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Introduction
In RAN1#109-e AI/ML for beam management, it has the following agreements and conclusions:
	Agreement

1. For AI/ML-based beam management, support BM-Case1 and BM-Case2 for characterization and baseline performance evaluations
· BM-Case1: Spatial-domain DL beam prediction for Set A of beams based on measurement results of Set B of beams
· BM-Case2: Temporal DL beam prediction for Set A of beams based on the historic measurement results of Set B of beams
· FFS: details of BM-Case1 and BM-Case2; FFS: other sub use cases
Note: For BM-Case1 and BM-Case2, Beams in Set A and Set B can be in the same Frequency Range


2. For the sub use case BM-Case1, consider both Alt.1 and Alt.2 for further study:
· Alt.1: AI/ML inference at NW side
· Alt.2: AI/ML inference at UE side

3. Regarding the sub use case BM-Case2, the measurement results of K (K>=1) latest measurement instances are used for AI/ML model input:
· The value of K is up to companies

4. Regarding the sub use case BM-Case2, AI/ML model output should be F predictions for F future time instances, where each prediction is for each time instance. 
· At least F = 1
· The other value(s) of F is up to companies

Conclusion: 
1. For the sub use case BM-Case1, consider the following alternatives for further study:
· Alt.1: Set B is a subset of Set A
· FFS: the number of beams in Set A and B
· FFS: how to determine Set B out of the beams in Set A (e.g., fixed pattern, random pattern, …)
· Alt.2: Set A and Set B are different (e.g. Set A consists of narrow beams and Set B consists of wide beams)
· FFS: the number of beams in Set A and B
· FFS: QCL relation between beams in Set A and beams in Set B
· FFS: construction of Set B (e.g., regular pre-defined codebook, codebook other than regular pre-defined one)
Note1: Set A is for DL beam prediction and Set B is for DL beam measurement.
Note2: The narrow and wide beam terminology is for SI discussion only and have no specification impact
Note3: The codebook constructions of Set A and Set B can be clarified by the companies.

2. Regarding the sub use case BM-Case1, further study the following alternatives for AI/ML input:
· Alt.1: Only L1-RSRP measurement based on Set B
· Alt.2: L1-RSRP measurement based on Set B and assistance information
FFS: Assistance information. The following were mentioned by companions in the discussion:  Tx and/or Rx beam shape information (e.g., Tx and/or Rx beam pattern, Tx and/or Rx beam boresight direction (azimuth and elevation), 3dB beamwidth, etc.), expected Tx and/or Rx beam for the prediction (e.g., expected Tx and/or Rx angle, Tx and/or Rx beam ID for the prediction), UE position information, UE direction information, Tx beam usage information, UE orientation information, etc.
 Note: The provision of assistance information may be infeasible due to the concern of disclosing proprietary information to the other side.
· Alt.3: CIR based on Set B
· Alt.4: L1-RSRP measurement based on Set B and the corresponding DL Tx and/or Rx beam ID
Note1: It is up to companies to provide other alternative(s) including the combination of some alternatives
Note2: All the inputs are “nominal” and only for discussion purpose.

3. For the sub use case BM-Case2, further study the following alternatives with potential down-selection:
· Alt.1: Set A and Set B are different (e.g. Set A consists of narrow beams and Set B consists of wide beams)
· FFS: QCL relation between beams in Set A and beams in Set B
· Alt.2: Set B is a subset of Set A (Set A and Set B are not the same)
· FFS: how to determine Set B out of the beams in Set A (e.g., fixed pattern, random pattern, …)
· Alt.3: Set A and Set B are the same
Note1: Predicted beam(s) are selected from Set A and measured beams used as input are selected from Set B.
Note2: It is up to companies to provide other alternative(s)
Note3: The narrow and wide beam terminology is for SI discussion only and have no specification impact
 
4. Regarding the sub use case BM-Case2, further study the following alternatives of measurement results for AI/ML input (for each past measurement instance):
· Alt.1: Only L1-RSRP measurement based on Set B
· Alt 2: L1-RSRP measurement based on Set B and assistance information
· FFS: Assistance information. The following were mentioned by companies in the discussion:, Tx and/or Rx beam angle, position information, UE direction information, positioning-related measurement (such as Multi-RTT), expected Tx and/or Rx beam/occasion for the prediction (e.g., expected Tx and/or Rx beam angle for the prediction, expected occasions of the prediction), Tx and/or Rx  beam shape information (e.g., Tx and/or Rx beam pattern, Tx and/or Rx beam pointing angles beam boresight directions (azimuth and elevation), 3dB beamwidth, etc.) , increase ratio of L1-RSRP for best N beams, UE orientation information
· Note: The provision of assistance information may be infeasible due to the concern of disclosing proprietary information to the other side.
· Alt.3: L1-RSRP measurement based on Set B and the corresponding DL Tx and/or Rx beam ID
Note1: It is up to companies to provide other alternative(s) including the combination of some alternatives
Note2: All the inputs are “nominal” and only for discussion purpose.



In this contribution, we further discuss the details of several sub-use cases for BM and the corresponding potential specification impact. 
[bookmark: _Ref110848136]BM-Case1: Spatial Domain Beam Prediction
AI/ML-based beam prediction involves predicting the best beam(s) or predicting the ranking or other quantities (i.e. RSRP(s)) of all beams based on a limited set of measurements. For spatial domain prediction, a limited set of TX beams, or RX beams, or TX-RX beam pairs are measured by the UE, and the best beam or beam pair for the UE is determined based on that limited set of measured beams. In spatial domain beam prediction, the limited set (or reduced set) of measurements generally includes beam measurements that do not contain any historical information and therefore do not enable any tracking of the time dimension of the channel. 
Model output
One general discussion point for both sub-use cases is the ML model output – certain predicted quantities for each beam in Set A. In RAN1#109-e, the following related proposal has been discussed but not agreed upon due to a lack of clarity on what each alternative represents. FL Proposal 2-4c: Regarding the sub use case BM-Case1, further study the following alternatives for AI/ML output:
Alt.1: Tx and/or Rx Beam ID(s) and/or the predicted L1-RSRP of the predicted Top-N1 DL Tx and/or Rx beams 
FFS: how to select Top-N1 DL Tx and/or Rx beams (e.g., L1-RSRP higher than a threshold, a sum probability of being the best beams higher than a threshold.)  
Alt.2: Tx and/or Rx Beam ID(s) of the predicted Top-N1 DL Tx and/or Rx beams and other information 
FFS: other information (e.g., probability for the beam to be the best beam, an updated set B)
Alt.3: The predicted RSRP corresponding to the expected Tx and/or Rx beam direction which is input to the model.
Alt.4: Tx and/or Rx Beam angle(s) and the predicted L1-RSRP (optional) of the predicted Top-N1 DL Tx and/or Rx beams
Note1: It is up to companies to provide other alternative(s) 
Note2: Beam ID is only used for discussion purpose
Note3: All the outputs are “nominal” and only for discussion purpose


The followings are our understandings of each proposed output alternative:
· Alt.1: Predicting the best beam ID for Set A is a classification problem, and given Set B beam RSRP to predict the beam RSRP for Set A is a regression or an imaging inverse problem. These two output alternatives should be part of the starting point of the BM study. 

