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1 Introduction
In RAN#94-e, Rel-18 new study item on “Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface” is endorsed. One of the objective of the study item [1] is the following:
	*** text omitted***
Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels
*** text omitted***
For the use cases under consideration:
1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.



In this contribution, we will provide our views on the evaluation of AI/ML for CSI feedback enhancement. 
2 Evaluation on AI/ML for CSI feedback enhancement.
Based on the part of SID [1], captured above, the evaluation methodologies (EVMs) and KPIs for the use cases under consideration will be studied. In this regard, this contribution discusses EVMs and KPIs for one of the use cases, namely, CSI feedback enhancement. Moreover, we consider four sub-use cases under CSI feedback enhancement. A brief description of the sub-use cases, which are described in details in [2], is given below. 
a) CSI prediction:  This sub-use case considers the prediction of CSI in time domain. An AI/ML solution located at either the UE or gNB performs CSI prediction based on a set of inputs, e.g. past CSI measurements/reports. 
b) Frequency-domain CSI extrapolation: This sub-use case considers extrapolation of CSI in the frequency domain.  An AI/ML solution located at either the UE or gNB performs CSI prediction in one frequency band based on a set of inputs, e.g. CSI measurements/reports for another frequency band.        
c) Spatial-frequency domain CSI compression: This sub-use case envisions compression of the CSI feedback in spatial and frequency domains based on a two-sided model. One side of the model located at the UE encodes the CSI to its compressed representation. Another side of the model located at the gNB decodes and reconstructs the received compressed CSI feedback. The pair of encoder and decoder, hence, is referred to as an auto-encoder (AE). 
d) Joint CSI prediction and compression: This sub-use case considers the compression of CSI feedback in spatial, frequency, and time domains. As this sub-use case considers the three aforementioned compression domains, it can be loosely considered as a combination of the above two sub-use cases.

2.1 General Aspects of Evaluation Methodologies 
In RAN1#109-e, EVMs based on SLS as a baseline and LLS as optional are agreed for evaluation of AI/ML-based CSI feedback enhancement. Moreover, as shown below, it was agreed companies can consider performing intermediate evaluation on AI/ML model to derive the intermediate KPIs. In our view, the intermediate evaluation with properly selected intermediate KPIs can be used to compare the performance advantages and complexity requirements of potential sub use cases. This greatly simplifies the evaluation efforts and allows the study to consider a diverse set of sub use cases. Eventual evaluation with system level performance metrics will assist in drawing accurate conclusions on the benefits of AI/ML for CSI feedback enhancement and for possible recommendations of normative projects. With this in mind, in the below, we provide our view on some general aspects of the SLS and LLS-based evaluation methodologies. 

	Agreement
For the performance evaluation of the AI/ML based CSI feedback enhancement, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted
Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, companies can consider performing intermediate evaluation on AI/ML model performance to derive the intermediate KPI(s) (e.g., accuracy of AI/ML output CSI) for the purpose of AI/ML solution comparison.



2.1.1.Baseline SLS-based EVM 
One of the remaining issues in the agreed SLS-based EVM shown in Table 4.1 is the issue of channel estimation. For the system level evaluation, realistic channel estimation is agreed to be used as a baseline assumption and whether ideal channel estimation can be considered is suggested for future study. Moreover, as shown below, ideal DL channel estimation is optionally taken into the baseline of EVM for the purpose of calibration and/or comparing intermediate results. Realistic channel estimation is advantageous to have a realistic performance evaluation and clearly identifying the benefits of AI/ML-based schemes. However, optionally considering ideal channel estimation simplifies the evaluation work and provides modelling-independent performance comparison between AI/ML and traditional schemes. 
	Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, for ‘Channel estimation’, ideal DL channel estimation is optionally taken into the baseline of EVM for the purpose of calibration and/or comparing intermediate results (e.g., accuracy of AI/ML output CSI, etc.)
· Note: Eventual performance comparison with the benchmark release and drawing SI conclusions should be based on realistic DL channel estimation.
· FFS: the ideal channel estimation is applied for dataset construction, or performance evaluation/inference.
· FFS: How to model the realistic channel estimation
· FFS: Whether ideal channel is used as target CSI for intermediate results calculation with AI/ML output CSI from realistic channel estimation




Proposal #1: For the SLS-based evaluation of the AI/ML based CSI feedback enhancement, additional to realistic channel estimation, consider ideal DL channel estimation for system performance evaluation.
· Whether the ideal or realistic channel estimation is applied for dataset construction is up to companies 
· Ideal channel is used as a target CSI for intermediate results calculation for AI/ML output CSI from ideal channel estimation.
· Realistic channel estimation is used as target CSI for intermediate results calculation for AI/ML output CSI from realistic channel estimation.


Another remaining issue is whether to consider ‘full buffer’ traffic model or FTP models.  It can be argued that FTP traffic models closely approximate reality. However, considering full-buffer traffic allows to disjointedly identify the full potential of AI/ML schemes as compared to traditional schemes by reducing the effect of scheduling. Moreover, for intermediate evaluation on AI/ML models as the evaluation is not dependent on user scheduling and resource utilization, it can be considered as full-buffer traffic. In order to align, the intermediate and eventual system performance evaluation, considering full buffer traffic is beneficial. With this, we support the consideration of both FTP Model 1 and full buffer traffic as a baseline and optional traffic models, respectively. 
 
