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[bookmark: _Ref111191969]Introduction
Rel-18 study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface. RAN1#109e AI/ML for CSI feedback enhancement has the following agreements and conclusions [1].
	Agreement 
Spatial-frequency domain CSI compression using two-sided AI model is selected as one representative sub use case. 
· Note: Study of other sub use cases is not precluded.
· Note: All pre-processing/post-processing, quantization/de-quantization are within the scope of the sub use case. 
Conclusion
· Further discuss temporal-spatial-frequency domain CSI compression using two-sided model as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion.
· Further discuss improving the CSI accuracy based on traditional codebook design using one-sided model as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion.
· Further discuss CSI prediction using one-sided model as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion
· Further discuss CSI-RS configuration and overhead reduction as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion
· Further discuss resource allocation and scheduling as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion
· Further discuss joint CSI prediction and compression as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion.





In this contribution, we provide the details of two main sub-use cases within the use case of CSI feedback enhancement with AI/ML, namely CSI feedback compression with two-sided models and CSI prediction. 
[bookmark: _Hlk510705081]Discussion
[bookmark: _Ref111191898]CSI compression with two-sided models 
Autoencoders are, by definition, matching the problem of CSI feedback compression. Indeed, autoencoders are an unsupervised learning technique where a bottleneck is imposed in the network to force a compressed knowledge representation of the original input. The architecture of autoencoders is illustrated in Figure 1. The main challenge remains the reconstruction of the original input.
Before training the autoencoder, four hyperparameters, among others, need to be set: 1) the size of the codeword/bottleneck, 2) the number of layers, 3) the number of nodes per layer, and 4) the loss function to be used, e.g., mean squared error (MSE), cosine similarity. The number of nodes per layer typically decreases with each subsequent layer of the encoder and increases back in the decoder. The decoder is symmetric to the encoder in terms of the layer structure.
An autoencoder consists of three parts as described in Figure 1: 1) the encoder, 2) the bottleneck (codeword here), and 3) the decoder. The encoder aims at compressing the input data, in our case the channel matrix or the eigenvectors, into a codeword that is of dimension smaller than the original information. The bottleneck, in our case the codeword, is the compressed representation of the original information. The bottleneck is followed by the decoder, a module that decompress the codeword and reconstruct the data: the recovered information .  is then compared to  It is a lossy process, and the recovered matrix  will not be the same as  
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[bookmark: _Ref100763549][bookmark: _Ref100763524]Figure 1: Autoencoder architecture.

In order to improve the encoding efficiency, the quantization of codewords is needed. Therefore, it is important to consider the quantization of the CSI after compression. The quantizer module is depicted Figure 2. The quantization process introduces quantization noise/distortion, it is then important to design an efficient quantizer that minimized the quantization noise. The methods proposed in the literature are not differentiable and cannot be included in the backpropagation of the training. To get optimal performance, the quantization module should be optimized with the overall structure of the neural network. 
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[bookmark: _Ref100763745]Figure 2: Lossy compression and recovery.

The autoencoder for CSI feedback in [2] can be considered a pioneering work in literature. Still, it needs a quantization step because no such quantization step is defined, and it only considers the dimensionality reduction of the feedback vector. There can be several ways to handle the quantization issue. A straightforward approach would be using a separate quantizer to quantize the feedback codeword, but this may lead to inferior performance. An alternative can be embedding the quantizer into the neural network and training the entire end-to-end chain. Some examples can be found in public reports [7] [8], which considers training tricks to handle the gradient vanishing issue for the embedded quantizer. Another proposed approach, VQ-VAE, uses vector quantized variational autoencoders (VQ-VAE) [5]. A vector quantization layer is explicitly defined in the scheme of VQ-VAE, and the VQ codebook is trained together with the neural network.
Compressing channels
[image: ]
[bookmark: _Ref100199080]Figure 3: General conceptual structure of an Auto-Encoder based CSI feedback via compressing the full channel matrix 