In our understanding, in the model inference stage, selecting the Top-N1 beams by using the threshold like predicted RSRP higher than an absolute , or the predicted probability of being the best beams higher than an absolute  is not rigorous because 
1) For the (or part of the) predicted beams that have not been measured, there is no such absolute RSRP  for UEs located at random positions. If such RSRP threshold exists, it should depend on the measured beam RSRPs from Set B – the predicted N1 beam RSRP should be no less than the maximum RSRP from the measurements in Set B.

2) In some use cases, multiple candidate beams can share a similar predicted probability of being the best beam (i.e. multiple beams are equally good), and the predicted probability for each beam can be relatively low. Therefore, there is no such absolute probability  for down-selection and there is no way to verify the prediction probability in the model inference stage. 
If the model inference starts, it implies the model performance has been verified/validated, and the predicted best beam should be closed to the ground truth. Since the purpose of N1>1 is to increase the prediction successful probability, here the N1 can be simply a fixed number. 

Moreover, the definition of “sum probability” is not clear and it seems like a cumulated value over multiple time slots and hence it should be considered for temporal domain beam prediction. 

On the other hand, considering the NW-UE collaboration level y/z - signalling-based collaboration without/with model transfer, such absolute thresholds  will be useful for model validation if the validation result can be accumulated over multiple time slots. 

Observation 1: For BM-Case1, it may be feasible to consider Tx and/or Rx Beam ID(s) and/or the predicted L1-RSRP of the predicted Top-N1 DL Tx and/or Rx beams as one alternative of ML model output. 
· Alt.2: Here, Tx (and/or Rx) beams of the predicted Top-N1 Tx (and/or Rx) beams can be determined in the output of the ML model, and some additional information can also be available at the output. We think this is a feasible alternative. We have demonstrated that the QoS-based beam prediction will be useful to improve the system throughput where the “other information” can be a QoS-based metric of the predicted beams. The other information mentioned in the above FL proposal, “probability for the beam to be the best beam,” overlaps with Alt.1; the definition of “updated set B” is unclear, and it seems like a prediction quantity for temporal domain beam prediction. In summary, there may be other variants of other information at the output, which could be additional information to Top-N1 beams or information that allow determining Top-N1 beams, and RAN1 shall further investigate such options. 

Observation 2: For the sub-use case BM-Case1, depending on the ML model used, the model may output other information (e.g., a QoS based metric of Tx beams) which are useful to determine Top-N1 beams or to report additional parameters other than to Top-N1 beams.  
· Alt.3: to our reading, the predicted RSRP corresponding to the expected Tx and/or Rx beam direction which is input to the model can also categorize within Alt.2 and is not required to list as a separate alternative. Or else, the proponent companies should clarify what is the desired eventual model output.
 
· Alt.4: We understand that if the beam Set A contains very refined beams/beam pairs (beam with a very narrow beam pattern) – quantize the beam angle space with fine enough angle resolutions, then predicting the beam ID for Set A is essentially equivalent to predicting the beam angles in the sense that the system performance should be nearly the same for both cases. This is because the predicted beam in a Set A with very refined beams should have very closed RSRP compared to the beam from the predicted angles. Therefore, we don’t see the angle prediction should be considered as a different separate model output category. 

Regarding the sub-use case BM-Case1, further study the following alternatives for AI/ML output:
· Option 1: Tx and/or Rx Beam ID(s) and/or the predicted L1-RSRP of the predicted Top-N1 DL Tx and/or Rx beams 
· For L1-RSRP prediction, the N1 selection threshold should depend on the measurements from Set B
· For Beam ID prediction, N1 should be a fixed value.
· FFS: the value for  and N1.
· Option 2: Tx and/or Rx Beam ID(s) of the predicted Top-N1 DL Tx and/or Rx beams and other information 
· The other information can be used to derive Top-N1 DL Tx and/or Rx beams or considered as additional information 
· FFS: other information (e.g., a QoS based metric, beam angles)

Based on the RAN1#109e conclusions, considering different input/output of the machine learning model, and different entities to do model training and inference, we will try to discuss the detail for the following Set A/B categories:
1. Set B is a subset of Set A.
2. Set A and Set B are different.

Depending on what are the elements in Set A/B, the discussion detail for BM-Case1 will be different. Therefore, we will further divide the discussion based on three different Set A/B: 
· Set A/B are DL Tx beams 
· Set A/B are DL Rx beams 
· Set A/B are DL Tx-Rx beam pairs 