Proposal #2: For the evaluation of the AI/ML based CSI feedback enhancement consider the following traffic models
· FTP model 1 as baseline 
· Full buffer as optional 


Additionally, it is beneficiary to align the other remaining parameters with the agreed EVM table for Rel-18 Doppler  CSI enhancement considering that the two items have considerable overlap. In this regard, we propose the following:

Proposal #3: For SLS-based evaluation of the AI/ML based CSI feedback enhancement consider the following values for the remaining parameters 
· Simulation bandwidth: 10MHz for 15KHz SCs as a baseline 
· MIMO scheme: SU/MU-MIMO with rank adaptation as a baseline
· Traffic load (resource utilization): 50/70 % for SU/MU-MIMO with rank adaptation, 20% for SU-MIMO with rank adaptation, companies are encouraged to report the MU-MIMO utilization.

2.1.2. LLS-based EVM
Moreover, in RAN1#109-e, the LLS-based EVM with parameters listed in Table 4.2. is agreed. For the same reasoning as the one mention for SLS-based evaluation, we propose for ideal channel estimation to be adopted as optional consideration. 

Proposal #4: For the LLS-based evaluation of the AI/ML based CSI feedback enhancement, additional to realistic channel estimation consider ideal DL channel estimation for system performance evaluation.
· Whether the ideal or realistic channel estimation is applied for dataset construction is up to companies 
· Ideal channel is used as a target CSI for intermediate results calculation with AI/ML output CSI from ideal channel estimation.
· Realistic channel estimation is used as target CSI for intermediate results calculation with AI/ML output CSI from realistic channel estimation.

2.1.3. Generalization Performance 
When the performance of a model is kept within the required range across multiple scenarios and configurations, it implies a single model can be applied to the multiple scenarios/ configurations for which the model generalizes to. This has impact on the overhead associated to the storage and the model life-cycle management of AI/ML models. Moreover, this is particularly useful to UE-side AI/ML models and two-sided AI/ML models as UE may frequently move across multiple deployment scenario (UMa, UMi, InH, etc.), face different configurations (arrangement of gNB antennas), etc. However, some of the considerations on scenarios may apply to both UE and gNB , e.g., relative velocity of UE and gNB, SINR range, etc. Therefore, it is essential to identify which mixture of configurations and scenarios an AI/ML model can generalize and which configurations/scenarios require separate AI/ML models. 
	Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, study the verification of generalization. Companies are encouraged to report how they verify the generalization of the AI/ML model, including:
· The configuration(s)/ scenario(s) for training dataset, including potentially the mixed training dataset from multiple configurations/scenarios
· The configuration(s)/ scenario(s) for testing/inference
· Other details are not precluded





In order to verify the generalization capability of a model, a performance metric to measure whether the trained AI model generalizes the dataset for a certain configuration/scenario well or not is needed. In this regard three cases can be considered.

Case-1: Co-scenario training/inference wherein a model is trained with dataset from scenario#A/configuration#A and tested/inference on the same scenario#A /configuration#A

Case-2: Cross-scenario training/inference wherein a model is trained with dataset from scenario#A/configuration#A and tested/inference on a different scenario#B/configurations#B

Case-3: Mixed-scenario training/inference wherein a model is trained with dataset from a mixture of scenario#A+ scenario#B+… /configuration#A + configuration#B+… and tested/inference on scenario#A/configuration#A, or scenario#B/configuration#B, …

Then, the degree of the performance improvement or degradation [in a unit of percentage] when the co-scenario, cross-scenario and mixed-scenarios training/inference performances are compared can be used as a measure of generalization performance. If the degree of the performance degradation between co-scenario and mixed-scenario is marginal, this implies that the trained AI model generalizes the mixture of configurations/scenarios well. Thus, a single model can be used across the scenarios. 

Proposal #5: For the evaluation of the generalization performance, 
· Consider a co-scenario training/inference wherein a model is trained with dataset from scenario#A/configuration#A and tested/inference on the same scenario#A /configuration#A
· Consider cross-scenario training/inference wherein a model is trained with dataset from scenario#A/configuration#A and tested/inference on a different scenario#B/configurations#B
· Consider a mixed-scenario training/inference wherein a model is trained with dataset from a mixture of scenario#A+ scenario#B+… /configuration#A + configuration#B+… and tested/inference on scenario#A/configuration#A, or  scenario#B/configuration#B, or…
· Measure generalization performance as performance degradation or improvement by comparing co-scenario, cross-scenario and mixed-scenario training/inference

2.2 Evaluation metrics 
	Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, as a starting point, take the intermediate KPIs of GCS/SGCS and/or NMSE as part of the ‘Evaluation Metric’ to evaluate the accuracy of the AI/ML output CSI
· For GCS/SGCS, 
· FFS: how to calculate GCS/SGCS for rank>1
· FFS: whether GCS or SGCS is adopted
· FFS other metrics, e.g., equivalent MSE, received SNR, or numerical spectral efficiency gap.




Another remaining issue is details on intermediate KPIs. For example on how to calculate GCS/SGCS for rank>1, for methods were discussed 
· Method 1: Average over all ranks
· Method 2: Weighted average over all ranks
· Method 3: GCS/SGCS is separately calculated for each rank (e.g., for K ranks, K GCS values are derived respectively, and comparison is performed for per rank)

In our view Method 2 is reasonable as it closely emulates the expected system level throughput. In order to forge this alignment between intermediate KPIs and the eventual system performance metrics, the weights can be set as the singular values of the channel’s covariance matrix. 

Proposal #6: For the evaluation of the AI/ML based CSI feedback enhancement, calculate GCS/SGCS for rank>1 as weighted average over all ranks 

where  is an eigenvalue of the channel covariance matrix corresponding to 
Note:  is the jth eigenvector of the target CSI at resource unit i and K is the rank.  is the  jth output vector of the output CSI of resource unit i. N is the total number of resource units.   denotes the average operation over multiple samples.


2.1 Capability/complexity related KPIs
	Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, Floating point operations (FLOPs) is adopted as part of the ‘Evaluation Metric’, and reported by companies.

Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, AI/ML memory storage in terms of AI/ML model size and number of AI/ML parameters is adopted as part of the ‘Evaluation Metric’, and reported by companies who may select either or both.
· FFS: the format of the AI/ML parameters




Another issue is details on capability/complexity related KPIs for the two-sided models. For example, in case of the CSI compression, two sides of a model at UE and gNB are used. While the gNB only receives the reported CSI in the non-AI approach, the gNB needs to reconstruct the CSI in the AI approach. Hence, the additional computation is required at the gNB. In this regard, for the comparison, FLOPs for each side of the model needs to be reported. Similarly, the number of AI/ML parameters for each side of the model needs to be reported. Moreover, if the pre-processing/post-processing is used for obtaining the desired input/output format of AI model inference, the corresponding FLOPs are also reported. 

Proposal #7: For the evaluation of the two-sided model-based CSI feedback enhancement, report the FLOPs/model size/the number of AI/ML parameters for each side of a model.
Proposal #8: For the evaluation of AI/ML based CSI feedback enhancement, report the FLOPs associated with the used pre-processing and post-processing.












3 Preliminary Evaluation Results  
3.1 CSI prediction
Recent research results from both academia and industry indicate that AI-based CSI prediction strategies can significantly reduce prediction error beyond that achieved by the sample-and-hold strategy that is supported by Rel. 15-17.  Many of these results utilize deep learning techniques to learn the temporal channel correlations (and, in some instances, spatial-frequency channel correlations).

In our previous contribution [7], we showed that a 3D-CNN yielded a prediction error (i.e. average NMSE) of -8.0598 dB, compared to the prediction error of 4.789 dB for a baseline sample-and-hold predictor.  In this contribution, we augmented this 3D-CNN with a residual neural network; the resulting 3D-CNN+ResNet yielded a prediction error of -10.5 dB (i.e. an improvement of about 2.5 dB over the 3D-CNN).

Our evaluation results were generated using the following parameters:
· UE speed of 30 km/h
· 3GPP UMi channel model
· Carrier frequency of 2.1 GHz
· Channel bandwidth of 20 MHz
· gNB has Nt = 32 transmit antennas and Nr = 4 receive antennas
· K = 52 resource blocks
· CSI-RS periodicity of 5 ms.
 
The 3D-CNN+ResNet that we used, along with its inputs, is shown in Fig. 1-1.  In particular, the objective is to predict the next 3-D CSI sample H, which has dimensions of K x Nt x Nr.

[image: 3dcnn_resnet]
Fig. 1-1: AI-based CSI predictor that utilizes residual neural network

We define the following parameters:
· B is the batch size
· L is the number of past channel observations that are input to the 3D-CNN+ResNet
· X = 2*Nr*floor(Nt/2)*floor(K/4), where floor() is the floor function.

The parameters of the 3D-CNN+ResNet are shown in Table 1-1.

Table 1-1: Parameters of 3D-CNN+ResNet
	Module
	Parameter
	Value

	Conv Block 1
	Input and output dimensions
	(B, 2*L, Nr, Nt, K) and 
(B, 4*L, Nr, Nt, K)

	
	(Kernel, padding, stride)
	(3, 7, 5) and (1, 3, 2) and (1, 1, 1)

	MaxPool 1
	(Kernel, padding, stride)
	(3, 3, 3) and (1, 1, 1) and (1, 1, 1)

	Conv Res Block (1st Conv Block)
	Input and output dimensions
	(B, 4*L, Nr, Nt, K) and 
(B, 8*L, Nr, Nt, K)

	
	(Kernel, padding, stride)
	(3, 7, 5) and (1, 3, 2) and (1, 1, 1)

	Conv Res Block (2nd Conv Block)
	Input and output dimensions
	(B, 8*L, Nr, Nt, K) and 
(B, 16*L, Nr, Nt, K)

	
	(Kernel, padding, stride)
	(3, 7, 5) and (1, 3, 2) and (1, 1, 1)

	Conv Res Block (Conv Layer)
	Input and output dimensions
	(B, 16*L, Nr, Nt, K) and 
(B, 4*L, Nr, Nt, K)

	
	(Kernel, padding, stride)
	(3, 7, 5) and (1, 3, 2) and (1, 1, 1)

	Conv Block 2
	Input and output dimensions
	(B, 4*L, Nr, Nt, K) and 
(B, 2, Nr, Nt, K)

	
	(Kernel, padding, stride)
	(3, 7, 7) and (1, 3, 3) and (1, 1, 1)

	MaxPool 2
	(Kernel, padding, stride)
	(1, 2, 4) and (0, 0, 0) and (1, 2, 4)

	FC Block
	Input and output dimensions
	(B, X) and (B, 2*Nr*Nt*K)



The hyper-parameters that we used for model training are shown in Table 2.
  Table 1-2: Hyper-parameters for model training
	Parameter
	Value

	Batch size
	512

	Number of epochs
	300

	Optimizer
	Adam

	Initial learning rate
	0.001

	Learning rate schedule
	0.1 at (100, 200, 250) epochs

	Training/testing split
	70% / 30%



Observation 1-1: AI-based CSI prediction can be enhanced by residual neural networks, where the difference between consecutive CSI observations is computed and used as training input data.

3.2 Frequency-domain CSI Extrapolation:
The benefits of AI-based CSI prediction can be applied to extrapolation in other domains (e.g. frequency, space; we use “extrapolation” to refer to those domains).  For example, a gNB can configure a UE to send it CSI reports for an inactive bandwidth part (BWP).  The UE can use received DL CSI-RS on an active BWP and then perform AI-based CSI extrapolation to infer CSI on the inactive BWP.  The gNB can then decide whether to configure the UE to switch to the inactive BWP, depending on the CSI reports for the active and inactive BWPs.

