labelled data during the training phase, with minimal added computational and model complexity.
Proposal-12: RAN1 to investigate further the use of on-demand labelling mechanisms for AI/ML based positioning accuracy enhancements. 

Scenario Dependence of Positioning Approaches
Deployment Scenario and Simulation Assumptions 
Evaluations related to the scenario dependence of positioning approaches, described in Sec. 3.2 of [4], is presented in this section. As part of these evaluations, InF-DH sub-scenario with {40%, 2m, 2m} and {60%, 6m, 2m} clutter densities are considered which is referred to as Scenario 1 and 2 in this document, respectively. Other parameters used for evaluations are as shown in Table 1.
One benchmark and two ML-based positioning methods are evaluated, with the high-level overview of these approaches depicted in Fig. 4. One of the ML-based methods and the benchmark method are associated with two-step positioning where an intermediate feature, i.e., ToA in this case, based on an input CIR which is, then, used for position estimation. The remaining ML-based positioning method is fingerprinting-based, also referred as one-step positioning, multiple CIRs are input to an ML method directly estimating the position, i.e., without any explicit intermediate feature estimation. 
The benchmark method employs a peak detection for ToA estimation. The index of the first peak of the CIR above a noise threshold is considered as ToA where the noise threshold is defined in terms of the maximum value of the CIR, formulated as:

with the noise threshold factor α which is optimized using training and validation data to deliver the lowest mean absolute ToA error. For the two-step positioning method, a CNN is used to estimate ToA based on an input CIR. For both two-step estimators, i.e., the ML-based and the benchmark, once ToAs are estimated for a UE associated with 18 TRPs, the closest 8 TRPs. i.e., lowest 8 ToA estimations, are selected to be used for position estimation. Eight ToA estimations leads to seven TDoA estimations which are used in a Taylor series expansion based least squares estimator described in "A Simple and Efficient Estimator for Hyperbolic Location" by Chan and Ho [5], Equations (5-7).
One-step positioning ML method comprises a CNN taking 18 CIRs associated with a UE as input and outputs the two-dimensional horizontal UE position estimation.
Two-step estimators requires CIR data labeled with ground-truth ToA while one-step estimator requires CIR data labeled with ground-truth position. The parameters of the three estimators, i.e., weight and biases for the ML estimators and the noise threshold for the peak detection estimators, are optimized based on training and validation data whereas their performances are evaluated based on test data that is different than training and validation data. The utilized data size and the complexity of the ML models are given in Table 7.
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a: Benchmark two-step positioning      	   	b: ML two-step positioning		        c: ML one-step positioning
Fig. 4: High-level overview of the benchmark and ML-based one-step and two-step positioning approaches.

Performance Evaluation 
[image: ]
Fig. 5: CDF of horizontal positioning error in Scenario 1 for random selection of training and test data
In this section, we evaluate the performance in terms of horizontal positioning error of the two different scenarios described earlier. Here we consider three schemes: ML based one-step / direct positioning (ML_CIR_One_Step), ML based two-step / AI/ML assisted positioning (ML_ToA_Two_Step) and benchmark two-step positioning (Peak_Detection). We also consider a dataset of over 10k samples obtained using a significantly large number of drops (over 50 drops). The small-scale / large-scale parameters and UE locations are assumed to be fixed during each drop. In order to take model generalization aspects into account, evaluation results were generated for ML models trained using: (1) a random selection of training and testing data from the overall dataset consisting of multiple drops, and (2) training and testing data is taken from different drops.
The Fig. 5 shows the CDF of horizontal positioning error in scenario 1 (40 % clutter) with random selection of training and testing data from the overall dataset consisting of multiple drops. Thus, the model was trained and tested using a diverse dataset consisting of various sets of UE locations, and small-/large-scale parameters. Table 3 shows a summary of the corresponding positioning error values for different percentiles. From the figure, we can observe that there is approximately 60 % reduction in mean horizontal positioning error for CIR-based one-step positioning as compared to the benchmark scheme. For ML-based two-step positioning, we can observe that the gains are marginal as compared to benchmark.
The Fig. 6 shows the CDF of horizontal positioning error in scenario 1 with the ML models trained using different drops for training and test data. Thus, in this case the training of the ML model is done using a dataset with different attributes as compared to testing. From the results, we can observe that the one-step approach has similar performance in terms of horizontal positioning error as compared to the case where the model is trained using randomly selected data from the dataset, which indicates the relative robustness of the model.