The following sections are arranged so that different combinations of the above possibilities are discussed separately.
[bookmark: _Ref110765891]Set A/B are DL Tx beams 
The ML model detail for Spatial DL Tx beam prediction can be referred in [1]. 
[bookmark: _Ref110604378]Set B is a subset of Set A 
[bookmark: _Ref110592412]Model output : Set A beam ID/RSRP (Option 1) & Model input : Set B beam RSRP and Assistant info 
Figure 1 shows the basic idea of an ML model using Set B beam RSRP as input and Set A beam ID/RSRP as output, where the beam Set B is a subset of beam Set A. Figure 1 : Set B beam RSRP + assistant info as input, Set A beam ID/RSRP as output. In the model input, blue solid squares are the subset of measured beams as Set B; all the squares are Set A; orange solid square is the predicted best beam in Set A. 
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Model inference - NW side
NW applying a ML model for beam prediction in spatial domain may seem more natural as beam grid related information is mainly available at the network side. Here, model training may also take place at the network node. 
In certain cases, multiple models can be trained to be customized for different beam grids for Set A (i.e. number of beams, beam boresight angles, beam main lobe, side lobes, etc.). For any given Set A, multiple models can be further trained with different choices of Set B beam pattern (here beam pattern means the number of beams and the selection of measured beams from Set A). Each individual trained model hence will have the maximized prediction performance as NW can pick the model to match the actual transmitted beams during inference. 
Alternatively, for any given Set A, NW can train one model which can be used for various kinds of input - different Set B with different numbers of beams as well as different selections of measured beams from Set A. In this case, the model complexity may increase and the model performance will drop compared to the model trained with fixed Set A/B, but the model selection procedure can be simplified although this might not be a big issue for NW. 
In any case, it is up to NW to choose how to train the model and how to select the Set B pattern, and the model training method and the design of Set A/B is transparent to UE. 
Observation 3: When the BM-Case1 applied at the network side, training and inference of the models can be within the network side. 
· With site-specific Set A, if fixed Set B is used, the prediction performance may be better, and the model has a lower complexity. 
· With site-specific Set A, if randomized Set B is used, the prediction performance may not be good, and the model has a lower complexity. 
· Model management may be transparent to the UE. 
Further compare the beam prediction performance/tradeoff between training and testing model with fixed Set B and training and testing model with randomized Set B.
The prediction output for Set A can be leveraged by NW for beam management including inter-cell beam management or L1/2 centric inter-cell mobility. NW can change the serving beam or even cell based on those predictions. However, the beam prediction operation may fail for various reasons such too sparse Set B and/or sudden channel changes. The wrong predictions in NW can lead to beam failure detection or radio link failures and increase service interruption time, and lead to additional signalling needed to handle the recovery of the connection. The beam prediction failure can be monitored by NW through configuring UE to report the CSI for Set A or CSI for the predicted beams. Alternatively, the beam prediction failure can also be monitored by UE such as UE is configured to compare, from time to time, the indicated predicted beams ID or beam RSRP and the actual beam measurements from Set A with certain rules. Based on the comparisons, UE can determine and report whether there is beam prediction failure for a given instance. Compared to NW side beam prediction failure monitoring, UE side monitoring can reduce the reporting overhead.

Observation 4: When the BM-Case1 apply at the network side, the wrong beam prediction of the network can cause beam failures or radio link failure which can increase the service interruption time and signalling overhead to handle the recovery of the connection. There may be several ways to address this,
· Additional UE configuration to report the CSI for beam Set A to monitor DL TX beam prediction failures. 
· Additional UE configuration to compare the predicted beam IDs (or predicted beam RSRPs) to the actual beam measurements from Set A to monitor DL TX beam prediction failure. 

Further study of the DL Tx beam prediction failure detection/recovery procedure and model switching procedure.  
In [2], we provide some evidence of using assistance information, such as the UE position, helps improve the DL Tx beam prediction. If the model is applied at the network, certain assistance information may not be fully available there. Therefore, RAN1 may need to further investigate acquiring such information via air-interface.  
[bookmark: _Hlk111149572]Further study the use of assistance information for ML model input to the NW side to improve DL Tx beam prediction, and the mechanism for acquiring such information through air-interface.  

Model inference - UE side
When model inference occurs at the UE, RAN1 may need to further consider collaboration levels associated with such operation. Collaboration level x-z can be separately considered, but we expect that more focus shall be placed on collaboration levels y and z. For example, if the underlying assumption is NW-UE collaboration level-z, then we can assume that the model is transferred to the UE from NW. Here, one may argue that NW may transfer one or more trained models to UE as BM-Case1 may heavily depended on the site-specific parameters. 
When model inference occurs at the UE with collaboration level-y without model transferring, we understand there are several alternatives for such operation, for example,
· UE has a model that requires assistant info in the model input, and the assistant info is provided by the NW. The model can perform DL Tx prediction for the NW that provides the assistant info. The assistant info may be related to (or can be derived from) the NW’s beam pattern layout - (M, N, P, Mg, Ng, ) and the corresponding complex beam weight matrix. In this case, the exchanged collaboration signaling will be related to the assistant info for the model input. 
· UE has a model that is trained with the data generated from a particular NW beam pattern layout. UE then uses that model to perform DL Tx beam prediction for that NW. Set B beam RSRPs are needed for the model input,  but additional assistant info from the NW may not be needed as now the model training and inferencing are based on the same NW beam pattern layout. In this case, the exchanged collaboration signaling will be related to the model selection/indication for the UE. 

Observation 5: For DL Tx beam prediction at the UE with collaboration level-y, 
· the exchanged collaboration signalling may be required to carry assistant info related to NW’s beam pattern layout. Such assistant info may be used for model input.  
· the exchanged collaboration signalling may be required to consider the details such as selecting a model at the UE or indicating details related to model management. 
For UE side DL Tx beam prediction with collaboration level-y and level-z, RAN1 shall investigate further details by considering steps associated with the life cycle management of the model.
Moreover, for any of level-y and level-z variants, if the trained model in UE side can adapt to different Set B patterns for the connected NW, it can reduce the model transferring/selection/identification overhead compared to using multiple trained models for different fixed Set B patterns. 
Observation 6: For the UE side DL Tx beam prediction, using one model for adapting different Set B input patterns can reduce the model transferring/selection/identification overhead compared to using multiple trained models for different fixed Set B patterns.
For UE side model inference, the UE will need to understand the mapping between the beam measurements and the model input tensor elements. Because the model input elements for the beam prediction model are element position sensitive - each beam measurement from Set B needs to be put into the right position of the model input tensor (it means the model performance will degrade if the beam measurements are put in the wrong positions of the input tensor). Beam indexes for Set A/B or CRI with certain mapping are needed from NW to UE for UE side DL Tx beam prediction.
Observation 7: For UE side DL Tx beam prediction, the DL Tx beam indexes or CRI with certain mapping for Set A/B are needed for the UE.    
For UE side DL Tx beam prediction, further study the necessary info required from the NW to indicate Set A and Set B relationship.  
Furthermore, UE may be configured to report the predicted beams in Set A, as well as the beam measurements from Set B. Resource set measurement beam and resource set for prediction beam are needed for UE to report the actual measurements and the beam prediction results. 
For UE side DL Tx beam prediction, further study the RS resource set configuration for UE side DL Tx beam prediction
It is also important to note that spatial domain beam prediction, BM-case1, can have variants when considering the DL Tx beam to TRP association. In many deployments, DL Tx beams many not only coming from one TRP and multi-TRP aspect is something that is hard to neglect. Also, in NR, beam reporting has both group-based beam reporting and non-group-based beam reporting modes, and it is important that AI/ML handles both scenarios. For group-based beam reporting with ML, we think that the configured RS resource sets, for Set A and Set B, shall also be sub-divided such that TRP-to-DL Tx beam identification is clear. For example, Set A and Set B may be having sub-sets (sub-set A1/A2 and sub-set B1/B2) to associate to each TRP, and beam grouping could also be done considering sub-sets A1/A2 that are not measured by the UE, but predicted based on measurements on set B1/B2. 
For UE side DL Tx beam prediction, further study group-based beam reporting for mTRP simultaneous reception based on Set B measurements, where the UE may report beam pairs from Set A. 
As showed in [2], when assistance info is used at the input of the ML model, we think that the UE’s angle relative to a panel array of the gNB and/or the beam boresight direction for the measured DL Tx beams from gNB to UE can improve the beam prediction performance under the scenarios [2] that when the cardinality of beams in Set B is small, i.e. . 
Observation 8: the UE’s angle relative to a panel array of the gNB and/or the beam boresight direction for the measured DL Tx beams from NW to UE can improve the beam prediction performance under the scenario that when the cardinality of beams in Set B is small.
RAN1 further studies the use of assistance information for ML model input to the UE side. Assistance information may include the UE’s angle relative to a panel array of the gNB and the beam boresight direction for the measured DL Tx beams to improve DL Tx beam prediction. 
Overall, compared to NW side DL Tx beam prediction, enabling the DL Tx beam prediction functionality in UE side will significantly increase the standard impacts.

