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1	Introduction
The approval of the Rel-18 work package marks the start of 5G Advanced evolution. The package includes a study item on AI/ML for NR air interface, and the work item description can be found in [1].
The initial use cases focused in this study include:
 (
CSI feedback enhancement, e.g., overhead reduction, improved accuracy
, prediction [RAN1]
Beam management, e.g., 
beam prediction in time,
 and/or 
spatial domain
 for overhead and
 
latency reduction
, beam selection accuracy improvement [RAN1]
Positioning accuracy enhancements
 for different scenarios including, e.g.,
 
those with
 heavy
 
NLOS 
conditions [RAN1] 
)
For the use cases under consideration, the study aims to evaluate performance benefits of AI/ML based algorithms:
 (
Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
Whether f
ield data 
are optionally needed 
to further assess the performance and
 
robustness in real-world environments 
should be discussed as part of the study. 
Need for common
 assumptions in
 dataset construction for training, validation and test for the
 
selected use cases
.
 
Consider adequate model training strategy, collaboration levels and associated implications
Consider agreed-upon base AI model(s) for calibration
AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
KPIs: 
Determine the common KPIs and corresponding requirements for the AI/ML operations.
 
Determine the use-case specific KPIs and benchmarks of the selected use-cases.
Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.
)
At RAN1#109-e, a comprehensive set of evaluation assumptions were agreed (see Appendix A.1). 
In this contribution, we discuss the remaining issues on evaluation assumptions and present initial evaluation results on AI/ML for positioning enhancements.
2	Methodology
NR offers a variety of positioning technologies. Release-15 NR supports positioning, e.g., by using LTE positioning in non-standalone (NSA) operation. Release-16 NR much enhances the positioning support with a range of positioning methods, including both downlink-based and uplink-based positioning. Release-17 NR introduces additional enhancements to reduce latency for time-critical use cases such as remote control, deliver positioning accuracy down to the level of 20-30 cm for use cases such as factory automation, and improve integrity protection of the location information. 3GPP Release 18 is investigating solutions to further improve accuracy, integrity, and power efficiency in positioning, study sidelink positioning, and investigate positioning support for RedCap devices.
NR supports large channel bandwidth (up to 100 MHz in FR1 and up to 400 MHz in FR2). Such large signal bandwidths offer an improved ability to resolve multipath effects. The use of multiple antennas for transmission and/or reception in NR facilitates directional positioning including Angle-of-Arrival positioning and Angle-of-Departure positioning. The evaluation results captured in TR 38.855 [2] and TR 38.857 [3] show that NR can achieve high positioning accuracy results.
Nonetheless, the achievable position accuracy is largely dependent on the network deployment pertinent to the corresponding environment, such as if the density of base stations is high enough to create a high probability of LOS conditions. It is reasonable to focus on scenarios with heavy NLOS signal propagation conditions between base station and UE to study AI/ML based algorithms for positioning accuracy enhancements.
With Industry 4.0, we are at a new dawn of automation and intelligence, with smart, connected products and the smart factories that produce them. Positioning is a valuable service for Industry 4.0. Industrial factories may also have heavy NLOS signal propagation conditions between base station and UE, and thus are ideal scenarios for study AI/ML based algorithms for positioning accuracy enhancements. 3GPP has defined a set of indoor factory (InF) scenarios, focusing on factory halls of varying sizes and with varying levels of density of clutters, e.g., machinery, assembly lines, storage shelves. Evaluating indoor factory (InF) scenarios as part of the study on AI/ML based algorithms for positioning accuracy enhancements is essential.
For positioning accuracy enhancements, AI/ML based algorithms can be used for either direct AI/ML positioning or AI/ML assisted positioning.
· Direct AI/ML positioning: The output of the AI/ML model directly provides position estimate. 
· AI/ML assisted positioning: The output of the AI/ML model provides intermediate estimates such as LOS/NLOS classification, timing estimates, and angular estimates. These intermediate estimates become input to another algorithm (AI/ML based or non-AI/ML based) to derive the final position estimate. 
Both direct AI/ML positioning and AI/ML assisted positioning can improve positioning accuracy enhancements with different degrees of complexity and specification impact. From evaluation perspective, it is necessary to evaluate both to develop a holistic understanding of AI/ML based algorithms for positioning accuracy enhancements.
Proposal 1: Both direct AI/ML positioning and AI/ML assisted positioning should be evaluated to develop a holistic understanding of AI/ML based algorithms for positioning accuracy enhancements.
As the Rel-18 study on AI/ML for NR air interface is the first one in 3GPP that explores the benefits of augmenting air interface with features enabling improved support of AI/ML based algorithms, it is important to calibrate evaluation results from different companies in order to facilitate drawing observations and making conclusions. 
