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Introduction
The SID [1] of artificial intelligent (AI) and machine learning (ML) for NR air interface was agreed in RAN#94e meeting. The initial set of use cases including beam management was selected as followings
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· [bookmark: _GoBack]Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1]
In this contribution, we present our initial evaluation on spatial and temporal domain beam prediction. 
Evaluations and discussions
Use case of beam management
According to the SID, the AI/ML beam management can be categorized into the following sub use cases, but not limited to
· Beam prediction in spatial domain for overhead/latency reduction
· Beam prediction in time domain for overhead/latency reduction
· Beam selection accuracy improvement
In this contribution, we evaluate the 1st two sub use cases, e.g. BM-Case1 and BM-Case2 as defined in RAN1#109e. Moreover, the dense urban scenario with SLS has been agreed as the baseline in the agreements below. Additionally, we evaluate BM-Case1 for the indoor hotspot (InH) scenario as supplementary results. 
[bookmark: _Hlk110684705]Agreement
· For dataset construction and performance evaluation (if applicable) for the AI/ML in beam management, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted
Agreement
· At least for temporal beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.
· For spatial-domain beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.

Dense urban scenario for BM-Case1
Conventionally, NW broadcasts up to 64 SSBs periodically at FR2 for DL beam sweeping. Deployed with either single panel or multiple panels, UEs sweep all its Rx beams (typically 4 Rx beams) per panel to search the best DL beam pair(s). To fulfill the P1 procedure specified in Rel.15, large DL overhead and latency would be expected. 
Intuitively, both NW and UE apply DL Tx and Rx beams respectively with certain pattern. For instance, NW carries out analog beamforming in both vertical and horizontal direction, e.g. 8 beams in horizontal domain and 4 beams in vertical domain (depicted in Figure 2). The combinations of vertical beam and horizontal beam can be seen by UE as total 32 DL Tx beams. Then number of DL beam pairs can be 128 (32 Tx beams and 4 Rx beams) as illustrated in Figure 1. 
Assuming the beamforming pattern can be somehow learnt by neural network (NN), then only a limited number of DL measurement would be enough for NN to infer the quality of all DL beam pair links. The benefit comes from that a large portion of DL measurement of beam pairs can be replaced by beam prediction in spatial domain. This can be called as super-resolution problem. 
One may wonder how the Tx beams for UE to measure are selected. We show our selection on Tx beams in Figure 2 where the highlighted circles represent the most “welcomed” Tx beams from cell perspective. The selected Tx beams represent a spatial pattern of beamforming which can be widely used by UEs. Surely, other Tx beams selection can be carried out with certain rules and probably with even better performance. We didn’t try all the possibilities, and the intention is just to show that this typical selection is workable. 
[image: ]
Figure 1 [bookmark: _Ref110687177]: DL beam sweeping procedure where for traditional beam sweeping 32 Tx beams and 4 Rx beams per panel and for AI/ML beam prediction 8 Tx beams and 4 Rx beams per panel


Figure 2 [bookmark: _Ref110687240]: Only a subset of DL beams measured among all DL beams
Dense urban scenario for BM-Case2
For temporal domain beam prediction, the fundamental assumption can be found in Figure 3, where UE measures DL beam pairs in K time instances and predict beam pairs for next F continuous instances. For example, K = 4 and F = 4. Different from BM-Case1, the time domain beam prediction can be applied when UE is with low/medium mobility, e.g. velocity 30km/h. To increase the prediction accuracy for moving UE, spatial consistency should be modeled as well.  
[image: ]
Figure 3 [bookmark: _Ref110688344]: Temporal domain beam prediction where K = 4 measurements instance and F = 4 prediction instance
Indoor hotspot scenario for BM-Case1
In our initial evaluation (before RAN1#109e), we focused on the sub use case of beam prediction in spatial domain for overhead and latency reduction.
The illustration on traditional beam selection and AI/ML beam prediction in spatial domain can be found in Figure 4. For traditional beam sweeping, there are 64 Tx beams, 4 Rx beams, and then the total number of beam pairs for UE to measure can be up to 256. For AI/ML beam prediction, only a subset of all beam pairs (e.g. 8 Tx beams highlighted as yellow) are actually measured by UE with all Rx beams. Then the measurement number can be calculated as 32 beam pairs (8 Tx beam * 4 Rx beam). Correspondingly, the overhead and latency can be significantly compressed as 1/8 (32 beam pairs / 256 beam pairs). More evaluation assumption can be found in Appendix.