The problem that we are considering, along with the neural network architecture that we developed to address it, is shown in Fig. 2-1.  In particular, the objective is to extrapolate 72+N CSI-RS observations to CSI on the 288 SCs in the region in yellow.  In this case, if N > 0, then some interpolation is performed to infer the 288 SCs in the region in yellow (hence, we refer to our approach as “extra(inter)-polation”).

[image: testnet]
Fig. 2-1: AI-based CSI frequency extra(inter)-polator

Our evaluation results are shown in Fig. 3, where we compare the performance of our AI-based CSI frequency extra(inter)-polator (which we denote “TestNet”) with an ideal 2-D Wiener filter and an AI-based channel estimator (which we denote “EDSR”) [8].  For both of the latter approaches, we placed CSI-RS on every 4th subcarrier in the region in yellow in Fig. 2.  These results were generated using the following parameters:
· UE speed of 5 km/h
· Delay spread of 100 ns
· TDL-C (NLoS) channel model
· Carrier frequency of 3.5 GHz
· gNB has Nt = 1 transmit antenna and Nr = 1 receive antenna
· K = 48 resource blocks.

[image: curr_dl_extra]
Fig. 2-2: AI-based CSI frequency extra(inter)-polation error

The parameters of the neural network architecture that we developed in this case are shown in Figures 4 and 5.

[image: testnet_params]
Fig. 2-3: Parameters of AI-based CSI frequency extra(inter)-polator

[image: testnet_basic_block_params]
Fig. 2-4: Parameters of “Basic Block” in AI-based CSI frequency extra(inter)-polator

The hyper-parameters that we used for model training are shown in Table 3.
  Table 2-1: Hyper-parameters for model training
	Parameter
	Value

	Initial batch size
	16

	Batch size schedule
	2 at (60, 120, 180, 240, 300) epochs

	Number of epochs
	300

	Optimizer
	Adam

	Initial learning rate
	0.001

	Learning rate schedule
	0.1 at (100, 200, 250) epochs

	Training/testing split
	80% / 20%



Observation 2-1: AI-based CSI frequency extrapolation can be enhanced by utilizing additional CSI-RS observations in the band to be extrapolated, which amounts to AI-based CSI frequency extra(inter)-polation.


3.3 Spatial-frequency-domain CSI Compression
The training dataset and inference dataset is obtained from the SLS following the Rel-16 SLS assumptions (see Table 3-1).

Table 3-1. Assumption on dataset generation
	Parameter
	Value

	Scenario
	UMa and UMi (7 macrocell sites and 3 sectors per site), InH

	Carrier Frequency
	2GHz

	Inter-BS distance
	500m for UMa and 200m for UMi

	Simulation bandwidth
	10MHz (52 RB, 13 subbands)

	UE distribution
	80% indoor, 20% outdoor



[image: ]
Figure 3-1. Block diagram of ViT-AE based CSI compression

For the compression and reconstruction of CSI, the autoencoder (AE) consisting of the encoder for the compression task and the decoder for the reconstruction task is used (see Figure 1). As an AI model in the encoder and decoder, vision transformer (ViT) [3], a useful model to exploit the self-attention mechanism on 2D input data, is used with some modifications. In our evaluations, uniform quantization is used for the quantizer/de-quantizer and GCS is used as a loss function. The system-level channel data for training is generated from 512 drops and 420 UEs per simulation drop, and thus 215,040 training samples are obtained. For the inference dataset, 8400 samples are generated from 20 drops. Further, the ViT-based AE compresses and reconstructs the rank 1 eigenvector for 13 subbands. As an intermediate AI performance metric, the generalized cosine similarity (GCS) is used. The detailed hyper-parameters are shown in Table 3-2.

Table 3-2. Hyperparameters on CSI compression training
	Parameter
	Value

	Batch size
	256

	Number of epochs
	1000 with early stopping

	Optimizer
	Adam

	Initial learning rate
	0.001

	Learning rate schedule
	0.96 at every 10 epochs

	Training/validation split
	80% / 20%



In Section 3.2.2, we evaluate the AI performance for three cases:
· Case 1: (co-scenario evaluation) the training dataset is constructed by training inputs from a single configuration#A/scenario#A, and the testing/inference is performed for the same configuration#A/scenario#A.
· Case 2: (cross-scenario evaluation) the training dataset is constructed by training inputs from a single configuration#A/scenario#A, and the testing/inference is performed for a different single configuration#B/scenario#B.
· Case 3: (mixed-scenario evaluation) the training dataset is constructed by mixing training inputs from multiple configurations/scenarios, and the testing/inference is performed for a single configuration/scenario.
Note that we can verify the generalization capability through the cross-scenario evaluation in case 2 and mixed-scenario evaluation in case 3.

3.2.2 Evaluation results for co-scenario, cross-scenario, and mixed-scenario training/inference
In this section, we provide the initial simulation results for AI-based spatial-frequency domain CSI compression for co-scenario, cross-scenario, and mixed-scenario.

3.2.2.1 Performance-related KPI
[Case 1] In the co-scenario evaluation, the training dataset and the inference dataset are constructed from a single configuration/scenario. In these evaluations, the number of feedback bits is 338 in AI approaches while eType II CB uses 338 bits for UMa and 272 bits for UMi and InH. The GCS performances for different three scenarios are provided in Table 3-3.

Table 3-3. GCS performances for UMa, UMi, and InH scenarios.
	