3GPP has established simulation methodology for studying positioning (see, e.g., TR 38.855 [2] and TR 38.857 [3]), which can be used to generate synthetic data for the study of AI/ML based algorithms for positioning accuracy enhancements. 
However, the simulation layout for indoor factory scenarios described in TR 38.857 (see Figure 1) is much simplified compared to real-world indoor factory scenarios. Additional simulation methodology for generating synthetic data, such as digital twins, can be explored. A digital twin is a virtual representation — a true-to-reality simulation of physics and materials — of a real-world physical asset or system, which is continuously updated. Digital twins can help generate synthetic data that are closer to real-world data, compared to the traditional 3GPP statistical simulation methodology.
Besides generating synthetic data, real data is valuable for the study of AI/ML based algorithms for positing accuracy enhancements. It is beneficial to identify existing sets of real data as part of the evaluation work for the study of AI/ML based algorithms for positing accuracy enhancements. In addition, companies are encouraged to contribute real data to evaluate AI/ML based algorithms for positioning accuracy enhancements.
Proposal 2: Companies are encouraged to contribute real data to evaluate AI/ML based algorithms for positioning accuracy enhancements.
3	KPIs
The study item description lists many dimensions for KPIs, including performance, inference latency, computational complexity, overhead, power consumption, memory storage, hardware requirements, and generalization capability. 
Though it is beneficial to have a full characterization of the performance of AI/ML based algorithms for NR air interface, it is important to focus on a few most important KPIs in the initial phase to understand the gains of AI/ML based algorithms. 
From positioning accuracy enhancement perspective, the key requirement is to improve positioning accuracy. Positioning accuracy can be measured by 
· Horizontal accuracy, which is the difference between the calculated horizontal position and the actual horizontal position of a UE. 
· Vertical accuracy, which is the difference between the calculated vertical position and the actual vertical position of a UE.
With the collected positioning error distribution, a set of percentiles of positioning error can be analysed, such as 50%, 67%, 80%, 90%, and 95%.
Also, many of the KPIs such as inference latency depend on the used computing platform (such as the GPU model). Therefore, it is important to report the KPIs together with the used computing platform (such as the GPU model).
It was discussed that complexity should be evaluated as a KPI, where complexity include model complexity and computational complexity. For evaluation of AI/ML based positioning, the computational complexity can be reported via the metric of floating point operations (FLOPs). 
It is however important to keep in mind that increasing hardware performance can support successively more complex models. For example, Figure 1 shows how single GPU performance has scaled up to meet the demands of deep learning. GPU inference performance has improved by 317x, more than doubling each year. Figure 2 shows single GPU FP64 performance increased by 20x over the decade from 2010 to 2020, an annual growth rate of 35%. In addition to scaling up the performance of individual GPUs, GPUs are also being scaled out to larger clusters for deep learning and high performance computing applications.
Observation 1: Increasing hardware performance can support successively more complex AI/ML models. For example, GPU inference performance has improved by 317x in 8 years (2012-2020), more than doubling each year.
Proposal 3: AI/ML model complexity and computational complexity should not be regarded as a roadblock to the adoption of AI/ML based algorithms for positioning accuracy enhancements.
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Figure 1: GPU inference performance is more than doubling every year. (Source: Ref. [4])
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Figure 2: Single GPU performance scaling. (Source: Ref. [4])
4	Evaluation results
In this section, we provide initial evaluation results on positioning accuracy improvement using AI/ML based algorithms. 
The system-level simulation assumption and scenarios are built on the basis of the RAN1#109-e agreements. Specifically, we evaluate the positioning accuracy for heavy NLOS case in the InF-DH scenario. The scenario layout is illustrated in Figure 3.
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Figure 3: Scenario layout.
4.1	Direct AI/ML positioning: RF fingerprinting  
The direct AI/ML positioning utilizes a convolutional neural network (CNN). The input to the CNN is a fingerprint consisting of multiple channel impulse responses (CIRs). The output of the CNN is the predicted position of UE. As a benchmark, we use a time-of-arrival (TOA) based positioning.
Figure 4 shows the CDF of the horizontal positioning accuracy of both AI/ML based positioning and TOA based positioning. It can be seen that the AI/ML based positioning significantly outperforms the TOA based positioning.
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Figure 4: Positioning accuracy improvement of using an AI/ML based method.
Table 1 summarizes the CDF percentiles (50%, 67%, 80%, 90%,) of horizontal positioning accuracy of both AI/ML based positioning and TOA based positioning.
Table 1: Summary of CDF percentiles of horizontal positioning accuracy
	CDF percentile
	50%
	67%
	80%
	90%