Considering a massive MIMO system with  transmit antennas at a gNB,  receive antennas at a UE, and  PRBs, the input size of the original channel matrix  is (), where  is the number of samples. The real and imaginary parts of the channel matrix are extracted and stacked together (i.e., ) since ML models cannot handle complex inputs directly. The UEs measure and predict the channel matrix , and apply ML models to compress and feedback the channel information to the gNB. The encoder model takes the  input channel matrices as images with a size of  pixels and  “feature maps” (as the RGB for color images). The encoder usually consists of a few convolutional layers to generate feature maps of the input channel matrix and then reshape the feature maps into a vector and compress it into a codeword. Then, the codeword is quantized and feedback to the gNB (as shown in Figure 3). At the gNB, the feedback codeword is the input to a pre-trained decoder model. The decoder decompresses the codeword and reconstructs the channel matrix . Optimization algorithms like Adaptive Moment Estimation (ADAM) are used to update the set of parameters of the autoencoder-like model, where the loss function is the mean squared error (MSE) between the original and reconstructed channel matrices.
Instead of inputting the channel matrix  directly to the encoder at the UE side, pre-processing is needed to shorten the training period, compress the feedback bits, and improve the prediction accuracy. In our work, we first take a 3D inverse Discrete Fourier transform (IDFT) of the channel matrix across transmit antennas, receive antennas and frequency units, which transforms it from the spatial-frequency domain to the angle-delay domain and normalize the elements of  to a range of [0, 1]. The channel matrix in the angle-delay domain only has a small fraction of large components, and the other components are close to zero. Then we retain the first few rows of the channel matrix and remove the remaining rows (with large delays). At the gNB side, after the reconstruction of channel matrix , zero padding is applied. Finally, inverse normalization and 3D DFT are applied to recover the reconstructed channel matrix back to its original scale.   

Compressing channel eigenvector(s)
[bookmark: _Hlk98779172]We consider a typical MIMO system with  transmit antennas at the gNB and  receive antennas at UE side. Denoting  as the number of subbands consisting of  resource blocks (RBs) as the basic feedback granularity, the downlink channel can be written as , where ,  indicates the downlink channel of the th subband.  
With these definitions, one can refer to the conceptual block diagram of an Auto-Encoder based CSI feedback via compressing the full channel matrix  in Figure 3, where Normalized Mean-Squared Error is shown as an example objective function to be minimized, whereas other objective functions can also be used as discussed .  
We can consider a single-stream downlink transmission and ideal channel estimation at the UE side, the corresponding eigenvector for the th sub-band, denoted as with normalization , will be directly used as the downlink precoding vector and can be calculated using eigenvector decomposition as , where  represents the maximum eigenvalue of  and also indicates the precoding power gain obtained from MIMO system. Obviously, all  eigenvectors should be reported to the BS for downlink precoding. Hence total  complex coefficients should be compressed and recovered for each channel sample using various kinds of neural networks. 
[bookmark: _Hlk98784391]As the objective function to be minimized, the generalized cosine similarity (GCS) on the th sub-band, denoted as , is utilized to evaluate the CSI feedback and recovery performance, which is written as  where  represents the recovered eigenvector for the th sub-band. Furthermore, the average GCS on the whole band can be written as a loss function to be minimized during the optimization of the encoder’s weights by . Obviously, we have , and larger  indicates better CSI feedback and recovery performance.
Figure 4 illustrates the general conceptual block diagram of an autoencoder-based CSI feedback with compressing the eigenvectors, where GCS is used as the objective function to be minimized in optimization of the auto-encoder. 
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[bookmark: _Ref100204822]Figure 4: General conceptual structure of NN (autoencoder) based CSI Feedback with Compressing the Eigenvectors.

The details of the computations of eigenvalues per sub-band are provided in Figure 5. For each sub-band, we form the covariance matrix snapshots by summing the products over the PRBs included in each sub-band. Then we compute the eigenvalue decomposition and pick the eigenvector corresponding to the largest eigenvector of the covariance matrix snapshot matrix for each sub-band. In this manner, we obtain  (=number of sub-bands) eigenvectors of dimension . In Figure 5 the number of sub-bands is taken as 13, and the number of PRBs per sub-band is taken as 4, and these parameter selections are provided as an example to facilitate the ease of illustration. 
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[bookmark: _Ref101933608][bookmark: _Ref101933594]Figure 5: An illustration of the details of Eigenvector computation per sub-band.