Figure 4 [bookmark: _Ref101099536][bookmark: _Ref101173382]: DL beam sweeping procedure where for traditional beam sweeping 64 Tx beams at NW and 4 Rx beams per panel and for AI/ML beam prediction 8 Tx beams and 4 Rx beams per panel 


Figure 5 [bookmark: _Ref101169651]: Only a subset of DL beams measured among all DL beams
Performance metrics
In legacy (prior to Rel.18) beam management, L1-RSRP has been widely-used as beam selection metric. With its features of simplicity and computation-friendly, it would be proper to serve as the metric for AI/ML-based beam prediction as well. 
In RAN1#109e, the following agreement was reached to evaluate the performance of spatial/temporal domain beam prediction. Beam prediction accuracy based on L1-RSRP was established as a metric to be compared with baseline scheme. In system-level, CDF of throughput can be evaluated as a final check on performance. Moreover, overhead/latency reduction (main purpose of beam prediction) can be straightforwardly calculated. 
[bookmark: _Hlk110270826]Agreement
     To evaluate the performance of AI/ML in beam management, further study the following KPI options:
o   Beam prediction accuracy related KPIs, may include the following options:
  Average L1-RSRP difference of Top-1 predicted beam
  Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
     Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
     Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
  CDF of L1-RSRP difference for Top-1 predicted beam
  Beam prediction accuracy (%) with 1dB margin for Top-1 beam
     The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam”
  The definition of L1-RSRP difference of Top-1 predicted beam:
     the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
  Other beam prediction accuracy related KPIs are not precluded and can be reported by companies. 
o   System performance related KPIs, may include the following options:
  UE throughput: CDF of UE throughput, avg. and 5%ile UE throughput
  RS overhead reduction at least for spatial-domain beam prediction at least for top-1 beam:
       1-N/M,
o   where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement
o   where (FFS) M is the total number of beams
o   Note: Non-AI/ML approach based on the measurement of these M beams may be used as a baseline
       FFS on whether to define a proper value for M for evaluation.
  Other System performance related KPIs are not precluded and can be reported by companies.
o   Other KPIs are not precluded and can be reported by companies, for example:
  Reporting overhead reduction: (FFS) The number of UCI report and UCI payload size, for temporal /spatial prediction
  Latency reduction:
  (FFS) (1 – [Total transmission time of N beams] / [Total transmission time of M beams])
       where N is the number of beams (with reference signal (SSB and/or CSI-RS)) in the input beam set required for measurement
       where M is the total number of beams
  Power consumption reduction: FFS on details

However, there are options on how to measure the beam prediction accuracy. In our evaluation, Top-K beam(s) can be predicted which may or may not include the genie-aided best beam. If the genie-aided best beam is within the predicted Top-K beam(s), then a simple beam sweeping (among Top-K predicted beams) procedure can be triggered to find the best genie-aided beam. Hence, we tend to apply Option 2 in above agreement to evaluate the beam prediction accuracy.
Proposal 1: Adopt Option 2 (beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”) for AI/ML beam prediction.
Regarding L1-RSRP difference, it was defined in above agreement as the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam. But some AI/ML model implementation can predict the corresponding L1-RSRP of the Top-K predicted beam pair(s). If the inference is carried out by NW, then it’s necessary for NW to know the predicted L1-RSRP. Hence, we think there should be another L1-RSRP difference as KPI. 
Proposal 2: Study another definition of L1-RSRP difference of Top-1 predicted beam
· The difference between the predicted L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
For the selection of baseline schemes, in RAN1#109e, the following agreements were reached for both spatial domain and temporal domain beam prediction. In our understanding, one of the key benefits of beam prediction is to significantly reduce overhead/latency. Hence, we think it’s fine to choose the baseline with best performance in the sense of beam selection.
Agreement
· For spatial-domain beam prediction, further study the following options as baseline performance
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
· FFS CSI-RS/SSB as the RS resources
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
· FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
· FFS: how conventional scheme to obtain performance KPIs
· FFS: how to determine the subset of RS resources is reported by companies
· Other options are not precluded.