	ToA
	12.1 m
	17.2 m
	24.1 m
	34.9 m

	AI/ML
	1.1 m
	1.5 m
	1.8 m
	2.3 m



Observation 2: AI/ML-based algorithms for direct AI/ML positioning can significantly improve positioning estimation accuracy when compared to classical approaches.
Proposal 4: Capture the presented evaluation results in the TR to highlight that direct AI/ML positioning can significantly improve positioning estimation accuracy when compared to classical approaches.
4.2	AI/ML assisted positioning: LOS/NLOS classification
The AI/ML assisted positioning utilizes a convolutional neural network (CNN). The input to the CNN is a fingerprint consisting of a CIR. The output of the CNN is the LOS/NLOS probability.  
Table 2 provides the confusion matrix of the true test labels and the predicted labels. In the shaded region of the table, the rows and the columns correspond to the predicted class and the true class, respectively, and the number of observations for each case is shown in the corresponding cell.
The non-shaded rightmost column provides the precision values, each denoting the percentage of all the samples predicted to belong to each class that are correctly classified. It can be seen that the precision values exceed 99%.
The non-shaded row at the bottom provides the recall values, each denoting the percentage of all the samples belonging to each class that are correctly classified. It can be seen that the recall value for target class NLOS is as high as 99.99%, and the recall value for target class LOS exceeds 97%.
Table 2: Confusion matrix of LOS/NLOS classification
	
	Target class: NLOS
	Target class: LOS
	Precision

	Output class: NLOS
	70120
	45
	99.94%

	Output class: LOS
	9
	1539
	99.42%

	Recall
	99.99%
	97.16%
	Overall accuracy: 99.92%



Observation 3: AI/ML assisted positioning can provide high-fidelity intermediate estimates such as LOS/NLOS classification, which in turn can be used to derive final position estimate.
Proposal 5: Capture the presented evaluation results in the TR to highlight that AI/ML assisted positioning can provide high-fidelity intermediate estimates such as LOS/NLOS classification.

