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[bookmark: _Ref129681832]In RAN1#109e, companies reached agreement on:
“Spatial-frequency domain CSI compression using two-sided AI model is selected as one representative sub use case”. 
There are also agreements reached on the evaluation of AI/ML for CSI feedback enhancement. Following are extracted from the chair’s notes [1] and feature lead’s summary of discussions [2] related/relevant to evaluation of AI/ML-based spatial-frequency domain CSI compression. Note: not all agreements are listed.Agreement:
· For the performance evaluation of the AI/ML based CSI feedback enhancement, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted
· For the evaluation of the AI/ML based CSI feedback enhancement, for the calibration purpose on the dataset and/or AI/ML model over companies, consider to align the parameters (e.g., for scenarios/channels) for generating the dataset in the simulation as a starting point.
· For the evaluation of the AI/ML based CSI feedback enhancement, for ‘Channel estimation’, ideal DL channel estimation is optionally taken into the baseline of EVM for the purpose of calibration and/or comparing intermediate results (e.g., accuracy of AI/ML output CSI, etc.)
· Note: Eventual performance comparison with the benchmark release and drawing SI conclusions should be based on realistic DL channel estimation.
· FFS: the ideal channel estimation is applied for dataset construction, or performance evaluation/inference.
· FFS: How to model the realistic channel estimation
· FFS: Whether ideal channel is used as target CSI for intermediate results calculation with AI/ML output CSI from realistic channel estimation
· For the evaluation of the AI/ML based CSI feedback enhancement, companies can consider performing intermediate evaluation on AI/ML model performance to derive the intermediate KPI(s) (e.g., accuracy of AI/ML output CSI) for the purpose of AI/ML solution comparison
· For the evaluation of the AI/ML based CSI feedback enhancement, Floating point operations (FLOPs) is adopted as part of the ‘Evaluation Metric’, and reported by companies 
· For the evaluation of the AI/ML based CSI feedback enhancement, AI/ML memory storage in terms of AI/ML model size and number of AI/ML parameters is adopted as part of the ‘Evaluation Metric’, and reported by companies who may select either or both.
· FFS: the format of the AI/ML parameters
· For the evaluation of the AI/ML based CSI compression sub use cases, a two-sided model is considered as a starting point, including an AI/ML-based CSI generation part to generate the CSI feedback information and an AI/ML-based CSI reconstruction part which is used to reconstruct the CSI from the received CSI feedback information.
· At least for inference, the CSI generation part is located at the UE side, and the CSI reconstruction part is located at the gNB side.
· For the evaluation of the AI/ML based CSI feedback enhancement, if SLS is adopted, the following table is taken as a baseline of EVM. (note: table is omitted here)


For AI/ML modeling and intermediate KPI related discussions, the following agreements are extracted from [1][2]. Note: not all agreements are listed.· For the evaluation of the AI/ML based CSI feedback enhancement, as a starting point, take the intermediate KPIs of GCS/SGCS and/or NMSE as part of the ‘Evaluation Metric’ to evaluate the accuracy of the AI/ML output CSI
· For GCS/SGCS, 
· FFS: how to calculate GCS/SGCS for rank>1
· FFS: whether GCS or SGCS is adopted
· FFS other metrics, e.g., equivalent MSE, received SNR, or numerical spectral efficiency gap.
· For the evaluation of the AI/ML based CSI feedback enhancement, study the verification of generalization. Companies are encouraged to report how they verify the generalization of the AI/ML model, including:
· The configuration(s)/ scenario(s) for training dataset, including potentially the mixed training dataset from multiple configurations/scenarios
· The configuration(s)/ scenario(s) for testing/inference
· Other details are not precluded
· For the evaluation of the AI/ML based CSI compression sub use cases, companies are encouraged to report the details of their models, including:
· The structure of the AI/ML model, e.g., type (CNN, RNN, Transformer, Inception, …), the number of layers, branches, real valued or complex valued parameters, etc.
· The input CSI type, e.g., raw channel matrix estimated by UE, eigenvector(s) of the raw channel matrix estimated by UE, etc.
· FFS: the input CSI is obtained from the channel with or without analog BF
· The output CSI type, e.g., channel matrix, eigenvector(s), etc.
· Data pre-processing/post-processing
· Loss function
· Others are not precluded

In this contribution, we focus on discussing spatial-frequency domain CSI compression using AI/ML based approach and share some initial evaluation results using agreed-upon assumptions and parameters from RAN1#109e.

