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1. [bookmark: _Toc120549591]Introduction
In RAN1#109-e meeting, the following evaluation methodology and regarding aspects such as KPI, baseline performance on AI/ML for beam management is determined [1]. 
Agreement
· For dataset construction and performance evaluation (if applicable) for the AI/ML in beam management, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted

Agreement
· At least for temporal beam prediction, companies report the one of spatial consistency procedures: 
· Procedure A in TR38.901
· Procedure B in TR38.901
Agreement
· At least for temporal beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.
· For spatial-domain beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.

Agreement
· At least for spatial-domain beam prediction in initial phase of the evaluation, UE trajectory model is not necessarily to be defined.

Agreement
· At least for temporal beam prediction in initial phase of the evaluation, UE trajectory model is defined. FFS on the details.


Agreement
· UE rotation speed is reported by companies.
· Note: UE rotation speed = 0, i.e., no UE rotation, is not precluded.
Agreement
· For AI/ML in beam management evaluation, RAN1 does not attempt to define any common AI/ML model as a baseline.
· 
Conclusion
· Further study AI/ML model generalization in beam management evaluating the inference performance of beam prediction under multiple different scenarios/configurations.
· FFS on different scenarios/configurations
· Companies report the training approach, at least including the dataset assumption for training
Agreement
· For evaluation of AI/ML in BM, the KPI may include the model complexity and computational complexity.
· FFS: the details of model complexity and computational complexity
Agreement
· For spatial-domain beam prediction, further study the following options as baseline performance
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
· FFS CSI-RS/SSB as the RS resources
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
· FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
· FFS: how conventional scheme to obtain performance KPIs
· FFS: how to determine the subset of RS resources is reported by companies
· Other options are not precluded.

Agreement
· For dataset generation and performance evaluation for AI/ML in beam management, take the parameters (if applicable) in Table 1.2-1b for Dense Urban scenario for SLS
Table 1.2-1b Assumptions for Dense Urban scenario for AI/ML in beam management
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz
· SCS: 120 kHz

	Deployment
	200m ISD,
· 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	· For spatial domain beam prediction, 3km/h
· For time domain beam prediction: 30km/h (baseline), 60km/h (optional)
· Other values are not precluded

	UE distribution
	· FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded.
 
· For spatial domain beam prediction: FFS:
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	         [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline]
         [Four panels: (M, N, P, Mg, Ng) = (4, 8, 2, 2, 2), (dV, dH) = (0.5, 0.5) λ. (dg,V, dg,H) = (2.0, 4.0) λ as optional]
         Other assumptions are not precluded.
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,2)]
         2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
         Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	Companies to explain beam correspondence assumptions (in accordance to the two types agreed in RAN4)

	Link adaptation
	Based on CSI-RS

	Traffic Model
	FFS:
· Option 1: Full buffer
· Option 2: FTP model
Other options are not precluded

	Inter-panel calibration for UE
	Ideal, non-ideal following 38.802 (optional) – Explain any errors

	Control and RS overhead
	Companies report details of the assumptions

	Control channel decoding
	Ideal or Non-ideal (Companies explain how it is modelled)

	UE receiver type
	MMSE-IRC as the baseline, other advanced receiver is not precluded

	BF scheme
	Companies explain what scheme is used

	Transmission scheme
	Multi-antenna port transmission schemes
Note: Companies explain details of the using transmission scheme.