Conclusion
In the previous sections, we discuss general aspects of AI/ML framework for NR air interface and make the following observations:
Observation 1: Increasing hardware performance can support successively more complex AI/ML models. For example, GPU inference performance has improved by 317x in 8 years (2012-2020), more than doubling each year.
Observation 2: AI/ML-based algorithms for direct AI/ML positioning can significantly improve positioning estimation accuracy when compared to classical approaches.
Observation 3: AI/ML assisted positioning can provide high-fidelity intermediate estimates such as LOS/NLOS classification, which in turn can be used to derive final position estimate.
Based on the discussion in the previous sections we propose the following:
Proposal 1: Both direct AI/ML positioning and AI/ML assisted positioning should be evaluated to develop a holistic understanding of AI/ML based algorithms for positioning accuracy enhancements.
Proposal 2: Companies are encouraged to contribute real data to evaluate AI/ML based algorithms for positioning accuracy enhancements.
Proposal 3: AI/ML model complexity and computational complexity should not be regarded as a roadblock to the adoption of AI/ML based algorithms for positioning accuracy enhancements.
Proposal 4: Capture the presented evaluation results in the TR to highlight that direct AI/ML positioning can significantly improve positioning estimation accuracy when compared to classical approaches.
Proposal 5: Capture the presented evaluation results in the TR to highlight that AI/ML assisted positioning can provide high-fidelity intermediate estimates such as LOS/NLOS classification.
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Appendix
A.1	RAN1#109-e agreements
Agreement
The IIoT indoor factory (InF) scenario is a prioritized scenario for evaluation of AI/ML based positioning. 
Agreement
For evaluation of AI/ML based positioning, at least the InF-DH sub-scenario is prioritized in the InF deployment scenario for FR1 and FR2.
Agreement
For InF-DH channel, the prioritized clutter parameters {density, height, size} are:
· {60%, 6m, 2m};
· {40%, 2m, 2m}. 
· Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.
Agreement
For evaluation of AI/ML based positioning, reuse the common scenario parameters defined in Table 6-1 of TR 38.857.
Agreement
For evaluation of InF-DH scenario, the parameters are modified from TR 38.857 Table 6.1-1 as shown in the table below.
· The parameters in the table are applicable to InF-DH at least. If another InF sub-scenario is prioritized in addition to InF-DH, some parameters in the table below may be updated.

Parameters common to InF scenario (Modified from TR 38.857 Table 6.1-1)
	 
	FR1 Specific Values 
	FR2 Specific Values

	Channel model
	InF-DH
	InF-DH

	Layout 
	Hall size
	InF-DH: 
(baseline) 120x60 m
(optional) 300x150 m

	
	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.
-	for the small hall (L=120m x W=60m): D=20m
-	for the big hall (L=300m x W=150m): D=50m

[image: ]

	
	Room height
	10m

	Total gNB TX power, dBm
	24dBm
	24dBm
EIRP should not exceed 58 dBm

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1
Note: Other gNB antenna configurations are not precluded for evaluation
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), dH=dV=0.5λ – Note 1
One TXRU per polarization per panel is assumed

	gNB antenna radiation pattern
	Single sector – Note 1
	3-sector antenna configuration – Note 1

	Penetration loss
	0dB

	Number of floors
	1

	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- the convex hull of the horizontal BS deployment.
- the whole hall area if the CDF values for positioning accuracy is obtained from whole hall area. 
FFS: which of the above should be baseline.
FFS: if an optional evaluation area is needed

	UE antenna height
	Baseline: 1.5m
(Optional): uniformly distributed within [0.5, X2]m, where X2 = 2m for scenario 1(InF-SH) and X2=[image: ][image: ] for scenario 2 (InF-DH)  
FFS: if the optional UE antenna height is needed

	UE mobility
	3km/h 

	Min gNB-UE distance (2D), m
	0m

	gNB antenna height
	Baseline: 8m
(Optional): two fixed heights, either {4, 8} m, or {max(4,[image: ][image: ]), 8}.
FFS: if the optional gNB antenna height is needed

	Clutter parameters: {density [image: ][image: ], height [image: ][image: ],size [image: ][image: ]}
	High clutter density:
- {40%, 2m, 2m} 
- {60%, 6m, 2m}
· Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.


	Note 1:	According to Table A.2.1-7 in TR 38.802



Agreement
For AI/ML-based positioning evaluation, the baseline performance to compare against is that of existing Rel-16/Rel-17 positioning methods.
· As a starting point, each participating company report the specific existing positioning method (e.g., DL-TDOA, Multi-RTT) used as comparison.
Agreement
For all scenarios and use cases, the main KPI is the CDF percentiles of horizonal accuracy.
· Companies can optionally report vertical accuracy.
Agreement
The CDF percentiles to analyse are: {50%, 67%, 80%, 90%}.
· 90% is the baseline. {50%, 67% 80%} are optional.
Agreement
Target positioning requirements for horizonal accuracy and vertical accuracy are not defined for AI/ML-based positioning evaluation.
Agreement
For evaluation of AI/ML based positioning, the KPI include the model complexity and computational complexity.
· FFS: the details of model complexity and computational complexity
Agreement
Synthetic dataset generated according to the statistical channel models in TR38.901 is used for model training, validation, and testing.
Agreement
The dataset is generated by a system level simulator based on 3GPP simulation methodology.
Agreement
As a starting point, the training, validation and testing dataset are from the same large-scale and small-scale propagation parameters setting. Subsequent evaluation can study the performance when the training dataset and testing dataset are from different settings.
Agreement
For AI/ML-based positioning evaluation, RAN1 does not attempt to define any common AI/ML model as a baseline.
Agreement
The entry “UE horizontal drop procedure” in the simulation parameter table for InF is updated to the following.
	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- (baseline) the whole hall area, and the CDF values for positioning accuracy is obtained from whole hall area.
- (optional) the convex hull of the horizontal BS deployment, and the CDF values for positioning accuracy is obtained from the convex hull.


