

[bookmark: OLE_LINK1]3GPP TSG RAN WG1 #110	R1-2206954
Toulouse, France, August 22nd – 26th, 2022
[bookmark: Source]Agenda item:	9.2.2.2
Source: 	ETRI
Title:	Discussion on other aspects on AI/ML for CSI feedback enhancement
Document for:	Discussion
Introduction
This contribution presents ETRI’s views on the other aspects on AI/ML for CSI feedback enhancement use case.

Discussion
AI model for CSI compression sub use case
CSI compression is one of key sub use case of AI/ML for CSI feedback enhancement. In RAN1 #109-e, following AI model architecture for CSI compression is discussed [2]:
	•	CSI compression: A two-sided model is considered as a starting point, including an AI/ML-based CSI generation part to generate the CSI feedback information and an AI/ML-based CSI reconstruction part which is used to reconstruct the CSI from the received CSI feedback information
o A general principle that companies are encouraged to report the details of the AI/ML models, including AI/ML structure, input CSI type, output CSI type, data pre-processing/post-processing, loss function, etc.

Autoencoder based AI model
Autoencoder, which consists of neural network-based encoder/decoder, can be considered as a representative form of a two-sided AI/ML model. For CSI feedback enhancement, the autoencoder may be a promising AI/ML model as its performance has been proven in previous studies. However, in a commercial wireless system, when the encoder and the decoder of the Autoencoder are separately deployed in the UE and the gNB, issue(s) may arise with the training process of the Autoencoder. Specifically, training of Autoencoder based AI model for CSI compression sub use case can be divided into two cases:
· Case 1: Training of Encoder/Decoder in either UE or gNB side
· Case 2: Training of Encoder/Decoder in both UE and gNB side.

When the two-sided AI/ML for CSI feedback enhancement follows the Autoencoder structure, we think that the training method in Case 2 will be more preferred. This is because, for Case 1, training entity (either UE or gNB) should deliver trained parameters of Encoder or Decoder network to another entity. For example, gNB should deliver Encoder network to UE for CSI feedback information generation to be aligned with gNB’s Decoder when training of Autoencoder is done at gNB side. However, neural network architectures and trained networks can be proprietaries of companies, sharing AI models among entities should be considered with the proprietaries issue. Moreover, the neural networks (Encoder and/or Decoder) may requires high capacity for CSI compression and recovery with high quality, which may result in large AI models and may consume large communication resources as AI models may be shared.

For Case 2, Encoder and Decoder of Autoencoder which are trained independently by different entities may not be compatible with each other in general. This is because, in Autoencoder, Encoder and Decoder network are trained to mainly reduce the reconstruction loss between input and output with interaction among Encoder and Decoder network. Therefore, when considering Autoencoder for CSI feedback enhancement, it is necessary to first study the feasible training process of the Autoencoder in both UE and gNB side supporting compatibility. The discussion on the possible approach to support the compatibility among independently trained AI models (e.g., Encoder and Decoders) can be found in our companion contribution [4].

Proposal 1: When considering Autoencoder for CSI feedback enhancement, first study the feasible training process of Autoencoder in both UE (Encoder) and gNB (Decoder) side supporting compatibility.

PCA based AI model
Another type of two-sided AI model besides Autoencoder, PCA (Principal Component Analysis) based AI Model, can also be considered for CSI compression sub use case. The architecture of the AI model is in Figure 1.

[image:]
Figure 1. PCA based AI Model for CSI compression

In the PCA based AI model, dimension reduction in Encoder is done by using the PCA and this is different to the Autoencoder where the deep learning is used for dimension reduction.

Encoder (CSI compression)
Encoder of the AI model gets wireless channel information, eigenvector(s), as input data and generates compressed information, CSI feedback information, as output data. Encoder of the AI model is composed of following functions:
· Downsampling (if applied)
· Dimension reduction (PCA)
· Quantization.

Downsampling can be applied to reduce amount of data to be processed. For example, compressing eigenvectors of a portion of subbands can be done instead of compressing all subbands’ eigenvectors.

Dimension reduction is to transform high dimensional eigenvector(s) data into low dimensional latent variables. Low dimensional latent variables are desirable to be uncorrelated for efficient encodings. AI/ML techniques can be applied in the dimension reduction function. PCA is a well-known ML based linear dimension reduction technique which transform high dimensions of original data into uncorrelated lower dimensions. Transformation using PCA is in Figure 2.

[image:]
Figure 2. Transformation (dimension reduction) using PCA

Quantization is to map the latent variables (eigenvectors in lower dimensional) in floating point to the limited length of binary variables for feedback through the feedback data transmission. Many design choices can be made, for example, uniform quantization can be applied for binarization.

Decoder (channel information recovery)
Decoder of the AI model gets received CSI feedback information in binary sequences as input data and generates recovered wireless channel information, eigenvector(s), as output data. Decoder part of the AI model is composed of following functions:
· Dequantization
· Reconstruction
· Restoration (including upsamping).

Dequantization is an inverse process of the quantization in Encoder, which is to convert received CSI feedback information in form of a binary sequence to the latent variables in floating points.

Reconstruction is also an inverse process of the dimension reduction in Encoder, which is to reconstruct the high dimensional eigenvector(s) from the latent variables. When the dimension reduction in Encoder is conducted by using PCA, inverse PCA is conducted to reconstruct the eigenvector(s).