Model output : Set A beam ID and other information based on QoS (Option 2) & Model input : Set A/B beam RSRP and Assistant info 
Predicted Set A beam IDs and RSRP predictions, along with other information, can be used as an input to a ML model to output a QoS based metric for each beam ID. Here, this additional QoS based metric can be used in the beam selection to further optimize the QoS in cases where the no. of beam activated simultaneously is limited and the UE is not capable of occupying the entire channel bandwidth.
[image: ]Figure 2 Set A best  beam IDs/RSRPs as the input and the QoS based metric as the output. Orange and blue squares denote RSRPs and QoS metrics of the best N1 beams, respectively.   


As shown in the Figure 2, in addition to the predicted best N1 beam IDs and their RSRPs, AI/ML model can use additional information to further optimize the beam selection. The additional information can include, but not limited to, no. of times each beam is scheduled, traffic properties, and QoS flow/DRB ID. The ML model can be trained using online, continual, or offline training and the QoS based metric is a metric which reflects the performance of the UE in terms of QoS. 
In the case of online or continual learning, the UE may have to be served with different beams other than the RSRP based beam and calculate the QoS based metric to create a dataset to train the model. Here, to reduce the probability of radio link failures, the set of different beams that can be used to serve the UE can be limited to the best  beams based on the RSRP.  can have a dynamic value and in case if the radio link failures become more frequent, the gNB may decrease  or set the value to avoid radio link failures. 
Here, the model can still be applied at either at the UE or NW. At the NW, the ML model will be able to obtain the additional information like beam usage from the scheduler without additional overhead. Also, the ML model at NW will have minimal standardization impact compared to the model at the UE side. When the model used at the UE, the ML model may have access to UE specific additional information like uplink traffic characteristics and more frequent measurements without additional overhead. Overall, we think that further investigation on online/continual learning (e.g. RL) is required for BM-Case1.  
Further study the BM-Case1 enhancements considering online/continual learning mechanisms. 
RAN1 to study the impact of data collection on radio link failures and time of outage.

Set B and Set A are different
This section inherits the most technical detail discussions in section 2.2.1. The only difference now is that Set B is different from Set A, and the scenario we consider is that Set B is a wide beam codebook while Set A is a refined (narrow) beam codebook. Set B and Set A cover the same DL Tx azimuth and elevation angle spaces.
 For DL Tx beam prediction Set B is different to Set A, consider Set B is a wide beam codebook and Set A is a refined beam codebook.
In the following, we will only unfold the necessary additional discussion for Set B and Set A are different.   
Model output: Set A beam ID/RSRP & Model input: Set B beam RSRP
Figure 3 shows an example using Set B as a wide beam codebook (one color represents one wide beam and different color represents different wide beams) for measurement and predicting the best beam ID/RSRP in refined beam codebook Set A. Figure 3: Set B wide beam RSRP as input, Set A narrow beam ID/RSRP as output. In the model input, the same color solid squares represent a wide beam in Set B; All small squares represent narrow beams in Set A; orange solid square is the predicted best beam in Set A. 


[image: ]3

In Figure 3 model input, it shows an example of designing the wide beam codebook such that each wide beam cover a continuous azimuth and elevation angular region, denoted as “continuous” wide beam codebook. However, using the continuous wide beam design may not be able to provide sufficient refined beam prediction accuracy to support a comparable or better system throughput as the non-ML baseline does. The simulation results are shown in [2].
Observation 9: The regular “continuous” wide beam design may not be sufficient for refined beam prediction. 
To improve the refined beam prediction accuracy, one way is to use different wide beam codebooks that are more beneficial for refined beam prediction. One possible design is to construct the wide beam with non-continues angle coverage – a wide beam has “divided” Tx directions and each Tx direction may require a different Rx at UE. Figure 4 shows two examples of divided wide beam codebook, where the left figure shows an example of a pseudorandom wide beam codebook and right figure shows an example of a circular-shift wide beam codebook. 
The idea of the divided wide beam codebook is to enricher the correlation between each refined beam and the whole wide beam codebook - the correlations between the wide beam codebook and refined beam#i should be very different from the correlation for refined beam#j () so that the wide beam measurements can be used to better identify the corresponding best refined beam. 
Observation 10: The divided wide beam design can enrich the correlation between each refined beam and the whole wide beam codebook.Figure 4 Example of wide beam codebook designs. Left: wide beam is summation of randomly selected refined beam. Right: introducing circular shift operation for the “continuous” wide beam codebook. The same color solid squares represent a wide beam in Set B, all small squares represent refined beams in Set A 