Agreement
· For temporal beam prediction, further study the following options as baseline performance
· Option 1a: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1 
· Companies explain the detail on how to select the best beam for T2 from Set A based on the measurements in T1
· Where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 and T2 are aligned with those for AI/ML based methods
· Whether Set A and Set B are the same or different depend on the sub-use case
· Other options are not precluded. 

Proposal 3: For spatial domain beam prediction, select the best beam within Set A via exhaustive beam sweeping (Option 1) as baseline.
Proposal 4: For temporal domain beam prediction, select the best beam for T2 within Set A via exhaustive beam sweeping (Option 1a) as baseline.
AI/ML model training and inference
Data set 
In our evaluation, the data set are generated by SLS as two parts. The 1st part is a subset of measured beam pairs (highlighted yellow in Figure 4) and the corresponding L1-RSRP. This can be used as input of the NN for training purpose. The 2nd part is the best (with highest L1-RSRP) beam pair index among all the beam pairs and its L1-RSRP, which can be seen as a label to the NN model. 
With the labelled data, NN can see which beam pair(s) is/are the best one(s) and then learn the relation or pattern between the limited measurements (as input) and the best one(s) (as output). The limited measurement refers to Set B for both BM-Case1 and BM-Case2. In other words, the Tx and Rx beam pattern in time or space domain can be somehow educated to the NN. Then even with a small portion of actual measurement in time or space domain, NN is able to infer which beam pair(s) are most likely to be optimal with the highest L1-RSRP.
Neural network models 
For BM-Case1, we adopt two separate DNN (Deep Neural Network) models which are depicted in Figure 6. The inputs to both AI/ML models are the subset of DL measurements, i.e. L1-RSRP values of measured beam pairs. Since the beam pair indexes of Set B can be sequentially coupled with the NN as inputs, the beam pair indexes can be implicitly captured by the NN models. 
Specifically, the AI/ML model 1 is to predict the Top-K beam pair index(es) and the DNN structure with 3 hidden layers is depicted in Figure 7. The AI/ML model 2 is to predict the best L1-RSRP(s). These two AI/ML models are trained separately and the prediction of both models may not be perfectly aligned. Note that the best L1-RSRP predicted by AI/ML model 2 may not always correspond to the Top-K beam pair(s) predicted by AI/ML model 1. There could be a case that the predicted beam pair index is not correct, but the predicted L1-RSRP is quite close to the actual L1-RSRP of the genie-aided beam pair.


Figure 6 [bookmark: _Ref101102950]: NN models to predict best beam pair index and the highest L1-RSRP separately


Figure 7 [bookmark: _Ref102126308]: Beam pair prediction (model 1) implementation by using DNN model
For BM-Case2, we adopt the concatenation of LSTM (Long-Short Term Memory) + DNN models to predict beam pairs in temporal domain. As one may know, the LSTM model is good at handling the inference in time domain, i.e. remembering key information and forgetting non-essential information. Since both LSTM + DNN are well known in ML field and to save space, we omit the details of LSTM + DNN implementations in this contribution. 
[bookmark: _Ref101171309]Evaluation results
Dense urban scenario for spatial domain beam prediction
In Table 1, we summarize the evaluation results from Top-1 to Top-4 spatial domain beam prediction. It is obvious that the more beam predicted, the higher probability that Top-K predicted beams include the genie-aided best beam. For this evaluation, from Top-1 to Top-4, the beam prediction accuracy increases from 79.15% to 97.95%. In addition, the gap between ideal L1-RSRP of predicted beam pair and that of genie-aided best beam pair is quite narrow, i.e. smaller than 0.5dB. In terms of SE, the SE of UE with Top-1 predicted beam is very close to the baseline scheme which is based exhaustive search to find the best beam pair. 
Since there are total 128 beam pairs and UEs only measure 32 beam pairs for spatial domain beam prediction, the overhead reduction or latency reduction can be up to (1 – 32 beams / 128 beams) = 75%.
Table 1 [bookmark: _Ref111111345]BM-Case1 performance
	