	UMa
	UMi
	InH

	ViT-based AE
	.9376
	.9580
	.9530

	CNN-based AE
	.8992
	.9101
	.9336

	eType II CB for ParamCombination=6
	.9348
	.9418
	.9399



Observed from Table 3-3, the performance of AI-based CSI compression varies with the channel scenario. For example, the GCS performance of ViT-based AE changes from 0.9376 to 0.9580. Whereas, the performance variation of eType II CB is relatively small. Note that, since the training and inference datasets are drawn from the same configuration/scenario, the AI-based results (i.e., ViT-based AE and CNN-based AE) could be used as an approximate upper bound in each scenario. These GCSs are used to measure the generalization capability in the subsequent cases.

[Case 2] In the cross-scenario evaluation, configuration/scenario of training dataset and that of inference dataset is different. Thus, through these evaluations, it can be investigated whether the AI model trained with a certain configuration/scenario can generalize the unseen configuration/scenario or not. Note that the eType II CB is free from the performance degradation caused by the cross-scenario since it is not a data-driven approach. In order to measure the generalization, we need to determine a performance metric. For example, in our evaluations, a degree of the performance degradation over the co-scenario performance (in a unit of percentage) can be used. If the degree of the performance degradation is marginal, this implies that the trained AI model generalizes two configurations/scenarios well. The evaluation results of cross-scenario evaluation are in Table 3.

Table 3-4. Cross-scenario performance for UMa, UMi, and InH.
	Inference
Training
	UMa
(0.9348 for eType II)
	UMi
(0.9418 for eType II)
	InH
(0.9399 for eType II)

	UMa
	.9376
	.9563 (-0.2%)
	.9008 (-5.4%)

	UMi
	.9314 (-0.6%)
	.9580
	.9085 (-2.7%)

	InH
	.8858 (-5.5%)
	.9064 (-5.4%)
	.9530



In Table 3-4, we observe that the degree of GCS degradation in UMa and UMi scenario is much smaller than that in InH scenario. For example, when the AI model is trained with the UMa dataset, the GCS for UMi and InH is degraded by  % and  %, respectively (see the second row in Table 5). Compared to eType II, the performance degradation between UMa and UMi is tolerable, implying that the AI model trained with UMa or UMi can be used for the cross-scenario. It is worth noting that, from these evaluations, the generalization capability among various configuration(s)/scenario(s) can be identified. Then, the identified generalization capability can be used to determine the way of dataset construction in the training. For example, compared to the generalization from UMa to UMi, it is difficult to generalize from UMa to InH. Hence, when we construct the mixed-scenario dataset (see Case 3 below), it would be better to include the InH dataset rather than UMi dataset.


Observation 3-1: The following observation were made for generalization performance across deployment scenario
· AI model generalizes well from UMa to UMi and vice versa.
· It is relatively difficult to generalize from UMa or UMi to InH.

[Case 3] For the mixed-scenario evaluation, the UMa dataset and the InH dataset are mixed when constructing the training dataset. The mixing ratio of UMa data samples and InH data samples is 50% and 50%, respectively while maintaining the size of dataset same as the co-scenario/cross-scenario evaluations. From these evaluations, we can verify how much the performance degradation in cross-scenario evaluation can be mitigated. The evaluation results are provided in Table 6.

Table 3-5. Mixed-scenario performance for UMa and InH.
	Inference
Training
	UMa
	InH

	UMa
	.9376
	.9008 (-5.4%)

	InH
	.8858 (-5.5%)
	.9530

	50% UMa + 50% InH
	.9324 (-0.6%)
	.9337 (-2%)



From Table 3-5, we observe that GCS degradation in case 2 is mitigated significantly. For example, when the AI model is trained with the UMa dataset and is tested with the InH dataset, the GCS degradation is around -5.4%. In case of the mixed-scenario training, the GCS degradation is around -2%. For the generalization, mixing various scenarios (or channel parameters, configurations) might be a useful option to alleviate the degradation of the generalization performance.

Observation 3-2: The following observations were made regarding approaches to improve generalization performance 
· GCS degradation in cross-scenario can be alleviated by mixing various datasets.
· For the generalization, mixing various configuration(s)/scenario(s) is a viable option to alleviate the degradation of the generalization performance.

3.2.2.2 Capability-related KPI
As a capability-related KPI, the number of model parameters (e.g., weights and biases) and the number of FLOPs are considered. In Table 7, we provide the capability-related KPI for ViT-based AE and eType II codebook-based PMI feedback.

Table 3-6 Capability-related KPI for ViT-based AE and eType II codebook-based PMI feedback
	
	The number of model parameters
	The number of FLOPs

	
	UE
	gNB
	UE
	gNB

	ViT
	183,283
	185,208
	
	

	CNN
	142,273
	142,940
	
	

	eType II
	-
	
	-



As shown in Table 7, the AI approach only requires the model parameters to run the AI model. Further, since the decoder at gNB reconstructs the CSI in the AI approach, the additional FLOPs are required. We observe that the number of FLOPs to perform the AE operations is much larger than eType II codebook-based PMI feedback. For example, at the UE side, the number of FLOPs for ViT and CNN are around 26 times and 5 times as large as that for eType II codebook, respectively. Even, including the FLOPs for the AE decoder operation, the number of FLOPs for ViT is around 53 times as large as that for eType II (10 times for CNN-based AE). In this respect, the effectiveness of the AI approach at the cost of these large amount of computational complexities can be investigated. Note that the number of FLOPs for ViT is around 5 times as large as that for CNN while the performance of ViT has around 6% gain over the CNN. When using the AI approach, the model selection can be performed using the trade-off between the performance and complexity.

Observation 3-3: The number of FLOPs to perform the AE operations is much larger than eType II.