	Other simulation assumptions
	Companies to explain serving TRP selection
Companies to explain scheduling algorithm

	Other potential impairments
	Not modelled (assumed ideal).
If impairments are included, companies will report the details of the assumed impairments

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB




Agreement
· For temporal beam prediction, the following options can be considered as a starting point for UE trajectory model for further study. Companies report further changes or modifications based on the following options for UE trajectory model. Other options are not precluded. 
· Option #2: Linear trajectory model with random direction change.
· UE moving trajectory: UE will move straightly along the selected direction to the end of an time interval, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms. 
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· UE move straightly within the time interval with the fixed speed.
· FFS on UE orientation
· Option #3: Linear trajectory model with random and smooth direction change.
· UE moving trajectory: UE will change the moving direction by multiple steps within an time internal, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms.
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· The time interval is further broken into N sub-intervals, e.g. 100ms per sub-interval, and at the end of each sub-interval, UE change the direction by the angle of A_diff/N.  
· UE move straightly within the time sub-interval with the fixed speed.
· FFS on UE orientation

· Option #4: Random direction straight-line trajectories. 
· Initial UE location, moving direction and speed: UE is randomly dropped in a cell, and an initial moving direction is randomly selected, with a fixed speed.
· The initial UE location should be randomly drop within the following blue area


where d1 is the minimum distance that UE should be away from the BS. 
· Each sector is a cell and that the cell association is geometry based.
· During the simulation, inter-cell handover or switching should be disabled.
For training data generation
· For each UE moving trajectory: the total length of the UE trajectory can be set as T second if it is in time, of set as D meter if it is in distance.
· The value of T (or D) can be further discussed
· The trajectory sampling interval granularity depends on UE speed and it can be further discussed. 
· UE can move straightly along the entire trajectory, or
· UE can move straightly during the time interval, where the time interval is provided by using an exponential distribution with average interval length 
· UE may change the moving direction at the end of the time interval. UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°]
· If the UE trajectory hit the cell boundary (the red line), the trajectory should be terminated. 
· If the trajectory length (in time) is less than the length of observation window + prediction window, the trajectory should be discarded. 
· At the current stage, the length of observation window + prediction window is not fixed and the companies can report their values.
· FFS on UE orientation
· Generalization issue is FFS 

Agreement
· For temporal beam prediction, further study the following options as baseline performance
· Option 1a: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1 
· Companies explain the detail on how to select the best beam for T2 from Set A based on the measurements in T1
· Where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 and T2 are aligned with those for AI/ML based methods
· Whether Set A and Set B are the same or different depend on the sub-use case
· Other options are not precluded.  

Agreement
· For dataset generation and performance evaluation for AI/ML in beam management, take the following assumption for LLS as optional methodology
	Parameter
	Value

	Frequency
	30GHz.

	Subcarrier spacing
	120kHz

	Data allocation
	[8 RBs] as baseline, companies can report larger number of RBs
First 2 OFDM symbols for PDCCH, and following 12 OFDM symbols for data channel

	PDCCH decoding
	Ideal or Non-ideal (Companies explain how is oppler)

	Channel model
	FFS:
LOS channel: CDL-D extension, DS = 100ns
NLOS channel: CDL-A/B/C extension, DS = 100ns
Companies explains details of extension methodology considering spatial consistency

Other channel models are not precluded.

	BS antenna configurations
	· One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline
· Other assumptions are not precluded. 
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS antenna element radiation pattern
	Same as SLS

	BS antenna height and antenna array downtile angle
	25m, 110°

	UE antenna configurations
	Panel structure: (M, N, P) = (1, 4, 2), 
· 2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
· 1 panel as optional
· Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE antenna element radiation pattern
	Same as SLS

	UE moving speed
	Same as SLS

	Raw data collection format
	Depends on sub-use case and companies’ choice. 



Agreement
· For UE trajectory model, UE orientation can be independent from UE moving trajectory model. FFS on the details. 
· Other UE orientation model is not precluded.