	Baseline
	Top-1
	Top-2
	Top-3
	Top-4

	Beam pair prediction accuracy
	
	79.15%
	92.45%
	95.90%
	97.95%

	Avg. L1-RSRP estimate error
	
	0.41dB
	0.15dB
	0.07dB
	0.04dB

	Spectrum efficiency (bits/s/Hz)
	1.534 
	1.500
	1.519
	1.529
	1.534


Observation 1: Spatial domain beam prediction can yield beam prediction accuracy (at least 80%) while overhead/latency reduction rate is 75%. 
Observation 2: The system level metric, i.e. spectrum efficiency or throughput, is not sensitive to the L1-RSRP difference introduced by spatial domain beam prediction. 
Next, one may see the CDF of L1-RSRP gap of the Top-1 predicted beam as in Figure 8. To have a clear view on the CDF, we only count the L1-RSRP with wrong beam prediction.  
[image: ]
Figure 8 [bookmark: _Ref110695713]: CDF of the L1-RSRP gap for the Top-1 predicted beam
Observation 3: For 80% of the incorrect spatial domain beam prediction cases, the L1-RSRP difference can be kept within 2dB.  
Finally, let’s provide the CDF of spectrum efficiency (S.E. in bits/s/Hz) as performance evaluation of BM-Case1. In Figure 9, the spectrum efficiency of baseline scheme and Top-1 to Top-4 are shown and one may find the performance are quite close. We also note that as for scenario of dense urban (macro-layer only) with 200m ISD @FR2, a portion of UEs located close to cell edge (around 35%) are not well served due to high pathloss, and their S.E. are nearly zero.
[image: ]
Figure 9 [bookmark: _Ref111107495][bookmark: _Ref111111452]: S.E. CDF of baseline (upper bound) and Top-1 to Top-4
Moreover, since the beam predication accuracy is promising as shown in Table 1 (at least 80%) and L1-RSRP error is very marginal (lower than 1dB), the performance on S.E. of Top-1 to Top-4 are very closed to that of the upper bound baseline in Figure 9. We find the hint that if both beam prediction accuracy and L1-RSRP error are good, the comparison on system-level results, i.e. S.E. or throughput may only provide neglectable insight. 
Observation 4: When beam prediction accuracy is high and L1-RSRP difference is small, the performance evaluation on system-level output, i.e. spectrum efficiency or throughput may only shed light on non-essential insight.
Dense urban scenario for temporal domain beam prediction
As for BM-Case2, the evaluation assumption can be found in appendix Table 8. The UE measures K = 4 continuous time instances from Set B which is the same as Set A, and predicts Top-K (from Top-1 to Top-4) in the upcoming F = 1/2/4 time instances. Apparently, from Table 2, one may find that given Top-K predicted beam pair(s), the beam prediction accuracy decreases from F = 1 to F = 4. The reason lies in the fact that the higher the time gap between measurement and prediction, the higher probability that the prediction is not accurate. Similar observation can be found in Table 3 for L1-RSRP prediction error. But anyway, the performance seems promising (higher than 90.0%) from Top-2 to Top-4 prediction. 
Table 2 [bookmark: _Ref110702238]Beam prediction accuracy for BM-Case2
	Beam pair prediction accuracy
	Top-1
	Top-2
	Top-3
	Top-4