3.4  Joint CSI Perdition & Compression (Temporal-spatial-frequency-domain CSI compression)
In the following the performance of temporal-spatial-frequency domain compression is provided. As it is detailed in [9.2.2.2] and depicted in Fig. 3.4.1 below, two approaches are considered, namely, Approach 1 gNB-side prediction and UE-side prediction. Thus, this sub use case can be considered as joint CSI prediction and compression. 

[image: ]
                  Fig. 4-1.  Approach 1 gNB-side prediction vs. Approach 2  UE-side prediction 

The performance is evaluated according to the agreed LLS-based evaluation [9] with the parameters selected as shown in Table 4.1.


Table 4-1 Parameters for LLS-based evaluation 
	Parameter
	Value

	Duplex, Waveform 
	FDD , OFDM 

	Carrier frequency
	2GHz 

	Bandwidth
	10MHz 

	Subcarrier spacing
	15kHz 

	Nt
	32: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Nr
	4: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	Channel model
	CDL-C 

	UE speed
	3kmhr, 10km/h, 

	Delay spread
	300ns

	Channel estimation
	ideal

	Rank per UE
	Rank 1

	CSI-RS resources
	Periodic with 5ms

	CSI report
	4ms delay between measurement and report



First, let us evaluate the compressibility of time-correlated CSI. For this the setups shown in Fig. 4-2 are considered. Two setups are depicted in the figure, i.e., suitable for (a) aperiodic burst CSI-RS resources and (b) periodic and semi-persistent CSI-RS resources. 


[image: ]

             Fig. 4-2. Set up to test time-domain compressibility of CSI






For aperiodic CSI-RS resources, the UE compresses CSI from  measurements after receiving a burst of CSI-RS resources at different time instants. In particular, per each layer, M eigenvectors matrices, denoted as  ,  are considered.  for  corresponds to the  m-th measurement, , and consists of eigenvectors for the subbands, i.e.,. The autoencoder in Fig. 4-2. (a) compresses these measurements to generate the codeword   which potential can be partitioned to M sub-codewords . The CSI for the M measurements can then be reported in either a single CSI report or in multiple CSI reports. 




For, periodic and semi-persistent CSI-RS resources, as shown in Fig. 3.4.2 (b), a CSI corresponding to a single measurement can be reported at a time. Then the decoder considers the codewords reported for the past  measurements, i.e., and concatenate them with current codeword to reconstruct the CSI. This way the time-domain correlation can still be exploited for spatial-frequency-time domain CSI compression even if the UE reports a CSI for a single measurement at a time. 


The detailed AI/ML model and training configuration for the autoencoder is depicted in Fig. 3.4.3. A Bi-LSTM based neural network is employed at both the encoder and decoder. At the encoder, the input layer dimension is  due to concatenation of real and imaginary precoder parts of  eigenvectors. Further, the first and second hidden layers are of dimension . The third Bi-LSTM layer generates a  dimensional codeword per subband such that the total output dimension is . This is converted in to a 1D sequence of length  using a reshape layer. Finally, a 1-bit Quantizer converts them into a discrete sequence in the set .

The decoder input layer concatenates the current and past  measurement reports. The following reshaping layer converts the input in to  dimension. This is further processed by two Bi-LSTM layers of dimension . The eigenvectors are then reconstructed by a third Bi-LSTM layer by generating a  output sequence. 








	AE Training configuration

	Dataset size
	300000

	Number of epochs
	150

	Loss function
	Cosine similarity

	Optimizer
	Nadam

	Learning rate
	0.001

	Train test split
	80%-20%



      

Fig. 4-3. Set up to test time-domain compressibility of CSI

[bookmark: _GoBack]Fig. 4-4. shows the performance of spatial-frequency-time-domain compression in terms of GCS with respect to various payload sizes. The performance of the baseline scheme, i.e., Rel-16 eType II codebook, with parameter combination 1-8 as specified TR 38.214 is also provided. The payload size is determined by the payload of a single layer PMI for the 8 parameter combinations for Rel-16 eType II codebook. The measurements are 5ms apart and parameters listed in Table 3.4.1 are considered. One observation is that adding time-domain in the compression domain achieves a significant advantage in terms of overhead reduction. As an example when M=5 measurements are considered, to achieve GCS=0.85, over 185% payload size reduction is achieved by the autoencoder over Rel-16 CB. On the other hand, when the payload size is fixed to 157 bits per layer over 7% gain is observed in terms of GCS. This is significant as compared to the 57% payload overhead reduction achieved by an AI-based spatial-frequency-domain CSI compression. 
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Fig. 4-4. Performance of spatial-frequency-time-domain compression with variable number of measurements (M=1, 3, 5)

Observation 4-1: Adding the time-domain in the CSI compression domains, i.e., CSI compression in spatial-frequency-time domains, achieves a higher compression, i.e., further reduction in CSI report overhead, as compared to spatial-frequency domain CSI compression. 

Table 4.1 Complexity in terms of mega-FLOPs and model size
	Index
	Payload
	Rel-16 CB complexity
(paramCombination-r16=1-8) 
	Bi-LSTM model complexity (# of FLOPs (Mega-FLOPs)
	Model 
Size (# of parameters)

	
	
	UE side
	Encoder
	Decoder
	Encoder
	Decoder

	
	
	
	
	M=1
	M=3
	M=5
	
	

