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Introduction
The new study item on Artificial Intelligence (AI) / Machine Learning (ML) for NR air interface has been approved in [1]. One of the study objectives includes the analysis of solutions for CSI feedback enhancements:
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.
Use cases to focus on:
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels
Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project


In this contribution, we express our views on the evaluation methodology for CSI use-case and present a set of initial evaluation results for the case of rank-1 transmission under different deployment scenarios.
CSI EVM and KPIs
Summary of CSI use-case 
CSI (channel state information) is a terminology used to describe a wide variety of UE feedback components in RAN1 specifications including - RI, PMI, CQI, L1-RSRP, L1-RSRQ. Another way to describe CSI feedback is explicit vs implicit. Explicit CSI feedback is considered as channel information (e.g. Covariance matrix) where gNB/TRP requires additional processing to determine RI/PMI/CQI for transmitting PDSCH. Implicit CSI feedback is one where a gNB/TRP can directly use UE CSI feedback to transmit PDSCH.
 
Rel-16 CSI EVM and baseline
As part of Rel-16 Type II CSI codebook, a precoder in SD (spatial dimension) and FD (frequency dimension) can be represented by a linear combination of DFT vectors as shown below:


where,
·  is a precoder vector and , ,  represents the polarization, layer and FD compression unit indices respectively 
· ,  are mutually orthogonal number of selected SD and FD DFT vectors and indices are reported by the UE
·  is the total number of FD-compression units 
· ,   and  represents the indices of the SD DFT vectors in the azimuth and elevation dimensions
·  are the indices of the FD DFT vectors
·  is the coefficient down-selection bit reported by the UE
·  is the reference polarization amplitude reported by the UE
·  are the amplitude and phase coefficients reported by the UE which is a function of beam, delay, polarization and layer dimensions
A baseline for the CSI use-case is the Rel-16 eType II codebook described above. The Rel-17 port-selection codebook need not be used for benchmarking the AI/ML CSI compression schemes.

Proposal 1:  Rel-16 Type II codebook is used as a baseline for CSI evaluation

With respect to AI/ML performance, we believe attention should be paid to the following aspects:
· Robustness of AI/ML performance to noisy channel data (noise due to channel estimation error, calibration error etc.)
· Mismatch of noise in the training data vs inference data
· Mismatch of channel types between training data and inference data (for e.g. training is performed on 80/20 indoor/outdoor data while inference is performed on 50/50 indoor/outdoor environments)

Proposal 2: EVM should consider evaluating robustness of AI/ML performance to noisy inference data and mismatch between training data and inference data statistics  

KPIs
For CSI use case evaluation, the following KPIs can be beneficial
· Cell and UE throughput statistics, CSI feedback overhead
· simplified metrics such as precoder error metric (e.g. cosine similarity between ideal and reconstructed precoders)
· AI-ML model size - # of hidden layers/nodes, number of parameters
· Pre-processing complexity (for e.g. SVD) for inference data
· AI-ML model implementation related aspects such as model pruning and quantization 
· Air-interface overhead due to data-collection, performance monitoring and feedback, model adaptation
Note that intermediate metrics like generalized cosine similarity (CS) can be considered for rank-1 cases. However, the definition of cosine similarity for rank>1 is not clear. Since these are intermediate metrics, RAN1 need not spend time trying to optimize the definition for rank>1 and consider per-rank CS as a first step and throughput as the final metric to evaluate performance for rank>1. 
Proposal 3: In addition to traditional KPIs (cell and UE throughput), consider the following-
· precoder error metric (for simplified simulations)
· AI-ML model size (inference latency and power consumption)
· pre-processing complexity for inference data
· Model implementation aspects such as quantization
· Overhead due to data-collection, performance monitoring and feedback, model adaptation

Proposal 4: Extension of cosine similarity for rank>1 may not be required, and throughput can be considered as the final metric to evaluate CSI performance. 

Evaluation of AI/ML for CSI Compression
For evaluation of AI/ML applications to CSI compressions a two-sided autoencoder (AE) model is used and the performance of this AE is compared with that of Rel-16 eType II codebook with respect to the average cosine similarity. The same testing dataset is used to test the performance of the AE as well as the eType II codebook. 