Currently, there have been three major autoencoders proposed in [2],[3], and [4], for the aforementioned autoencoder blocks within Figure 3 and Figure 4. For that matter, [2] is one of the first major contributions that proposed autoencoder-decoder framework, as depicted in Figure 3, and the autoencoder block of [2] is called CsiNet. For the performance evaluation in the accompanying contribution [9], we devised the following neural network architecture to compress strongest eigenvector(s). As in [2] and other publications on CSI feedback compression, convolutional neural networks (CNNs) for the encoder and decoder are utilized due to the fact that they can exploit local spatial correlation by enforcing a local connectivity pattern among the neurons of adjacent layers.
[image: ]
Figure 6: Neural network architecture to compress eigenvector(s).


Compressing W2
Consider a massive MIMO system with  transmit antennas at the gNB and  receive antennas at UE side. Instead of compressing the full channel matrix , we proposed a general conceptual structure of autoencoder-based CSI feedback compressing only  of the precoder matrix.
The 3GPP Release 15 codebook is defined as a two-stage CSI codebook. The precoder matrix is given by , where  represents the wideband part and  the subband part. The  matrix identifies an orthogonal set of beams selected, and the  matrix identifies the co-phasing factors across polarizations.
In Release 16, the precoder matrix is further compressed in both spatial and frequency domain. Therefore, using the R16  requires both spatial and frequency pre-processing followed by the ML encoder at the UE side. To ensure efficient implementation with reduced computational complexity at the UE, we focus on the R15 precoder matrix – only compressed in spatial domain.
[bookmark: _Hlk110321285]The input size of  is (), where  is the number of samples,  is the number of spatially aggregated ports, is the number of frequency subbands, and  is the number of MIMO streams. The real and imaginary parts of the channel matrix are extracted and stacked together (i.e.,2*) since ML models cannot handle complex inputs directly. The  matrices used as input of the AI encoder are phase aligned, i.e., a phase alignment has been applied across the subbands with respect to the phases observed on the strongest  aggregated port. In other words,  coefficients for the strongest aggregated port are guaranteed to be real-valued.
The general conceptual structure is illustrated Figure 7: General conceptual structure of an Auto-Encoder based CSI feedback via compressing  of the precoder matrix.. The encoder model takes the  original  matrices as images with a size of  pixels and  “feature maps”. The encoder usually consists of a few convolutional layers to generate feature maps of the original  matrix and then reshape the feature maps into a vector and compress it into a codeword. Then, the codeword is quantized and fedback to the gNB. At the gNB, the feedback codeword is the input to a pre-trained decoder model. The decoder decompresses the codeword and reconstructs the matrix . Optimization algorithms, such as Adaptive Moment Estimation (ADAM), are used to update the set of parameters of the autoencoder-like model, where Mean Squared Error (MSE) between the original and reconstructed  matrices, is used as an example objective function to be minimized. We note that other objective functions can also be used.
[image: ]
[bookmark: _Ref110324530]Figure 7: General conceptual structure of an Auto-Encoder based CSI feedback via compressing  of the precoder matrix.

The metrics used to evaluate the model are the Normalized MSE (NMSE) and Cosine-Similarity (CS). 
Let us first notice that:   and  . Then,   , where  represents the orthogonal basis. Therefore,   .

We can now define the cosine-similarity, ρ, as: 
, where K =  is the reconstructed of the  spatially aggregated ports, and  is the original of the  spatially aggregated ports.

The NMSE is defined as follow: 
.

Quantization and training
To replace the codebook-based PMI encoder at UE side and PMI decoder at gNB with an autoencoder, the compressed latent dimension output of the encoder needs to be quantized to a bitstream. In this work we adopt an embedded quantization scheme that is optimized along with the autoencoder-based compression model training. We used scalar uniform quantization in our current evaluation, where the length of the bitstream and in turn the feedback overhead is governed by two factors- 1) compression ratio (CR = Input dimension of autoencoder / Latent dimension of autoencoder) and 2) number of quantization bits per latent dimension (B). Total feedback overhead (W) is defined as: W = CR×B bits.
Scalar Uniform Quantization: With the assumption that all components in the latent representation are normalized in the range [-1,1], the quantization function Q is defined as: , where [x] indicates the rounding operator (nearest integer to x) and the second term makes the quantizer output uniform across the full range [.
The quantization function is discrete, thus nondifferentiable. This creates a direct conflict as the quantization function is embedded in the autoencoder as a layer of the encoder, where for back-propagation and optimization step is performed by a chain rule differentiation. In order to execute back-propagating through the quantization layer, we implemented here is setting the gradient of the quantization layer to a constant k. Assuming the quantization layer is the nth layer of the autoencoder, and gradient propagated from the next layer is , the gradient of the quantization layer becomes . k is set to 1 for the performance evaluation of the model produced in the accompanying contribution [9]. A similar approach was introduced and explained in [7].