However, not all divided wide beam codebook designs are suitable for SSB signals as some designs for SSB may deteriorate the cell coverage, i.e. using pseudorandom wide beams for the cell edge area may not collect sufficient channel clusters power because each pseudorandom wide beam may only have a small angular spread for the cell edge area. To solve this issue, one can either keep using the wide beams that have continuous angle converge for the cell edge area SSB and use divided wide beams for the other area that is closer to the NW (i.e. the circular shift wide beam codebook), or use all continuous wide beams for SSB, and use divided wide beams for CSI-RS. And the Set B measurements can come from SSB or CSI-RS wide beam measurements.
For Set B is different to Set A, the Set B wide beam measurements can come from the measurements from SSB and/or CSI-RS. 
[bookmark: _Ref110870282]Set A/B are DL Tx-Rx beam pairs
For the use case that Set A/B are DL Tx-Rx beam pairs, we think considering Set B is a subset of Set A is a good starting point for this study. 
Set B is a subset of Set A
Model inference in NW side
If NW has a trained model for DL Tx-Rx beam pair prediction and the trained model is coupled with a particular UE’s beam pattern layout from all UE panels, it is very unlikely that NW can control UE to select its Rx beams. Therefore, the UE Rx beam selection will be blind to the NW, in other words, the choice of Set B will be unknown to the model in NW side. 
Observation 11: For DL Tx-Rx beam prediction in NW side, Set B will be unknown to NW as NW most likely cannot access the information about how UE Rx beams selection.
Instead of NW side DL Tx-RX beam pair prediction, it will be more realistic to have NW side DL Tx-AoA prediction where the trained model will output the predicted pair parameter -{best DL Tx beams, best AoAs}. By obtaining the predicted AoAs in UE, UE then can map this information to its corresponding Rx beams. Further, for this scenario, UE position info will be needed as part of the model input for predicting the AoA for the UE. 
For BM-Case1 with Set A/B consider Tx-Rx pairs, further discussion may be needed on NW side DL Tx-AoA prediction, UE position information as assistant info to the input of ML model.

[bookmark: _Ref110951973][image: ]Model inference in UE sideFigure 5 Set B Tx-Rx beam pair RSRP input, Set A best Tx-Rx beam pair ID/RSRP output. The 64 small squares are beam pairs in Set A, the 16 blue solid squares are the measured beam pairs in Set B, the orange solid square is the predicted best beam pair in Set A.


The procedure of UE obtaining the DL Tx beam prediction capability refers to the discussion in section 2.2.1. In this section, we will focus on extending the UE side DL Tx prediction to UE side DL Tx-Rx prediction as UE has full knowledge of its Rx beam design and selections. 
Considering the model inference is in UE side, UE does not need to report its Rx beam selection to NW, and it is up to UE to schedule its Rx beam operation for receiving the DL Tx beams. UE can select a Rx beam receiving pattern that is beneficial to its Tx-Rx beam pair prediction. 
[bookmark: _Hlk111239796]Observation 12: For UE side TX-RX beam pair inference, it is up to UE to schedule its Rx beam operation for receiving the DL Tx beams. UE can select an Rx beam receiving pattern that is beneficial to its Tx-Rx beam pair prediction. 
Figure 5 shows an example of UE measuring a subset of beam pairs from Set A (16 measurements out of total 64 possibilities) and predicts the best beam pair in Set A. In Figure 5 the model input, UE uses each Rx beam to measure 4 DL Tx beams with a certain pattern. In the model output, UE predicts the best Tx-Rx beam pair and UE only needs to report the predicted best DL Tx beam to NW if needed.
However, for Tx-Rx beam pair prediction, given the prediction space now is , to ensure good prediction performance and maintain the throughput, the measurement space  now may increase significantly and may be even larger than the measurement space  from predicting DL Tx beams and DL Rx beams independently.
Observation 13: To ensure good prediction performance and maintain the system throughput, the necessary measurement space for DL Tx-Rx beam pair prediction  may increase significantly compared to the measurement space  from predicting DL Tx beams and DL Rx beams independently.
Further, it is unclear what is the performance gain (throughput scaled by overhead, latency ) for predicting the beam pair jointly compared to predicting Tx and Rx independently. 
Observation 14: It is unclear what is the performance gain (throughput scaled by overhead, latency ) for predicting the beam pair jointly compared to predicting Tx and Rx independently. 
DL Tx-Rx beam pair prediction should be compared to independent DL Tx beam and Rx beam prediction.   
Set A/B are DL Rx beams 
For DL Rx prediction with ML model, we expect the ML algorithm (model input, output, structure) will be similar to DL Tx beam prediction in section 2.2 and the model inference will be only in UE side. However, UE may need to inform NW about its Rx beam prediction capability and the needed Rx beam sweeping number – the number of input measurements for the ML model/algorithm, which may be different from the UE Rx beam capability maxNumberRxBeam. 
For the use case of DL Rx beam prediction, UE needs to report its Rx beam capability and the needed Rx beam sweeping number, which may be different from the UE Rx beam capability max Number of Rx Beam. 
BM-Case2: Temporal Domain Beam Prediction
In spatial-temporal domain beam prediction, the ML model can predict the best beam for a UE based on a set of limited measurements that includes historical information.  For example, the set of measurements could include a history of the best beam index selected by the UE with optional inclusion of the corresponding RSRP and/or UE position information. The intent for this prediction would be to lower RS overhead by narrowing down candidate best beam(s) mobile UEs, or by increasing the time period between the transmission of CSI-RS resource sets for beam refinement (e.g., CRI with RSRP feedback) for mobile UEs, which will also reduce reporting overhead by increasing the time period between UE reporting.