	1
	55
	0.032
	44.5
	171.7
	172.5
	173.4
	17,16,404
	66,15,616

	2
	84
	0.032
	44.6
	171.9
	173.2
	174.4
	17,20,698
	66,23,808

	3
	100
	0.087
	44.7
	172
	173.5
	175
	17,22,872
	66,27,904

	4
	157
	0.087
	45
	172.5
	175.1
	177.6
	17,34,012
	66,48,384

	5
	214
	0.087
	45.2
	172.9
	176.4
	179.8
	17,43,248
	66,64,768

	6
	272
	0.087
	45.5
	173.4
	177.6
	181.9
	17,52,772
	66,81,152

	7
	230
	0.163
	45.3
	173.1
	176.7
	180.3
	17,45,602
	66,68,864

	8
	564
	0.163
	47
	175.8
	185
	194.1
	18,13,124
	67,75,360




Table 3.4.1 provides the complexity comparison of the aforementioned autoencoder-based CSI compression with respect to Rel-16 CB in terms of mega-FLOPs. Two observations can be made from the table. There is a multiple order of increase on computational complexity is incurred by AI-based CSI compression as compared to PMI derivation based on Rel-16 CB. However, in order to have the full picture of the requirements for AI-based CSI compression, the impact of such increase in computational complexity on inference latency shall be studied.  This is particularly important as the level of parallelization allowed for the tasks in AI-based CSI compression and in legacy codebooks based CSI computation might be different. Additional observation is that the increase in computational complexity is invariant with respect to the number of time-domain measurements as the complexity per measurement remains the same at the encoder. 

Observation 4-2: AI-based CSI compression incurs a multiple order of increase in the computational complexity (measured in terms of number of FLOPs) as compared to CSI computation based on Rel-16 eType II codebook.
· The increase in FLOPs is invariant with respect to the number of time-domain CSI measurements considered in the compression, i.e., same for spatial-frequency-domain and spatial-frequency-time-domain compression. 
· The model size remains in the same range for spatial-frequency-domain and temporal-spatial-frequency -domain compression

In the following we provide the performance for joint prediction and compression. In this regard, as shown in Fig. 4-5., we considered a UE-side prediction based on the (a) eigenvectors and (b) full-channel matrix. 

[image: ]
Fig. 4-4. UE-side prediction: eigenvector-based and channel matrix-based prediction

The performance of the two approaches (Approach 2-1 and Approach 2-2) is provided in Fig. 4-5 in terms of GCS vs. prediction delay. The performance is evaluated based on the parameters list in the Table 3.4.1 with UE speed set to 10km/hr. As a baseline, a Rel-16 CB based reporting with no prediction (sample-and-hold) is considered. Moreover, the two payload sizes per layer are considered, i.e., 272 bits and 564 bits. The GCS is computed between the recovered (predicted and compressed) CSI and the ground truth value (genie-aided CSI). For the baseline method, the GCS is simply computed between the reported CSI and the ground truth at a certain prediction delay value. The first and obvious observation is that the GCS performance degrads as the prediction delay increases. However, this degradation is severe (higher slop) if no prediction is applied. In this regard, joint compression and prediction out performs the baseline by 32% at prediction delay of 20ms. Another observation is that most of the gain is attributed to the CSI prediction aspect compared to the compression aspect as the gain from increasing the payload size from 272 to 564 is less significant ( 2%) as opposed to the 32% gain from compression and prediction. 
[image: ]

Fig. 4-5. Performance for UE-side prediction: eigenvector-based and channel matrix-based prediction

Observation 4-3: Significant gain is observed for UE-side joint CSI prediction and compression as compared to Rel-16 CB reporting without prediction. 
· Most of the performance gain is attributed to CSI prediction as compared to compression. 
· The prediction based on full channel matrices outperforms prediction based on eigenvectors. 


4. Conclusion
In this contribution the following proposals are made: 
Proposal #1: For the SLS-based evaluation of the AI/ML based CSI feedback enhancement, additional to realistic channel estimation, consider ideal DL channel estimation for system performance evaluation.
· Whether the ideal or realistic channel estimation is applied for dataset construction is up to companies 
· Ideal channel is used as a target CSI for intermediate results calculation for AI/ML output CSI from ideal channel estimation.
· Realistic channel estimation is used as target CSI for intermediate results calculation for AI/ML output CSI from realistic channel estimation.

Proposal #2: For the evaluation of the AI/ML based CSI feedback enhancement consider the following traffic models
· FTP model 1 as baseline 
· Full buffer as optional 

Proposal #3: For SLS-based evaluation of the AI/ML based CSI feedback enhancement consider the following values for the remaining parameters 
· Simulation bandwidth: 10MHz for 15KHz SCs as a baseline 
· MIMO scheme: SU/MU-MIMO with rank adaptation as a baseline
· Traffic load (resource utilization): 50/70 % for SU/MU-MIMO with rank adaptation, 20% for SU-MIMO with rank adaptation, companies are encouraged to report the MU-MIMO utilization.

Proposal #4: For the LLS-based evaluation of the AI/ML based CSI feedback enhancement, additional to realistic channel estimation consider ideal DL channel estimation for system performance evaluation.
· Whether the ideal or realistic channel estimation is applied for dataset construction is up to companies 
· Ideal channel is used as a target CSI for intermediate results calculation with AI/ML output CSI from ideal channel estimation.
· Realistic channel estimation is used as target CSI for intermediate results calculation with AI/ML output CSI from realistic channel estimation.

Proposal #5: For the evaluation of the generalization performance, 
· Consider a co-scenario training/inference wherein a model is trained with dataset from scenario#A/configuration#A and tested/inference on the same scenario#A /configuration#A
· Consider cross-scenario training/inference wherein a model is trained with dataset from scenario#A/configuration#A and tested/inference on a different scenario#B/configurations#B
· Consider a mixed-scenario training/inference wherein a model is trained with dataset from a mixture of scenario#A+ scenario#B+… /configuration#A + configuration#B+… and tested/inference on scenario#A/configuration#A, or  scenario#B/configuration#B, or…
· Measure generalization performance as performance degradation or improvement by comparing co-scenario, cross-scenario and mixed-scenario training/inference

Proposal #6: For the evaluation of the AI/ML based CSI feedback enhancement, calculate GCS/SGCS for rank>1 as weighted average over all ranks 

where  is an eigenvalue of the channel covariance matrix corresponding to 
Note:  is the jth eigenvector of the target CSI at resource unit i and K is the rank.  is the  jth output vector of the output CSI of resource unit i. N is the total number of resource units.   denotes the average operation over multiple samples.