Auto-encoder for CSI Compression
In this paper the autoencoder implementation is based on the ACRNet implementation in [2]. The model uses channels generated from the SLS as input after a pre-processing step which is discussed in more detail in the following sections.
[image: Chart, histogram

Description automatically generated][image: Chart

Description automatically generated with medium confidence]Data Pre- and Post-processingFigure 1: Dense Urban Macro channel powers for 52 PRBs and 32 Tx Ports in (left) Space-frequency domain and (right) Angular-delay domain

The channel matrix generated from SLS is of size  where  is the number of PRBs for a given BW,  is the number of receive antenna ports at the UE and  is the number of transmit antenna ports. The SLS channel  is generated in the space-frequency domain and is converted to an input matrix  of size  in the angular-delay domain. First, assuming rank-1 transmission, the strongest eigenvector of  is extracted. The power of the coeffecients of the strongest eigenvector is shown on the left of Figure 1 as a function of antenna ports (x-axis) and PRBs (y-axis). The eigenvectors are then transformed to the angular-delay domain as shown in the right of Figure 2 (DFT basis vectors in the x-axis and delay taps in the y-axis). The channels are usually sparse in the delay domain and the model input size can be reduced from  to  along the y-axis. The  complex matrix is then decomposed into real and imaginary values and provided as an input to the ML-AE. 
The output from the AE is an estimate of the input matrix, , which is then transformed back to the space-frequency domain to generate an estimate of the dominant eigenvector .

Autoencoder Implementation
The input to ML-AE is passed through two cascaded Encoder Blocks which use 2D convolution layers as shown in Figure 2. Batch Normalization is used after every convolutional layer and the activation function used is the parametric ReLU which has a trainable parameter , which controls how negative values are scaled by the activation. In addition to the two cascaded encoder blocks, a fully connected layer is used for CSI compression which reduces the number of inputs to the quantizer block. At the decoder, two cascaded decoder blocks are used to decode the CSI bits. In general, the decoder complexity is expected to higher than the encoder complexity since the encoder is expected to be at the UE and the decoder at the gNB. 


[bookmark: _Ref111212112]Figure 2: Quantized ACRNet for CSI Compression with M=64, NF = 52 and NT=32. 

Quantization
A uniform B-Bit quantizer is used in the AE as shown in Figure 3. The quantizer is non-trainable i.e., the gradients of the backpropagation during training are passed through the quantizer without any change. A fully connected layer preceding the quantizer reduces the total number of inputs to the quantizer to K channels by compressing it by a factor of . The total number of inputs to the fully connected layer is given by  where  where  are the antenna ports in horizontal and vertical planes and is the number of polarizations. The FC layer outputs K channels where . The quantizer uniformly quantizes each of the  inputs to produce  feedback bits. 



[bookmark: _Ref111212942]Figure 3: Uniform Quantization in ACRNet

The de-quantizer and FC layer in the decoder reverses the operations of the encoder quantizer and FC layer respectively. In this paper, a noiseless wireless channel is assumed i.e., during testing there is no corruption of the feedback bits.


Initial Evaluation Results for Rank-1 
The AE model is trained on 60000 samples with 10000 validation samples and tested on 30000 samples. The output of the AE  is then compared to the original channel eigenvector  to evaluate the cosine similarity as follows:


where the assumption is that the vectors  are unit-norm. Additionally, the equivalent MSE for unit-norm vectors can also be evaluated as 

	
In the following sections, the performance of ML AE for different SLS channel models are shown for the case of Rank-1 transmission. 
Indoor Hotspot
Indoor Hotspot channels are consistently very sparse in the angular delay domain enabling the use of smaller input size  and larger compression ratio . The AI/ML easily outperforms the eType II CSI for both high and low overhead values. 

Table 1: AI/ML Performance for Indoor Hotspot
	Compression
Ratio
()
	TX Ports
(NT)
	Quantization bits
(B)
	Model Input Size
(NS)
	Overhead Bits
(KB)
	Cosine Similarity
()
	Equivalent NMSE (dB)

	32
	32
	2
	16
	64
	0.863
	-5.622

	20
	
	2
	
	102
	0.9014
	-7.050

	16
	
	2
	
	128
	0.9165
	-7.772

	16
	
	3
	
	192
	0.9349
	-8.853

	12
	
	3
	
	255
	0.9485
	-9.871

	10
	
	3
	
	306
	0.9557
	-10.525
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Figure 4: Cosine Similarity and MSE comparison of InH for AI/ML AE vs Rel-16 eType II Codebook


Dense Urban Macro with Outdoor UEs Only
For Dense Urban Macro with outdoor UEs only and LOS/NLOS channels the model input data size needs to be larger than InH to avoid reconstruction loss. As shown in Table 2 and Figure 5, the AE outperforms the eType II CSI cases with large gains seen in the low overhead regime. 
Table 2: AI/ML Performance for Dense Urban Macro with 100% Outdoor UEs
	Compression
Ratio
()
	TX Ports
(NT)
	Quantization bits
(B)
	Model Input Size
(NS)
	Overhead Bits
(KB)
	Cosine Similarity
()
	Equivalent NMSE (dB)