Model output
One general discussion point for both sub-use cases is the ML model output – certain predicted quantities for each beam in Set A. In RAN1#109-e, the following related proposal has been discussed, but not agreed due to a lack of clarity on what each alternative represent. Proposal 3-5c: Regarding the sub use case BM-Case2, further study the following alternatives for AI/ML output (one prediction for a future time instance) with potential down-selection:
Alt.1: Tx and/or Rx Beam ID(s) and/or the predicted L1-RSRP of the predicted Top-N2 DL Tx and/or Rx beams 
FFS: how to select Top-N2 DL Tx and/or Rx beams (e.g., L1-RSRP higher than a threshold, a sum probability of being the best beams higher than a threshold.)
Alt.2: Tx and/or Rx Beam ID(s) of the predicted Top-N2 DL Tx and/or Rx beams 
FFS: other information (e.g., probability for the beam to be the best beam, the associated confidence) 
Alt.3: Tx and/or Rx Beam angle(s) and/or and the predicted L1-RSRP of the predicted Top-N2 DL Tx and/or Rx beams
Alt.4: The predicted RSRP corresponding to the expected Tx and/or Rx beam direction and expected timing occasions which are input to the model.
Alt.5: Tx and/or Rx Beam ID(s) and the corresponding beam application time/dwelling time
Alt.6: Predicted Beam failure and the corresponding Tx beam ID(s)
Note1: It is up to companies to provide other alternative(s) 
Note2: Beam ID is only used for discussion purpose
Note3: All the outputs are “nominal” and only for discussion purpose


The followings are our understandings of each proposed output alternative:
· Alt.1: Similar view to spatial domain beam prediction that predicting the best beam ID or best beam RSRP for Set A should be part of the starting point of the BM study. Regarding the beam selection criteria, the RSRP thresholds, if it exists, should depend on the measurements from Set B. But N2 now can be a varied number depends on the predicted time instant. 

[bookmark: _Hlk111239954]Observation 15: For the sub-use case BM-Case2, it may be feasible to consider Tx and/or Rx Beam ID(s) and/or the predicted L1-RSRP of the predicted Top-N1 DL Tx and/or Rx beams as one alternative.
· Alt.2: The “probability for the beam to be the best beam” may just overlap with Alt.1. Although the term “confidence” has not been defined precisely in RAN1#109e, we are open to further discussing the definition of prediction confidence level.  

[bookmark: _Hlk111240163]For BM-Case2, as model output, RAN1 further discusses the detail of the prediction confidence level.
· Alt.3: Similar view to spatial domain beam prediction to our reading, we understand that predicting the beam angles is similar to predicting beam ID from a very refined beam Set A.

· Alt.4: The intent of putting the predicted RSRP and the expected timing occasions from model output to the model is not clear and the proponents should provide further clarifications. 

· Alt.5: Given F predicted future instants, each beam in Set A will have a prediction probability or predicted RSRP, or a confidence level for each of the F instances. Therefore, we understand that the beam application/dwelling time can also be determined by some criteria that a beam in Set A has the predicted probability or predicted RSRP, or confidence level satisfying the criteria (i.e. higher than a threshold) by F’ prediction instants out of F, and F’ can the beam application/dwelling time.

· Alt.6: Similar to Alt.5, we understand the beam failure can also be determined based on certain criteria over the F prediction instants, i.e. the predicted quantity less than a threshold after F’ continues prediction instances. 

Regarding the sub-use case BM-Case2, the AI/ML output should consider:
· Tx and/or Rx Beam ID(s) and/or the predicted L1-RSRP of the predicted Top-N2 DL Tx and/or Rx beams 
· For L1-RSRP prediction, the N1 selection thresholdshould depend on the measurements from Set B
· FFS: the value of N2.

Based on the RAN1#109e conclusions, considering different input/output of the machine learning model, and different entities to do model training and inference, we will try to discuss some detail for the following Set A/B categories:
· Set B and Set A are the same.
· Set B is a subset of Set A.
· Set B is different to Set A.

From section 2.3 , the benefit of BM-Case1 - DL TX-Rx beam pairs prediction is not clear compared to indendent DL Tx and Rx beam prediction. Consider the higher complexity in temporal domain beam prediction, as well as the non-neglible UE rotation modelling for temporal Rx beam prediction, in this Tdoc we prioritize to discuss the following cases for Set A/B:
· Set A/B are DL Tx beams 
· Set A/B are DL Rx beams

Set A/B are DL TX beams
The ML model detail for Temporal domain DL Tx beam prediction can be referred in [1].
The procedure of acquiring model and model input in NW side or in UE side will be similar to the discussion in section 2.2. Temporal domain beam prediction involves taking the historical prediction or reports or measurement as the input data to train/inference the beams into the future, and the length of historical data determines the prediction accuracy as well as the complexity of the model. Besides, the prediction accuracy will decrease as the prediction instant is further away from the current instant. Therefore, determination of the input historical data length and the prediction future steps are crucial to the performance of the temporal domain beam prediction. 
For BM-Case2 temporal domain beam prediction, RAN1 should study the impact of the historical data length as well as on accuracy for the prediction future steps. 
[bookmark: _Hlk510705081]Regarding the CSI configuration/report for BM-Case2 model inference in UE side, since now the temporal domain beam prediction behavior is involved, NW may configure UE to report the related prediction quantity (i.e. confidential level, RSRP error, observation window length), as well as the predicted beam for one or more future instants.
For BM-Case2 model inference in UE side, NW may configure UE to report the related prediction quantity (i.e. confidential level, RSRP error, observation window length), as well as the predicted beams for one or more future instants.
Set B and Set A are the same
[image: ]Set B beam RSRP as model inputFigure 6 Set B all beams RSRP input, Set A best beam output. In the model input, the blue solid squares are the measured beams in Set B (which is the same a Set A), all small squares are beams in Set A, and oranges solid squares is the predicted best beam in Set A.


For Set B and Set A are the same, the underlying assumption is to use an exhaustive search for all Set A beams during the K measurement instants. One can expect this scheme will have the best beam prediction performance for the future F measurement instants, but the measurement overhead will be relatively large during the K measurements.
Observation 16: When the Set B and Set A are the same in BM-Case2, the beam prediction performance should be the optimum while the measurement overhead might be large.
However, for the case Set B and Set A are the same, it can be used as a baseline to study the beam prediction performance. For example, the relation between K and F with different UE speeds, different channel assumptions, and different measurement periods. 
In BM-Case2, “Set B and Set A are the same” should be the baseline to study the prediction performance.
· FFS relation between K and F with different UE speeds, different channel assumptions, and different measurement periods.

Set B is a subset of Set A 
Set B beam RSRP as model input
[image: ]
Figure 7 Set B all beams RSRP input, Set A best beam output. In the model input, the blue solid squares are the measured beams in Set B, all small squares are beams in Set A, and orange solid squares is the predicted best beam in Set A.
For Set B is a subset of Set A, the measurement overhead during the observation period K can be reduced compared to the case that Set B and Set A are the same. However, if the selection of Set B is fixed or random over the entire K, the actual best beam in Set A may or may not be known during K, and the beam prediction performance may degrade. 
Observation 17: For Set B is a subset of Set A, if the selection of Set B is fixed or random over the entire K, then the actual best beam in Set A may or may not be known during K, and the beam prediction performance may degrade.
To acquire a better knowledge of the actual best beam in Set A during K, one can 
1) In each time instant of K, use spatial domain beam prediction with Set B measurements and the necessary assistant info as input, and use the spatial domain beam prediction output for all K instances as the input to the temporal beam prediction model. 
2) Use algorithms like Bayesian optimization with exploration and exploitation steps to track the best beam in Set A at each time instance after the algorithm converges. More detail about BO can be found in the Appendix.