Binary Variational CSI coding
In [10] we proposed a new approach without an explicit quantization step for CSI coding. The new proposal, known as binary variational (BiV) CSI coding, is based on the variational autoencoder (VAE) framework [6], with a Bernoulli distribution assumed for the latent space. A binary sampling step provides binary samples of the latent vector for the variational encoder. The encoder and decoder of the BiV CSI coding can be trained together with the stochastic gradient descent (SGD) method. All technical details can be found in [10].

Proposal 1. Study channel-, eigenvector-based and W2-based two-sided models for CSI feedback compression. 
Proposal 2. For the two-sided models, study the impact of quantizers on CSI feedback compression. 

CSI prediction 
Channel prediction is seen as a main enabler for more advanced use cases, which are sensitive to channel aging like MU MIMO precoding or coherent JT-CoMP as discussed for cell free massive MIMO. Furthermore, accurate channel prediction over a large prediction horizon can support high speed UEs and can be a suitable means to reduce the CSI reporting overhead over the state-of-the-art techniques like NR TYPE II. Such overhead reduction can be achieved by a reduced CSI reporting rate, which is then related to the channel prediction quality. 
We should note that channel prediction also fundamentally impacts massive MIMO overhead for reference signals in FDD systems. Without channel prediction the usage of the reported CSI is limited by the coherence time and coherence frequency bandwidth. In case of a high number of antenna elements or antenna ports the related number of CSI reference signals might become a large portion of the resource elements in this coherence area of the radio channel. Therefore, it reduces the related number of resource elements for the user data rate, i.e., the PDSCH. With channel prediction the channel evolution might be reconstructed, thereby potentially might overcome this coherence related limitations. 
Figure 8 illustrates the most basic idea for channel prediction, where the radio channel is measured over several time instances, typically for FDD systems based on regularly transmitted CSI RSs. Then the UE or the gNB input the estimated CSI, either directly or after some pre-processing, into the pre-trained ML model, which outputs the predicted CSI for one or several time steps. 
Most useful is it to predict as CSI the explicit radio channel evolution in the time and/or the frequency domain as this will enable any type of precoding, will support any type of MU MIMO user grouping and scheduling and therefore is the basis for more advanced future concepts like extensive massive MIMO, or cell free massive MIMO. Alternatively, the CSI prediction might be close to current Type II CSI reporting and predicting parameters like PMI, RI, CQI, etc. Note that the possible inference and reporting options for channel prediction are closely related to the options as discussed in Section 2 for channel compression. Therefore, the channel prediction can be either for the explicit CSI, for the strongest eigenvectors, or, for W2 while W1 is fixed for a certain number of prediction steps. 
For optimum channel estimation and channel prediction the CSI RSs should cover the full RF bandwidth as it is well known from theory that the observed frequency bandwidth affects the theoretical Cramer Rao Bound of the unbiased channel estimator. The Cramer Rao Bound itself is defined by the Fisher information contained in a certain signal used for the estimation of certain signal parameters like the delay, amplitude, or phase of a multipath component. This Fisher information is then increasing for an increasing number of CSI RSs and increasing RF bandwidth. This can be illustrated, for example, by assuming a single multipath component. The delay of such a multipath component is then related to a phase slope in the frequency domain and obviously the estimation of such a phase slope will be easier in case of a larger frequency bandwidth. When applying autoregressive filters as being used for Kalman filters we often observe even a degradation for increasing frequency bandwidth. This can be explained by the overall structure with parallel instances of the same state space model on parallel frequency bands. The performance degrades if the size of the frequency band is larger than the coherence bandwidth. 
Often, neural network implementations based on LSTMs lead to similar structures as the Kalman filter and might similarly ignore the frequency domain information, which leads to corresponding performance loss. Contrary, with optimized neural network structures the frequency domain channel information can be beneficially exploited to improve the channel prediction performance.    
Helpful for optimum precoding is then to predict the evolution over time of the radio channel instead of the radio channel just for a single prediction time, or sequence of time instances. This provides full scheduling flexibility and the highest precoding performance, which might be especially relevant for larger prediction horizons. 
The expected performance gain is for low to moderate UE speeds the reduced effect of channel aging, which can be evaluated by comparing the UE throughput or spectral efficiency with and without channel prediction. Without channel prediction then one has to use the outdated CSI from the time instance of the latest channel observation.
In alignment with the latest agreements, so far, the focus is on the simplest channel prediction scheme, where the UE infers the channel prediction based on regular persistent, semi-persistent or aperiodic CSI RSs. Then the UE calculates for the predefined or agreed prediction time the conventional Type II CSI message like the matrices ,  and  in case of NR Release 16. That way, the ML related standardization impact is minimized and mainly requires the control messages for setting up and/or agreeing between UE and gNB on the best fitting prediction time. 
For more advanced schemes, it might be worth to evaluate, compare, and include the options as discussed in Section 2.1 for the enhanced CSI feedback compression also for the case of channel prediction. This can be either for the one-sided case and Level x collaboration, i.e., just for the inference process of the Type II CSI at the UE side, which might then result in different overhead performance trade-offs. Alternatively, for two-sided methods the Type II CSI reporting might be adapted, for example, similarly to section 2.1, where we have either channel compression of explicit CSI, of strongest eigenvectors, or, of a fixed  and a channel prediction inference and reporting limited to, e.g., . 
gNB sided prediction requires ideally accurate explicit CSI for at least two, or few time instances, which might be reported as a batch of compressed space, time, and frequency signals. This explicit CSI is typically needed only in the beginning to setup the channel prediction model. Afterwards, the UE might report further CSI information relative to this channel prediction model, which can then end in an overall reduced CSI reporting overhead.     
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[bookmark: _Ref98943351][bookmark: _Ref102113471][bookmark: _Ref102113464]Figure 8: Basic concept of channel prediction, where the radio channel is observed over a period of time and measured by CSI RSs and predicted into the future.