Proposal #7: For the evaluation of the two-sided model-based CSI feedback enhancement, report the FLOPs/model size/the number of AI/ML parameters for each side of a model.


Proposal #8: For the evaluation of AI/ML based CSI feedback enhancement, report the FLOPs associated with the used pre-processing and post-processing.


The following observations are also made: 

Observation 1-1: AI-based CSI prediction can be enhanced by residual neural networks, where the difference between consecutive CSI observations is computed and used as training input data.

Observation 2-1: AI-based CSI frequency extrapolation can be enhanced by utilizing additional CSI-RS observations in the band to be extrapolated, which amounts to AI-based CSI frequency extra(inter)-polation.

Observation 3-1: The following observation were made for generalization performance across deployment scenario
· AI model generalizes well from UMa to UMi and vice versa.
· It is relatively difficult to generalize from UMa or UMi to InH.
· 
Observation 3-2: The following observations were made regarding potential approaches to improve generalization performance 
· GCS degradation in cross-scenario can be alleviated by mixing various datasets.
· For the generalization, mixing various configuration(s)/scenario(s) is a viable option to alleviate the degradation of the generalization performance.

Observation 3-3: The number of FLOPs to perform the AE operations is much larger than eType II.

Observation 4-1: Adding the time-domain in the CSI compression domains, i.e., CSI compression in spatial-frequency-time domains, achieves a higher compression, i.e., further reduction in CSI report overhead, as compared to spatial-frequency domain CSI compression. 

Observation 4-2: AI-based CSI compression incurs a multiple order of increase in the computational complexity (measured in terms of number of FLOPs) as compared to CSI computation based on Rel-16 eType II codebook.
· The increase in FLOPs is invariant with respect to the number of time-domain CSI measurements considered in the compression, i.e., same for spatial-frequency-domain and spatial-frequency-time-domain compression. 
· The model size remains in the same range for spatial-frequency-domain and temporal-spatial-frequency -domain compression
Observation 4-3: Significant gain is observed for UE-side joint CSI prediction and compression as compared to Rel-16 CB reporting without prediction. 
· Most of the performance gain is attributed to CSI prediction as compared to compression. 
· The prediction based on full channel matrices outperforms prediction based on eigenvectors. 

5. Appendix
Table 5-1 SLS-based EVM
	Parameter
	Value

	Duplex, Waveform
	FDD (TDD is not precluded), OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban (Macro only) is a baseline.
Other scenarios (e.g. UMi@4GHz 2GHz, Urban Macro) are not precluded.

	Frequency Range
	FR1 only, FFS 2GHz or 4GHz as a baseline

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	Companies need to report which option(s) are used between
-          32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ
-          16 ports: (8,4,2,1,1,2,4), (dH,dV) = (0.5, 0.8)λ
Other configurations are not precluded.

	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for (rank 1-4)
2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2)
Other configuration is not precluded.

	BS Tx power
	41 dBm for 10MHz, 44dBm for 20MHz, 47dBm for 40MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Coding on PDSCH
	LDPC
Max code-block size=8448bit

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz for 2GHz, 30kHz for 4GHz

	Simulation bandwidth
	FFS

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	FFS

	MIMO layers
	For all evaluation, companies to provide the assumption on the maximum MU layers (e.g. 8 or 12)

	CSI feedback
	Feedback assumption at least for baseline scheme
· CSI feedback periodicity (full CSI feedback) :  5 ms,
· Scheduling delay (from CSI feedback to time to apply in scheduling) :  4 ms

	Overhead
	Companies shall provide the downlink overhead assumption (i.e., whether the CSI-RS transmission is UE-specific or not and take that into account for overhead computation)

	Traffic model
	FFS

	Traffic load (Resource utilization)
	FFS

	UE distribution
	- 80% indoor (3km/h), 20% outdoor (30km/h)
FFS whether/what other indoor/outdoor distribution and/or UE speeds for outdoor UEs needed

	UE receiver
	MMSE-IRC as the baseline receiver

	Feedback assumption
	Realistic

	Channel estimation         
	Realistic as a baseline
FFS ideal channel estimation

	Evaluation Metric
	Throughput and CSI feedback overhead as baseline metrics.
Additional metrics, e.g., ratio between throughput and CSI feedback overhead, can be used.
Maximum overhead (payload size for CSI feedback)for each rank at one feedback instance is the baseline metric for CSI feedback overhead, and companies can provide other metrics.

	Baseline for performance evaluation
	FFS



Table 5-2 LLS-based EVM

	Parameter
	Value

	Duplex, Waveform 
	FDD (TDD is not precluded), OFDM 

	Carrier frequency
	2GHz as baseline, optional for 4GHz

	Bandwidth
	10MHz or 20MHz

	Subcarrier spacing
	15kHz for 2GHz, 30kHz for 4GHz

	Nt
	32: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Nr
	4: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	Channel model
	CDL-C as baseline, CDL-A as optional

	UE speed
	3kmhr, 10km/h, 20km/h or 30km/h to be reported by companies

	Delay spread
	30ns or 300ns

	Channel estimation
	Realistic channel estimation algorithms (e.g. LS or MMSE) as a baseline, FFS ideal channel estimation

	Rank per UE
	Rank 1-4. Companies are encouraged to report the Rank number, and whether/how rank adaptation is applied
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