Table 3: Horizontal positioning error in Scenario 1 for random selection of training and test data
	Positioning Error (m)
	ML one-step
	ML two-step
	Peak detection (benchmark scheme)

	Mean
	3.90
	9.39
	9.62

	80th%
	5.63
	9.95
	10.74

	90th%
	7.24
	12.94
	15.31

	95th%
	8.99
	16.97
	21.04
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Fig. 6: CDF of horizontal positioning error in Scenario 1 with different drops for training and test data
Table 4: Horizontal positioning error in Scenario 1 with different drops for training and test data
	Positioning Error (m)
	ML one-step
	ML two-step
	Peak detection

	Mean
	3.86
	10.11
	9.33

	80th%
	5.38
	9.69
	10.78

	90th%
	7.02
	13.48
	15.03

	95th%
	8.56
	17.42
	20.24
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Fig. 7: CDF of horizontal positioning error in Scenario 2 with random selection of training and test data
The figs. 7 and 8 show the CDF of horizontal positioning error in scenario 2, and associated tables summarize the values for different percentiles. The trends in terms of the performance gains from using ML-based one-step and two-step positioning relative to the benchmark is similar to scenario 1. The gains in terms of positioning accuracy error reduction for one-step positioning is slightly higher (65 %) for this scenario as compared to scenario 1. It is relevant to note that due to the higher clutter density, scenario 2 has a significant higher number of NLOS links as compared to scenario 1. A summary of the mean horizontal positioning errors for scenarios 1 and 2, for various dataset selection for testing and training, normalized to the benchmark peak detection scheme is as shown in Fig. 9. Similar trends in terms of reduction of horizontal positioning error for ML-based mechanisms were observed for other percentiles. The results indicate the need for the network and the UE to be able to determine the appropriate positioning approach, based on the observed performance KPIs.
Table 5: Horizontal positioning error in Scenario 2 for random selection of training and test data
	Positioning Error (m)
	ML one-step
	ML two-step
	Peak detection

	Mean
	4.95
	12.84
	14.11

	80th%
	7.10
	13.88
	13.55

	90th%
	8.83
	18.25
	18.45

	95th%
	10.81
	23.10
	24.28
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Fig. 8: CDF of horizontal positioning error in Scenario 2 with different drops for training and test data
Table 6: Horizontal positioning error in Scenario 2 with different drops for training and test data
	Positioning Error (m)
	ML one-step
	ML two-step
	Peak detection

	Mean
	4.83
	13.35
	13.59

	80th%
	6.89
	14.16
	13.29

	90th%
	8.53
	18.54
	18.50

	95th%
	10.10
	23.68
	23.44



Observation-8: One-step positioning approach provides significant reduction in horizontal positioning error as compared to the benchmark approach, for medium (40 %) and high (60 %) clutter values.
Observation-9: The performance of ML-based positioning approaches is robust in terms of the training and testing datasets used for evaluations.
Proposal-13: RAN1 to consider the presented evaluation results and study further the need for the network and the UE to be able to determine the appropriate positioning approach, based on the observed performance KPIs.
[image: ]
Fig. 9: Summary of normalized mean horizontal positioning error values.
Table 7 summarizes the computational and model complexity values, along with the dataset size used for evaluations. We can observe that the model complexity and computational complexity for two-step positioning approach is significantly lower than one-step approach, with similar performance and marginal gains as compared to the benchmark scheme. It is expected that the performance of ML-based approaches will improve proportional to the increase in model and computational complexity. The trade-offs between these two important KPIs need to be further studied.
Table 7: Computational complexity, model complexity and training dataset size.
	