Evaluation methodology and KPIs for AI/ML based CSI feedback compression
 Dataset construction
For dataset construction, we use the agreed-upon assumptions and simulation parameters from RAN1#109e as depicted in Table 2.1 of Appendix I: R16 EVM for CSI enhancement [2]. For those rows with optional parameters, the specific parameters that we are using are summarized in Table 2.1-1.
Table 2.1-1: Simulation parameters for dataset generation
	Parameter
	Value

	Duplex, Waveform 
	FDD, OFDM 

	Scenario
	Dense Urban (Macro only)

	Frequency Range
	FR1 only, 4GHz.

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ 

	Antenna setup and port layouts at UE
	2RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for (rank 1-2)

	BS Tx power 
	47dBm for 40MHz

	Numerology: SCS
	30kHz for 4GHz

	UE distribution
	80% indoor (3km/h), 20% outdoor (30km/h) 



Evaluation metrics
To evaluate the performance and complexity of AI/ML-based CSI feedback compression in spatial-frequency domain, we adopt the following intermediate KPIs as discussed and agreed during RAN1#109e.
Performance evaluation:
· NMSE
NMSE = 
where  is the original CSI feedback and  is the corresponding reconstructed CSI feedback.
· GCS
GCS =  , 
where is the original eigenvector for a sub-band and is the corresponding reconstructed eigenvector.
As our approach uses the original/raw CSI feedback as input to reconstruct the CSI feedback (as output of the AI/ML model), NMSE is more appropriate in reflecting the performance of the AI/ML-based approach.

AI/ML model complexity evaluation:
· Space complexity
· We adopt number of AI/ML parameters as the KPI to represent space complexity. 
· Computational complexity
· We use floating point operations (FLOPs) as the KPI to represent AI/ML model computational complexity and follow the definitions as described in [3].

Performance Evaluation Results
In this sub section, we discuss the evaluation results for AI/ML-based CSI feedback compression for both performance and complexity aspects.
AI/ML Model related details
To reduce CSI feedback overhead, we investigated using an autoencoder-based AI/ML model to first compress the CSI feedback at the UE side, followed by quantization and lossless encoding to generate a stream of bits as the output at the UE side to be sent as the CSI feedback bits. On the gNB side, the procedures are reversed, the received bits first go through lossless decoding, followed by de-quantization, then the de-quantized output is used as input to the AI/ML decoder to reconstruct the original CSI feedback. Figure 3.1-1 depicted the high-level functional diagram. 
The input for the AI/ML autoencoder model is raw CSI feedback / channel matrix the UE intends to send, and the output of prediction is the reconstructed raw CSI feedback / channel matrix. We use CNN-based neural network for the encoder and decoder.Figure 3.1-1: AI/ML CSI feedback compression functional diagram


AI/ML Model Training and Testing 
The total number of raw CSI feedback samples is 6,510. We separated the total samples into 3 parts:
· Training: 80% of total samples
· Validation: 20% of training samples
· Testing: 20% of total samples
For AI/ML model architecture, we use CNN-based neural network (NN) as the base of the autoencoder architecture. The results were generated using the final NN weights that performed the best in validation samples. The details of the training parameters are described in Table 3.2-1.

Table 3.2-1: AI/ML model training parameters
	[bookmark: _Hlk110499082]AI/ML model detail
	Value

	Type
	CNN-based

	Training dataset size
	5208

	Testing dataset size
	1302

	Batch size
	32

	Epoch
	200


. 
Performance Evaluation
In this section, we discuss evaluation results for AI/ML CSI feedback compression in spatial-frequency domain, focusing on the following aspects:
· Evaluate CSI feedback reconstruction accuracy using NMSE as the KPI. 
· Evaluate GCS: as our AI/ML model predicts raw CSI feedback (as output), GCS is calculated per Rx, per sub-band for each sample. 
· Evaluate AI/ML model complexity using space complexity, i.e., number of parameters in the AI/ML model, and computational complexity, i.e., FLOPs.
· Evaluate the performance (NMSE and GCS) and overhead (air-interface and codebook size) between 2 different quantization approaches.
In the following sub-sections, we discuss the CSI feedback reconstruction accuracy and overhead difference across 2 quantization approaches:
· Quantizing individual values of the encoder outputs
· Quantizing encoder output vectors