There are other proposals related to prediction in 3GPP. One proposed as a use case is the temporal-spatial-frequency compression of CSI. This is essentially adding a time-domain prediction component to the CSI compression we have already agreed upon. CSI prediction as a standalone topic is simpler than the above proposal and allows separate evaluation of the ability to predict CSI over time using AI/ML. In fact, compressing and reporting multiple CSIs corresponding to different time slots is only justified if these CSIs provide a better representation of future channel evolution or they allow the gNB to obtain such future CSIs. Therefore, time-domain compression requires the ability to predict the channel or CSI at either UE or gNB side, or both. CSI prediction using AI/ML is a natural step forward from the MIMO work item standard algorithm approach to CSI prediction and can leverage that work. Thus, it would make sense to study AI/ML-aided prediction for CSI but not for temporal-spatial-frequency compression of CSI or other alternatives.

Proposal 3. Support CSI prediction as a second sub-use case.
Proposal 4. Compare channel prediction over broad bandwidth versus based on Type II CSI per sub-band. 

AI/ML model, terminology and description
In the following, some possible ML based channel prediction implementations will be given and compared to rule based Kalman filters as predictors. The model training, validation, and testing will be discussed exemplary for a most simple RNN consisting of LSTM neural networks. The possible inference operation using ML, rule based, or, ML enabled networks will be provided, together with the possible collaboration modes between UE and gNB. Then we shortly discuss version control and lifecycle management of the predictor models, and finally suggest a baseline reference mode of operation.