	32
	32
	2
	12
	48
	0.6938
	-2.129

	48
	
	2
	24
	64
	0.736
	-2.773

	32
	
	2
	
	96
	0.7742
	-3.452

	24
	
	2
	
	128
	0.8036
	-4.058

	28
	
	3
	
	162
	0.8075
	-4.145

	24
	
	3
	
	192
	0.823
	-4.509



[image: ][image: ]Figure 5: Cosine Similarity and MSE comparison of Dense Urban Macro with Outdoor UEs Only for AI/ML AE vs Rel-16 eType II Codebook

Dense Urban Macro with 80% Indoor + 20% Outdoor UEs
For Dense Urban Macro with both outdoor and indoor UEs, the overall performance degrades possibly due to the O2I loss, but the AE can still outperform eType II. Only for L=6, eType II performance is comparable to AE however, L=6 is a very complex UE implementation and AE would offer complexity advantage over L=6. 



Table 3: AI/ML Performance for Dense Urban Macro with 80% Indoor and 20% Outdoor UEs
	Compression
Ratio
()
	TX Ports
(NT)
	Quantization bits
(B)
	Model Input Size
(NS)
	Overhead Bits
(KB)
	Cosine Similarity
()
	Equivalent NMSE (dB)

	32
	32
	2
	12
	48
	0.6938
	-2.1296

	48
	
	2
	24
	64
	0.736
	-2.773

	32
	
	2
	
	96
	0.7742
	-3.452

	24
	
	2
	
	128
	0.8036
	-4.058

	28
	
	3
	
	162
	0.8075
	-4.145

	24
	
	3
	
	192
	0.823
	-4.509
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Figure 6: Cosine Similarity and MSE comparison of Dense Urban Macro with 80% Indoor UEs and 20% Outdoor UEs Only for AI/ML AE vs Rel-16 eType II Codebook

Observation 1 ML based Autoencoder can outperform Rel-16 eType II codebook for Rank-1 case in almost all overhead regimes for InH and Dense Urban Macro deployments.
Conclusion
In this contribution, we provided our views on the aspects of EVM related to AI/ML-based CSI enhancement. In summary, we have following proposals and observation:
Proposal-1: Rel-16 Type II codebook is used as a baseline for CSI evaluation
Proposal-2: EVM should consider evaluating robustness of AI/ML performance to noisy inference data and mismatch between training data and inference data statistics    
Proposal-3: In addition to traditional KPIs (cell and UE throughput), consider the following-
· precoder error metric (for simplified simulations)
· AI-ML model size (inference latency and power consumption)
· pre-processing complexity for inference data
· Model implementation aspects such as quantization
· Overhead due to data-collection, performance monitoring and feedback, model adaptation
Proposal 4: Extension of cosine similarity for rank>1 may not be required, and throughput can be considered as the final metric to evaluate CSI performance.
Observation 1: ML based Autoencoder can outperform Rel-16 eType II codebook for Rank-1 case in almost all overhead regimes for InH and Dense Urban Macro deployments.
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Appendix
System level simulation evaluation assumptions for Dense Urban Macro, Dense Urban Micro and Indoor Hotspot scenarios can be found in the tables below. 

Table 4 System level simulation assumptions for Dense Urban Macro
	Parameter
	Value

	Frequency Range
	4GHz

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	  32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ 

	BS Tx power
	44dBm for 20MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	30kHz

	UE distribution
	- 80% indoor (3km/h), 20% outdoor (30km/h)

	Evaluation Metric
	Cosine similarity and Equivalent NMSE 



Table 5 System Level simulation assumptions foe Dense Urban (Micro)
	Parameter
	Value

	Frequency Range
	4GHz

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ 

	BS Tx power
	44dBm for 20MHz

	BS antenna height
	10m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	30kHz

	UE distribution
	- 80% indoor (3km/h), 20% outdoor (30km/h)

	Evaluation Metric
	Cosine similarity and Equivalent NMSE 



Table 6 System level simulation assumptions for Indoor Hotspot
	Parameter
	Value

	Frequency Range
	4GHz

	Inter-BS distance
	20m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	  32 ports: (8,8,2,1,1,4,4), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ 

	BS Tx power
	23dBm for 20MHz

	BS antenna height
	3m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	30kHz

	Evaluation Metric
	Cosine similarity and Equivalent NMSE 
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