Result for quantizing individual values of the encoder outputs
We compare the performance across various sizes of the encoder output, e.g., 16, 32, 64, and 128, and by using various number of bits in quantization, i.e., 3 bits 4 bits, 5 bits and 6 bits. Figure 3.3.1-1 shows the NMSEs (in dB) of different encoder output size and quantization level combinations.
We also compared GCS across different encoder output size and quantization level combinations as depicted in Figure 3.3.1-2.
After quantization, we use lossless compression to further reduce number of bits to be transmitted over the air interface. Table 3.3.1-1 shows number of bits after quantization and after lossless compression.  Please note that for calculation of number of bits without quantization, it is assumed that 32 bits are used for floating-point number representation. Figure 3.3.1-1: Value-level quantization - NMSE comparison among different combinations of encoder output size and number of bits per encoder output element after quantization




Figure 3.3.1-2: Value-level quantization - GCS comparison among different combinations of encoder output size and number of bits per encoder output element after quantization

 
Table 3.3.1-1: Value-level quantization - Air-interface overhead comparison across different codebook sizes
	Encoder output size
	# of bits without quantization
	# of bits per encoder output element
	Total # of bits per output (air-interface) after quantization
	Average # of bits per output (air-interface) after lossless compression
	Saving % from lossless compression

	16
	16 * 32 = 512
	3
	48
	40.18
	16.28

	
	
	4
	64
	54.23
	15.26

	
	
	5
	80
	69.36
	13.30

	
	
	6
	96
	85.24
	11.21

	32
	32 * 32 = 1024
	3
	96
	81.84
	14.75

	
	
	4
	128
	110.93
	13.33

	
	
	5
	160
	141.17
	11.77

	
	
	6
	192
	175.07
	8.82

	64
	64 * 32 = 2048
	3
	192
	159.83
	16.75

	
	
	4
	256
	216.27
	15.52

	
	
	5
	320
	282.56
	11.70

	
	
	6
	384
	341.90
	10.96

	128
	128 * 32 = 4096
	3
	384
	288.61
	24.84

	
	
	4
	512
	394.58
	22.93

	
	
	5
	640
	529.59
	17.25

	
	
	6
	768
	651.57
	15.16



It can be observed from Table 3.3.1-1 that the air-interface overhead bits can still be significantly reduced by applying lossless compression after the value-level quantization step.
Observation 1: We observe that AI/ML-based CSI feedback compression achieved decent reconstruction accuracy, i.e., using NMSE and GCS, with relatively small training dataset size when applying quantization on individual values of the encoder outputs. 
Observation 2: We observe that the average number of bits to be transmitted over the air-interface can be further reduced by using lossless compression when applying quantization on individual values of the encoder outputs.
Result for quantizing encoder output vectors
Instead of quantizing the values in the encoder output across samples, this approach is to quantize the encoder output vectors across samples. Similar performance comparisons are investigated across various sizes of the encoder output, e.g., 16, 32, 64 and 128, and across various encoder sizes, which represent number of bits used to transmit each encoded and quantized CSI feedback sample, i.e., from 4 - 9 bits. Figure 3.3.2-1 shows the NMSEs (in dB) of different encoder output size and codebook size combinations and Figure 3.3.2-2 shows GCS comparison across these combinations. Figure 3.3.2-1: Vector-level quantization - NMSE comparison among different combinations of encoder output size and number of bits per CSI feedback after quantization


While this approach can drastically reduce the air-interface overhead to less than 10 bits for each CSI feedback, it can be observed from the above results that there is some performance degradation in both NMSE and GCS when comparing to using value-level quantization method with the same encoder output size (denoted using code size in our charts). As NMSE is sensitive to outliers and the dataset size is small in our experiment (i.e., ~ 5200 training samples, ~1300 test samples), this performance result is preliminary and additional study is needed to better understand the performance and air-interface overhead tradeoff across different quantization methods. 
Like discussed in the previous sub-section, we also apply lossless compression after the vector-level quantization step and Table 3.3.2-1 shows number of bits after quantization and after lossless compression. Note that we only included results of 6 - 9 bits in the table as the NMSE/GCS results for 4 – 5 bits are not as good.
Table 3.3.2-1: Vector-level quantization - Air-interface overhead comparison across different codebook sizes
Figure 3.3.2-2: Vector-level quantization - GCS comparison among different combinations of encoder output size and number of bits per CSI feedback after quantization