Observation 18: For BM-Case2 Set B is a subset of Set A , for each time instant in K, spatial domain beam prediction or Bayesian optimization can be used to track the best beam over Set A. 
Set B and Set A are different
[image: ]Set B beam RSRP as model input
Figure 8 Set B all wide beams RSRP input, Set A best narrow beam output. In the model input, the same color squares are the measured wide beams in Set B, all small squares are beams in Set A, and orange solid squares is the predicted best beam in Set A.



For Set B is different to Set A, assuming Set B is a wide beam codebook and Set A is a refined beam codebook with    , then the measurement overhead can be reduced during the observation period K. But still it also has the issue that the actual best beam in Set A may or may not be known during K, and the beam prediction performance may degrade. 
Observation 19: For BM-Case2 Set B is different to Set A, the actual best beam in Set A may or may not be known during K, and the beam prediction performance may degrade.
To acquire a better knowledge of the actual best beam in Set A at each time instant of K, spatial domain beam prediction with ML method (i.e. NN or Gaussian Process) can be applied using the Set B measurement as input. And at each time instant of K, use the ML method prediction output as the input to the temporal beam prediction model. 
Observation 20: For BM-Case2 Set B is a subset of Set A , for each time instant in K, spatial domain beam prediction with NN or Gaussian Process can be used the track the best beam over Set A. 
Conclusion
In this contribution, we discuss details of ML for beam management use case, and have following proposals and observations, 
Observation 1: For BM-Case1, it may be feasible to consider Tx and/or Rx Beam ID(s) and/or the predicted L1-RSRP of the predicted Top-N1 DL Tx and/or Rx beams as one alternative of ML model output. 
Observation 2: For the sub-use case BM-Case1, depending on the ML model used, the model may output other information (e.g., a QoS based metric of Tx beams) which are useful to determine Top-N1 beams or to report additional parameters other than to Top-N1 beams.  

1. Regarding the sub-use case BM-Case1, further study the following alternatives for AI/ML output:
· Option 1: Tx and/or Rx Beam ID(s) and/or the predicted L1-RSRP of the predicted Top-N1 DL Tx and/or Rx beams 
· For L1-RSRP prediction, the N1 selection threshold should depend on the measurements from Set B
· For Beam ID prediction, N1 should be a fixed value.
· FFS: the value for  and N1.
· Option 2: Tx and/or Rx Beam ID(s) of the predicted Top-N1 DL Tx and/or Rx beams and other information 
· The other information can be used to derive Top-N1 DL Tx and/or Rx beams or considered as additional information 
· FFS: other information (e.g., a QoS based metric, beam angles)

Observation 3: When the BM-Case1 applied at the network side, training and inference of the models can be within the network side. 
· With site-specific Set A, if fixed Set B is used, the prediction performance may be better, and the model has a lower complexity. 
· With site-specific Set A, if randomized Set B is used, the prediction performance may not be good, and the model has a lower complexity. 
· Model management may be transparent to the UE. 

Further compare the beam prediction performance/tradeoff between training and testing model with fixed Set B and training and testing model with randomized Set B.
Observation 4: When the BM-Case1 apply at the network side, the wrong beam prediction of the network can cause beam failures or radio link failure which can increase the service interruption time and signaling overhead to handle the recovery of the connection. There may be several ways to address this,
· Additional UE configuration to report the CSI for beam Set A to monitor DL TX beam prediction failures. 
· Additional UE configuration to compare the predicted beam IDs (or predicted beam RSRPs) to the actual beam measurements from Set A to monitor DL TX beam prediction failure. 

Further study of the DL Tx beam prediction failure detection/recovery procedure and model switching procedure.  
Further study the use of assistance information for ML model input to the NW side to improve DL Tx beam prediction, and the mechanism for acquiring such information through air-interface.  
Observation 5: For DL Tx beam prediction at the UE with collaboration level-y, 
· the exchanged collaboration signalling may be required to carry assistant info related to NW’s beam pattern layout. Such assistant info may be used for model input.  
· the exchanged collaboration signalling may be required to consider the details such as selecting a model at the UE or indicating details related to model management. 
For UE side DL Tx beam prediction with collaboration level-y and level-z, RAN1 shall investigate further details by considering steps associated with the life cycle management of the model.
Observation 6:	For the UE side DL Tx beam prediction, using one model for adapting different Set B input patterns can reduce the model transferring/selection/identification overhead compared to using multiple trained models for different fixed Set B patterns.

Observation 7: For UE side DL Tx beam prediction, the DL Tx beam indexes or CRI with certain mapping for Set A/B are needed for the UE.  
  
For UE side DL Tx beam prediction, further study the necessary info required from the NW to indicate Set A and Set B relationship.  
For UE side DL Tx beam prediction, further study the RS resource set configuration for UE side DL Tx beam prediction
For UE side DL Tx beam prediction, further study group-based beam reporting for mTRP simultaneous reception based on Set B measurements, where the UE may report beam pairs from Set A. 
Observation 8: the UE’s angle relative to a panel array of the gNB and/or the beam boresight direction for the measured DL Tx beams from NW to UE can improve the beam prediction performance under the scenario that when the cardinality of beams in Set B is small. 
RAN1 further studies the use of assistance information for ML model input to the UE side. Assistance information may include the UE’s angle relative to a panel array of the gNB and the beam boresight direction for the measured DL Tx beams to improve DL Tx beam prediction. 
Further study the BM-Case1 enhancements considering online/continual learning mechanisms. 
RAN1 to study the impact of data collection on radio link failures and time of outage.
For DL Tx beam prediction Set B is different to Set A, consider Set B is a wide beam codebook and Set A is a refined beam codebook.
Observation 9: The regular “continuous” wide beam design may not be sufficient for refined beam prediction

Observation 10: The divided wide beam design can enrich the correlation between each refined beam and the whole wide beam codebook