	F = 1
	87.1%
	97.3%
	98.9%
	99.5%

	F = 2
	82.8%
	95.8%
	98.2%
	99.3%

	F = 4
	77.1%
	93.7%
	97.3%
	98.8%


Table 3 [bookmark: _Ref110702413]L1-RSRP prediction error for BM-Case2
	Avg. RSRP prediction error (dB)
	Top-1
	Top-2
	Top-3
	Top-4

	F = 1
	0.166
	0.049
	0.022
	0.011

	F = 2
	0.287
	0.058
	0.023
	0.02

	F = 4
	0.539
	0.126
	0.043
	0.026


Observation 5: Temporal domain beam prediction can provide good beam prediction accuracy (at least 77%) while overhead/latency reduction can be up to 50% (for the case of K = 4 and F = 4).
Observation 6: Beam predication accuracy slightly decreases from 87.1% to 77.1% (the case of Top-1) when F increases from 1 to 4, but strongly increases from 77.1% to 98.8% (the case of F = 4) when predicted beam number increases from Top-1 to Top-4.
In Figure 10, the CDF of L1-RSRP difference is presented. Even for the worst case (Top-1, F = 4), 80% of L1-RSRP prediction error is lower than 3.5dB. Note here we only calculate the L1-RSRP for the case when beam prediction in time domain is incorrect. 
[image: ]
Figure 10 [bookmark: _Ref110702798]: CDF of L1-RSRP gap of Top-1 predicted beam in 1/2/4 time instance(s)
Observation 7: For 80% of the incorrect temporal domain beam prediction cases, the L1-RSRP difference is lower than 3.5dB which may not strongly impact the spectrum efficiency.
Indoor hotspot scenario for spatial domain beam prediction
Given the previously introduced data set and NN model setting, we would like to share our initial evaluation results in Table 4. In this table, we compare the AI/ML based prediction with traditional beam selection, where the latter applies no interpolation, but just select the best measured beam pair with highest L1-RSRP among the actual measurements.
In the 2nd column of Table 4, we compare the best beam selection/prediction rate for both AI/ML beam prediction and traditional beam selection. One may see that the correct best beam pair prediction rate of AI/ML could be around 80% and the traditional beam selection has a smaller chance, i.e. round 24% to find the best beam pair.
In the 3rd and 4th column of Table 4, two performance metrics on L1-RSRP error are calculated. L1-RSRP prediction error is the difference between actual (real) L1-RSRP of the best beam pair and the predicted L1-RSRP. L1-RSRP selection error is the difference between actual (real) L1-RSRP of the best beam pair and the actual (real) RSRP of the selected beam pair. 
When the best beam pair is predicted right by the NN model, its L1-RSRP prediction error is 1.02dB. That is very close to the quantization step for L1-RSRP beam reporting (e.g. 1dB step size) in TS 38.214 [3]. Note that when the best beam pair is correctly selected, then the L1-RSRP selection error (between the actual L1-RSRP of the best beam pair and the actual R1-RSRP of selected best beam) is 0dB, since in this case, they are of the same beam pair. 
The false beam pair selection rate of AI/ML based prediction is round 20%, and the L1-RSRP prediction error is around 2.5dB. Intuitively, if the NN cannot predict the right beam pair, then it would be harder to predict the best L1-RSRP within very small error. Moreover, in the cases of false beam prediction, the L1-RSRP selection error is more than 5dB, which reflects the difference between the actual (real) L1-RSRP of best beam pair and actual (real) L1-RSRP of the predicted beam pair.
As for traditional beam selection, since there is no interpolation/prediction, the L1-RSRP prediction error is not applicable. Hence, we only average the L1-RSRP selection error of traditional beam selection which could be up to 11dB. The reason of such huge gap lies in the fact that UE can only pick up the best beam within 1/8 beam pair of all candidate beam pairs. 
Table 4 [bookmark: _Ref101103363]Performance based on L1-RSRP
	
	Correct beam prediction rate
	Mean of L1-RSRP prediction error
	Mean of L1-RSRP selection error