	Two-Step Positioning
	One-Step Positioning

	Model complexity (parameter size)
	3 K
	1.9M

	#FLOPs
	200 K
	19.2M

	Dataset size
	10k+
	10k+



Observation-10: The performance of ML-based approaches is expected to improve proportional to the increase in model and computational complexity.
Proposal-14: RAN1 to consider the trade-offs between the performance of ML-based approaches in terms of horizontal positioning accuracy with the cost in terms of model and computational complexity, as part of solution evaluations.
Conclusion
In this contribution we make the following observations and proposals:
Observation-1: Considering the significant number of aspects that needs to be considered as part of the study such as various simulation assumptions, methodology and performance aspects, it would be beneficial for RAN1 to limit the Rel-18 study on AI/ML for positioning accuracy enhancements to InF-DH sub-scenario.
Observation-2: Currently, there are no existing agreed assumptions for modelling issues introduced by implementation-specific issues such as UE clock drift. However, it would be beneficial for RAN1 to study such issues further.
Observation-3: The availability of good quality data with sufficient diversity of positioning ground truth labels with accurate information, for model training and testing/validation is one of the key challenges in AI/ML based positioning.
Observation-4: LOS/NLOS detection is essential for determining the proper choice of positioning approach, for e.g., using traditional non-AI/ML approach typically based on ToA, TDoA or AoA which are mainly suitable for LoS propagation cases, or fingerprint-based approach which could be applied to heavy NLOS scenarios.
Observation-5: if the model is KNN typed, with the increase of data volume used for training, the LOS/NLOS estimation accuracy climbs before it saturates. To reach a close-to-optimal accuracy level of training based on random data selection like 81%, the number of required labelled data for training can be roughly reduced by 65% using on-demand labelling.
Observation-6: if the model is FCNN typed, similarly, to reach a close-to-optimal accuracy level of training based on random data selection like 79%, the number of required labelled data for training can also be roughly reduced by 65% using on-demand labelling. 
Observation-7: In general, it is evident that the use of on-demand labelling significantly reduces the required labelled data during the training phase, with minimal added computational and model complexity.
Observation-8: One-step positioning approach provides significant reduction in horizontal positioning error as compared to the benchmark approach, for medium (40 %) and high (60 %) clutter values.
Observation-9: The performance of ML-based positioning approaches is robust in terms of the training and testing datasets used for evaluations.
Observation-10: The performance of ML-based approaches is expected to improve proportional to the increase in model and computational complexity.

Proposal-1: For evaluation of AI/ML based positioning, only InF-DH sub-scenario is considered as part of the Rel-18 study item.
Proposal-2: For evaluation of AI/ML based positioning, the dataset construction can optionally utilize the network synchronization and the UE/Gnb RX and TX timing error by reusing the assumptions in TR 38.857 Table 6-1.
Proposal-3: RAN1 to study further issues introduced by implementation-specific issues such as UE clock drift and develop an evaluation framework for AI/ML based positioning.
Proposal-4: The model complexity metrics agreed as part of Agenda Item 9.2.1 could be reused for the positioning accuracy improvement use case.
Proposal-5: For the evaluation of model generalization aspects of AI/ML based positioning, the model performance in terms of horizontal positioning accuracy could be evaluated for a model trained using InF-DH scenario in a particular simulation drop with a certain set of small-scale and large-scale parameters and tested using a different simulation drop of the same scenario with either the same or different sets of small-scale and large-scale parameters.
· Other InF scenarios could also be considered as part of generalization evaluations.
Proposal-6: For evaluation of two-step or AI/ML assisted positioning, intermediate KPI(s) such as the accuracy of LOS/NLOS identification, accuracy of timing and/or angle of measurement, accuracy of the likelihood measurement, etc., should be reported together with the horizontal positioning accuracy.
Proposal-7: Optional KPIs such as position estimation latency, radio resource efficiency and higher layer signaling overhead should be reported together with the horizontal positioning accuracy.
Proposal-8: The definition of sub-use cases together with an agreement on the list of potential sub-use cases should be handled as part of agenda item 9.2.4.2.
Proposal-9: The metrics for evaluating sub-use cases, including potential means for prioritizing sub-use cases should be discussed as part of agenda item 9.2.4.1.
Proposal-10: For evaluation of AI/ML based positioning, consider additional UE distribution options such as sparse or clustered deployment of UEs, while evaluating model performance.
Proposal-11: For evaluation of AI/ML based positioning, RAN1 should assess the need for standardizing the procedures for triggering and/or controlling the ML model adaptation and fine-tuning after model deployment.
Proposal-12: RAN1 to investigate further the use of on-demand labelling mechanisms for AI/ML based positioning accuracy enhancements. 
Proposal-13: RAN1 to consider the presented evaluation results and study further the need for the network and the UE to be able to determine the appropriate positioning approach, based on the observed performance KPIs.
Proposal-14: RAN1 to consider the trade-offs between the performance of ML-based approaches in terms of horizontal positioning accuracy with the cost in terms of model and computational complexity, as part of solution evaluations.
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