For Set B is different to Set A, the Set B wide beam measurements can come from the measurements from SSB and/or CSI-RS. 
Observation 11: For DL Tx-Rx beam prediction in NW side, Set B will be unknown to NW as NW most likely cannot access the information about how UE Rx beams selection.
For BM-Case1 with Set A/B consider Tx-Rx pairs, further discussion may be needed on NW side DL Tx-AoA prediction, UE position information as assistant info to the input of ML model.
Observation 12: For UE side TX-RX beam pair inference, it is up to UE to schedule its Rx beam operation for receiving the DL Tx beams. UE can select an Rx beam receiving pattern that is beneficial to its Tx-Rx beam pair prediction. 
Observation 13: To ensure good prediction performance and maintain the system throughput, the necessary measurement space for DL Tx-Rx beam pair prediction  may increase significantly compared to the measurement space  from predicting DL Tx beams and DL Rx beams independently. 
Observation 14: It is unclear what is the performance gain (throughput scaled by overhead, latency ) for predicting the beam pair jointly compared to predicting Tx and Rx independently. 
Proposal 1: DL Tx-Rx beam pair prediction should be compared to independent DL Tx beam and Rx beam prediction.   
For the use case of DL Rx beam prediction, UE needs to report its Rx beam capability and the needed Rx beam sweeping number, which may be different from the UE Rx beam capability max Number of Rx Beam. 
Observation 15: For the sub-use case BM-Case2, it may be feasible to consider Tx and/or Rx Beam ID(s) and/or the predicted L1-RSRP of the predicted Top-N1 DL Tx and/or Rx beams as one alternative.
For BM-Case2, as model output, RAN1 further discusses the detail of the prediction confidence level.
Regarding the sub-use case BM-Case2, the AI/ML output should consider:
· Tx and/or Rx Beam ID(s) and/or the predicted L1-RSRP of the predicted Top-N2 DL Tx and/or Rx beams 
· For L1-RSRP prediction, the N1 selection thresholdshould depend on the measurements from Set B
· FFS: the value of N2.

For BM-Case2 temporal domain beam prediction, RAN1 should study the impact of the historical data length as well as on accuracy for the prediction future steps. 
For BM-Case2 model inference in UE side, NW may configure UE to report the related prediction quantity (i.e. confidential level, RSRP error, observation window length), as well as the predicted beams for one or more future instants.
Observation 16: When the Set B and Set A are the same in BM-Case2, the beam prediction performance should be the optimum while the measurement overhead might be large.
Proposal 2: In BM-Case2, “Set B and Set A are the same” should be the baseline to study the prediction performance.
· FFS relation between K and F with different UE speeds, different channel assumptions, and different measurement periods.

Observation 17: For Set B is a subset of Set A, if the selection of Set B is fixed or random over the entire K, then the actual best beam in Set A may or may not be known during K, and the beam prediction performance may degrade.

Observation 18: For BM-Case2 Set B is a subset of Set A , for each time instant in K, spatial domain beam prediction or Bayesian optimization can be used to track the best beam over Set A. 

Observation 19: BM-Case2 Set B is different to Set A, the actual best beam in Set A may or may not be known during K, and the beam prediction performance may degrade.

Observation 20: For BM-Case2 Set B is a subset of Set A , for each time instant in K, spatial domain beam prediction with NN or Gaussian Process can be used the track the best beam over Set A. 
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Appendix 
Bayesian Optimization

Bayesian Optimization is driven by a non-parametric Bayesian model based on Gaussian Process (GP). Formally, a GP is a collection of random variables indexed by “space” and/or time, any finite collection of which is jointly Gaussian. In our case, GP is indexed by the beam indices on the NW side, and by the time at which the RSRP measurement is taken for a specific UE. Hence, the GP is UE-specific and takes as input previous RSRP measurements from the UE and provides a prediction of the distribution of the RSRP for each beam at future time instants for each UE. The GP inference requires the computation of a Gaussian posterior probability, given previous measurements.

More formally, Bayesian Optimization has four components: an initialization step that initializes model parameters when the UE is first observed, an inference step at which the RSRP for each beam is inferred, a beam selection step at which the beams to be measured a chosen, and a model update step at which the model parameters are adjusted. These four components are defined by:

a. Initialization. The Gaussian Process (GP) is characterized by its prior mean and kernel functions, with their associated hyper-parameters. There are two kernel functions: one spatial, accounting for RSRP correlation across beams, and one temporal, accounting for the RSRP evolution over time and depending on UE mobility pattern. The prior mean function can be initialized on the basis of past RSRP measurements of different UEs. 
Kernel hyper-parameters for a specific UE can be initialized on the basis of the hyper-parameters previously optimized for other UEs.
b. Inference. The GP for each UE is trained on the basis of previous RSRP measurements (training output), the associated DFT beam (more specifically, its i) azimuth and ii) elevation index) on which RSRP was measured and the iii) measurement time instant (training input).
GP model fit involves the computation of the Gaussian posterior distribution, given previous measurements. This model is then used to infer the RSRP for each beam.
c. Beam selection. This step faces a dilemma between exploration and exploitation. On the one hand, it is convenient to keep selecting beams that have guaranteed high RSRP in past slots (i.e., exploitation). On the other hand, it is wise to select beams that have never or seldom been deployed in the past for the specific UE to assess their quality (exploration). Moreover, UE moves, and scatterers do too, hence the identity of the best beam for the UE may change over time. the gNB seeks for the set of beams that maximize the expected improvement (EI) of the RSRP with respect to the highest RSRP possibly achievable at time t, which writes: 



where RSRPB [t] is the highest RSRP among all beams in set B. EI naturally addresses the exploration/exploitation dilemma, since beams with high RSRP mean and/or standard deviation are chosen. 

The choice of the optimal set of beams at time t also considers that the number of beams should not be too large, since this would incur a high reporting overhead for the UE. The beam selection then strikes an optimal trade-off between expected RSRP improvement and reporting overhead caused by large beam sets, by choosing the set B that maximizes for an appropriate increasing cost function g(). 

Model update. The GP depends on the kernel which in turn is specified by hyper-parameters that determine the smoothness of RSRP function in space (i.e., across beams) and time. Such hyper-parameters can be optimized in online fashion by gNB by maximizing the likelihood of previous RSRP measurements, i.e., those best explaining past RSRP measurements in hindsight.
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