	AI/ML-Right selection
	80.35%
	1.02dB
	0dB

	AI/ML-False selection
	19.65%
	2.47dB
	5.49dB

	Traditional-Right selection
	23.94%
	/
	0dB

	Traditional-False selection
	76.06%
	/
	11.16dB


With above analysis on performance, we would like to share our observations.
Observation 8: For InH scenario, AI/ML beam prediction in spatial domain can yield relatively high correct prediction rate (around 80%) while using only a small portion (1/8) of DL measurement. 
Observation 9: For InH scenario, when AI/ML beam prediction is correct, the L1-RSRP prediction error is acceptably small (around 1dB); otherwise (AI/ML beam prediction incorrect), the L1-RSRP prediction error would increase slightly (up to 2.5dB).
In Figure 11, we show the CDF of both predicted L1-RSRP and actual (real) L1-RSRP when the AI/ML beam prediction is correct. Statistically speaking, thanks to the technique of AI/ML, these CDFs are closed to each other. It aligns well with average L1-RSRP prediction error (1.02dB as shown in Table 4).
In Figure 12, we show the CDFs when false beam pair selection/prediction happens. When AI/ML model 1 (introduced in Figure 6) predicts an incorrect best beam pair, the CDF of its predicted L1-RSRP (generated by AI/ML model 2 separately) stays not far away from that of actual (real) L1-RSRP of the best beam pair. This curve is marked as “AI-predicted L1-RSRP”. 
As for the curve marked as “AI-selected L1-RSRP”, it refers to the actual (real) L1-RSRP of the wrongly-predicted best beam pair. This gap between actual L1-RSRP of AI/ML prediction and actual L1-RSRP of the best beam pair is around 5dB. This performance also matters, since it reflects actual L1-RSRP performance gap of the best beam predicted wrongly by NN. 
As we explained previously, the traditional sub-set beam selection scheme has a large gap when compared with the best beam. The reason lies in the fact that the traditional beam selection only has partial beam pair candidates. Note that in this contribution, we only select the very basic traditional beam selection scheme. To make more meaningful comparison, we may need to study more advanced traditional scheme, e.g. beam selection with linear interpolation.
[image: ]
Figure 11 [bookmark: _Ref101106720]: CDF of actual (real) L1-RSRP and predicted L1-RSRP when the beam prediction is correct
[image: ]
Figure 12 [bookmark: _Ref101106861]: CDF of actual (real)/selected/predicted L1-RSRP when the beam prediction is incorrect
Conclusion
In this section, allow us to repeat our observations and proposals
Observation 1: Spatial domain beam prediction can yield beam prediction accuracy (at least 80%) while overhead/latency reduction rate is 75%. 
Observation 2: The system level metric, i.e. spectrum efficiency or throughput, is not sensitive to the L1-RSRP difference introduced by spatial domain beam prediction.
Observation 3: For 80% of the incorrect spatial domain beam prediction cases, the L1-RSRP difference can be kept within 2dB.  
Observation 4: When beam prediction accuracy is high and L1-RSRP difference is small, the performance evaluation on system-level output, i.e. spectrum efficiency or throughput may only shed light on non-essential insight.
Observation 5: Temporal domain beam prediction can provide good beam prediction accuracy (at least 77%) while overhead/latency reduction can be up to 50% (for the case of K = 4 and F = 4).
Observation 6: Beam predication accuracy slightly decreases from 87.1% to 77.1% (the case of Top-1) when F increases from 1 to 4, but strongly increases from 77.1% to 98.8% (the case of F = 4) when predicted beam number increases from Top-1 to Top-4.
Observation 7: For 80% of the incorrect temporal domain beam prediction cases, the L1-RSRP difference is lower than 3.5dB which may not strongly impact the spectrum efficiency.
Observation 8: For InH scenario, AI/ML beam prediction in spatial domain can yield relatively high correct prediction rate (around 80%) while using only a small portion (1/8) of DL measurement. 
Observation 9: For InH scenario, when AI/ML beam prediction is correct, the L1-RSRP prediction error is acceptably small (around 1dB); otherwise (AI/ML beam prediction incorrect), the L1-RSRP prediction error would increase slightly (up to 2.5dB).
Proposal 1: Adopt Option 2 (beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”) for AI/ML beam prediction.
Proposal 2: Study another definition of L1-RSRP difference of Top-1 predicted beam
· The difference between the predicted L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
Proposal 3: For spatial domain beam prediction, select the best beam within Set A via exhaustive beam sweeping (Option 1) as baseline.
Proposal 4: For temporal domain beam prediction, select the best beam for T2 within Set A via exhaustive beam sweeping (Option 1a) as baseline.
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Appendix: evaluation assumptions
Table 5 Indoor hotspot scenario
	Parameter
	Value