Agreement
· Companies are encouraged to report the following aspects of AI/ML model in RAN 1 #110. FFS on whether some of aspects need be defined or reported.
· Description of AI/ML model, e.g, NN architecture type
· Model inputs/outputs (per sub-use case)
· Training methodology, e.g.
· Loss function/optimization function
· Training/ validity /testing dataset:
· Dataset size, number of training/ validity /test samples
· Model validity area: e.g., whether model is trained for single sector or multiple sectors             
· Details on Model monitoring and model update, if applicable
· Others related aspects are not precluded

Agreement
· To evaluate the performance of AI/ML in beam management, further study the following KPI options:
· Beam prediction accuracy related KPIs, may include the following options:
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”

· CDF of L1-RSRP difference for Top-1 predicted beam
· Beam prediction accuracy (%) with 1dB margin for Top-1 beam
· The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam” 

· the definition of L1-RSRP difference of Top-1 predicted beam: 
· the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
· Other beam prediction accuracy related KPIs are not precluded and can be reported by companies. 
· System performance related KPIs, may include the following options:
· UE throughput: CDF of UE throughput, avg. and 5%ile UE throughput
· RS overhead reduction at least for spatial-domain beam prediction at least for top-1 beam:
· 1-N/M,
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement
· where (FFS) M is the total number of beams
· Note: Non-AI/ML approach based on the measurement of these M beams may be used as a baseline
· FFS on whether to define a proper value for M for evaluation.
· Other System performance related KPIs are not precluded and can be reported by companies.
o   Other KPIs are not precluded and can be reported by companies, for example:
  Reporting overhead reduction: (FFS) The number of UCI report and UCI payload size, for temporal /spatial prediction
  Latency reduction:
  (FFS) (1 – [Total transmission time of N beams] / [Total transmission time of M beams])
       where N is the number of beams (with reference signal (SSB and/or CSI-RS)) in the input beam set required for measurement
       where M is the total number of beams
  Power consumption reduction: FFS on details
In this contribution, we concentrate on simulation methodology and performance results of Alt 1 of spatial domain beam prediction sub use case BM-Case1 to exercise the attainable gains of AI/ML-based beam management. Besides, the generalization of AI model is also discussed for further study.
2. Performance evaluation of spatial domain beam prediction
In this section, the KPI and baseline of spatial domain beam prediction will be discussed, the dataset generation, AI model structure and simulation results of Alt1 of BM-Case1 are presented. The procedure description of spatial domain beam prediction sub use case can refer to [2]. The generalization of AI model is discussed.
2 
KPI and baseline
The definition of beam prediction accuracy related KPIs, system performance related KPIs and other KPIs has been discussed in RAN1#109-e meeting. Regarding the definition of beam prediction accuracy for Top-1 and/or Top-K beams, there remains two options. To increase the prediction accuracy of Top-1 genie-aided beam, Top-K best beam pairs can be predicted by AI model and the best beam pair can be selected by measuring the L1-RSRP of Top-K best beam pairs. Top-1 genie-aided beam can be correctly predicted as long as it is included within Top-K predicted beam pairs. 
Proposal 1: The definition of beam prediction accuracy (%) for Top-1 and/or Top-K beams is:
•	Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