Model generation (training/validation/testing)
For channel prediction, we consider Kalman filter as PHY layer algorithm baseline while long-short term memory (LSTM) neural networks (NNs) might serve as the AI/ML baseline. Recurrent neural networks, LSTMs, and gated recurrent units (GRUs) are AI/ML models often used for applications where the data has some time dependency, e.g., speech recognition, natural language processing, and time forecast. Therefore, it is a reasonable idea to use LSTM as the AI/ML CSI prediction baseline. The LSTM learns the time evolution of the channel coefficients by means of supervised learning with the mean squared error (MSE) as typical loss function. The loss value guides the gradient descent optimization, which uses the backpropagation through time (BPTT) algorithm. 
A low MSE is typically aligned with a high generalized cosine similarity (GCS) or squared GSC (SGCS) as defined in the latest EVM agreement so that the trained neural network should perform well for the reporting of Type II CSI. Nonetheless, there might be benefits by training the neural networks directly with the GCS or SGCS as cost function. This might result in either a further improved channel prediction performance, or a reduced complexity.   
Note that channel prediction based on RNNs is here given more as a possible reference, while higher performance, lower complexity, or other benefits might suggest other more advanced NN implementations in the future. For example, the latest dense layer in Figure 9 has been replaced in the latest version by another convolutional layer, which reduces the overall complexity of the neural network.
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[bookmark: _Ref100743321]Figure 9: Generic structure of a LSTM NN that receives as input channel coefficients of N past time instances and outputs the next N+p channel coefficients in the frequency domain for a subcarriers f1.

A LSTM neural network (NN) is designed to perform channel prediction of p subframes ahead based on knowledge of N past subframes, see Figure 9. For a SISO channel represented in the frequency domain, a few channel coefficients  serve as input to the LSTM NN which is trained to output the channel coefficient in the next subframe , or subframes ahead. In Figure 10 we present an example where the LSTM NN receives for a single subcarrier information over three subframes as input and predicts the single-subcarrier channel coefficient at the next subframe. The LSTM NN can be expanded to predict channel coefficients for multiple subcarriers. Nonetheless, for SISO-OFDM, the number of parameters within the LSTM NN grows considerably as the number of subcarriers increases. Figure 11 presents an example for predicting for one time instance ahead with knowledge of the past three channel coefficients in the frequency domain. Prediction of multiple time steps ahead is also possible, but often limited to the number of time steps at the input of the LSTM NN. 
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[bookmark: _Ref100232166][bookmark: _Ref100518159]Figure 10: Training configuration for a LSTM NN for SISO channel coefficient prediction.
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[bookmark: _Ref100232517][bookmark: _Ref100522173]Figure 11: Configuration for SISO-OFDM channel prediction.

During training of the LSTM NN, the channel measurements should be inputted to the model in a sequential way, i.e., the dataset (input and labels pairs) should not be shuffled. This is needed for the LSTM NN to learn the change dependencies among the frequency channel coefficients. For instance, the table in Figure 11 shows the order to provide the channel coefficients for the LSTM NN during training. After training the model parameters, the LSTM NN takes any sequence of three coefficients and outputs the next channel coefficient, regardless of where they happen. However, note that there are no performance guarantees if the trained LSTM model is used for predicting channel coefficients under different conditions, e.g., different Doppler frequency. 

Inference operation
Figure 12 considers the basic UE sided inference operation based on a channel prediction model (CP model). It uses n CSI RSs for observing the radio channel and infers from these n CSI estimates, the predicted CSI for the time instance tpredict. The inference of the predicted radio channel can similarly be implemented for pure PHY layer rule-based models, for pure ML models, and for ML enabled models combining specific PHY and ML blocks. Such PHY plus ML-based inference might have benefits with respect to the overall achievable performance, minimized latency, and moderate complexity.
In the latest agreement the EVM have been defined, which includes a scheduling delay  of 4ms. In addition, we have to assume a CSI RS repetition rate like one CSI every 5ms. The time instance  falls together with the latest time instance of the CSI RS. Then, the UE will need some inference time  of at least 1ms. With these variables we can define the minimum prediction time , which will overcome any CSI outdating:
.
With the above given assumptions, the optimum prediction time will be . This is twice the time of the CSI RS repetition rate and is probably still optimistic as for more advanced neural networks an inference time of just 1ms is probably challenging. Helpful would be a higher CSI RS repetition rate, but this is obviously at the cost of higher overhead for CSI RSs.
[image: ]
[bookmark: _Ref100674950]Figure 12: possible implementations of the channel prediction with a CP model at the UE side, either as pure PHY based method, as ML neural network or as a combined PHY/ML model.