Restoration has following purposes:
· Upsampling (if downsampling is applied in the Encoder)
· Noise reduction
, where the upsampling is to predict missed information by the downsampling process in Encoder. A simple upsampling technique can be the interpolation filtering. Besides to the information loss by the downsampling, the dimension reduction and quantization induce noises on the reconstructed eigenvector(s). By performing restoration, such noises can be reduced. Restoration can rely on the deep neural networks, such as DNN, CNN, Transformer, and many mores.

Training
Training of the AI model is divided into two parts:
· Training Encoder of the AI model (dimension reduction)
· Training Decoder of the AI model (reconstruction and restoration).

For the PCA for dimension reduction process in Encoder, UE should perform PCA using the training samples of eigenvector(s) and get principal components of the eigenvector(s), or receive principal components from the other entity (e.g., gNB).

For the inverse PCA for reconstruction process in Decoder, gNB should also perform PCA using the training samples of eigenvector(s) to get principal components of the eigenvector(s), or receive principal components from the other entity (e.g., UE).

For the restoration process in Decoder, gNB should train the neural network for restoration using the training samples of eigenvector(s) to get the upsampled clean eigenvector(s). To train the neural network for restoration, training entity should preprocess the input data (eigenvector(s)) using downsampling, dimension reduction, quantization, dequantization, and reconstruction. The output of preprocessing is reconstructed downsampled (if applied) eigenvector(s) and this is input of the neural network for restoration. Target of the neural network for restoration is clean and full channel data input (eigenvector(s)). The training process is in the Figure 3.
 [image:]
Figure 3. Training the restoration neural network

Performances of the PCA based AI Model
For both training and evaluation of the dimension-reduction based AI model, LLS is used to generate the wireless channel data. The parameters used for the LLS are provided in Table 1. We use Rel-16 enhanced type 2 codebook as a reference and evaluates the performance of using the AI model for CSI compression compared to the reference scheme.

Table 1. Parameters for the LLS
	Parameter
	Value

	Carrier frequency
	2 GHz

	BWP
	48 RBs

	Subcarrier spacing
	15 kHz

	Subband/PRG size
	4 RBs

	Number of transmit antennas ()
	32

	Number of receive antennas ()
	4

	Number of layers
	1

	Delay profile
	CDL-C

	Delay spread
	30ns, 300ns

	Channel estimation
	Ideal

The parameters of the PCA based AI Model is in Table 2.

Table 2. Parameters of the PCA based AI Models
	Parameter
	Value

	Type of the dimension reduction
	PCA

	Type of the restoration neural network
	Transformer

	Downsampling
	3 or 4 subbands

	Total number of samples
	5e4

	Portion of validation samples
	0.1

	Batch size
	256

	Total number of epochs
	256

	Learning algorithm
	Adam

	Learning rate
	0.01

To see potential benefits of the PCA based AI model for CSI compression sub use case, we use an intermediate performance metric of GCS (generalized cosine similarity) as

where and are original and reconstructed eigenvector(s) of subband and denotes averaging over multiple samples. We use Rel-16 enhanced type 2 codebook as a reference and evaluates the performance of using the AI model for CSI compression compared to the reference scheme.

The evaluation results of the dimension-reduction based AI Model compared to the reference in terms of GCS with CDL-C channel model with 30ns delay spread is in Table 3.

Table 3. GCS of eTypeII and the dimension-reduction based AI Model (CDL-C, 30ns)
	Case
	GCS

	AI Model, 32 bits
	0.917

	eTypeII, 49 bits
	0.826

	AI Model, 48 bits
	0.944

	eTypeII, 87 bits
	0.905

	AI Model, 86 bits
	0.955

The results show the PCA based AI Model can achieve significantly higher GCS than the baseline (eType II codebook). An important thing to point out is that the compression of eigenvector(s) using PCA (not using deep learning) in the Encoder is beneficial in recovering the original eigenvector(s) in the Decoder. We propose to study the feasibility of the PCA based AI model, which not rely on deep learning in the Encoder, for CSI compression sub use case.

Observation 1: The PCA based AI Model can achieve significantly higher GCS compared to the baseline (eTypeII codebook).

Observation 2: Compression using PCA (not using deep learning) in the Encoder is beneficial in recovering the original eigenvector(s) in the Decoder.

Proposal 2: Study the feasibility of the PCA based two-sided AI model for CSI compression sub use case.

Conclusion
[bookmark: _GoBack]In this contribution, ETRI’s views on other aspects of AI/ML framework for CSI feedback enhancement use case were shown and the following proposals and observations were made:

Proposal 1: When considering Autoencoder for CSI feedback enhancement, first study the feasible training process of Autoencoder in both UE (Encoder) and gNB (Decoder) side supporting compatibility.

Observation 1: The PCA based AI Model can achieve higher GCS compared to the baseline (eTypeII codebook).

Observation 2: Compression using PCA (not using deep learning) in the Encoder is beneficial in recovering the original eigenvector(s) in the Decoder.

Proposal 2: Study the feasibility of the PCA based two-sided AI model for CSI compression sub use case.

References
[1] [bookmark: _Ref94002833][bookmark: _Ref95163286]RP-213599, New SI: Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface, Qualcomm
[2] Summary of Evaluation on AI/ML for CSI feedback enhancement, 3GPP RAN WG1 #109-e, Moderator (Huawei)
[3] 3GPP TS 38.213 V17.0.0.
[4] R1-2206952, Discussion on general aspects of AI/ML framework for NR air interface, ETRI

--

image3.png

image1.png

image2.png