 
Agreement
The entries “UE antenna height” and “gNB antenna height” in the simulation parameter table for InF is updated to the following.
	UE antenna height
	Baseline: 1.5m
(Optional): uniformly distributed within [0.5, X2]m, where X2 = 2m for scenario 1(InF-SH) and X2= for scenario 2 (InF-DH) 

	…
	…

	gNB antenna height
	Baseline: 8m
(Optional): two fixed heights, either {4, 8} m, or {max(4,), 8}.



Agreement
If spatial consistency is enabled for the evaluation, companies model at least one of: large scale parameters, small scale parameters and absolute time of arrival, where
· the large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance =  for InF (Section 7.6.3.1 of TR 38.901)
· the small scale parameters are according to Section 7.6.3.1 of TR 38.901
· the absolute time of arrival is according to Section 7.6.9 of TR 38.901
Agreement
If spatial consistency is enabled for the evaluation of AI/ML based positioning, the baseline evaluation does not incorporate spatially consistent UT/BS mobility modelling (Section 7.6.3.2 of TR 38.901).
-         It is optional to implement spatially consistent UT/BS mobility modelling (Section 7.6.3.2 of TR 38.901).
Agreement
For evaluation of AI/ML based positioning, companies are encouraged to evaluate the model generalization.
· FFS: the metrics for evaluating the model generalization (e.g., model performance based on agreed KPIs under different settings)
Agreement
Companies are encouraged to provide evaluation results for:
· Direct AI/ML positioning
· Companies are encouraged to describe at least the following implementation details for the evaluation
· details of the channel observation used as the input of the AI/ML model inference (e.g., type and size of model input), model input acquisition and pre-processing
· AI/ML assisted positioning
· Companies are encouraged to describe at least the following implementation details for the evaluation
· details of the channel observation used as the input of the AI/ML model inference (e.g., type and size of model input), model input acquisition and pre-processing
· details of the output of the AI/ML model inference, how the AI/ML model output is used to obtain the UE’s location
Agreement
When reporting evaluation results with direct AI/ML positioning and/or AI/ML assisted positioning, proponent company is expected to describe if a one-sided model or a two-sided model is used.
· If one-sided model (i.e., UE-side model or network-side model), the proponent company report which side the model inference is performed (e.g. UE, network), and any details specific to the side that performs the AI/ML model inference.
· If two-sided model, the proponent company report which side (e.g., UE, network) performs the first part of interference, and which side (e.g., network, UE) performs the remaining part of the inference.
Agreement
For evaluation of AI/ML based positioning, the computational complexity can be reported via the metric of floating point operations (FLOPs).
· Note: For AI/ML assisted methods, computational complexity for the AI/ML model is only one component of the overall complexity for estimating the UE’s location.
· Note: Other metrics to measure the computational complexity are not precluded.
Agreement
For evaluation of AI/ML based positioning, details of the training dataset generation are to be reported by proponent company. The report may include (in addition to other selected settings, if applicable):
· The size of training dataset, for example, the total number of UEs in the evaluation area for generating training dataset;
· The distribution of UE location for generating the training dataset may be one of the following:
· Option 1: grid distribution, i.e., one training data is collected at the center of one small square grid, where, for example, the width of the square grid can be 0.25/0.5/1.0 m.
· Option 2: uniform distribution, i.e., the UE location is randomly and uniformly distributed in the evaluation area. 
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