	Encoder output size
	# of bits per sample without quantization
	# of Codebook vectors
	Total # of bits per output (air-interface) after quantization
	Average # of bits per output (air-interface) after lossless compression
	Saving % from lossless compression

	16
	16 * 32 = 512
	64
	6
	5.697
	5.1

	
	
	128
	7
	6.924
	1.1

	
	
	256
	8
	7.945
	0.7

	
	
	512
	9
	8.949
	0.6

	32
	32 * 32 = 1024
	64
	6
	5.549
	7.5

	
	
	128
	7
	6.872
	1.8

	
	
	256
	8
	7.972
	0.4

	
	
	512
	9
	8.944
	0.6

	64
	64 * 32 = 2048
	64
	6
	5.653
	5.8

	
	
	128
	7
	6.886
	1.6

	
	
	256
	8
	7.935
	0.8

	
	
	512
	9
	8.950
	0.6

	128
	128 * 32 = 4096
	64
	6
	5.553
	7.5

	
	
	128
	7
	6.900
	1.4

	
	
	256
	8
	7.968
	0.4

	
	
	512
	9
	8.947
	0.6



As shown in Table 3.3.1-2, there is no significant benefit in further air-interface overhead reduction by applying lossless compression after the vector-level quantization step.
Observation 3: We observe that AI/ML-based CSI feedback compression achieved reasonable reconstruction accuracy, i.e., using NMSE and GCS, with relatively small training dataset size when applying quantization on encoder output vectors.  
Observation 4: We observe that there is no significant benefit in further reducing air-interface overhead (bits) via lossless compression when applying quantization on encoder output vectors.
Observation 5: We observe that air-interface overhead in sending CSI feedback (bits) can be significantly reduced when applying quantization on encoder output vectors while the codebook sizes are significantly larger compared to applying quantization on individual encoder output values.
Note: The codebook size for value-level quantization is 2^(number of bits per encoder output element) and the codebook size for vector-level quantization is the product of number of codebook vectors and encoder output size. 
Proposal 1: Study the pros and cons in performance and overhead when applying different quantization methods on encoder outputs.
Proposal 2: Study further overhead reduction potential when applying lossless compression after the quantization. 

AI/ML Model Complexity
We evaluated the AI/ML model complexity using total number of parameters in the AI/ML model and total number of floating-point operations (FLOPs) as described in Table 3.4.-1. Table 3.4-1: AI/ML model complexity


	Encoder output size
	Number of AI/ML model parameters
	FLOPs

	16
	727,474
	40.206 M

	32
	793,026
	40.272M

	64
	924,130
	40.403 M

	128
	1,186,338
	40.665 M



Conclusions
In this contribution, we discussed our study on evaluation results of AI/ML-based CSI feedback compression in spatial-frequency domain on both performance and AI/ML model complexity; our observations and proposals are as follows.
[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Observation 1: We observe that AI/ML-based CSI feedback compression achieved decent reconstruction accuracy, i.e., using NMSE and GCS, with relatively small training dataset size when applying quantization on individual values of the encoder outputs. 
Observation 2: We observe that the average number of bits to be transmitted over the air-interface can be further reduced by using lossless compression when applying quantization on individual values of the encoder outputs.
Observation 3: We observe that AI/ML-based CSI feedback compression achieved reasonable reconstruction accuracy, i.e., using NMSE and GCS, with relatively small training dataset size when applying quantization on encoder output vectors.  
Observation 4: We observe that there is no significant benefit in further reducing air-interface overhead (bits) via lossless compression when applying quantization on encoder output vectors.
Observation 5: We observe that air-interface overhead in sending CSI feedback (bits) can be significantly reduced when applying quantization on encoder output vectors while the codebook sizes are significantly larger compared to applying quantization on individual encoder output values.
Note: The codebook size for value-level quantization is 2^(number of bits per encoder output element) and the codebook size for vector-level quantization is the product of number of codebook vectors and encoder output size. 
Proposal 1: Study the pros and cons in performance and overhead when applying different quantization methods on encoder outputs.
Proposal 2: Study further overhead reduction potential when applying lossless compression after the quantization.
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