Regarding the definition of latency reduction, it is necessary to align whether latency refers to the latency of transmission of measured beam pairs or latency includes latency for both measurement and model inference. If the latency refers to the former, once the mapping relationship between RS and REs is determined, within one period of mapping of all measured RS, the transmission time of beam starts from the earliest symbol of the measured RS and ends at the latest symbol of the RS. Latency reduction can be defined as 1 – [Total transmission time of N beams] / [Total transmission time of M beams].
Proposal 2: If latency refers to the latency of transmission of measured beam pairs, the definition of latency reduction is 1 – [Total transmission time of N beams] / [Total transmission time of M beams], where the transmission time of beams starts from the earliest symbol of the measured RS and ends at the latest symbol of the RS within one period of RS transmission.
To evaluate the performance gain of AI model over traditional non-AI method, both option 1 and option 2 of the baseline of BM-Case1 are considered in our simulations. Option 1 selects the best beam pair within Set A based on exhaustive beam sweeping of CSI-RS resources in Set A. Option 2 selects the best beam pair within Set A based on the measurement of RS resources from Set B, where Set B is a subset of Set A. With option 2, the Top-1 measured beam pair in Set B is taken as the Top-1 beam pair in Set A. The L1-RSRP difference of Top-1 predicted beam is the difference between the ideal L1-RSRP of Top-1 measured beam in Set B and the ideal L1-RSRP of the Top-1 genie-aided beam in Set A. The beam prediction accuracy for Top-K beams is the percentage of “the Top-1 genie-aided beam in Set A is one of the Top-K measured beams in Set B”. 
Evaluation of BM-Case1
Dataset and AI model
The dataset we used is generated based on the simulation assumption agreed in RAN1#109-e. The TXRU weights mapping at gNB is (Mp, Np, P, Mg, Ng) = (1,1,2,1,1). The gNB has 64 transmit beams, including 8 horizontal beams and 8 vertical beams, where azimuth angle φi = [-7*pi/16, -5*pi/16, -3*pi/16, -pi/16, pi/16, 3*pi/16, 5*pi/16, 7*pi/16], zenith angle θj = [8*pi/16, 9*pi/16, 10*pi/16, 11*pi/16, 12*pi/16, 13*pi/16, 14*pi/16, 15*pi/16]. The TXRU weights mapping at UE is (Mp, Np, P, Mg, Ng) = (1,1,2,1,1). UE has 4 transmit beams, including 1 horizontal beams and 4 vertical beams, where azimuth angle φi = [-3*pi/8, -pi/8, pi/8, 3*pi/8], zenith angle θj = pi/2. 
Dataset includes 52500 samples, each sample includes L1-RSRP of all 256 beam pairs. Among all samples, 47250 samples are used for training and 5250 samples are used for testing.
The AI model we applied is composed of CNN and fully connected layers. The input of AI model is the measured L1-RSRP of beam pairs in Set B. Three fixed beam measurement patterns are considered, i.e. 4 transmit beams ×4 reception beams, 8 transmit beams ×4 reception beams, 12 transmit beams ×4 reception beams. The output of AI model is the predicted L1-RSRP of all 64×4 beam pairs. Then, top-K beam pairs are determined from all beam pairs based on the predicted L1-RSRP. During training phase of AI model, MSE is adopted as loss function. 
Simulation results
In Fig. 1, we compare average L1-RSRP difference of Top-1 predicted beam of our AI model, with baseline option 1 and option 2. It is shown that with the increase of the number of measured beam pairs, average L1-RSRP difference of Top-1 predicted beam of AI model reduces rapidly, while average L1-RSRP difference of Top-1 predicted beam of baseline option 1 is 0, average L1-RSRP difference of Top-1 predicted beam of baseline option 2 remains nearly the same. We can conclude that with the increase of the number of measured beam pairs, the performance gain of AI model on  average L1-RSRP difference over baseline option 2 becomes more obvious. For 4*4, 8*4, 12*4 measurement patterns, AI model reduces the average L1-RSRP difference of Top-1 predicted beam by 3.28dB, 9.76dB, 9.92dB respectively compared with baseline option 2.