Collaboration between UE and gNB
The channel predictor can be an ML model located either at the UE or at the gNB. In the first case, the UE reports the predicted CSI - instead of the conventional instant NR Type II CSI feedback. Beneficial in one aspect might be an implementation at the gNB, as the gNB can be expected to have higher processing capabilities as well as can predict the CSI to any time instant of interest, or, might even predict the channel evolution over time (see Figure 14). 
A channel predictor at UE side has potential benefits with respect to the direct access to the channel knowledge, while the gNB has to rely on the quantized and compressed reported CSI information (see Figure 13). In addition, the ML based standardization impact can be minimized by using the collaboration level x in combination with a one-sided model assumption, i.e., no collaboration and a vendor specific neural network implementation. This is fine, when the UE calculates the conventional Type II CSI for the predicted time instance  instead of the latest observation time .
Note that the evolution of the radio channel is partly deterministic like the smooth evolution of multipath component delays over time for moving UEs. This can be exploited, e.g., by tracking solutions with overall reduced feedback overhead. This might lead to new methods compared to simple UE sided Type II feedback, potentially including then type y and/or type z cooperation levels.
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[bookmark: _Ref100231351]Figure 13: possible channel prediction with UE sided inference of the CSI for a predefined time t_predict. UE reports then at time t_observe the predicted CSI as well as the prediction time t_predict. Based on this information the gNB can make – possibly after some signal post processing - a prediction for the time instance t_predict.
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[bookmark: _Ref102113819]Figure 14: possible channel prediction with gNB sided inference of the CSI for a predefined time t_predict. UE reports then at time t_observe n compressed CSI estimates as well as the related time stamps. Based on this information the gNB can infer a prediction for the time instance t_predict.

Proposal 5: Consider UE sided as well as gNB sided channel prediction, as well as potentially include combined prediction between UE and gNB.

Lifecycle management of AI/ML model
Lifecycle management of AI/ML models depends on the operation mode, i.e., UE-sided, gNB-sided or combined mode. In case of UE sided prediction, the UE vendor might have to ensure up to date and verified neural network model usage. Similarly, in case the prediction is done at gNB side then the gNB vendor or MNO might be responsible to keep models up to date. 
In more advanced implementations, the ML and potentially the PHY layer models might be adapted to the general radio channel conditions. Eventually, this might include online training for fine-tuning of pre-trained ML models. 
In the case of parallel models running on the UE and gNB side with an explicit exchange of model parameters, then a very detailed model selection, model verification, model training description will be needed.

Baseline Scheme(s)
As baseline scheme for ML based channel prediction, we see the UE based channel prediction, where the CP model is realized mainly by an LSTM neural network potentially enhanced by some CNN layers. The scheme follows the setup in Figure 13, i.e., the gNB transmits n CSI RSs and the UE feeds the related n CSI estimates into the CP model. 
We assume an OFDM signal with a regular grid of CSI RS in time and frequency and potentially enhanced by a first stage NN for noise reduction of the channel estimates. Typically, the neural network will directly use as input signal the normalized LMMSE estimates of the complex channel transfer functions, which are then split into the real and imaginary parts. The output signal is the predicted channel transfer function for a predefined prediction time .
In case the channel prediction is done at the gNB side, then the UE has to report the n CSI estimates on the PUCCH to the gNB. Then it might be beneficial as part of the CSI compression to transform the CSI from frequency into time domain. Furthermore, some channel prediction methods include as part of the data preprocessing such a frequency to time domain signal transformation. gNB sided channel prediction might allow for more complex and more advanced channel prediction methods, potentially, leading to an improved channel prediction horizon.
Conclusion
In this contribution, we have discussed the details of two CSI sub-use cases. Our proposals are:
Proposal 1. Study channel-, eigenvector-based and W2-based two-sided models for CSI feedback compression. 
Proposal 2. For the two-sided models, study the impact of quantizers on CSI feedback compression. 
Proposal 3. Support CSI prediction as a second sub-use case.
Proposal 4. Compare channel prediction over broad bandwidth versus based on Type II CSI per sub-band. 
Proposal 5: Consider UE sided as well as gNB sided channel prediction, as well as potentially include combined prediction between UE and gNB.
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