	Scenario
	TR38.901: Indoor hotspot, 12 sites, 3 cells per site

	SCS
	120kHz

	Bandwidth
	40MHz

	Carrier Frequency 
	30GHz

	Tx power
	20dBm

	BS antenna config
	[Mg Ng M N P] = [1 1 4 16 2]

	UE antenna config
	[Mg Ng M N P] = [1 1 1 4 2]

	BS Tx beam pattern
	64 Tx = 16 horizontal * 4 vertical
Azimuth angle = [-16*pi/32, -14*pi/32, …, 0, …, 12*pi/32, 14*pi/32]
Zenith angle = [2*pi/8, 3*pi/8, 4*pi/8, 5*pi/8]
(azimuth, zenith) = (0, pi/2) is the direction perpendicular to the array

	BS mech. tilting
	20 degree

	BS height
	3m

	UE Rx beam pattern
	4 Rx per panel = 4 horizontal * 1 vertical
UE panels deployment [-90, 0, 90], assumed the best panel is selected
Azimuth angle = [-3*pi/8, 1*pi/8, pi/8, 3*pi/8]
Zenith angle = [pi/2]

	UE velocity 
	3km/h

	UE height
	1.5m

	Beam selection method
	L1-RSRP

	Training set
	39600 samples = 12 sites * 3 cells per site * 100 UE per cell * 11 drops


Table 6 Evaluation assumptions for dense urban (both BM-Case1 and BM-Case2)
	Parameter
	Value

	Scenario
	Dense urban (macro layer only), 21 cells

	Frequency setting
	30GHz carrier & 120kHz SCS & 80MHz BW

	BS antenna config
	[Mg Ng M N P] = [1 1 4 8 2] baseline

	UE antenna config
	[Mg Ng M N P] = [1 2 1 4 2] baseline

	BS beamforming
	32 Tx beams (8 horizontal & 4 vertical)

	UE beamforming
	4 Rx beams (4 horizontal & 1 vertical)

	UE rotation
	OFF

	Beam selection metric
	L1-RSRP

	Traffic model
	Full buffer

	Performance metric
	

	L1-RSRP
	Top-K beam pairs with maximum L1-RSRPs

	Spectrum efficiency 
	Final output of SLS



Table 7 Evaluation assumptions for BM-Case1 (dense urban)
	Model parameter
	Values

	Model selection
	DNN with 3 hidden layers

	Input
	32 beam pairs (8 Tx beams and 4 Rx beams)

	Output
	Predicted Top-K beam pairs (K = 1, 2, 3, 4)

	Training set and mode
	40000, offline

	Spatial domain specific
	Values

	UE speed
	3km/h

	UE mobility
	OFF

	Spatial consistency
	OFF


Table 8 [bookmark: _Ref111126828]Evaluation assumptions for BM-Case2 (dense urban)
	Model parameter
	Values

	Model selection
	LSTM + full connection

	Input
	128 beam pairs (32 Tx beams and 4 Rx beams)
K = 4 measurement instance

	Output
	Predicted Top-K beam pairs (K = 1, 2, 3, 4) in F time instances (F = 1, 2, 4). Each time instance is with granularity 100ms.

	Training set and mode
	20000 (in case of K=4 and F=1), offline

	Time domain specific
	Values

	UE speed
	30km/h

	UE trajectory
	Option 2: linear trajectory with random direction change, and bounce back when hitting cell boundary

	Spatial consistency
	Procedure A in TR 38.901
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