Fig. 1 Average L1-RSRP difference of Top-1 predicted beam (dB)
In Fig. 2, 3 and 4, we compare beam prediction accuracy for Top-K (K=1,2,…,5) beam pairs of our AI model, with baseline option 1 and option 2 under different beam measurement patterns. 


Fig. 2 Beam prediction accuracy for Top-K beams with 4*4 measurement pattern

Fig. 3 Bam prediction accuracy for Top-K beams with 8*4 measurement pattern

Fig. 4 Beam prediction accuracy for Top-K beams with 12*4 measurement pattern
With the increase of K, the prediction accuracy of AI model improves significantly, while the increased beam sweeping overhead is small. Selecting an appropriate value of K can achieve a trade-off between prediction accuracy and beam sweeping overhead.
For measurement pattern of 8*4 and 12*4, compared with baseline option 1, when K is larger than a specific value, the prediction accuracy of AI model is close to the result of exhaustive beam sweeping, but the beam sweeping overhead is much smaller. For example, for 8*4 measurement pattern, AI model has 5.7% loss of prediction accuracy for top-3 beams but can save 86.3% beam sweeping overhead.
Compared with baseline option 2, AI model achieves much higher prediction accuracy under the same low beam sweeping overhead. For example, for 4*4, 8*4, 12*4 measurement patterns, AI model enhances prediction accuracy for top-3 beam pair by 52.4%, 88.9%, 87.8% respectively.
Above all, AI based spatial beam prediction can largely reduce beam sweeping overhead with minor loss of prediction accuracy for top-K beam pair, and can attain considerable gain on prediction accuracy for top-K beam pair under the same beam sweeping overhead.
Observation 1: The increase of K significantly improves the prediction accuracy while leading to a small degree of increased beam sweeping overhead. 
Observation 2: Compared with baseline option 1, AI based spatial beam prediction has minor loss of prediction accuracy for top-K beam pair but has large beam sweeping overhead reduction.
Observation 3: Compared with baseline option 2, AI based spatial beam prediction significantly enhances prediction accuracy for top-K beam pair under the same beam sweeping overhead.
In Table 1, we compare computational complexity and parameter quantity of AI model under different measurement patterns. Since the network scale of AI model increase with the number of measured beam pairs, both FLOPs and trainable parameters increase with the number of measured beam pairs.
Table 1 Computational cost of AI model
	
	FLOPs(×106)
	Trainable Parameters(×106)

	12*4
	3.74
	1.87

	8*4
	3.21
	1.61

	4*4
	2.69
	1.35


Observation 4: FLOPs and trainable parameters increase with the number of measured beam pairs.
Generalization of AI model
For AI-based spatial domain beam prediction, the scenarios and beam measurement configurations (including the number and the combination of measured beam pairs in set B) can be changed. The beam prediction AI model trained for a particular scenario/configuration may not be suitable for other scenario/configurations. To support beam prediction under different beam measurement scenarios/configurations, gNB or UE side may need to train and storage multiple AI models, hence the training and memory storage cost of AI model become large. To promote the practical application of AI-based spatial domain beam prediction and reduce the implementation cost of multiple models, the generalization problem of AI model is a significant issue. It is meaningful to further evaluate the generalization capability of AI model under different beam measurement scenarios and configurations.
Proposal 3: Generalization capability of AI model under different scenarios and beam measurement configurations (at least including different number and combination of measured beam pairs in set B) needs further evaluation.

3. Conclusion
In this contribution, simulation results of spatial domain beam prediction sub use case BM-Case1 and generalization of AI model are discussed, and the following observations and proposals are made.
Observation 1: The increase of K significantly improves the prediction accuracy while leading to a small degree of increased beam sweeping overhead. 
Observation 2: Compared with baseline option 1, AI based spatial beam prediction has minor loss of prediction accuracy for top-K beam pair but has large beam sweeping overhead reduction.
Observation 3: Compared with baseline option 2, AI based spatial beam prediction significantly enhances prediction accuracy for top-K beam pair under the same beam sweeping overhead.
Observation 4: FLOPs and trainable parameters increase with the number of measured beam pairs.
Proposal 1: The definition of beam prediction accuracy (%) for Top-1 and/or Top-K beams is:
•	Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
Proposal 2: If latency refers to the latency of transmission of measured beam pairs, the definition of latency reduction is 1 – [Total transmission time of N beams] / [Total transmission time of M beams], where the transmission time of beams starts from the earliest symbol of the measured RS and ends at the latest symbol of the RS within one period of RS transmission.
Proposal 3: Generalization capability of AI model under different scenarios and beam measurement configurations (at least including different number and combination of measured beam pairs in set B) needs further evaluation.
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